
Decision-Aware Information Systems
A Systems Modelling Perspective
Bridging Decisions and Processes

Dissertation presented
to obtain the degree of
Doctor of Philosophy

by

Faruk HASIĆ

Number 692 May 2020

Since the theses in the series published by the Faculty of Economics
and Business are the personal work of their authors, only the latter
bear full responsibility.

Committee

Chairperson Prof. dr. Martina Vandebroek KU Leuven

Supervisor Prof. dr. Estefanía Serral Asensio KU Leuven
Co-Supervisor Prof. dr. Monique Snoeck KU Leuven

Prof. dr. Yves Wautelet KU Leuven
Prof. dr. Patrick Delfmann University of Koblenz-Landau
Prof. dr. Johannes De Smedt University of Edinburgh

iii

Acknowledgments

“No book can ever be finished. While
working on it we learn just enough to
find it immature the moment we turn
away from it.”

The Open Society and Its Enemies, 1950
— Karl Popper

To obtain a PhD one must tread a long and winding road. It is
often said that the pursuit of a PhD should come with a government
health warning. Fortunately, the long and winding road to a PhD
is partially paved with the widespread encouragement of so many.
In this section I hope to recognise the support I received during
the past three years and eight months and to adequately convey
my gratitude for the same.

First and foremost, I would like to thank my supervisor prof. dr.
Estefanía Serral for the active support and care during this journey,
the insightful questions and suggestions, and all the unconditional
trust and confidence she placed in me. Fani, thank you for the
many talks we had and for the many laughs we shared. I am proud
to be your first PhD graduate and I am sure that many more will
follow. Perhaps they will be a bit less stubborn than me. We will
see.

Next, I wish to thank my co-supervisor prof. dr. Monique
Snoeck. I am still amazed by your unrivalled expertise and insights
which always surface when providing comments, suggestions, and
questions that invariably go the core of the problem at hand. I like
to think of you as the wise oracle of the group that always knows
what is coming next and what course of action is best. Thank you

v

vi

for being there for the PhD candidates of the group, not only in
terms of research support, but also for considering the well-being
of us all.

Let me also thank the remaining members of the examination
committee. My gratitude to prof. dr. Martina Vandebroek. Four
years ago, you were present at my Master’s thesis defence as a
third reader and now you are closing the circle by chairing the
examination committee of my PhD.

Furthermore, many thanks go to prof. dr. Yves Wautelet for
always being open and ready to help, as well as for constantly
looking out for and sharing possible future opportunities.

I am also grateful for the support of prof. dr. Patrick Delfmann.
Thank you for enabling the teamwork between our research groups
and for providing me and your PhD students with the trust and
freedom to set up a smooth and efficient collaboration.

The last, but not least, examination committee member is prof.
dr. Johannes De Smedt. Johannes, thank you for all the support,
insights, talks, jokes, and laughs we shared in the past years. In a
sense, you have been with me on this journey from the beginning.
My time in Edinburgh with you, Ynte, Kasper, and Quincy will
be something that I will always fondly remember. I am glad you
have expanded your family with an additional information systems
researcher. I wish all of you the best, except maybe Quincy because
of his attempt to murder me in my sleep. Thank you for hosting
me, for showing me your troublesome YouTube video taste, and for
writing and recording our very first information systems research
song Decisions on my mind which, if released, would definitely top
the charts in Nerdville.

Special thanks go to prof. dr. Jan Vanthienen for giving me the
opportunity to embark on the adventure of research, for introducing
me to the compelling topic of processes and decisions, and for
supporting me during the elaboration of Part II of this dissertation.
Thank you for always organising the best team building activities
and for sharing your wise quotes on research with us. One of my
favourites that I remember is: if you conduct a survey about nuclear
physics, that does not make you an expert on nuclear physics.

Furthermore, I would like to express my gratitude to the other
faculty members of our research group. Professor Jochen De
Weerdt, thank you for being so approachable and helpful, as well as

ACKNOWLEDGMENTS vii

for always providing humorous insights into the world of academia
during our many coffee breaks. I admire you for being able to
successfully combine a strong career in academia and a busy, but
undoubtedly fulfilling, family life. Thank you for providing me with
the opportunity to conduct a research stay in Chile, which was truly
an amazing experience. Professor Bart Baesens, thanks sharing
your love for pizza fantasia, now I am a fan too. I enjoyed your
funny stories and jokes at coffee breaks and receptions. We should
have grabbed a drink together more often. Hopefully there will be
time for that in the future. Prof. Seppe vanden Broucke, you are
a talent like no other, with witty and funny insights into academia
and beyond, which I enjoyed very much. Finally, professor Ferdi
Put, I very much enjoyed our talks at the coffee machine, as well
as your dry and subtle, yet sometimes direct remarks that always
provoked laughter. Thank you for being the calm and friendly
person that you are.

Now that I have addressed the elite of our research group, it is
time to mention the plebs of academia, also known as PhD students.
First, I will mention a few names of students that have graduated
during my time. To the new PhD students in the group, these sound
like names of heroes from tales of old. They are not really sure that
those people ever existed, but their ghosts sometimes still roam the
halls of our faculty. I have known many of them and I still have fond
memories of our time together. Pieter, I mostly enjoyed your sense
of shamelessly harsh humour. Michael, you were often a source of
social cohesion in the group, or maybe you were just improvising,
we will never know. Klaas, I enjoyed your company and your ability
to be supportive of everyone. I feel that we should have spent more
time together. Tine, I enjoyed your linguistic acrobatics which, to
my surprise, is not inversely proportional to the amount of wine
glasses you consume. Unfortunately, one cannot draw the same
conclusions for Anthony’s linguistic functionality and the amount
of beer consumed. However, I did enjoy all the time you spent with
us in this development cooperation project between the north and
the south of the country. I hope you stay true to your Slavic roots
and start learning Macedonian soon. Jenny, though it was short, it
was fun having you around to provide a more exotic Cuban flavour
to our group. María, I know you always hated my short jokes,
but here comes a final one, I promise: I never knew Vikings could

viii

be that short. Tom, I know you never liked my jokes either, but
someone had to point out the elephant in the room. Jasmien, I
loved having you around because you always laughed at my jokes,
but that is maybe because they were not about you. I will try to
fix this in the future. Eugen, you helped a prejudice out of this
world: you actually demonstrated that Germans have a sense of
humour. Though the sample size is small, I will accept this as a
proof by counterexample. Sandra, I would like to say that, like
Eugen, you too helped a prejudice out of this world, namely that
Montenegrins are lazy. I would like to say that, but I am still
missing the proof by counterexample. I was always amazed at how
we could speak two totally different languages and still understand
each other. Together, I feel that we successfully introduced a bit
of balkanisation in a civilised Western European institution.

Next to these veterans that graduated, I would like to mention
my batch of PhD students, namely the batch that started at the
end of 2016. Anthony was one of us, but then he decided to go back
to the deep and dangerous south. Only myself, Galina, Daria, and
Rongjia remained. A small batch of clueless junior PhD students.
At first, we looked at the veterans that I mentioned before, and we
thought to ourselves: will we ever be that advanced, that smart,
and that capable? Then we realised those veterans were basically
just faking it and we soon learnt to do the same. I was sceptical
of Galina and Daria in the beginning because I come from a part
of the world where the Russian influence, Russian spies, and the
immanent threat of a Russian invasion were always feared. On
top of that, for about two years the people in the research group
could not tell which one of them was Daria and which one Galina.
Surely, this was some KGB tactic that they employed to confuse
us. But now, though we remain watchful all the time, we have
learnt to accept them as one of our own. Rongjia was the spy
sent by Beijing. She allegedly first came for a few months as an
exchange student. Before we knew it, she occupied a permanent
spot in the PhD group. In the beginning, Rongjia and I had a lot
of fun together as we shared an office. Not just any office, the best
and biggest corner office of our research group. Soon, the leaders
of the research group decided that they should give that office to a
more important and productive member of our group. So, we were
kicked out and the coffee machine was awarded the corner office.

ACKNOWLEDGMENTS ix

What was once a clueless batch of junior PhD students has
become the senior group of PhD researchers. Soon, we saw new
poor unfortunate souls enter the PhD life, like us back then, not
knowing what they have started. It is remarkable how some of the
new PhD students resemble the old ones. Jari reminds me of Pieter.
They both think process mining and trace clustering are cool and
they have a similar sense of humour. Björn sounds like María with a
deeper voice, since Björn is actually a life-size Viking (sorry María,
promise already broken). Carlos, my sincerest apologies for the
stereotypical Mexican sleeping next to a cactus with a sombrero on
his head jokes. I will try to decrease the frequency of those for a
while, but they will surface again. Jeroen, always fun to complain
to each other about which problems we encounter next with the
refurbishment or building of our respective houses. Only we know
the pain. Veda, it is fun to hear that Indian accent once again
in real life. It reminds of my exchange to India years ago, when
research was not even a thing that existed in my mind. Rafaël, fun
to have another coke (the beverage) addict in the department. I felt
alone for a long time. Steven, I still cannot believe you are that
old. Ziboud, please, for the love of all that is holy, stop making
those terrible puns and wordplay jokes. In fact, do humanity a
favour and stop making any kind of jokes. We also have a few
new colleagues at the Brussels campus. Pavani and Konstantinos
are a true enrichment to our group. Sharing an office with them
a few days a week has been truly enjoyable. I would also like to
recognise my other office mates from different research groups for
their company over the past years. Alex, it was a true pleasure
being in the same office as you. Morteza, thank you for sharing
your insights as a more experienced researcher. Talia, you are a
funny and entertaining office mate. I do have the feeling that your
presence in the office negatively correlates with my productivity.
But at least we had a few good laughs.

Next to colleagues affiliated with the KU Leuven, I had the
pleasure to collaborate with great researchers from all around
the world. In particular, I would like to express my gratitude
to Stephen Hasley of the American College of Obstetricians and
Gynecologists and Letha Sooter of the University of Pittsburgh for
involving my doctoral research in their clinical pathway modelling
endeavours. Furthermore, I would like to thank Carl Corea of the

x

University of Koblenz-Landau for being open for our collaboration,
for always being available for discussions, and for crunching the
deadlines with me during the final part of my PhD research. I
think that together we achieved quite a lot in a short period of
time. I look forward to our future collaboration and I hope we
meet each other soon in real life, preferably at a conference at an
exotic location.

One of the highlights of the PhD trajectory was my research
stay at the Complex Engineering Systems Institute of the Faculty
of Physical and Mathematical Sciences of the University of Chile.
I would like to thank the Web Science & Smart Technologies
(WeSST) Lab for hosting me in Santiago and for including me
in the group as one of their own. In particular, special thanks
go to the head of the lab, prof. dr. Ángel Jiménez-Molina for his
hospitality and for the many lunches and talks we shared during my
stay. I will fondly remember my time at the lab and the office mates
Cristian, Francisco, Pablo, Sebastián, and Macarena. Also many
thanks to Marcelo for his kind attitude and helpful tips during
my stay. Weónes Chilenos, you will be missed. I hope to see
you all soon. Furthermore, thanks go to Beatriz and Giovanni
for discussing future research with me while I was there. Of course
when I think Chile, I think Luis Aburto Lafourcade. Luis, it was
a great pleasure having you with us in Leuven and likewise a great
pleasure seeing you again in Santiago. I would like to thank you
and Paloma for your hospitality and for making time for the Leuven
researchers while we were in Chile. I hope the two of you will have
a long and happy life together and that we may meet again soon.

Above, I expressed my gratitude to people that I encountered
as a result of my PhD track. I would also like to give a shout out
to the many domestic and foreign family, friends, and housemates
that have accompanied me along this journey, making the hardest
parts more bearable.

Finally I would like to end by recognising the most important
people in my life, my parents and my sister, to whom this PhD is
dedicated. Thank you for all the support over all these years, in
times both good and bad.

Faruk Hasić
May, 2020

To my parents,
and to my sister,

for their tremendous support.

Doctoral Dissertation
Summary

Modern process-aware information systems heavily rely on decision
knowledge for the development, execution, and evolution of
operational processes. This decision knowledge drives process
engineering, execution, and automation and impacts multiple
process perspectives, such as the control flow, data, and resource
perspectives. Therefore, a consistent integration of decisions and
processes is imperative for a sound development and management
of knowledge-based processes. This thesis presents advances in
the field of process-aware information systems by augmenting
the processes with a model-driven decision perspective. The
contributions are divided into three parts.

The first part presents the integration of processes and decisions
from a modelling viewpoint. By detecting inconsistencies in the
integration of the models, principles and guidelines are proposed
to ensure a consistent integration when modelling decision-aware
processes or re-engineering processes for decision-awareness.

The second part capitalises on design principles from the
service-oriented architecture paradigm to systematically address
the separation of concerns between the process and decision
perspectives, as well as their consistent integration. A layered
reference design that takes these design principles into account
is contributed and illustrated through decision-aware process
discovery on a real-life enriched event log.

Finally, in the third part, change patterns for decision-aware
processes are introduced, as well as prototype modelling tools that

xv

xvi

support the evolution of process and decision models through the
change patterns. The tools comprise a modelling environment with
built-in consistency verification capabilities, automated feedback,
and user-driven automated mechanisms for restoring both within-
model and between-model consistency.

In summary, this dissertation introduces a systems modelling
perspective of decisions to process-aware information systems, thus
rendering decision-aware processes. By doing so, it recognises the
importance of decision models in model-driven software systems
engineering.

Samenvatting Doctoraal
Proefschrift

Moderne informatiesystemen steunen op beslissingskennis voor
hun ontwikkeling, uitvoering en evolutie. Procesontwikkeling,
uitvoering en automatisering worden vaak aangestuurd door
beslissingen die meerdere perspectieven van het proces beïnvloeden,
zoals de control flow, de data en de resources. Daarom is het
consistent integreren van beslissingen en processen noodzakelijk
voor een goede ontwikkeling en beheer van kennisgebaseerde
processen. Dit proefschrift introduceert vorderingen in het gebied
van procesbewuste informatiesystemen door de processen uit te
breiden met een modelgestuurd beslissingsperspectief.

Het eerste deel behandelt de integratie van processen en
beslissingen vanuit een modelleeringsoogpunt. Door inconsistenties
in de integratie van de modellen te detecteren, worden principes en
richtlijnen voorgesteld om een consistente integratie te waarborgen
bij het modelleren van beslissingsbewuste processen.

Het tweede deel maakt gebruik van ontwerpprincipes uit het
servicegeoriënteerde architectuurparadigma om systematisch de
scheiding van belangen tussen het proces en het beslissings-
perspectief te waarborgen, evenals hun consistente integratie. Een
gelaagd referentieontwerp gesteund op deze ontwerpprincipes wordt
voorgesteld en geïllustreerd door beslissingsbewuste procesont-
ginning op een verrijkte event log.

In het derde deel worden veranderingspatronen voor beslissings-
bewuste processen geïntroduceerd, alsook prototypes van
modelleringstools die de evolutie van proces- en beslissingsmodellen

xvii

xviii

ondersteunen. De tools omvatten een modelleringsomgeving met
consistentieverificatie, geautomatiseerde feedback en door de
gebruiker aangestuurde geautomatiseerde mechanismen voor
consistentieherstel, zowel binnen het model als tussen de modellen.

Aldus introduceert dit proefschrift een systeemmodellerings-
perspectief van beslissingen voor procesbewuste informatie-
systemen, resulterend in beslissingsbewuste informatiesystemen.
Hiermee erkent dit proefschrift het belang van beslissingsmodellen
in de modelgestuurde ontwikkeling van softwaresystemen.

Résumé de la Thèse de
Doctorat

Les systèmes d’information modernes reposent sur la connaissance
décisionnelle pour leur développement, exécution et évolution.
L’ingénierie, l’exécution et l’automatisation des processus sont
souvent guidés par des décisions qui ont un impact sur de multiples
aspects du processus. Par conséquent, l’intégration cohérente des
décisions et des processus est essentielle pour un développement
et une gestion appropriés des processus basés sur la connaissance.
Cette thèse présente les avancées dans le domaine des systèmes
d’information centrés-processus en augmentant les processus avec
une perspective de décision. Les contributions sont divisées en trois
parties.

La première partie présente l’intégration des processus et des
décisions du point de vue de la modélisation. En détectant
les incohérences dans l’intégration des modèles, des principes et
des recommandations sont suggérées pour assurer une intégration
cohérente lors de la modélisation des processus centrés-décision
ou de la réingénierie des processus afin qu’ils deviennent centrés-
décision.

La deuxième partie s’appuie sur les principes de conception
du paradigme de l’architecture orientée services pour traiter
systématiquement la séparation des préoccupations entre les
perspectives de processus et de décision. Une conception de
référence à plusieurs niveaux qui tient compte de ces principes de
conception est proposée et illustrée par la découverte de processus
de prise de décision sur un journal d’événements réels.

xix

xx

Enfin, des schémas de changement pour les processus centrés-
décisions sont présentés, ainsi que des prototypes d’outils de
modélisation qui soutiennent l’évolution des processus et des
modèles de décision grâce aux schémas de changement. Ces outils
comprennent un environnement de modélisation avec des capacités
intégrées de vérification de la cohérence, un mécanisme de feedback
automatisé et des mécanismes automatisés orientés utilisateur pour
restaurer la cohérence du modèle et entre les modèles.

En résumé, cette thèse introduit une perspective de décisions
dans la modélisation des systèmes d’information centrés-processus.
Ce faisant, elle reconnaît l’importance des modèles de décision dans
l’ingénierie des systèmes logiciels guidée par les modèles.

Zusammenfassung der
Doktorarbeit

Moderne Informationssysteme weisen derzeit im Rahmen ihrer
Entwicklung, Ausführung und Weiterentwicklung einen enormen
Bedarf an Entscheidungsfindungsmechanismen auf. Die Prozess-
entwicklung, -ausführung und -automation ist hierbei oft von
Entscheidungsfindungsvorgängen getrieben, die sich auf diverse
Aspekte des Prozesses wie etwa den Kontrollfluss, die Daten oder
die Ressourcen auswirken können. In diesem Kontext ist die
konsistente Integration von Entscheidungsfindungsmechanismen
und Prozessen für eine fehlerfreie Entwicklung und Weiter-
führung von wissensbasierten Prozessen daher unumgänglich.
Diese Arbeit präsentiert neue Erkenntnisse im Bereich der
prozessbasierten (“process-aware”) Informationssysteme, speziell
der Erweiterung von Prozessen durch eine modellgetriebene
Entscheidungsperspektive. Die Ergebnisse gliedern sich hierbei in
drei Teile.

Der erste Teil untersucht die Integration von Prozessen
und Entscheidungslogik aus dem Blickwinkel der Modellierungs-
perspektive. Durch die Identifikation von Inkonsistenzen zwischen
Prozess- und Entscheidungsmodellen können so Heuristiken und
Vorgehensmodelle vorgeschlagen werden, die eine konsistente Inte-
gration im Rahmen der Modellierung von entscheidungsbasierten
Prozessen, bzw. der Verbesserung von Prozessen in Hinblick auf
Entscheidungsmodelle, ermöglichen.

Im zweiten Teil werden Designprinzipien des serviceorien-
tierten Architekturparadigmas verwendet, um so die system-

xxi

xxii

atische Abstraktion und konsistente Integration von Prozess-
und Entscheidungsperspektiven voranzutreiben. Hierbei wird
ein mehrschichtiges Referenzmodell vorgeschlagen. welches die
beschriebenen Designprinzipien berücksichtigt. Dieses Referenz-
modell wird anschließend anhand eines Fallbeispiels mit realen
Datensätzen im Rahmen von Process Discovery diskutiert.

Im dritten und letzten Teil werden dann Adaptionsmuster für
entscheidungsbasierte Prozesse präsentiert. In diesem Zuge werden
ebenfalls prototypische Modellierungswerkzeuge entwickelt, welche
die identifizierten Adaptionsmuster verwenden, um die Entwicklung
und Erweiterung von Prozess- und Entscheidungsmodellen
zu unterstützen. Die präsentierten Prototypen beinhalten
Modellierungsumgebungen mit integrierten Funktionalitäten zur
Konsistenzverifikation, automatischem User-Feedback sowie semi-
automatischen Mechanismen zur Wiederherstellung von inter- und
intramodellorientierter Konsistenz.

Zusammenfassend betrachtet überträgt diese Arbeit
eine System-Modellierungsperspektive auf die Domäne der
Informationssysteme mit “process-awareness”. Als Ergebnis
entstehen hieraus entscheidungsbasierte Informationssysteme,
sogenannte “decision-aware information systems”. Durch diesen
Beitrag soll die Wichtigkeit von Entscheidungsmodellen im
Rahmen der modellgetriebenen Systementwicklung hervorgehoben
werden.

Resumen de Tesis
Doctoral

Los sistemas de información que tienen en cuenta procesos de
negocio dependen del conocimiento acerca de las decisiones que
son relevantes para dichos procesos. Este conocimiento guía la
ingeniería, ejecución y automatización de los procesos, e impacta
múltiples perspectivas de los procesos, como el flujo de control,
datos y perspectivas de recursos. Por lo tanto, una integración
consistente de decisiones y procesos de negocio es imprescindible
para un desarrollo y gestión sólidos de los procesos. Esta tesis
extiende el soporte de modelado de procesos de negocio para incluir
el conocimiento sobre las decisiones relevantes para los procesos.
Así pues, esta tesis presenta avances en el campo de los sistemas
de información que tienen en cuenta procesos de negocio. Las
contribuciones se dividen en tres partes.

La primera parte presenta la integración de procesos y decisiones
desde un punto de vista de modelado. Al detectar inconsistencias
en la integración de los modelos, se proponen principios y pautas
para garantizar una integración consistente al modelar procesos que
tienen en cuenta el conocimiento sobre las decisiones relevantes o
al rediseñarlos para que tengan en cuenta dicho conocimiento.

La segunda parte se centra en los principios de diseño desde el
paradigma de la arquitectura orientada a servicios para abordar
sistemáticamente la separación de las perspectivas de modelado
de procesos de negocio y de decisiones, así como su integración
consistente. Ilustramos esta parte mediante un registro de eventos
enriquecido de la vida real que se usa para deducir los procesos y
las decisiones que los influencian.

xxiii

xxiv

Finalmente, en la tercera parte, se presentan patrones
de cambio para procesos extendidos con conocimiento sobre
decisiones, así como varios prototipos de herramientas de modelado
que soportan la evolución de los modelos de proceso y de
decisiones a través de los patrones de cambio. Las herramientas
ofrecen: un entorno de modelado con capacidades de verificación
de consistencia incorporadas, retroalimentación automatizada y
mecanismos automatizados guiados por el usuario para restaurar
la consistencia del modelo.

En resumen, esta tesis introduce una perspectiva de modelado
de decisiones para sistemas de información basados en procesos
de negocio, lo que permite la gestión de procesos que tienen en
cuenta las decisiones pertinentes. Al hacerlo, esta tesis pone de
manifiesto la importancia de los modelos de decisión en la ingeniería
de sistemas de software basados en modelos.

Sažetak Doktorske
Disertacije

Savremeni informacioni sistemi se, za svoj razvoj, izvršavanje
i evoluciju, oslanjaju na znanje o odlukama. Inženjering
procesa, njihovo izvršavanje i automatizacija su često vođeni
odlukama koje utiču na procese iz više perspektiva, kao što
su kontrolni tok procesa, podaci i resursi. U skladu sa tim,
dosljedno integrisanje odluka i procesa predstavlja imperativ
za kvalitetan razvoj i upravljanje procesima zasnovanim na
znanju. Ova disertacija prezentuje pomake u oblasti procesno-
svjesnih informacionih sistema nadograđivajući procese dodatnom
perspektivom odlučivanja zasnivanom na modelu. Doprinosi ove
disertacije mogu se podijeliti u tri segmenta.

Prvi segment se odnosi na integraciju procesa i odluka sa
stanovišta modeliranja. Uočavajući nedosljednosti u integraciji
modela, disertacija predlaže principe i uputstva kako bi se osigurala
dosljedna integracija prilikom modeliranja ili re-inženjeringa
procesa koji uzimaju u obzir odluke.

Drugi segment primjenjuje principe dizajniranja servisno-
orjentisane arhitekturne paradigme da sistemski pristupi
razgraničavanju odgovornosti između procesne perspektive
i perspektive odlučivanja, ali i problema njihove dosljedne
integracije. U tu svrhu, predložen je slojeviti referentni dizajn
u koji su inkorporirani pomenuti principi dizajniranja, a koji je
ilustrovan na primjeru otkrivanja procesa koji uzimaju u obzir
odluke. Ova ilustracija koristi stvarni dnevnik događaja koji je
obogaćen dodatnim podacima.

xxv

xxvi

Konačno, treći segment uvodi tzv. obrasce promjena za
procese koji uzimaju u obzir odluke, kao i prototip alate za
modeliranje koji podržavaju evoluciju procesa i modela odlučivanja
pomoću navedenih obrazaca promjena. Ovi alati su sačinjeni od
okruženja za modeliranje sa ugrađenim mogućnostima za provjeru
dosljednosti, automatsku povratnu informaciju i automatski
korisnički-navođen mehanizam za uspostavljanje dosljednosti, kako
unutar samog modela tako i između različitih modela.

Ukratko, ova disertacija uvodi novu perspektivu modeliranja
sistema o odlučivanju u informacione sisteme koji su svjesni
procesa, transformišući ih, na taj način, u informacione sisteme
koji su svjesni odluka. Čineći to, prepoznaje važnost modela
odlučivanja u izradi softverskih sistema koji se temelje na
modelima.

Contents

Committee iii

Acknowledgments v

Doctoral Dissertation Summary xv

Samenvatting Doctoraal Proefschrift xvii

Résumé de la Thèse de Doctorat xix

Zusammenfassung der Doktorarbeit xxi

Resumen de Tesis Doctoral xxiii

Sažetak Doktorske Disertacije xxv

I Prologue 1

1 Outline and Contributions 3
Part I: Prologue . 5

Chapter 1: Outline and Contributions 5
Part II: Integrating Processes and Decisions 7

Chapter 2: Augmenting Processes with Decision
Intelligence 7

Chapter 3: An Illustration of 5PDM 8
Chapter 4: Comparing BPMN to BPMN + DMN

for IoT Process Modelling 8
Part III: Decision as a Service (DaaS) 9

xxvii

xxviii CONTENTS

Chapter 5: Decision as a Service: A Service-Oriented
Architecture Approach for Decisions in
Processes . 9

Chapter 6: Parameter Assessment of the Automated
Decision Service Discovery 10

Part IV: Change, Model Evolution, and Tools 10
Chapter 7: Decision Model Change Patterns for

Dynamic System Evolution 10
Chapter 8: A Performance Assessment of the

Modelling Environment for DMN Model
Evolution 11

Chapter 9: Consistent Evolution of Process and
Decision Models 12

Part V: Epilogue . 13
Chapter 10: Final Remarks 13
Chapter 11: Conclusions 13

II Integrating Processes and Decisions 15

2 Augmenting Processes with Decision Intelligence 17
2.1 Introduction . 19
2.2 Methodology . 20
2.3 Why Integrated Decision and Process Modelling? . . 21

2.3.1 Motivation and related work 21
2.3.2 Running example 23

2.4 Formal Definitions 26
2.4.1 Basic DMN constructs 26
2.4.2 The key to integration: decision activities

and intermediate results 29
2.5 Integration Scenarios and Inconsistencies 31

2.5.1 Integration scenarios 31
2.5.2 List of inconsistencies 32

2.6 Principles for Consistent Integration 35
2.7 How to integrate decision and process models 37

2.7.1 Inclusion of all decision outcomes in the
control flow 37

2.7.2 Exclusion of decision logic from the process
model . 39

CONTENTS xxix

2.7.3 Inclusion of subdecisions directly influencing
the process 40

2.7.4 Inclusion of decision requirement hierarchy . 42
2.7.5 Inclusion of relevant data and advanced data

management 44
2.8 Resolving Inconsistencies 46

2.8.1 Resolving the use of intermediate results . . 48
2.8.2 Resolving invocability inconsistencies 49

2.9 Conclusion and Future Work 50

3 An Illustration of 5PDM 53
3.1 An Example from Literature 55
3.2 Conclusion . 61

4 Comparing BPMN to BPMN + DMN for IoT
Process Modelling 63
4.1 Introduction . 65
4.2 Preliminaries and Related Work 66

4.2.1 IoT . 66
4.2.2 IoT processes 66
4.2.3 IoT process modelling languages 67
4.2.4 DMN . 68

4.3 IoT Processes Modelling Cases 69
4.3.1 Case 1: smart transportation 70
4.3.2 Case 2: smart ventilation 72
4.3.3 Case 3: smart healthcare monitoring 75

4.4 BPMN + DMN advantages over BPMN? 80
4.4.1 DMN and context aggregation 80
4.4.2 Scalability and complexity 82
4.4.3 Flexibility 83
4.4.4 Reusability of the decision logic 85
4.4.5 Adherence to the physics of notations 86

4.5 Conclusion and Future Work 86

III Decision as a Service (DaaS) 89

5 Decision as a Service (DaaS): A Service-Oriented
Architecture Approach for Decisions in Processes 91
5.1 Introduction . 93

xxx CONTENTS

5.2 Related Work . 95
5.3 Methodology . 97
5.4 Preliminaries . 98
5.5 Decision as a Service (DaaS) 100
5.6 Compliance with the Principles of SOA 106

5.6.1 Service selection 106
5.6.2 Standardised service communication and

loose coupling 107
5.6.3 Service location transparency 108
5.6.4 Service abstraction 109
5.6.5 Service statelessness 110
5.6.6 Service longevity 110
5.6.7 Service reusability 111
5.6.8 Service composability 112

5.7 Implications of DaaS for Processes and Decisions . . 113
5.7.1 Scalability 113
5.7.2 Maintainability 114
5.7.3 Flexibility 115
5.7.4 Complexity and understandability 116

5.8 Evaluation of DaaS Design on a Real-Life Event Log 117
5.8.1 SOAP-MInD 117
5.8.2 Decision service compliance verification . . . 120
5.8.3 Illustration and discussion 121

5.9 Evaluating DaaS SOA Maturity 124
5.10 Limitations of the DaaS Design 126
5.11 Conclusion . 127

6 Parameter Assessment of the Automated Decision
Service Discovery 129
6.1 Parameter Assessment 131
6.2 Conclusion . 133

IV Change Patterns, Model Evolution,
and Tool Support 135

7 Decision Model Change Patterns for Dynamic
System Evolution 137
7.1 Introduction . 139

CONTENTS xxxi

7.2 Related Work . 141
7.3 Preliminaries . 142
7.4 Running Example of a DMN Decision Model 144
7.5 Decision Model Change Patterns 145

7.5.1 Decision table change patterns 147
7.5.2 DRD change patterns 151
7.5.3 Change patterns on non-core DMN elements 153

7.6 Change Propagation 156
7.6.1 ∆Π1-induced change pattern propagation . . 157
7.6.2 ∆Π2-induced change pattern propagation . . 158
7.6.3 ∆Π3-induced change pattern propagation . . 159
7.6.4 ∆Π4-induced change pattern propagation . . 160
7.6.5 ∆Π5-induced change pattern propagation . . 160
7.6.6 ∆Π6-induced change pattern propagation . . 161
7.6.7 ∆Π7-induced change pattern propagation . . 162
7.6.8 ∆Π8-induced change pattern propagation . . 162
7.6.9 ∆Π9-induced change pattern propagation . . 163
7.6.10 ∆Π10-induced change pattern propagation . 164
7.6.11 ∆Π11-induced change pattern propagation . 165
7.6.12 Overview of induced change pattern

propagation 165
7.7 A Modelling Environment Prototype 167

7.7.1 The modelling environment 168
7.7.2 Example of change propagation as supported

by the modelling environment 171
7.8 Conclusion and Future Work 177

8 Performance Assessment of the Modelling
Environment for DMN Model Evolution 179
8.1 Introduction . 181
8.2 Tool Description and Usage Example 182

8.2.1 Decision logic verification capabilities 182
8.2.2 DRD level verification capabilities 184

8.3 Maturity and Outlook 185
8.4 Conclusion . 187

9 Consistent Evolution of Process and Decision
Models 189
9.1 Introduction . 191

xxxii CONTENTS

9.2 Running Example and Related Work 192
9.2.1 Running example of decision-aware process . 192
9.2.2 Current approaches for process evolution . . 195

9.3 Preliminaries . 197
9.4 Decision Model Change Patterns 200

9.4.1 Decision table change patterns 202
9.4.2 Decision requirements diagram change

patterns . 213
9.5 Change Propagation 218

9.5.1 Change propagation within the decision
model . 218

9.5.2 Change propagation to the process model . . 221
9.5.3 Resolving decision input inconsistencies . . . 222
9.5.4 Resolving decision output inconsistencies . . 223

9.6 A Proof-of-Concept Modelling Environment 224
9.6.1 Description of the modelling environment . . 224
9.6.2 Example of model evolution as supported by

the modelling environment 229
9.7 Conclusion and Future Work 236

V Epilogue 239

10 Final Remarks 241
10.1 Part II: Integrating Processes and Decisions 242
10.2 Part III: Decision as a Service (DaaS) 243
10.3 Part IV: Change Patterns, Model Evolution, and

Tools . 247

11 Conclusions 251
11.1 Contributions . 252
11.2 Limitations . 253
11.3 Future Research Directions 254
11.4 Final Word . 258

Appendix A Additional Models 259

Appendix B Conforming Trace Cluster 269

Appendix C DMN Metamodel 271

Table of Contents xxxiii

List of Figures 277

List of Tables 281

List of Algorithms 282

Bibliography 284

Publication List 313

Author Biography 319

Doctoral Dissertations List 321

Part I

Prologue

CHAPTER 1

Outline and Contributions

“U životu treba mudro da šutiš
Al riječ ako rekneš
Neka bude teška kao svaka istina
Neka bude rečena za čovjeka”

(“In life you need to wisely be silent
But if you say a word
Let it be heavy like every truth
Let it be spoken for man”)

Uspavanka
— Mehmedalija Mak Dizdar

This chapter outlines the contributions and positions the different
parts of this doctoral dissertation. This dissertation presents
advances in the field of process-aware information systems
engineering with a focus on decision-awareness in processes. The
dissertation consists of chapters that each match to a scientific
paper. Thus, this dissertation is organised as a collection of
papers. Please note that the papers included in this dissertation
were subject to minor modifications in response to comments raised
by the Doctoral Examination Committee. Figure 1.1 provides an
overview of the structure of this dissertation with the chapters
divided into interconnected yet distinct parts. Part I is the
Prologue which discusses the outline and the contributions of the
dissertations. Parts II, III, and IV contain the core contributions,
while the Part V provides the Epilogue with final remarks and
conclusions.

3

4

Integrating
 processes an

d decision
s

C
hapter 2:

M
odelling

guidelines

C
hapter 3:

M
odelling case

C
hapter 4:

M
odelling IoT

cases

D
ecision

 as a S
ervice

 (D
aaS

)

C
hapter 5:

D
ecision

 as a
S

ervice

C
hapter 6:

Link to proce
ss

m
inin

g

C
hange

, m
odel evolution, and tools

C
hapter 7:

D
ecision

 m
odel

change pa
tterns

C
hapter 8:

D
M

N
 tool

assessm
en

t

C
hapter 9:

C
hange

 affects
the process

E
pilo

gue

C
hapter 11:

C
onclusions

C
hapter 10:

F
inal rem

arks

P
rologue

C
hapter 1:
O

utline

F
igure

1.1:
O
verview

of
the

dissertation.

CHAPTER 1. OUTLINE AND CONTRIBUTIONS 5

Part I: Prologue

Chapter 1: Outline and Contributions

The overall contribution of this dissertation is the introduction
of a holistic decision perspective in the development of decision-
aware processes. The approach presented in this dissertation differs
fundamentally from existing methods for a number of reasons that
will be discussed throughout this dissertation, chief among which
are the following:

– This dissertation acknowledges that decisions can occur across
the entire process execution span, rather than being contained
to a single decision point in the process.

– Furthermore, this dissertation recognises that decisions can
be fragmented into modular parts that are distributed across
the process. As such, long-distance decision dependencies are
introduced into the process model.

This novel approach provides a more rigorous and holistic
integration of decisions into processes while taking into
consideration the separation of modelling concerns and the
consistent integration between the process and decision models.
The contributions provided in this dissertation have been organised
into three different parts. Figure 1.1 provides an overview of the
structure of this thesis. How each of these parts advance the overall
contribution and how the parts are interconnected will be discussed
in what follows.

Part II collects papers that present principles and guidelines
for the integrated modelling of process and decision models, along
with modelling cases that rely on these guidelines. The cases are
taken both from industry and from literature and span different
application areas. In this part, the integration of process and
decision models is rather straightforward, as the integration is
approached by identifying and remedying inconsistencies between
a single decision model and a single process model. Here, we
consider the decision model to be both correct and static, i.e.,
not changing over time. Given a correct and static decision
model, principles for consistently integrating a single process model

6 PART I: PROLOGUE

with the given decision model are established. Note that the
integration between processes and decisions is approached from a
holistic view of decisions within processes, i.e., decisions manifest
themselves as modular fragments that are distributed across the
entire process, thus inducing long-distance decision dependencies
within the process that need to be taken into account for the
consistent integration of the process and decision models.

Part III cements the consistent integration of process
and decision models into the theory of the Service-Oriented
Architecture (SOA) paradigm by proposing a reference design for
decision-aware business processes in the form of Decisions as a
Service (DaaS). Just like in Part II, here too we consider the
decision model as given and static, i.e., the decision model is
both correct and does not change over time. However, unlike in
Part II, here we consider the integration of the decision model
with processes in general, rather than a single process model.
For that purpose, decision services are defined that can be used
by processes to access the decision logic stored in the decision
model. As such, different ways to interact with the same decision
model are identified. Additionally, in Part III a link between
the DaaS theory presented in this dissertation and the automated
discovery of decision-aware process models from real-life enriched
event logs is established, effectively illustrating that the DaaS
approach manifests itself in real-life processes, i.e., that different
process variants interact differently with decisions.

Finally, Part IV focuses on the consistent evolution of integrated
process and decision models. Unlike in Parts II and III, here we
consider dynamic decision models, i.e., decision models that change
over time. More precisely, we start from consistently integrated
process and decision models according to the theory specified
in Part II. Next, we apply change patterns for the evolution
of the decision model. The effects of the change patterns on
decision model consistency are assessed, as well as their effects on
the between-model consistency, i.e., the consistency between the
integrated process and decision models. Subsequently, actions to
remedy inconsistencies that surface as a consequence of decision
model evolution are suggested. Prototype modelling environments
are developed to support the modeller in the consistent evolution
of decision models and decision-aware business process models.

CHAPTER 1. OUTLINE AND CONTRIBUTIONS 7

In summary, this dissertation advances the field by:

1. Providing modelling guidelines on how to consistently
integrate process and decision models. The modelling
guidelines are elucidated on a handful of cases.

2. Bringing decision models to the realm of service-oriented
architectures, thus cementing them in a well-established
theory while linking them to the automated discovery of data-
aware processes.

3. Providing an approach to consistently evolve decision mod-
els and decision-aware process models, along with proof-of-
concept modelling environments with built-in consistency ver-
ification capabilities, feedback mechanisms, and automated
actions that restore the consistency.

In what follows, the contribution parts of this dissertation
are outlined and the different chapters of the dissertation are
mapped onto papers that have either been published or that will
be submitted for publication.

Part II: Integrating Processes and Decisions

This part of the dissertation is concerned about the integration of
processes and decisions from a modelling perspective. It is divided
into three separate yet related chapters that are briefly introduced
below, along with the bibliographical references to the respective
papers that the chapters represent.

Chapter 2: Augmenting Processes with Decision
Intelligence

In this chapter we introduce five principles for integrated process
and decision modelling (5PDM) by recognising inconsistencies in
integration from the literature and from integration scenarios. The
modelling principles are subsequently applied on a real-life case of
a customer acceptance process in a Belgian accounting firm. The
principles are applied in a step-by-step iterative fashion, effectively

8 PART II: INTEGRATING PROCESSES AND DECISIONS

illustrating their application on a decision-aware process. The
chapter concludes by contributing a step-wise method to ensure
the consistent integration between process and decision models.

This chapter was published as follows:

Faruk Hasić, Johannes De Smedt, Jan Vanthienen. Augmenting
Processes with Decision Intelligence: Principles for Integrated
Modelling. Decision Support Systems, 107, 1-12, 2018.

A preliminary version of this paper was published in:

Faruk Hasić, Lesly Devadder, Maxim Dochez, Jonas Hanot,
Johannes De Smedt, Jan Vanthienen. Challenges in Refac-
toring Processes to Include Decision Modelling. Business
Process Management Workshops at BPM 2017, Barcelona
(Spain), 529-541, 2018.

Chapter 3: An Illustration of 5PDM

This chapter extends the previous chapter by introducing an
additional modelling case on which the integration principles
defined in the previous chapter are applied. The case presented
in this chapter is based on a case from the literature which was
remodelled for the purpose of separating the process and decision
concerns and subsequently consistently integrating the process and
decision models.

This chapter presents sections 3 and 4 of the following paper:

Faruk Hasić, Johannes De Smedt, Jan Vanthienen. An
illustration of Five Principles for Integrated Process and De-
cision Modelling (5PDM). FEB Research Report KBI_1717
(KU Leuven), Leuven (Belgium), 1-8, 2017.

Chapter 4: Comparing BPMN to BPMN + DMN
for IoT Process Modelling

This chapter introduces additional cases that have been modelled
using the previously defined integration principles. Here, the
cases are taken from Internet-of-Things (IoT) process literature

CHAPTER 1. OUTLINE AND CONTRIBUTIONS 9

and re-engineered to adhere to the principles of consistent
integration. Moreover, the modelling approach from the literature
is assessed against the modelling approach introduced in this part
of the thesis. As such, advantages and disadvantages of the
different approaches for IoT process modelling are discussed in
terms of scalability, maintainability, logic reusability, and context
aggregation capability.

This chapter was published as follows:

Faruk Hasić, Monique Snoeck, Estefanía Serral Asensio. Com-
paring BPMN to BPMN + DMN for IoT Process Mod-
elling: A Case-Based Inquiry. 35th ACM/SIGAPP Symposium
on Applied Computing (SAC), Brno (Czech Republic), 2020.

Part III: Decision as a Service (DaaS)

This part of the dissertation presents a service-oriented approach
to decisions which we call Decision as a Service (DaaS).

Chapter 5: Decision as a Service: A Service-Oriented
Architecture Approach for Decisions in Processes

The first part of this dissertation revolved around integrating a
single process model with its underlying decision model. While
this integration is successful from a modelling perspective, a
grounded framework on the integration of processes and decisions
in information systems is missing in the literature. Therefore, this
chapter cements the integration of process and decision models
into the well-established Separation of Concerns (SoC) and Service-
Oriented Architecture (SOA) paradigms. As such, a Decision as a
Service (DaaS) design that adheres to the principles of the SoC
and SOA paradigms is introduced. Additionally, the manifestation
of decisions as modular services is illustrated by an automated
discovery of decision-aware processes from a real-life enriched event
log.

10 PART IV: CHANGE, MODEL EVOLUTION, AND TOOLS

This chapter was published as follows:
Faruk Hasić, Johannes De Smedt, Seppe vanden Broucke,

Estefanía Serral Asensio. Decision as a Service (DaaS):
A Service-Oriented Architecture Approach for Decisions in
Processes. IEEE Transactions On Services Computing,
article in press, 2020.

Chapter 6: Parameter Assessment of the Automated
Decision Service Discovery

This chapter presents a parameter assessment of the automated
discovery of decision-aware processes from a real-life enriched event
log, as introduced at the end of the previous chapter. Thus,
this chapter provides additional insights into the bridge between
decision-aware process mining and the DaaS design pioneered in
Chapter 5.

This chapter presents sections 4 and 5 of the following paper:

Faruk Hasić, Johannes De Smedt, Seppe vanden Broucke,
Estefanía Serral Asensio. A Parameter Assessment of
Service-Oriented Architecture Process Mining Integrating
Decisions (SOAP-MInD). FEB Research Report KBI_1914
(KU Leuven), Leuven (Belgium), 1-9, 2019.

Part IV: Change Patterns, Model Evolution,
and Tool Support

This part of the dissertation considers the evolution of decision
models and decision-aware process models through well-defined
change patterns. Additionally, prototype tooling for model
evolution and modelling support is presented.

Chapter 7: Decision Model Change Patterns for
Dynamic System Evolution

This chapter presents a set of change patterns that can be applied
on decision models in order to evolve the decision models. Applying

CHAPTER 1. OUTLINE AND CONTRIBUTIONS 11

a change pattern can result in an inconsistent decision model.
To ensure model consistency, the effects of the applied change
pattern on the dependent model elements need to be propagated
throughout the model. As such, the referential integrity within
the decision model is safeguarded. This chapter also introduces a
prototype modelling environment that allows for the application of
change patterns on decision models. This modelling environment
allows for the application of the change patterns defined in
this chapter and the environment is equipped with consistency
verification capabilities providing feedback and error messages to
the modeller. Additionally, the modelling environment suggests
actions to remedy the detected inconsistencies. By selecting an
action, the environment automatically performs the action and re-
verifies the consistency of the models.

This chapter was published as follows:

Faruk Hasić, Carl Corea, Jonas Blatt, Patrick Delfmann,
Estefanía Serral Asensio. Decision Model Change Patterns
for Dynamic System Evolution. Knowledge And Information
Systems, article in press, 2020.

A preliminary version of this paper was published in:

Faruk Hasić, Estefanía Serral Asensio. Change Patterns
for Decision Model and Notation (DMN) Model Evolu-
tion. The 18th Belgium-Netherlands Software Evolution
Workshop (BENEVOL), Brussels (Belgium), article in press,
2020.

Chapter 8: A Performance Assessment of the
Modelling Environment for DMN Model Evolution

This chapter builds on the modelling environment introduced
in the previous chapter. More specifically, it accommodates a
performance assessment of the modelling environment providing
automated feedback and support for the modelling and evolution
of decision models. For this purpose, random decision models,
ranging from small to quite large models, were generated with
induced modelling inconsistencies. Subsequently, the verification

12 PART IV: CHANGE, MODEL EVOLUTION, AND TOOLS

capability mechanism of the modelling environment was applied on
the decision models and their run-time was recorded, effectively
proving that the tool provides timely verification feedback for even
the larger models.

This chapter is published as follows:

Faruk Hasić, Carl Corea, Jonas Blatt, Patrick Delfmann, Este-
fanía Serral Asensio. A Tool for the Verification of Decision
Model and Notation (DMN) Models. 14th International
Conference on Research Challenges in Information
Science (RCIS), Demo Session, Limassol (Cyprus), 2020.

Chapter 9: Consistent Evolution of Process and
Decision Models

In this chapter the effects of decision model change patterns on the
process model are assessed. By applying a decision model change
pattern, inconsistencies between integrated process and decision
models can arise. To ensure this between-model consistency,
additional change patterns might be needed, either on the decision
model side or the process model side. This chapter also provides a
modelling environment that is capable of detecting inconsistencies
between the process and decision models after a decision model
change pattern is applied. The modelling environment suggests
actions to remedy the inconsistencies. The modeller can select an
action which is then automatically performed in order to restore
the consistency between the process and decision models.

This chapter will be submitted for publication as follows:

Faruk Hasić, Carl Corea, Jonas Blatt, Patrick Delfmann,
Estefanía Serral Asensio. Consistent Evolution of Integrated
Process and Decision Models.To be submitted for publication,
2020.

CHAPTER 1. OUTLINE AND CONTRIBUTIONS 13

Part V: Epilogue

This final part concludes this doctoral dissertation in two closing
chapters.

Chapter 10: Final Remarks

In Chapter 10 we provide a few final remarks, clarifications, and
assumptions requested by the Doctoral Examination Committee
with regard to the contributions detailed in Parts II - IV.

Chapter 11: Conclusions

This final chapter wraps up this doctoral dissertation. Here, we
summarise the contributions and limitations, and we shed a light
on future research opportunities that build on the findings of this
dissertation.

Part II

Integrating Processes
and Decisions

CHAPTER 2

Augmenting Processes with
Decision Intelligence

“What is the cause of the unification?
In all things which have a plurality of
parts, and which are not a total
aggregate but a whole of some sort
distinct from the parts, there is some
cause.”

Metaphysics, Book 8
— Aristotle

This chapter was published as follows:

Faruk Hasić, Johannes De Smedt, Jan Vanthienen. Augmenting
Processes with Decision Intelligence: Principles for Integrated
Modelling. Decision Support Systems, 107, 1-12, 2018.

A preliminary version of this paper was published in:

Faruk Hasić, Lesly Devadder, Maxim Dochez, Jonas Hanot,
Johannes De Smedt, Jan Vanthienen. Challenges in Refac-
toring Processes to Include Decision Modelling. Business
Process Management Workshops at BPM 2017, Barcelona
(Spain), 529-541, 2018.

17

18

Abstract. Until recently decisions were mostly modelled within
the process. Such an approach was shown to impair the
maintainability, scalability, and flexibility of both processes and
decisions. Lately, literature is moving towards a separation
of concerns between the process and decision model. Most
notably, the introduction of the Decision Model and Notation
(DMN) standard provides a suitable solution for filling the void
of decision representation. This raises the question whether
decisions and processes can easily be separated and consistently
integrated. We introduce an integrated way of modelling the
process, while providing a decision model which encompasses the
process in its entirety, rather than focusing on local decision points
only. Specifically, this chapter contributes formal definitions for
decision models and for the integration of processes and decisions.
Additionally, inconsistencies between process and decision models
are identified and we remedy those inconsistencies by establishing
Five Principles for integrated Process and Decision Modelling
(5PDM). The principles are subsequently illustrated and validated
on a case of a Belgian accounting company.

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 19

2.1 Introduction

The prevalence of new works on decision modeling and mining,
as witnessed by the vast amount of new works on Decision Model
and Notation [61, 64, 78, 106, 108], shows an increasing interest in
documenting, modelling, and analysing the decision dimension of
processes. DMN has two levels that are to be used in conjunction.
Firstly, there is the decision requirement level, represented by
the Decision Requirement Diagram (DRD), which depicts the
requirements of decisions and the dependencies between elements
involved in the decision model. Secondly, there is the decision
logic level, which presents ways to specify the underlying decision
logic. Usually, the decision logic is specified in decision table form.
An example of a DRD is given in Figure 2.1. DMN is designed
as a declarative decision language. As a result DMN provides
no decision resolution mechanism, as this is left to the invoking
context (e.g. a process). The same holds for the processing and
storage of outputs and intermediate results. Besides DMN, also
the Product Data Model (PDM) [136] is a well-known language
to capture the dependencies that exist between decisions and their
input in workflows. DMN, however, is more driven by the decision
and its rationale compared to PDM, which rather focuses on the
data and its impact on the workflow.

Organisations use Business Process Management (BPM) and
Decision Management (DM) to analyse, and improve their
processes. The new DMN standard has the clear intention to be
used in conjunction with Business Process Modeling and Notation
(BPMN) [16, 37, 50, 61, 137]. Since the introduction of DMN, the
general consensus is to model decisions outside processes. BPM
is moving towards this separation of concerns paradigm [52] by
externalising the decisions from the process flow.

The contribution of this chapter is fourfold: (1) a formal
definition of decision models and their relation to process models
is established; (2) a list of inconsistencies between process and
decision models is provided based on existing literature and on the
formal definitions formulated in this chapter; (3) a set of modelling
guidelines is instituted to remedy the inconsistencies between
process and decision models. The guidelines are contributed in
the form of Five Principles for integrated Process and Decision

20 2.2. METHODOLOGY

Modelling (5PDM), in analogy with [94]; (4) the proposed
modelling principles are applied and tested on a real life industry
case.

This chapter is structured as follows. In Section 2.2 the
design science approach used in this chapter is explained, while
Section 2.3 handles the necessities for integrated modelling and
decision modelling. In Section 2.4 a formalisation of the DMN
standard and related constructs is provided which will serve as
the basis for the approach of integrated modelling. Section 2.5
outlines challenges of integration by providing scenarios containing
inconsistency concerns, followed by Section 2.6 which extracts
principles for integrated process and decision modelling from the
previous sections. In Section 2.7, the modelling principles are
illustrated on a case from industry, and in Section 2.8 a systematic
approach to mitigate inconsistencies is provided. Finally, Section
2.9 discusses the contributions and future work.

2.2 Methodology

This chapter follows a design science approach [73], structured
along three different cycles to obtain an artifact, being the 5PDM.
First of all, the application domain and population was delineated
as practitioners who develop models for integrating decisions
into processes for process-aware information systems during the
relevance cycle. Next, we have identified the problem of inconsistent
use of decisions within processes and hence the issues that arise
regarding maintainability, scalability, flexibility, understandability
and reusability of decisions and processes in Sections 2.1 and
2.3. We have argued that these are the relevant issues tackled
when separating concerns in modelling endeavours through the use
of the separation of concerns and Service-Oriented Architecture
paradigms in Sections 2.4 and 2.5. Based on the previous work
of the authors, a literature review, and insights from industry (i.e.
the case study environment), it was noted that there are no suitable
guidelines, and that from previously produced models in research
no streamlined approach was suggested. Next, an initial set of
guidelines, i.e. the proposed solution artefact, were built in Section
2.6, according to examples from practice and research. They were

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 21

validated by practitioners, as illustrated in Section 2.7, and previous
work [61], during the design cycle. Finally, this chapter aims at
formalising the procedure to adhere to the guidelines in Section 2.8
and bringing them to the body of literature on decision and process
modelling. Note that these cycles work like cogs, and the relevance
cycle was influenced both by insights from literature, as well as
practice and design iterations, while the rigor cycle produced initial
findings which were reflected in the design.

2.3 Why Integrated Decision and Process
Modelling?

This section provides a motivation and related work for separating
and integrating process and decision models. Additionally, we
provide a running example that will be used throughout this
chapter.

2.3.1 Motivation and related work

In the trend towards integration several situations can be identified.
Basic solutions see processes represented using only BPMN, or
decisions using only DMN. This approach works only in the most
straightforward cases, where no decisions are made during the
process, or where only the result of a single decision is needed
respectively. Slightly more evolved situations see a complete
decision model represented by a single activity in a business process.
This approach will only be valid for straightforward processes and
decisions. Decisions are often emulated using intricate control
flows, which can result in cascading gateways. These hidden
decisions must be identified in the process. After identifying and
modeling these decisions the resulting model must be integrated
consistently with the process model. This insufficient separation
of concerns results in maintainability issues [61, 62, 63, 115]. In
more complex processes several decisions might influence both the
flow and the result. Representing these decisions and invoking
them correctly in the process is crucial for a proper understanding
of the process. However, these more convoluted situations have
encountered little consideration in literature.

22 2.3. WHY INTEGRATING DECISIONS AND PROCESSES?

Research has already dealt with data-aware processes and
process consistency regarding data management [127]. Extensions
regarding data-awareness in process modelling have been proposed
as well [28]. In [109] an ontology-based knowledge-intensive
approach is suggested, while [95] proposes an enhancement of
declarative process models with DMN logic. Furthermore, works
concerning data-aware/coloured Petri Nets are available as well,
offering a formally sound approach to data and process integration
[120]. However, merely focusing on data fragments is not sufficient
to incorporate decision-awareness into processes, which DMN aims
to achieve. Furthermore, it has been illustrated how the Decision
Model [138], a decision representation similar to DMN, can be used
within business process models as well [1] to offload the control
flow from embedded decisions. The findings of this chapter are
also compatible with the Decision Model after a straightforward
conversion of its decision and input blocks into DRD constructs.

The decision modelling approaches present in literature often
breach the separation of concerns between control and data flow,
resulting in spaghetti-like processes, thus negatively influencing
maintenance, flexibility, scalability and reusability [61, 63, 65, 79,
115, 132, 137, 146, 151]. They do this by hard-coding and fixing the
decisions in processes. Consequently, splits and joins in processes
are misused to represent typical decision artifacts such as decision
tables. Recently, more attention was given to the separation of
processes and decision logic, as such an approach is supported
by the DMN standard [106] that can be used in conjunction
with BPMN [61, 63, 105]. Decoupling decisions and processes to
stimulate flexibility, maintenance, and reusability, yet integrating
decision and process models is therefore of paramount importance
[61, 63, 84].

The separation of concerns has enjoyed plenty of attention,
mainly in the domain of software modelling and design [52],
but recently it has become an evident trend in BPM as well.
This has moved decision management towards the paradigm of
Service-Oriented Architecture (SOA), by representing decisions
as externalised services. In research several conceptual decision
service platforms [22, 151] and ontologies [89] have been proposed.
Separation of concerns and SOA offer firm motivation for keeping
multi-perspective modelling tasks isolated and founded on a basis

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 23

which can be used to ensure consistency. The integrated modelling
and externalisation was already considered in terms of business
rules [51, 141]. With DMN, externalisation of decisions has
become a possibility, since decisions can be encapsulated in separate
decision models. These decisions are modelled separately from
other concerns, such as processes, and they are implemented as
a service which we call Decision as a Service (DaaS). Other
information systems, e.g. process-aware information systems, can
invoke the decision services from the separate decision layer on
demand, i.e. Decision on Demand (DoD). Consequently, a decision
model can be invoked and used as a service, adhering to the SOA
paradigm and benefiting maintainability, scalability, flexibility, and
reusability [16, 51, 52, 61, 63, 79, 84, 96, 132, 137, 151]. This
emphasises the necessity for a separate, yet integrated modelling of
decisions and processes.

2.3.2 Running example

In this chapter the integration of decision and process modelling will
be elucidated through a case study in a Belgian accounting firm.
By law, Belgian accounting firms are obligated to provide a decision
model to the public authorities on which they base their decision
of accepting or rejecting customers. Figure 2.1 depicts the decision
model for customer acceptance at the firm. Customer Acceptance
is decided based on the customer’s Risk Level, which on its
turn depends on a Financial Position Check and a Background
Check of the customer. The decision logic is externalised to this
model and a complementary process model is provided in Figure
2.2.

This process model will have to comply with the decision model
in order to correctly fulfill the customer acceptance process, i.e.
the process model must be modelled consistently with the decision
model. However, Figure 2.2 contains plenty inconsistencies, as will
be discussed in the following sections.

24 2.3. WHY INTEGRATING DECISIONS AND PROCESSES?

Figure 2.1: Decision model for customer acceptance at a Belgian
accounting firm.

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 25

F
ig
ur
e
2.
2:

P
ro
ce
ss

m
od

el
fo
r
cu
st
om

er
ac
ce
pt
an

ce
at

a
B
el
gi
an

ac
co
un

ti
ng

fir
m
.

26 2.4. FORMAL DEFINITIONS

2.4 Formal Definitions

In this section, a formal basis is given for DMN constructs and for
the connection between decisions and processes, which is key for
the integration.

2.4.1 Basic DMN constructs

We formalise DMN to aid us in the consistent integration of
processes and decisions. We adopt the definition of decisions and
decision requirement diagrams from [84, 122] and expand them to
include subdecisions, interfaces, and invocability.

Definition 2.1. A decision requirement diagram DRD is a tuple
(Ddm, ID, IR) consisting of a finite non-empty set of decision
nodes Ddm, a finite non-empty set of input data nodes ID, and
a finite non-empty set of directed edges IR representing the
information requirements such that IR ⊆ (Ddm ∪ ID) × Ddm,
and (Ddm ∪ ID, IR) is a directed acyclic graph (DAG).

The DMN specification allows a DRD to be an incomplete or
partial representation of the decision requirements in a decision
model. The complete set of requirements RDM is derived from
the set of all DRDs. The information contained in this set can
be combined into a single DRD representing the entire decision
requirements level, i.e. the decision requirement graph (DRG). We
extend the notion of a DRG, in such a way that a DRG is a DRD
which is self-contained as explained in Definition 2.2.

Definition 2.2. A decision requirement diagram DRD ∈ RDM

is a decision requirement graph DRG if and only if for every
decision in the diagram all its modeled requirements, present in
at least one diagram in RDM , are also represented in the diagram.

According to DMN a decision is the logic used to determine an
output from a given input. In BPMN a decision is an activity, i.e.
the act of using the decision logic. Another common meaning is
that a decision is the actual result, which we call the output of a
decision. We define a decision using its essential elements.

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 27

Definition 2.3. A decision d ∈ Ddm is a tuple (Id, Od, L), where
I ⊆ ID is a set of input symbols, O a set of output symbols and
L the decision logic defining the relation between symbols in Id
and symbols in Od.

In case of decision tables, a commonly used reasoning construct
in decision models, Id and Od contain the names of the input, and
output elements, respectively, and L is the table itself, i.e. the set
of decision rules present in the table. Note that, since a DRD is
a DAG, Id ∩ Od = ∅. In DRDs these decisions di are represented
by the decision nodes Di ∈ Ddm. We will use D to refer to both a
decision and its representing node in a DRD. From the definition
of DRGs we can derive an important property of decisions. From
Definition 2.2 we know that aDRG contains exactly all information
requirements of its decisions. Thus there can only exist one DRG
with D as its single top-level decision. We use DRGD to denote
this DRG.

To identify incorrect uses of decisions in process models it is
important to know their structure. Decisions are often structured
hierarchically.

Definition 2.4. A decision D′ is a subdecision of decision D if
and only if it is part of DRGD, but not D itself.

This order of decisions and subdecisions can be defined by using
the property that DRDs are directed acyclic graphs, from Definition
2.1. From this property we know that each DRD has a topological
order. The concept of topological orders is closely related to partial
orders resulting in Property 1.

Property 1. The topological order of a DRD induces a partial
order ≤ on the decisions contained in the DRD.

When integrating decisions with processes, reducing the cou-
pling between both is important for flexibility and maintainability,
as stated by the Service-Oriented paradigm. In this paradigm, de-
cisions are viewed as an external service which exists as a unit
decoupled from the process that can be invoked by the process. In
[63, 96], the advantages of decision services are elaborated on, show-
ing that the Service-Oriented paradigm enables flexibility, main-
tainability and scalability. This is achieved by making abstraction

28 2.4. FORMAL DEFINITIONS

of decisions in the process and only connecting the process to the
decisions through an interface of the decision service. In order to
define the interface, Definition 2.5 first defines the input require-
ment set.

Definition 2.5. The decision input requirement set dirsD of a
decisionD is the set of all sets of input data which are sufficient to
invoke D. dirsD contains sets of input data directly or indirectly
required by D. The largest set in dirsD is the set of all input
data nodes for which there exists a path to D in DRGD. The
smallest set in dirsD is D’s input set ID. dirsD is constructed
inductively by the following rule:

ID ∈ dirsD and for all s ∈ dirsD if there is an i ∈ s such that
i ∈ OD′ for some D′ in DRGD, then s \ {i} ∪ I ′D ∈ dirsD.

A decision’s interface is the combination of its input requirement
set and its output set. Thus, decision interfaces can be defined as
in Definition 2.6.

Definition 2.6. The interface IFD of a decision D is a tuple
(dirsD, OD), where dirsD is the input requirement set and OD

the output set of D.

In DMN, decisions are constrained to have no side-effects so
they comply with the principles of a service. As such each decision,
with its associated interface, can be seen as a decision service.
Consequently only the information available in a decision’s interface
should be used in the process. Each decision in a DRD has its
own output set and these sets should be disjoint. The outputs of
subdecisions are identified as intermediate results. An output O is
an intermediate result of decision D if and only if O /∈ OD and
there exists a subdecision D′ of D for which O ∈ OD′ .

Executing a decision in DMN is referred to as invoking the
decision. Using the definition of a decision’s interface it becomes
possible to define when a decision can be invoked. Generally a
decision can only be made if all required inputs are available. This
is especially important when decisions are invoked in a process.
Definition 2.7 determines the invocability of a decision.

Definition 2.7. A decision D is invocable from a set of data
elements S if there exists an s ∈ dirsD such that s ⊆ S. Given

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 29

at least the values of all data elements in one of the sets in dirsD
the output of D can be determined.

If a decision is invocable from a set of input data nodes in the DRD,
so are its subdecisions, as stated in Theorem 1:

Theorem 1. If a decision D is invocable from a set of input data
node objects S, then so are all of its subdecisions.

Proof for Theorem 1. Assume D′ is a subdecision of D.
Since there is a path from D′ to D in DRGD, there is also a
path from each of the input requirements of D′ to D. Thus,
dirsD′ ⊆ dirsD ⊆ S.

We have formalised relevant constructs in the decision model.
However, in order to discuss model integration, the decision model
must be correlated with the process model. We formalise that
connection in what follows.

2.4.2 The key to integration: decision activities and
intermediate results

In this subsection, we propose a typology for different activities
used for making decisions in processes. By doing so, we will link
the decision model to the process model requiring the decisions.
Decisions do not surface solely as the driver of control flow. Rather,
they both encompass the routing of cases, i.e., because of decision
outcomes that steer toward a certain activity tailored towards
supporting its output, and the changes in the data layer of the
process as well. For a consistent integration, distinguishing between
decision making activities and intermediate results is of paramount
importance, especially in the case of separation of concerns, where
the decision model is externalised and holistically integrated with
the process model. This categorisation is imperative for the
identification of types of activities that are representatives of the
decision model in the process model:

Definition 2.8. The input and output data variables of process
activities in A are defined as follows:
I : A → V , function assigning activities that deliver input for a
variable,

30 2.4. FORMAL DEFINITIONS

O : A → V , function assigning activities that deliver output for
a variable.

This enables the construction of the following activity types:

1. Operational activities ((no) inputs, no outputs): do not
have any influence on the process’ decision dimension and only act
as a performer of an action that is tied to that specific place in
the control flow. They might serve as the conclusion of a decision.
They are provided with the decision inputs needed, which are not
used further in the process, Ao = {a ∈ A | O(a) = ∅, }.

2. Administrative activities (no inputs, outputs): they
introduce decision inputs into the process, Aa = {a ∈ A | I(a) =
∅ ∧ O(a) 6= ∅}.

3. Decision activities (inputs, outputs): serve a decision
purpose by transforming inputs into an outcome, Ad = {a ∈ A |
I(v) 6= ∅ ∧O(v) 6= ∅}.

It holds that Aa ∪ Ao ∪ Ad = A. Typically, the decision
points that are used for decision mining in processes are of the
decision activity type, but tailored towards deciding which activity
should be performed next based on the event labels, instead of
encompassing the process in its entirety.

We can now make the connection with decisions and process
models:

Definition 2.9. A decision in a business process can be defined
as follows:

A decision in a process model, da ∈ Ddm is a tuple
(Ida , Oda , Lda), where a ⊆ Ad, Ida ⊆ I(a), Oda ⊆ O(a) and
Lda ⊆ L.

Now that we have defined the connection between decision
activities in the process and the decision in the decision model,
we can also define process-decision model consistency. Given a
decision model, the process model should ensure that the decisions
it invokes are invocable at that point in time, and that the decision
results can only be used by the process if they have been invoked
explicitly by said process. Hence, keeping in mind the previous
definitions, we can define consistency for a process-decision model:

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 31

Definition 2.10. A process model is consistent with a decision
model if and only if the following two conditions hold:

1. No intermediate results of non-invoked subdecisions are used.

2. Each (sub)decision invoked in the process, must be guaranteed
to be invocable at that stage of the process.

2.5 Integration Scenarios and
Inconsistencies

In this section we shortly describe possible integration scenarios
and subsequently extrapolate inconsistencies that might occur in
those scenarios.

2.5.1 Integration scenarios

Outlines of possible process-decision integration scenarios are
provided by [61, 84]. We refer to those papers for a full description
of possible integration scenarios. Two extreme scenarios occur
when there is only one model and hence no need for integration:
a scenario describing a simple process without decisions, and a
scenario with decisions where no actual process is needed. A
third scenario with only one model is possible: both decisions
and processes are present, but they are intertwined within the
same model, as decisions are hard-coded within the process. This
scenario clearly breaches the separation of concerns paradigm.
A fourth scenario treats decisions as local concerns, as part of
the decision logic pertaining to XOR-gates within the process is
separately encapsulated in a decision model. A more challenging
scenario exists when, instead of dealing with local decisions,
interrelated decisions span over multiple activities of the process.
These decisions will influence the process in multiple ways, not
only in terms of control flow at gateways. They will shape the
flow of the process, the outcome of the process and the process
modelling itself, as will be illustrated in the coming sections. The
current scenario establishes long-distance dependencies between
activities, data, control flow, and decisions in the process model,

32 2.5. INTEGRATION SCENARIOS AND INCONSISTENCIES

enabling a decision model to span over multiple activities instead
of being contained to a single decision point in the process. Data
management to liaise the data generated by activities that feed into
decisions will be paramount for the integration of such process and
decision models.

2.5.2 List of inconsistencies

In this subsection, possible inconsistencies that might arise between
the process model and the decision model are described, as the goal
is to identify potential inconsistencies and subsequently to alter the
process to restore consistency. Furthermore, we formally define the
(in)consistencies based on the formal definitions from the previous
sections. All the inconsistencies are also directly linked with the
relevant decisions and properties, which all heavily rely on the
integration definition, i.e., Definition 2.10.
Inconsistency 1 (I1) - exclusion of decision outcomes: Not
all outcomes from the decisions are included in the process model.
Decisions can (re)direct the flow of the process. In an integrated
process-decision model, all outcomes of the decision should be
represented in the control flow if that decision redirects the process.
Modelling all possible decision outcomes in the process is vital for
a correct conclusion of the process.

Formally, if a decision D with an output set OD in the decision
model DM leads to a change in control flow in the process, then all
elements of OD should be present in the control flow resulting from
the decision activity AD which links D from DM to the process,
i.e., in the state space of the process, the occurrences of o ∈ OD

lie between the occurrences of AD and the accepting states. This
builds on Definition 2.9.
Inconsistency 2 (I2) - inclusion of decision logic in the
process: An inappropriate way to model parts of the decision logic
is to embed decision logic in gateways. In cases where a process
contains decision logic, the process is incapable of accommodating
to changes in the underlying decision model. When changes occur,
the process itself needs to be adapted. This occurs when the
separation of concerns is not adopted strictly and thus the decision
logic is not separated and encapsulated in an independent decision

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 33

model. Hence, I2 does not allow for evolution of both models
disjointedly.

More precisely, the decision logic L of a decision D should not
be part of the process. Rather, L belongs to a decision D ∈ Ddm,
whereDdm is the finite non-empty set of decision nodes belonging to
theDRD. Hence, the L is encapsulated in the decision modelDM .
The process can invoke D through its interface IFD, which was
defined as a tuple (dirsD, OD). Through IFD, the process provides
the input requirement set dirsD needed for the enactment ofD, and
again through the interface, the decision model returns the output
set of D, i.e. OD. Hence, the process accesses the decision model
through an interface and is agnostic of the underlying decision logic.
This builds on Definitions 2.5 and 2.6.
Inconsistency 3 (I3) - exclusion of intermediate results:
Inconsistencies arise when the process uses the outcomes of
subdecisions that are not explicitly modelled in the process. These
intermediate results may be needed in the process to serve as inputs
for operational activities or as inputs to higher-level decisions.
Hence, a process model that is consistent with the decision model
should ensure that all the subdecisions that contain intermediate
results that are used in subsequent activities are explicitly invoked.

Explicitly, if the process uses the intermediate result OD′ of
a subdecision D′ of higher level decision D, then D′ must be
represented by a decision activity AD′ in the process. As such
the process can invoke D′ through the subdecision’s interface IFD′

by providing the necessary input requirements from dirsD′ , after
which IFD′ will provide OD′ to the process. This builds on
Definitions 2.6 and 2.10.
Inconsistency 4 (I4) - inclusion of process-unrelated
subdecisions: Opposite to I3, more decisions than necessary can
be included in the process. This occurs when decisions which do not
contain relevant intermediate results for the process are modelled
within the process. In this case the process becomes unclear and
overly complex. Along with that, by modelling every subdecision
in the process, the decision enactment or execution steps become
fixed. This contradicts the declarative nature of decisions and
reduces the flexibility provided by the decision model.

Specifically, if a subdecision D′ with an output set OD′ in the
decision model DM does not lead to a change in control flow in

34 2.5. INTEGRATION SCENARIOS AND INCONSISTENCIES

the process, and if the process does not use intermediate result
OD′ of D′, then no decision activity AD′ representing subdecision
D′ should be modelled in the process. This builds on Definitions
2.7 and 2.9.
Inconsistency 5 (I5) - unsound ordering of decision
hierarchy: This occurs when the order of decision activities in
the process model is contradictory to the hierarchy of decisions
in the decision model. Consequently, the process cannot function
correctly, as decisions are forced to enact without the prerequisite
enactment of necessary subdecisions. This order of decisions and
subdecisions introduces a partial order as shown in Property 1.

Hence, for two decisions D1 and D2 we say D2 ≤ D1 if and only
if there is a directed path from D2 to D1, i.e. D2 is a subdecision
of D1. Since decisions are declarative, this partial order does not
dictate an execution order, but rather a requirement order. Using
this order induced by Property 1 and the result from Theorem 1 we
know that if a decision D is invoked in the process any decision D′
for which D′ ≤ D will be invocable when placed directly in front
of D.
Inconsistency 6 (I6) - exclusion of subdecisions affecting
control flow: Depending on the outcome of certain subdecisions
the control flow of the process may be diverted to include
additional activities, to generate exceptions or even to lead to
process termination. Excluding these subdecisions that have an
influence on the control flow of the process leads to process-decision
inconsistency. This inconsistency is closely related to I3: while I3
focuses on the exclusion of generated data by certain subdecisions,
this inconsistency focuses on the change of control flow.

Explicitly, if a subdecision D′ with a decision output set OD′

in the decision model DM leads to a change in control flow in the
process, then D′ must be represented by a decision activity AD′ in
the process. Additionally, all elements of OD′ should be reflected in
the control flow following AD′ which links the subdecision D′ from
the decision model DM to the process. This builds on Definitions
2.7 and 2.9.
Inconsistency 7 (I7) - absence of input data: Decision
activities require prerequisites to function correctly. These
prerequisites can be the outcome of certain subdecisions, as
illustrated in I3, but also take the form of for instance user-

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 35

generated input data. The inconsistency in this case occurs when
the required input data is not available in a process when a certain
decision task needs to be executed.

Formally, if the process contains a decision activity AD referring
to a decision D in the decision model DM , then the process must
make sure that dirsD, i.e. the required input set for the decision
D, is available within the process at the time decision activity AD

is executed. Only then can the process invoke decision D through
its interface IFD. This builds on Definitions 2.5 and 2.10.

2.6 Principles for Consistent Integration

In this section we provide a set of principles for integrated process
and decision modelling. The principles are derived based on
the integration scenarios and the formalisation from the previous
sections. The principles state what should be included in a process
model and what should be excluded from a process model which
is linked to a corresponding decision model. Five Principles for
integrated Process and Decision Modelling (5PDM) are derived
to support consistency between the two models:
P1. Model all necessary decision output flows. If after enacting the
decision, no output flow is dedicated to the decision outcomes, the
process will prove to be inconsistent. Namely, if a decision outcome
that is not modelled in the control flow of the process occurs after
the decision enactment, then the process cannot proceed properly.
P2. Do not include decision logic in the process model. Otherwise,
maintainability, flexibility and scalability of the process might
be impaired. Rather, the underlying decision logic should be
externalised, encapsulated in the decision model and invoked as
a service by the process.
P3. Model all subdecisions whose intermediate results are used
by or are relevant for the process as decision activities in the
process (P3.1). Subdecisions can only be invoked explicitly if they
are represented in the process model. Using intermediate results
of subdecisions that are not represented in the process leads to
data inconsistency between the process and decision model. If
a certain subdecision directly impacts the process control flow,
the decision should be explicitly represented in the process model

36 2.6. PRINCIPLES FOR CONSISTENT INTEGRATION

Table 2.1: 5PDM: five principles for integrated process and decision
modelling.

Principles for integrated process-decision modelling (5PDM)
P1: Include all necessary decision outcomes in the process control flow
P2: Exclude decision logic and cascading XOR-splits from the process
P3: Include only subdecisions that directly influence the process

P3.1: Include subdecisions whose results are used in the process
P3.2: Include subdecisions that affect the process control flow
P3.3: Exclude subdecisions that are or irrelevant to the process

P4: Include decision hierarchy in decision activity modelling
P5: Include input data and intermediate results for decision enactment

by a corresponding decision activity (P3.2). The decision might
steer the control flow of the process towards additional activities,
exception handling or even process termination. Excluding such
decisions from the process leads to inconsistency. However, do
not include more decision activities than necessary. Only the top-
level decision and subdecisions relevant for the process enactment
in terms of control flow, intermediate results and data management
should be represented in the process itself. All other process-
irrelevant subdecisions should not be modelled explicitly in the
process (P3.3). Furthermore, modelling all subdecisions violates
the declarative nature of decision modelling and reduces the
flexibility provided by the decision model.
P4. Place all relevant decision activities in the correct order within
the process. This is paramount for the correct enactment of the
process and the underlying decisions, since intermediate results of
subdecisions are often needed later in the process to enact higher
level decisions. Modelling the subdecision before the higher level
decision in the process is therefore vital for a correct management
of intermediate results and data and hence for a proper decision
and process enactment. Disregarding the decision hierarchy results
in an inconsistent process-decision model.
P5. Model all data objects and intermediate results necessary for a
correct process and decision enactment. The decision model depicts
the hierarchy of decisions and hence the inputs and intermediate
results that are necessary for enacting the decisions that are
relevant for the process. If not all required data are represented in
the process model, the decision activities requiring that data will

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 37

not be executed properly and ensuring a sound process enactment
becomes a difficulty. Thus, the process must facilitate a correct
data management to be able to invoke a decision through its
interface.

A short overview of the 5PDM principles is provided in Table
2.1.

2.7 How to integrate decision and process
models

In this section, we will address the inconsistencies in the running
example of Figure 2.2 and rework it according to the 5PDM.
We have also developed a second example, however, due to page
constraints that example is not incorporated in this chapter.
Rather, the example is available online in Section 3 of a technical
report of our home institution [60]1.

2.7.1 Inclusion of all decision outcomes in the
control flow

A first concern with the process model provided in Figure 2.2 is
that not all possible outcomes of the Accept Customer decision
activity are represented in the control flow of the process model.
The XOR-split that follows the Accept Customer decision activity
offers flows for cases where the score is larger than 2 or smaller than
2. However, for a score equal to 2 there is no corresponding path
in the process model. This situation corresponds to I1.

To remedy this inconsistency, P1 will be used. The process
model should include a flow that supports the decision outcome of
a score equalling 2. A solution is presented in Figure 2.3, where
an additional flow exits the XOR-gate and guides the indecisive
cases with score equal to 2 towards the executive meeting where
the customer acceptance will be resolved.

1This example will be presented in Chapter 3 of this thesis.

38 2.7. HOW TO INTEGRATE DECISION AND PROCESS MODELS

F
igure

2.3:
Iteration

1.

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 39

2.7.2 Exclusion of decision logic from the process
model

Figure 2.3 includes all possible decision outcomes at the XOR
decision point after Accept Customer. However, part of the
decision logic is included in the process model, as the business rule
that determines the outcome of decision activity Accept Customer
has been hard-coded in the control flow of the XOR decision
point. If the resulting score is smaller than 2, the customer will be
rejected; if the score is larger than 2, the customer will eventually
be accepted; and if the score equals 2, the executive meeting will
address the customer acceptance issue. Suppose that along the
way, this business rule for customer acceptance changes and that
a score higher than 4 leads to customer acceptance; lower than 4
to customer rejection; and equal to 4 to the executive meeting.
This business rule can be easily changed in the decision model.
However, once the rule is changed, the process model does not
longer consistently comply with the decision model. Hence, in this
case, changes in the process model are necessary as well to achieve
consistency. This corresponds with I2 and should be remedied
by P2. Better is not to include decision logic in the process
model and to simply model the outcome of the decision, as done in
Figure 2.4. Instead of hard-coding the scores in the control flow,
only the decision outcome of accept, pending, reject is modelled in
the control flow. The actual decision logic is encapsulated in the
decision model, improving the agility and maintainability of the
process model.

Figure 2.3 contains different constructs containing decision logic.
After a customer gets accepted, the XOR-gateway following the
acceptance resembles a decision tree, where a distinction is made
between low risk, medium risk and high risk customers. These
are outcomes of the subdecision Risk Level in the decision model
in Figure 2.1. They all lead to similar activities of drawing up
a contract. Hence, there is no need to model outcomes of a
subdecision in the control flow, as this is another instance of
including decision or data flows in the process model. The outcome
of the Risk Level subdecision is determined in the decision model.
Since the top-level decision Customer Acceptance is invoked by
decision activity Accept Customer, the subdecision Risk Level is

40 2.7. HOW TO INTEGRATE DECISION AND PROCESS MODELS

also implicitly invoked and there is no need to additionally model
that part of the decision in the control flow. This is again a typical
instance of I2, as control flows are often misused to represent
decision logic. This issue is treated according to P2 in Figure 2.4,
where the redundant gateway is excluded from the process model.

2.7.3 Inclusion of subdecisions directly influencing
the process

I3 focuses on the use of intermediate decision results in the process
model. In Figure 2.4 the Draw up contract activity prepares
a contract for an accepted customer based on the customer’s
Risk assessment file, an intermediate result of the Risk Level
subdecision in the decision model in Figure 2.1. However, the
process model in Figure 2.4 does not recognise this intermediate
result. Hence, drawing up the contract will not be possible since
the Risk assessment file is missing. In order to include this file in
the process model, the subdecision Risk Level that produces it
should be modelled as a decision activity in the process. Figure
2.5 includes the necessary subdecision and intermediate result in
accordance with P3.1.

Additionally, in Figure 2.4 the process remains the same
regardless the validity of the identity verification executed by
activity Check Identification Documents. In order to make
the decision more reliable, the process could decide to only
proceed when the identity is valid. The decision model in Figure
2.1 provides a subdecision Customer Identity Verification.
Instead of using the generic activity Check Identification
Documents as in Figure 2.4, it is preferential to use a
decision activity referring to the subdecision Customer Identity
Verification in the decision model. Depending on the outcome
of this subdecision, i.e. whether the identity documents are valid
or not, the control flow of the process can be diverted to include
additional activities to ensure that a valid identity is provided
before the process can continue. This is achieved in Figure 2.5 by
replacing the generic activity Check Identification Documents
by the decision activity Verify Identity. If the documents are
deemed valid, the process can continue; if deemed invalid, an

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 41

F
ig
ur
e
2.
4:

It
er
at
io
n
2.

42 2.7. HOW TO INTEGRATE DECISION AND PROCESS MODELS

additional activity is introduced that requests valid documentation.
In order to remedy I6, subdecisions that have an influence on the
control flow of the process, must be modelled as decision activities
in the process according to P3.2.

Figure 2.4 includes decision activities that do not produce
relevant intermediate results for the process at hand and that do
not influence the control flow of the process. More precisely, Check
Financial Position and Perform Background Check decision
activities are represented in the process model. If the decision
activity does not refer to the top-level decision or does not provide
an intermediate result that is used in the process, or does not
influence the control flow of the process, it is not necessary to
model that decision activity. Thus, Figure 2.4 contains I4. The
obsolete decision activities can be excluded from the process model,
as they can eventually be invoked by another higher level decision
that is represented in the process model. Figure 2.5 provides a
process model adhering to P3.3. Furthermore, representing all the
decisions from the decision model in the process model opposes
the declarative nature of the decision model, since by modelling all
possible decision activities in the process, the decision execution is
hard-coded in the process as well. This may lead to unnecessary
delays in the process, e.g. the parallel gateway in Figure 2.4 forces
the process to stop until both branches are joined before the process
can continue further, while in reality this may not be ideal. In
Figure 2.5, no such issues are present. Thus, Figure 2.5 conforms to
P3.1, P3.2 and P3.3, hence conforming to P3 and only containing
relevant subdecisions that influence the process in terms of data,
intermediate results, and control flow.

2.7.4 Inclusion of decision requirement hierarchy

A consistent process model should respect the decision requirement
hierarchy provided by the decision model. Figure 2.5 violates
this condition, as the Determine Risk Level subdecision activity
is located after the top-level decision activity Accept Customer.
The decision Customer Acceptance requires the outcome of the
subdecision Risk Level, and this hierarchy should be respected by
the order of the decision activities in the process model. Decision
activity Accept Customer will require an outcome of decision

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 43

P
ro

sp
ec

tr
eq

u
es

t

A
cc

ep
t

cu
st

om
er

D
ra

w
 u

p
co

nt
ra

ct

D
ra

w
 u

p
re

je
ct

io
n

no
tif

ic
at

io
n

A
cc

ep
t p

ro
sp

ec
t

R
ej

ec
tp

ro
sp

e
ct

D
is

cu
ss

 in
ex

ec
ut

iv
e

m
ee

tin
g

D
et

er
m

in
e

ris
k

le
ve

l
C

ol
le

ct
do

cu
m

en
ts

R
eq

ue
st

 v
al

id
id

en
tif

ic
at

io
n

V
er

ify
 id

e
nt

ity

ac
ce

pt

re
je

ct

pe
nd

in
g

V
al

id

In
va

lid

R
is

k
as

se
ss

m
en

t
fo

rm

F
ig
ur
e
2.
5:

It
er
at
io
n
3.

44 2.7. HOW TO INTEGRATE DECISION AND PROCESS MODELS

activity Determine Risk Level before the former can be executed
successfully. This corresponds to I5. To restore the decision
requirement order in the process model one incorporates P4 and
simply switches the two decision activities. Figure 2.6 provides a
model that solves this inconsistency.

2.7.5 Inclusion of relevant data and advanced data
management

In Section 2.4.2 we defined decision activities as activities that have
an input and an output, with a logical connection between the two.
Figure 2.6 does not respect these definitions as it violates I7. In
Figure 2.6 three decision activities are present, yet none of them
has the required inputs. Only decision activity Determine Risk
Level shows an output in the form of a Risk Assessment File,
while other decision activities don’t exhibit any output data object.
Hence, Figure 2.6 shows poor data management and decisions
cannot be enacted without the proper data input. Decision activity
Verify Identity is linked to the subdecision Customer Identity
Verification in the decision model in Figure 2.1. The decision
model reveals that the Customer ID is needed as input for this
subdecision and the process model in Figure 2.6 does not provide
this indispensable data management.

Figure 2.7 remedies the data management issues for all
decision activities in the process model and links them to the
relevant constructs in the decision model, hence conforming to
P5. The activity classification is key to solving this problem.
The decision model in Figure 2.1 requires input data, namely
Customer ID, Financial Statements, Financial Information and
Public Records. As explained in Section 2.4.2, input data is
produced by administrative activities. Those activities have no
input, but do produce output. In the process in Figure 2.7,
the input data needed for a sound enactment are produced
by administrative activities Collect Documents, Request Valid
Identification and Look Up Information. The relevant data
objects are then linked to the (sub)decision activities that exploit
them as input data, e.g. decision activity Verify Identity uses
Customer ID, produced by Collect Documents or Request Valid
Identification. Each decision activity also produces an output

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 45

F
ig
ur
e
2.
6:

It
er
at
io
n
4.

46 2.8. RESOLVING INCONSISTENCIES

data object, as previously specified in the definition for decision
activities.

The intermediate results of subdecision activities such as Verify
Identity and Determine Risk Level are used in higher level
decision activities as input, in accordance to the decision model.
The intermediate result of decision activity Verify Identity,
Identity Verification, is used in decision activity Determine Risk
Level, together with the other input data required to enact the
subdecision Risk Level in the decision model. Likewise, the
intermediate result of decision activity Determine Risk Level,
Risk Assessment File, is adopted as input for the decision activity
Accept Customer, which corresponds with the top level decision
Customer Acceptance in the decision model. The outcome of the
top level decision is then used to determine whether or not to
accept the customer and to draw up a contract if the customer
gets accepted. A final activity classification from Section 2.4.2
refers to operational activities, i.e. activities that might have an
input, but that produce no decision output. In Figure 2.7 Draw Up
Rejection Notification, Draw Up Contract and Discuss In
Executive Meeting are representatives of the operational activity
classification.

2.8 Resolving Inconsistencies

This section deals with resolving inconsistencies and adhering to
the principles of integrated modelling in a systematic way. In [5]
soundness is defined to achieve P1 for isolated decision points. P1
and P2 are rather straightforward: make sure that every decision
outcome can be handled by the process flow and avoid hard-coding
decision logic in processes. Principle P3.2 is the complement of
P1, as P1 suggests that when a decision activity that impacts
the control flow is modelled, all its outcomes should be taken into
account by the control flow. On the other hand, P3.2 determines
that if a decision impacts the control flow of the process, it should
be explicitly modelled as a decision activity in the process.

However, P3.1, P3.3, P4 and P5 require additional attention.
Using the formal basis from the previous sections, we defined
process-decision model consistency by two conditions in Definition

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 47

F
ig
ur
e
2.
7:

It
er
at
io
n
5.

48 2.8. RESOLVING INCONSISTENCIES

2.10:

1. No intermediate results of non-invoked subdecisions are used.

2. Each (sub)decision invoked in the process, must be guaranteed
to be invocable at that stage of the process.

The first condition in Definition 2.10 refers mainly to P3.1 and
P3.3, while the second condition acknowledges P4 and P5. In
the following subsections we will address each of these necessary
conditions.

2.8.1 Resolving the use of intermediate results

Violations against the first condition for consistency of Definition
2.10 can be resolved in the following steps:

1. Identify the subdecisions producing intermediate results that are
used in the process, both in terms of data objects and control flow.

2. Add these subdecisions to the process model in the form of
decision activities in the correct hierarchical order.

3. Do not include the remaining subdecisions into the process.

Note that this solution incorporates P3.1, P3.3 and even P4.
In the running example of the Belgian Accounting firm case in
Section 2.7, we identified that the Risk Level decision produces a
Risk Assessment form as intermediate result and that said result is
needed later on in the process. After identifying a subdecision with
its relevant intermediate result, we incorporated the subdecision
in the process under the Determine Risk Level decision activity
and consequently we also took the decision hierarchy into account
by placing the Determine Risk Level decision activity before the
decision activity Accept Customer that represents the top level
decision and that requires the outcome of the subdecision Risk
Level.

The topological order derived from Figure 2.1 induces that
Customer Identity Verification ≤ Risk Level and that Risk
Level ≤ Customer Acceptance according to Property 1. Thus,
these decisions can be represented in the process model by their
respective decision activities as long as they respect the topological

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 49

order provided in the DRD. The first model adhering to all three
steps with regard to resolving intermediate results in Section 2.7 is
the one in Figure 2.6. Here, the intermediate result of the relevant
subdecision is identified and the corresponding decision activity is
incorporated in the process, while respecting the topological order
of the DRD and while excluding process-irrelevant subdecision
activities.

2.8.2 Resolving invocability inconsistencies

The second condition provided in Definition 2.10 revolves around
invocability of (sub)decisions. In order to invoke a certain decision
in the process through a decision activity, all relevant data needed
for invoking that decision and its subdecisions must be available.
Additionally, if subdecisions of the decision that is invoked are
modelled within the process by means of decision activities, the
intermediate results of the subdecisions must be readily available
as well. Note that this condition mainly refers to P4 and P5, i.e.
the decision requirement hierarchy will ensure the availability of
intermediate results (P4) and P5 additionally assures the presence
of other indispensable input data. Hence, violations against the
second condition for consistency of Definition 2.10 can be resolved
in three simple steps:

1. Apply the topological hierarchy of decisions from the decision
model to the order of modelled decision activities in the process.

2. Ensure that all input data present in the decision model is
present in the process model as well, either as external data or
as internal process data.

3. For every decision activity in the process make sure that all
input data and intermediate results of its subdecision activities in
the process are linked to the decision activity as input data objects.

Consider Figure 2.7 and decision activity Determine Risk
Level which represents the decision Risk Level from the decision
model in Figure 2.1. According to the decision model, the Risk
Level decision requires intermediate results from its subdecisions.
In order to enact Financial Position Check the Financial

50 2.9. CONCLUSION AND FUTURE WORK

Statements and Financial Information input data is needed. In
Figure 2.7, this data is linked to the decision activity as it was
generated in the process earlier on by two administrative activities,
Collect Documents and Look Up Information. To enact the
second subdecision, Background Check, the Public Records input
data is necessary as well. This too is provided by an administrative
activity of the process and linked to the decision activity Risk
Level. Finally, the intermediate result of the Customer Identity
Verification subdecision of Background Check is required as
well. This intermediate result was produced earlier by the process,
since the Verify Identity decision activity was invoked with
the necessary Customer ID input provided by an administrative
activity. This intermediate result, i.e. Identity Verification, is
linked as an input data object to decision activity Determine
Risk Level. Hence, Determine Risk Level has all input data
and/or intermediate results necessary to invoke the Risk Level
decision and the process can proceed. Thus, ensuring that all
necessary input data and intermediate results for a decision are
available before the decision is invoked, resolves the invocability
inconsistency.

2.9 Conclusion and Future Work

This chapter provides insights and principles for integrated process
and decision modelling. While most previous works approach
the problem in a straightforward way, i.e. only considering
decision points and containing decisions to one specific place in
the process, we analyse decisions holistically as they can span
over multiple activities and even over the entire process. A DMN
formalisation and classification of process activities is provided to
connect decisions to processes. Next, based on the formalisation,
inconsistencies are revealed. To remedy these inconsistencies,
Five Principles for Integrated Process and Decision Modelling
(5PDM) were derived. The usefulness of 5PDM is illustrated
through a case from a Belgian Accounting firm. Additionally,
a systematic stepwise approach towards consistent integration of
processes and decisions was contributed. This approach relies on
a sound management of intermediate results of decisions and on

CHAPTER 2. AUGMENTING PROCESSES WITH DECISIONS 51

correctly matching the information requirements of decisions to
process data.

In future endeavours we will investigate how the decision model
can further aid in refactoring the process model. Additionally,
decision making across distributed processes [14] in cooperative
information systems is of particular interest for Internet of Things
(IoT) application areas [78].

CHAPTER 3

An Illustration of 5PDM

“New opinions are always suspected, and
usually opposed, without any other reason
but because they are not already common.”

An Essay Concerning Human Understanding
— John Locke

This chapter presents sections 3 and 4 of the following paper:

Faruk Hasić, Johannes De Smedt, Jan Vanthienen. An
illustration of Five Principles for Integrated Process and De-
cision Modelling (5PDM). FEB Research Report KBI_1717
(KU Leuven), Leuven (Belgium), 1-8, 2017.

53

54

Abstract. This chapter discusses an application example of
integrated process and decision modelling guidelines aimed at
consistently integrating process and decision model. The process
models are depicted by the Business Process Model and Notation
(BPMN), while the decision model is represented using the newly
introduced Decision Model and Notation (DMN) standard of the
Object Management Group (OMG). The example in this chapter
revolves around an integration of a blank loan approval process
with its underlying bank loan decision model. The process model
is iteratively adopted to conform to the proposed Five Principles
for integrated Process and Decision Modelling (5PDM), thus
rendering the process consistent with the underlying decision
model.

CHAPTER 3. AN ILLUSTRATION OF 5PDM 55

3.1 An Example from Literature

In this section we provide a process model that is inconsistent
with its underlying decision model and consequently we apply the
proposed integrated modelling guidelines, rendering the process
model consistent with the decision model. Figure 3.1 depicts a
loan approval decision hierarchy consisting of a top level decision
Loan Approval and five subdecisions. A corresponding bank loan
approval process model is provided in Figure 3.2. The process is
based on the model provided in Fundamentals of Business Process
Management by [44] on page 91. For the sake of representation
we have simplified the original process to fit on one page in this
chapter.

As will become clear, the process in Figure 3.2 is inconsistent
with the decision model in Figure 3.1. The inconsistencies are
highlighted in Figure 3.2 and the 5PDM principles needed to
remedy the inconsistencies are indicated in the figure as well. We
will concisely explain the application of the integrated modelling
principles to the inconsistent process in Figure 3.2, thus rendering a
process depicted in Figure 3.3 that is consistent with its underlying
decision model represented in Figure 3.1.

First, notice that all six decision from the decisions model
in Figure 3.1 are represented by their corresponding decision
activities in the process in Figure 3.2. Employing Principle
P3 teaches us which decisions to explicitly model as decision
activities in the process. More precisely, P3.2 tells us to
include decisions that lead to a change in control flow as decision
activities in the process. Clearly, this is the case for the
Assess eligibility, Approve loan, and Negotiate payment
decision activities. They all divert the control flow of the
project depending on their outcome and hence they are relevant
to the process and should remain in the process. Also the
Check application form completeness decision activity should
remain in the process. According to Principle P1, all necessary
decision outcomes, relevant to the process, should be modelled
in the control flow following the decision activity representing the
decision in the process. Assuming that Check application form
completeness can have two possible outcomes: a positive outcome
if the application form is complete and a negative one if that is not

56 3.1. AN EXAMPLE FROM LITERATURE

Eligibility

Loan risk

Repayment agreement

Application form completeness

Application form

Loan approval

Credit risk

Property appraisal

Figure 3.1: Decision model for a bank loan approval.

CHAPTER 3. AN ILLUSTRATION OF 5PDM 57

A
pp

ra
is

e
pr

op
er

ty

R
ej

ec
t

ap
pl

ic
at

io
n

Lo
an

 a
pp

lic
at

io
n

re
je

ct
ed

P
re

pa
re

ac
ce

pt
an

ce
pa

ck

S
en

d
ho

m
e

in
su

ra
nc

e
qu

ot
e

S
en

d
ac

ce
pt

an
ce

pa
ck

C
an

ce
l

ap
pl

ic
at

io
n

Lo
an

 a
pp

lic
at

io
n

ca
nc

el
ed

R
eg

is
te

r
lo

an

Lo
an

 a
pp

lic
at

io
n

ap
pr

ov
ed

A
ss

es
 lo

an
 r

is
k

A
ss

es
s

el
ig

ib
ili

ty

A
pp

ro
ve

 lo
an

N
eg

ot
ia

te
re

pa
ym

en
t

C
he

ck
ap

pl
ic

at
io

n
fo

rm
co

m
pl

et
en

es
s

A
ss

es
s

cr
ed

it
ris

k

Lo
an

 A
pp

lic
at

io
n

R
ec

ei
ve

d

ap
pl

ic
an

t n
ot

el
ig

ib
le

ap
pl

ic
an

t
el

ig
ib

le

O
pt

io
na

l

A
lw

ay
s

ap
pl

ic
an

t
di

sa
gr

ee
s

ap
pl

ic
an

t
ag

re
es

R
ej

ec
te

d

A
pp

ro
ve

d

P
1

,
P
3

.1
,
P
3

.2
,
P
5

P
3

.3

P
3

.1
,

P
3

.2
,

P
5

P
3

.1
,

P
3

.2
,

P
4

,
P
5

F
ig
ur
e
3.
2:

P
ro
ce
ss

m
od

el
fo
r
a
ba

nk
lo
an

ap
pr
ov
al
.

58 3.1. AN EXAMPLE FROM LITERATURE

A
ppraise

prope
rty

R
eject

applica
tion

Loan
application

rejected

P
rep

are
acceptance

pack

S
end ho

m
e

insura
nce quote

S
end

acceptance
pack

C
ancel

applica
tion

Loan app
lication

canceled

R
egister loan

Loan
application

appro
ved

A
ssess

eligib
ility

N
egotiate

repaym
ent

A
pprove loan

C
heck

applica
tion form

com
ple

teness

Loan A
pplication

R
eceived

R
eturn

applica
tion form

R
eceive

updated form

A
pplication

form
E

ligibility
assessm

en
t

P
rop

erty
appra

isal

R
epaym

ent
agree

m
ent

C
om

plete
applica

tion

A
pproved

loan

A
pplicant not

eligib
le

A
pplicant
eligib

le

O
ptional

A
lw

ays

A
pplicant

disagrees

A
pplicant
agree

s

R
ejected

A
pproved

C
om

plete

Incom
ple

te

F
igure

3.3:
P
rocess

m
odelfor

loan
approvalconsistent

w
ith

the
decision

m
odel.

CHAPTER 3. AN ILLUSTRATION OF 5PDM 59

the case, i.e. the application form is incomplete. The latter should
divert the process back to the decision activity, and the process
can proceed to a subsequent stage once that decision activity
reaches a desirable outcome. Hence, Check application form
completeness will divert the process flow back to the decision
through a loop, and hence the decision activity affects the process
and should remain in the process according to P3.2. In the
consistent model in Figure 3.3 these decision activities are therefore
still present.

On the other hand, the decision activities Assess credit risk
and Assess loan risk do not impact the process directly in the
stage where they are modelled. Since higher level decisions of these
subdecisions are present in the remainder of the process model,
these particular decision activities need not explicitly be modelled
within the process, as stated by Principle P3.3. Hence, these
decision activities are not present in the consistent process model
in Figure 3.3.

Note also that the process in Figure 3.2 does not conform to
the topology of the decision model in Figure 3.1: the Approve
loan and Negotiate payment decision activities are not ordered
according to the decision requirements hierarchy present in the
decision model. While in the decision model in Figure 3.1 the
Repayment agreement is a subdecision of the Loan approval top
level decision, the decision activity Approve loan, pertaining to
decision Loan approval, precedes the decision activity Negotiate
payment, pertaining to decision Repayment agreement. That way,
according to the process in 3.2, the Loan approval decision is
forced to enact before the prerequisite enactment of the Repayment
agreement subdecision. This violates Principle P4, which states
that the decision requirements hierarchy present in the decision
model should be respected when modelling the corresponding
decision activities within the process. Hence, decision activities
Approve loan and Negotiate payment should switch places, as
remedied according to P4 in the process in Figure 3.3.

Now we have identified which decision activities should be
discarded from the process model, and which should be present
in the process model and in what hierarchical order. Given that
the decision activities left in the process model of Figure 3.3 are
representing decisions pertaining to the same decision model in

60 3.1. AN EXAMPLE FROM LITERATURE

Figure 3.1, there exists a data and decision outcome dependency
between those decision activities, as stated by Principle P5. The
higher level decision activities will need the decision outcome of
the lower level decision activities in order to enact properly. Thus,
the data propagation of decision outcomes between related decision
activities was taken into account according to Principles P3.1 and
P5. By definition, all decision activities have input data and output
data. Taking into account the decision hierarchy in the decision
model, a sound propagation of data can be achieved by connecting
the decision outcomes of lower level decision activities to decision
inputs of higher level decision activities. This data propagation
management is modelled in the consistent process model in Figure
3.3 making sure that every decision activity has the correct input
data as stated by the decision model.

Likewise, every decision activity has output data that can
be used by a higher level decision activity, or simply any other
operational activity within the process. For instance, in Figure
3.3 the outcome of the Assess eligibility decision activity,
the Eligibility assessment, is propagated as input to the higher
level decision activity Negotiate payment, in accordance to the
decision requirements present in the decision model in Figure 3.1.
This indeed conforms to Principle P5. Similarly, the outcome of
decision activity Approve loan, the Approved loan data object, is
used as input for the operational activity Register loan. This
is indeed in accordance with Principle P3.1, which states that
decision activities whose outcomes are used in process should
explicitly be modelled in the process. In this case, decision activity
Approve loan represents the top level decision of the decision
model in Figure 3.1. Thus, this decision activity influences the
process in multiple ways: from the control flow perspective by
diverting the process and forcing it to reach a certain conclusion,
and from the data perspective providing subsequent activities with
the necessary input to enact properly.

CHAPTER 3. AN ILLUSTRATION OF 5PDM 61

3.2 Conclusion

To conclude, by applying the Five Principles for integrated
Process and Decision Modelling (5PDM), we have rendered
the inconsistent process in Figure 3.2 to be consistent with its
underlying decision model in Figure 3.1. The consistent process
model is depicted in Figure 3.3. As such, this chapter provides an
illustration of the 5PDM guidelines on an example based on the
model provided in Fundamentals of Business Process Management
by [44] on page 91. The example illustrates the usefulness of the
5PDM framework and it shows that consistent integration should
rely on a profound data management of intermediate results of
subdecisions and on correctly matching process data necessary for
decision enactment to the information requirements in the decision
model.

CHAPTER 4

Comparing BPMN to BPMN +
DMN for IoT Process Modelling

“The duty of the man who investigates the
writings of scientists, if learning the truth
is his goal, is to make himself an enemy of
all that he reads, and, applying his mind to
the core and margins of its content, attack
it from every side. He should also suspect
himself as he performs his critical
examination of it, so that he may avoid
falling into either prejudice or leniency.”

Doubts Concerning Ptolemy
— Hasan Ibn al-Haytham (Alhazen)

This chapter was published as follows:

Faruk Hasić, Monique Snoeck, Estefanía Serral Asensio. Com-
paring BPMN to BPMN + DMN for IoT Process Mod-
elling: A Case-Based Inquiry. 35th ACM/SIGAPP Symposium
on Applied Computing (SAC), Brno (Czech Republic), 2020.

63

64

Abstract. The network of interconnected devices that compose
the Internet of Things (IoT) continues to expand. Business
processes are starting to take advantage of IoT by adapting to
the physical environment or by automating process tasks. The
Business Process Model and Notation (BPMN) specification has
been employed in numerous studies to include IoT devices and
resources. While aggregating low-level IoT data into process-
relevant data is of paramount importance for IoT processes, BPMN
may not be the best approach to model this data aggregation.
Decision Model and Notation (DMN), however, is a recently
introduced standard which is inherently used to aggregate low-
level information into high-level information. This makes DMN
a promising match for modelling context data aggregation in IoT
processes. Therefore, this chapter examines the modelling of IoT
processes by comparing the standard BPMN approach and the
combination of BPMN and DMN. Three cases with increasing need
for context aggregation are modelled according to both techniques,
leading to an analysis of the capability of the approaches to
support IoT processes in terms of high-level context-awareness,
scalability and complexity, flexibility, and decision logic reusability.
We demonstrate that in cases where a need for complex context
aggregation decision logic is present, the combination of BPMN and
DMN provides the required support, even for the complex cases,
and performs better than BPMN on its own.

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 65

4.1 Introduction

IoT can be used to facilitate both businesses and individuals in
their daily endeavours. The application areas are vast and diverse,
from smart home environments [121] to medical monitoring systems
[72]. Business processes can benefit from IoT by understanding
their execution context and adapting to it. This integration of
IoT and business processes has enjoyed significant attention in
literature, in particular several extensions to the BPMN [105]
standard have been proposed to accommodate this integration [21].
However, these extensions often miss some of the support that
the BPMN standard provides, such as the executability of the
modelled processes, the interchangeability of models between tools,
or process model integration with other languages. Hence, sticking
to standards may provide a number of advantages compared to a
language extension.

IoT processes often expose a need for context-awareness
and context aggregation [90]. A recently introduced standard
for decision modelling, i.e., DMN [106], is inherently used to
aggregate information, as constructing a DMN model corresponds
to aggregating low-level information into higher-level information,
thus, creating a hierarchy of decision information with different
levels of granularity. This makes DMN a promising match for
modelling context data aggregation.

Given the inherent need for context aggregation in IoT
processes, this chapter examines the modelling of IoT processes
by comparing the standard BPMN approach and the combination
of BPMN and DMN. For this purpose, we model and compare three
exemplar IoT process cases taken from literature. To avoid the need
for developing extra support for language extensions, throughout
the chapter, we stick to both BPMN and DMN as standardised
modelling languages, so as to maintain the advantages that come
with those standards regarding executability, interchangeability,
and integration of process models. From this endeavour, we
evaluate the ability of the BPMN + DMN versus the BPMN-only
approach for dealing with context aggregation, the scalability and
complexity of processes, the flexibility of decision and processes,
and context aggregation decision logic reusability.

This chapter is structured as follows. Section 4.2 provides

66 4.2. PRELIMINARIES AND RELATED WORK

background information and related work. Section 4.3 revolves
around three IoT process case studies with increasing needs for
context aggregation. Section 4.4 evaluates the advantages of BPMN
+ DMN according to the ability to aggregate context information,
scalability, flexibility, logic reusability, and the adherence to
principles for cognitively effective modelling notations. Finally,
Section 4.5 concludes and discusses future research.

4.2 Preliminaries and Related Work

This section provides preliminary information and related work on
IoT, IoT processes, their modelling, and DMN.

4.2.1 IoT

IoT refers to the ever-growing network of interconnected devices.
Generally speaking, an IoT environment is populated by two kinds
of devices: sensors and actuators. Sensors serve as a mechanism
to capture reality and are therefore the source of IoT data towards
the system. Actuators on the other hand operate in the reverse
direction, i.e. they change the reality by activating a physical
reaction that is initiated by the system. A typical sensor is
for example a luminosity sensor. On the other hand, a typical
actuator can be an electrical motor. Data collected by IoT
devices is considered to be part of the context information, i.e.
the information describing the conditions under which the system
operates. Relevant context information might for instance include
the location of an object.

4.2.2 IoT processes

IoT processes focus on incorporating IoT into process management
[150]. This IoT and business process integration can be twofold.
By definition, IoT business processes are enacted in a dynamic and
highly connected physical environment. Since IoT is a technology
that can be used to digitalise the context of a system, the process
is granted the capability of both understanding its context and
changing it through IoT devices. Understanding context is a
difficult task which requires the inference of high-level context

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 67

from the the low-level data caught by IoT devices: they need
to be aggregated in order to render context information that
is meaningful for the process [35]. Different levels of context
abstraction can be defined [90]. As shown in Figure 4.1, the
raw data collected from the IoT devices is at the lowest level of
abstraction. This level of abstraction can be handled by a context
monitor [121] which captures the data coming from the sensors and
makes sense of it. A carbon level sensor can for instance provide a
data stream of 420, 425, 465, 8357. The context monitor observes
these data measurements and stores them in a system as follows:
the carbon level in a room is 325 at a specific time. This is simple
context information which can be stored for further use within the
business processes. This way, the business process can access the
latest relevant data which can be interpreted for further process
execution.

However, often a higher level of abstraction is needed to make
meaningful decisions within the process. The simple context
information needs to be aggregated even further to render more
abstract and complex context information. For instance, a carbon
level of 8357 can be considered as dangerous if people are present
in the room. Hence, smart room sensor information, obtained from
a presence sensor and a carbon level sensor, can be aggregated into
ventilation settings to safeguard air quality, thus inferring a higher-
level meaningful context. We refer to this level of abstraction when
discussing context aggregation in this chapter, i.e., the aggregation
of simple context information into more complex contexts. The
transformation from raw sensor data to simple context information
is out of scope for this chapter, and we refer to works such as
[121] for this matter. On another side, IoT devices can be used
to automate tasks, e.g., opening the curtains in a smart home.
The integration of IoT in BPMN models has been, among others,
discussed in [150].

4.2.3 IoT process modelling languages

BPMN is the most extended language to model IoT business
processes, see e.g., [21, 130, 150]. Most of these extensions focus
on introducing new symbols to discriminate tasks and events that
are IoT-related from regular BPMN elements. However, they often

68 4.2. PRELIMINARIES AND RELATED WORK

do not consider the aggregation of simple context to more complex
context information. A lack of standardisation can be immediately
observed as well: extensions diverse from one another and are
normally not compatible with the standard BPMN, preventing
them from taking advantage of the additional support it provides,
like the executability of the modelled processes, or its integration
with other languages. The combination of different standards as
such could contribute towards solving these issues.

4.2.4 DMN

DMN [106] is a recently introduced decision modelling standard
that consists of two levels. First, the decision requirement level
which depicts the dependencies between elements involved in the
decision model. Second, the decision logic level, which presents
ways to specify the underlying decision logic, usually modelled
through decision tables. DMN employs rectangles to depict
decisions and ovals to represent data input. DMN has been adopted
in recent literature [42, 59]

Note that DMN modelling is inherently used to aggregate
information, as constructing a DMN model corresponds to
aggregating low-level information into higher-level information,
thus creating a hierarchy of decision information with different
levels of granularity. This makes DMN a great match to model
context data aggregation [56, 90]. Take for instance the example
explained in Section 4.2.2, which can easily be modelled as shown in
Figures 4.8 and 4.9, where a DMN model aggregates the lower-level

Figure 4.1: Hierarchy and aggregation of context [90].

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 69

contexts into higher-level information.
The combination of BPMN and DMN has already been studied

by several authors [13, 37, 62, 66, 67, 123, 150]. However, none
of these works discuss the use of this combination to describe IoT
processes without further extensions. This combination achieves
separation of concerns by having separate process and decision
models. Instead of modelling decision constructs in the process
model, the decisions are externalised and encapsulated in a separate
DMN decision model. The key to this process and decision
integration lies in identifying and modelling process elements that
function as intermediaries of the decision model within the process
model. Some of these process elements, i.e., decision activities,
invoke a decision from the DMN decision model by providing
the correct data input requirements set for that decision, and as
such, invoking the decision logic stored in the decision model.
Subsequently, the decision model returns a decision outcome to
the process for further interpretation.

4.3 IoT Processes Modelling Cases

This section provides three exemplar IoT process cases from
literature. We adhered to purposive sampling for selecting the
cases [47]. Purposive sampling revolves around carefully selecting
cases expecting that each case provides relevant information for
the problem at hand. We queried Google Scholar with the search
string (’IoT’ OR ’Internet of Things’) AND (’scenario’ OR ’case’)
AND (’process’ OR ’BPMN’ OR ’Domain Model’ OR ’Petri net’).
We obtained 153 IoT cases. We provide the complete list of cases
online2. Since we are interested in IoT processes where aggregation
of context information is a challenge, we selected three cases with
increasing order of context aggregation necessity, ranging from
simple context aggregation to more complex context aggregation.
For each case, models are built according to standard BPMN on
the one hand, and standard BPMN and DMN on the other. Notice
that for BPMN models, we only use standard elements that are
executable. Non-executable modelling constructs, e.g., complex
gateways, are omitted, as we aim to exploit the executability

2https://github.com/SAC2020/SAC/blob/master/ListOfCases.xlsx

https://github.com/SAC2020/SAC/blob/master/ListOfCases.xlsx

70 4.3. IOT PROCESSES MODELLING CASES

support of the standard as well.

4.3.1 Case 1: smart transportation

Case description. Consider the case described in [129], about
a refrigerated truck transporting perishable food, i.e. food that is
not fully frozen but that is likely to spoil if not adequately cooled.
The internal air exchanges heat with the outside environment
as heat is conducted into the truck from the ambient air and
from solar radiation on the outside of the truck. Given that
outside temperature conditions influence the temperature inside
the truck as well, the cooling system should proactively provide
adaptable temperature management to maintain adequate inside
air temperature based on outside weather conditions. For that
purpose a temperature sensor can be placed on the outside of
the truck, and the cooling system can automatically adapt to
the outside temperature by either increasing or decreasing the
refrigeration.

Check
temperature

Turn off cooling
system

Set cooling
system to
medium

Set cooling
system to
maximum

Set cooling
system to high

Set cooling
system to low

[2..5[

[-100..0[

[10..100]

[5..10[

[0..2[

Figure 4.2: An IoT-enhanced smart transportation process.

BPMN IoT process. The IoT-enhanced business process is
depicted in Figure 4.2. All the tasks in the process are IoT tasks
represented as automated service tasks. Once the temperature has
been checked, the exclusive gateway evaluates the temperature and
decides on the cooling level that must be set to guarantee that the
perishable food will reach the destination unspoiled. The logic

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 71

Set cooling
level

Determine
cooling level

cooling leveltemperature

Check
temperature

Figure 4.3: Decision-aware smart transportation process.

temperature

Cooling level

Figure 4.4: Smart transportation DRD.

needed to decide on the cooling level is embedded in the control
flow.

BPMN+DMN IoT process. According to integrated BPMN
and DMN modelling, decisions are not mapped to control flow
elements. Rather, decisions are externalised into a separate DMN
decision model that can be invoked by the process. Consider
Figure 4.3 representing the decision-aware process. The Check
temperature service task retrieves the temperature. With this data
a decision task invokes the smart transportation decision model
from Figure 4.4. The decision logic of the Cooling level decision
is modelled in Figure 4.5. As such, the process provides the decision
model with the relevant input data, i.e. the temperature, after
which the decision model evaluates the decision rules and returns a
cooling level decision outcome to the business process. This cooling
level is subsequently used in the Set cooling level service task
to adjust the cooling level within the refrigerated truck.

72 4.3. IOT PROCESSES MODELLING CASES

Figure 4.5: Cooling level decision table.

4.3.2 Case 2: smart ventilation

Case description. Consider the convention centre case presented
in [130], which consists of a large conference room that can be
booked for various events. The convention centre is concerned
about the air quality in the conference room when events take place.
For that purpose a smart ventilation system is installed. Presence
sensing is used to assess whether the room is being occupied and
air quality sensors monitor the CO2 concentration rate of the
room. The ventilation system is slowed down when no presence is
registered in the conference room, or when presence is detected and
CO2 concentration rates are acceptable. This is done to ensure low
energy consumption. If on the other hand presence in the room is
detected together with high concentrations of CO2, the ventilation
in the conference room is increased to safeguard air quality and
conference participants’ comfort.

BPMN IoT process. The BPMN for this case was modelled in
[130]. The presence of participants in the conference room and the
CO2 concentrations are checked, and based on the evaluation of
the data received, the ventilation in the room is either increased
or decreased. After the scheduled ending time of the conference,
the process again checks for the presence of the participants to
decide whether the ventilation system can be switched off. We
have adapted the original process to use service task instead of

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 73

R
ea

d
C

O
2

m
ee

tin
g

 r
oo

m

R
ea

d
pr

es
en

ce
m

ee
tin

g
 r

oo
m

In
cr

ea
se

ve
nt

ila
tio

n
m

ee
tin

g
 r

oo
m

D
ec

re
a

se
ve

nt
ila

tio
n

m
ee

tin
g

 r
oo

m

C
he

ck
 p

re
se

nc
e

m
ee

tin
g

 r
oo

m
S

to
p

ve
nt

ila
tio

n
A

ct
iv

at
e

ve
nt

ila
tio

n

M
ee

tin
g

.s
ta

rt
=

no
w

C
O

2.
va

lu
e

>
th

re
sh

ol
d

&
&

pr
es

en
ce

.d
et

ec
t

el
se

ye
s

5
m

in

no

M
ee

tin
g

.e
nd

>
no

w

F
ig
ur
e
4.
6:

Sm
ar
t
ve
nt
ila

ti
on

co
nv

en
ti
on

ce
nt
re

co
re

Io
T

pr
oc
es
s,

m
od

ifi
ed

fr
om

[1
30
].

74 4.3. IOT PROCESSES MODELLING CASES

M
eeting

.start=
now

R
ead C

O
2

m
eeting

 room

R
ead presence

m
eeting

 room

carbon
level

presen
ce

adjustm
e

nt

R
egula

te
ventilation

V
entilatio

n
adjustm

e
nt

A
ctivate

ventilation
C

heck pre
sence

S
top ventila

tion
R

ead presence
m

eeting
 room

M
eeting

.end>
now

no

5 m
in

yes

presen
ce

F
igure

4.7:
Sm

art
ventilation

convention
centre

decision-aw
are

process.

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 75

Ventilation adjustment

Check presence Check air quality

presence data carbon level data

Figure 4.8: Smart ventilation decision model.

wireless sensor tasks in order to be as uniform as possible across
the three cases (see Figure 4.6). In addition, we have corrected a
few mistakes that the original model presented3. In particular, the
original model suffered from a deadlock caused by the backward
loop to the parallel gateway, as well as erroneous, overlapping and
missing conditions. Figure 4.6 is therefore an adapted version of
the process, so as to ensure a fair comparison.
BPMN+DMN IoT process. Figure 4.7 shows the equivalent
decision-aware process. Notice that the decisions are externalised
to the model in Figure 4.8, while the logic is modelled in the decision
table of Figure 4.9.

4.3.3 Case 3: smart healthcare monitoring

Case description. Consider a patient health monitoring system
for a person diagnosed with the Chronic Obstructive Pulmonary
Disease (COPD). This case was presented in [72]. COPD is a
disease that obstructs the lungs and the airflow and breathing of
the patient. Acute attacks of the disease can happen. In that
case the patient can experience uncomfortable complications such
as fast breathing, a fast heart rate, hyperactive use of muscles,
and a cold skin. It has been recognised that an IoT-based patient

3https://github.com/SAC2020/SAC/blob/master/SmartVent.pdf
See also Figure A.1 in Appendix A.

https://github.com/SAC2020/SAC/blob/master/SmartVent.pdf

76 4.3. IOT PROCESSES MODELLING CASES

Figure 4.9: Ventilation adjustment decision table.

monitoring process can help increasing the life quality of the patient
and decrease the risks that are inherent to the disease and multiple
sensors and wearable technologies exist that can collect patient data
relevant for the patient monitoring process [72]:

– Electrocardiogram (ECG) sensors monitor the heart.

– Respiratory sensors check the breathing rate.

– Skin temperature sensors monitor the skin temperature.

– Muscular Electromyography (EMG) sensors monitor the
muscle activity.

All these sensors collect measurements on the patient’s health.
Note that this case displays a high need for context aggregation,
as a single sensor or even a few sensors combined are not enough
to capture the COPD. For instance, the patient might take a walk
outside in the winter and a sensor registers a low skin temperature.
In that case, the patient is not necessarily suffering from COPD
at that moment. However, an expert can build patient-specific
decision rules to capture COPD in such a monitoring system. For
instance, if the sensors register a low skin temperature, a short
and fast breathing rate, together with a high heart rhythm, the
monitoring process might decide that the patient is suffering an
attack and running out of oxygen. In such a situation the process
can trigger the administration of an oxygen mask to the patient.
Less severe attacks can be remedied by using an inhaler.

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 77

S
ou

nd
em

er
ge

nc
y

al
ar

m

R
ea

d
E

C
G

se
ns

or

R
ea

d
sk

in
se

ns
or

R
ea

d
re

sp
ira

to
ry

se
ns

or

R
ea

d
E

M
G

se
ns

or

A
dm

in
is

te
r

ox
yg

en
 m

a
sk A
dm

in
is

te
r

in
ha

le
r

el
se

he
ar

tR
a

te
>

10
0

re
sp

ir
at

io
n

sk
in

 te
m

p

fa
st

he
ar

t r
h

yt
hm

co
ld

fa
st

m
us

cl
e

ac
tiv

ity

no
rm

al
hy

pe
r

no
rm

al

he
ar

t r
h

yt
hm

no
rm

al

no
rm

alm
us

cl
e

ac
tiv

ity

fa
st

hy
pe

r no
rm

al

no
rm

al

F
ig
ur
e
4.
10
:
A
n
Io
T
-e
nh

an
ce
d
C
O
P
D

m
on

it
or
in
g
pr
oc
es
s.

78 4.3. IOT PROCESSES MODELLING CASES

C
heck heart
rhythm

C
heck C

O
P

D
severen

ess

S
ound

em
ergency
alarm

E
C

G

heart rh
ythm

R
ead E

C
G

sensor

R
ead skin
sensor

R
ead re

spiratory
sensor

R
ead E

M
G

sensor

skin
tem

p.
resp.

E
M

G

A
dm

inister
oxygen m

a
sk

A
dm

inister
inhale

r

O
K

else

none

severe
attack

m
ild

attack

F
igure

4.11:
A

decision-aw
are

process
m
odelfor

a
C
O
P
D

m
onitoring

IoT
process.

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 79

COPD severeness

Heart rhythm Respiration

ECG data Respiratory data

Muscle activity Skin temperature

Skin sensor dataEMG data

Figure 4.12: COPD severeness DMN model based on IoT data.

Figure 4.13: The COPD severeness decision table.

BPMN IoT process. The BPMN process is given in Figure
4.10. The process starts by reading the heart rhythm sensor and
by sounding an emergency alarm if the heart rhythm was assessed
to be worrisome, i.e., if the heart rhythm exceeds 100 beats per
minute. This logic is embedded in the exclusive gateway following
the Read ECG sensor service task. After the possible emergency
alarm, three other sensors are consulted by the process, i.e. a
respiratory sensor, a skin temperature sensor, and a muscle activity
sensor. Following that, the values received from these sensors are
scrutinised in the intricate exclusive gateway flows. Hence, the
decision rules are hard coded into the control flow. Based on these
decisions the process either terminates or selects one of the two
treatments.

80 4.4. BPMN + DMN ADVANTAGES OVER BPMN?

BPMN+DMN IoT process. A decision-aware COPD
monitoring process is given in Figure 4.11. The underlying
decision model based on IoT data is provided in Figure 4.12, while
the decision logic of the top level COPD severeness decision is
modelled in the decision table in Figure 4.13. Note that the process
model in Figure 4.11 first enacts the Check heart rhythm business
rule task which in turn invokes the subdecision Heart rhythm in
the decision model in Figure 4.12. Afterwards, after a potential
emergency alarm for heart problems, the process checks COPD
severeness after which the process finishes by either administering
an oxygen mask to the patient in severe cases, or administering
an inhaler to the patient in mild cases, or without providing any
treatment.

4.4 Does BPMN + DMN provide advan-
tages over BPMN?

In this section, we compare the two approaches to model IoT
processes in terms of their ability to aggregate context information,
scalability and complexity, flexibility, and context decision logic
reusability, as well as the adherence to principles for cognitively
effective notations.

4.4.1 DMN and context aggregation

The ability of the proposed approach to render complex or high-
level context from simple or low-level context information is a step
of paramount importance in IoT systems [90]. Take for instance
Case 3 describing the smart healthcare monitoring scenario. Low-
level data are collected by IoT sensors that monitor the patient,
from which a simple context can be derived pertaining to the
collected data. The low-level context derived from a single
sensor does not provide adequate information for making decisions
and carrying out the process. Instead, the low-level context
information needs to be aggregated and processed to obtain high-
level context information that is meaningful for decision making.
When modelling with the standard BPMN approach, such as in
Figure 4.10, this aggregation of low-level context into high-level

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 81

context is ad hoc and unsystematic, i.e., the low-level context
information is hard-coded into the control flow of the process,
without any transformation or reasoning mechanism to infer a
higher-level semantic context. In such a situation, one needs to
analyse the control flow paths to arrive at an aggregation of low-
level information that makes up the high-level context or meaning
needed in the process, i.e., by following a sequence of gateways,
the high-level context is revealed, such as the administration of an
oxygen mask pointing towards a severe COPD attack. An approach
to avoid embedding decision logic in control flow elements would
be to use BPMN script tasks where the decision logic is embedded
as script code within the script task. However, this is coding
rather than modelling, and it raises similar challenges regarding
complexity (the decisions are hidden in code and are hence difficult
to understand) and flexibility of the decisions (changing decision
logic would correspond to digging up script code and re-coding it).
We provide script task examples for the cases online4.

Since constructing a DMN model corresponds to aggregating
low-level contexts into higher-level context information, a hierarchy
of contexts at different levels of granularity is constituted. This
was shown in for instance the aggregation of wearable sensor
information into the severeness level of a disease in Case 3 or
the aggregation of smart room sensor information into ventilation
settings in Case 2. Next to this aggregation of context, it is
worthwhile to emphasise that DMN models make subdecisions
explicit, such as the heart rhythm, skin temperature, muscle
activity, and respiration subdecisions in Case 3. Hence the
decision process is provided with better modularity, as higher-
level, aggregated decisions provide information hiding about how
lower-level subdecisions are taken. Furthermore, issues regarding
overlapping and missing decision rules can more easily be checked
and avoided in DMN than in ad hoc rule insertions in the control
flow. This was exemplified in the presence of errors in the original
model found in literature of Case 2, indicating that the correct
capture of decision logic in a BPMN IoT process is not self-evident.
Works that automatically detect missing and overlapping rules in
DMN decision tables have been presented in literature [31].
4https://github.com/SAC2020/SAC/blob/master/Script.zip
See also Figures A.2-A.6 in Appendix A.

https://github.com/SAC2020/SAC/blob/master/Script.zip

82 4.4. BPMN + DMN ADVANTAGES OVER BPMN?

4.4.2 Scalability and complexity

Here we consider size-based metrics that have been proposed in
literature to assess the scalability and complexity of the models
developed in the previous section. The results are shown in Table
4.1. The DMN metrics TNR (total number of rules), NOD (number
of decisions), and TNDO (total number of data objects) are taken
from [58, 88]. These are the only size-based DMN metrics that
have been proposed in literature. The DMN metrics are calculated
for the entire DMN model, not just the top-level tables presented
in this chapter. Lower-level decision tables are provided online5.
BPMN metrics NOA (number of activities), NOG (number of
gateways), and NOF (number of flows) are used by suggestion
of [99], where guidelines for element count-based process metrics
are proposed. In the case of a single process model where the
logic has been hard-coded in the control flow, the number of
gateways and control flow paths grows with the introduction of
additional decision rules. In processes that rely on a vast amount of
decision rules, this leads to a lot of branching conditions and control
flow elements, leading to spaghetti-like processes. Note that the
decision process could also be modelled in a separate BPMN process
model and invoked by the process requiring the decisions by the
introduction of BPMN call activities. An example of Case 3 where
the decision logic is externalised into a separate callable decision
process is provided online6. However, in this decision process, the
ordering of the condition tests leads to a much longer decision path
than when modelling contracted decision tables such as in Figure
4.13. This is exemplified in the number of exclusive gateways and
control flow paths in the callable decision process.

Integrated BPMN and DMN modelling tends to decrease
process model complexity according to model-size based metrics.
This is shown in Table 4.1, where it is clear that, for all three cases,
the number of gateways and flows decrease. However, integrated
BPMN and DMN modelling introduces new complexity through
the adoption of additional decision models. This complexity is

5https://github.com/SAC2020/SAC/blob/master/Tab.zip
See also Figures A.7-A.12 in Appendix A.

6https://github.com/SAC2020/SAC/blob/master/Call.zip
See also Figures A.13 and A.14 in Appendix A.

https://github.com/SAC2020/SAC/blob/master/Tab.zip
https://github.com/SAC2020/SAC/blob/master/Call.zip

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 83

Table 4.1: Size-based complexity metrics.

Case Model TNR NOD TNDO NOA NOG NOF

Case 1
BPMN 6 1 12

BPMN+DMN 5 1 1 3 0 4

Case 2
BPMN 7 6 19

BPMN+DMN 8 3 2 8 4 17

Case 3
BPMN 7 10 27

BPMN+DMN 15 5 4 9 5 20

represented by the TNR, NOD, and TNDO metrics in Table 4.1,
thus indicating that part of the complexity is offloaded from the
process model to the decision model when using BPMN+DMN.
Nevertheless, using BPMN+DMN facilitates the separation of the
process and decision modelling concerns. Moreover, with a DMN
decision table one can check for overlapping and missing rules,
as well as reorder and contract the rules in the decision table
[31], leading to a shorter decision path in the process than in the
case where decision rules are hard-coded into a decision tree-like
structure in the process control flow.

4.4.3 Flexibility

Flexibility, also called maintainability, is determined by two factors:
understandability and modifiability [48]. In the Constructive
Cost Model (COCOMO) [23], understandability is part of the
maintenance adjustment factor (MAF), while modifiability is
expressed in terms of the software or model parts that need
to be changed (i.e., elements added and elements removed).
Integrated BPMN and DMN modelling facilitates understandability
of decisions by modelling them in a separated and structured form,
i.e., interconnected decision tables, and thus provides possibilities
to detect missing and overlapping rules [31]. This was exposed
in Case 2, where the original process model contained overlapping
and missing rules due to unsystematic decision modelling that is
embedded in the control flow of the process. Modifiability, on the
other hand, refers to the cost of making changes to existing models
and can be measured in terms of edit distance, i.e., the minimal

84 4.4. BPMN + DMN ADVANTAGES OVER BPMN?

number of add and delete operations needed to transform a legacy
schema into a new schema. Note that with increasing numbers of
input variables and variable values, the decision logic becomes more
complex, as the number of input combinations increases. While in
Case 1 the BPMN model is still readable, we have seen that in Case
2 and Case 3 the logic becomes increasingly difficult to understand,
verify, and modify.

Changing decision logic is different when the logic is externalised
in a separate decision model than when it is embedded in the
process flow. In the former case the decision model needs to
be updated. In the latter case, the process flow and branching
conditions in the process model need to be adapted. This can
be a burden with complicated control flow sequences. Take
Case 3 and suppose that rule 6 in the decision table of Figure
4.13 needs to be split up into two rules, one with preconditions
("fast","normal","normal","normal") with outcome "mild", and
one with preconditions ("fast","normal","normal","hyper") with
outcome "severe". This corresponds to an edit distance of 3:
deleting an existing rule and adding two additional rules in the
decision table of Figure 4.13. The corresponding process model
in Figure 4.11 does not need to undergo any changes as it can
still access the logic in the decision model and according to the
decision outcome, continue towards process conclusion. If on the
other hand such a change needs to take place in the BPMN model
of Figure 4.10, where the logic is hard-coded in the control flow of
the process, the process would need to undergo redesign, rendering
an edit distance of 5: an existing flow would need to be deleted,
and an additional exclusive split and three corresponding flows
(one incoming and two outgoing) need to be introduced to allow
for the decision rule to be split up. As explained in Subsection
4.4.2, this is due to the fact that DMN allows for rule verification
possibilities, as well as the reordering and contraction of decision
rules in the decision tables [31]. This way, rules can be modelled
in a more compact form, leading to shorter decision paths than in
the case where rule conditions are hard-coded in the process flow.
Note however that, depending on the decision logic, compacting
and simplifying decision tables is not always possible. If such a
possibility exists, modifying the rules in the compact form requires
less changes than modifying the elements in the long hard-coded

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 85

decision paths of the BPMN process flow.

4.4.4 Reusability of the decision logic

The same decision logic may be used in different processes,
especially when inferring high-level knowledge, i.e., complex
context information as shown in Figure 4.1. Therefore, reusability
of decisions is of paramount importance for IoT processes,
especially when rendering complex context from simple context
information.

In the case when using a single BPMN process model to
incorporate both the process and decision concerns, the derivation
of complex context information is hard-coded and confined to
a local place in one process model, as was shown in the cases
presented in this chapter. However, as explained in Subsection
4.4.2, the decision process could be modelled in a separate BPMN
process model and invoked by the process requiring the decisions
by the introduction of BPMN call activities. Partial decision
logic can be modelled as a call activity as well, used in an
overarching call activity. That way, modularity can be achieved.
However, next to the creation of longer decision paths as explained
in Subsection 4.4.2, additional issues surface as a result of this
approach. First, decisions tend to be declarative, and modelling
them in a procedural BPMN model goes against this property.
Second, even if the decisions were modelled as a decision process
that can be requested by a BPMN call activity, contraction and
verification possibilities are lacking.

On the other hand, integrated BPMN and DMN models
consider decisions, and in the case of this chapter aggregated
context decision logic, in a separate decision model, thus making
aggregated context decision logic reuse for other processes and
systems a possibility as those other processes and systems can call
upon a decision from the decision model. This way, the derivation of
complex context information is reusable across processes, systems
and applications, rather than hard-coded and confined to a decision
point in one process model. Thus, DMN offers a modular decision
requirements hierarchy which allows for decision logic reuse and
verification possibilities: modelling, reusing, and checking the
decision rules is easier and more efficient by means of DMN than

86 4.5. CONCLUSION AND FUTURE WORK

by hard-coding a decision tree into process control flow paths.

Table 4.2: Adherence to principles for designing cognitively effective
notations. Precise definitions of principles: see [98].

Principle Adherence

Semiotic clarity
A gateway refers to a single decision point, whereas
DMN offers constructs for complex decisions.

Perceptual discriminability
In BPMN+DMN decisions are easier to discriminate
in the model due to the rule task symbol.

Semantic transparency
The rule task symbol in BPMN+DMN implies a
meaning and is semantically transparent.

Complexity management
DMN provides better modularity and decision
hierarchy than hard-coded BPMN decision flows.

Cognitive integration
BPMN+DMN supports integration of information
from different models, i.e., BPMN and DMN models.

4.4.5 Adherence to the physics of notations

The work in [98] defines a set of principles for designing cognitively
effective notations. The principles form the Physics of Notations
theory as they focus on the perceptual properties of notations. The
principles are derived from theory and empirical research and can
be used to evaluate and compare existing visual notations. We
employ the relevant principles to compare BPMN to BPMN+DMN.
A comparative overview is given in Table 4.2. According to these
principles, we can see that BPMN+DMN is a better choice.

4.5 Conclusion and Future Work

This chapter examined the modelling of IoT processes by comparing
the standard BPMN modelling approach and the combination of
BPMN + DMN. For this purpose we have modelled three different
cases with increasing needs for context aggregation with both
approaches. A trade-off exists between modelling IoT processes
exclusively in BPMN versus modelling them in an integrated
BPMN and DMN fashion. The former avoids introducing
additional types of models, and thus additional complexity and
longer learning curves. However, modelling IoT processes in such

CHAPTER 4. COMPARING BPMN TO BPMN + DMN 87

a manner impairs the scalability and flexibility of the process, as
well as decision logic reuse. Furthermore, an important advantage
of BPMN + DMN is the ability to perform modular, explicit, and
reusable context aggregations through DMN decision modelling.
The advantages of BPMN + DMN become increasingly noticeable
in cases of complex context aggregation decision logic, as was shown
in the three cases presented in this chapter. While in the simple
context aggregation in Case 1, the model is still readable using
BPMN, we have seen that in Case 2 and Case 3 the logic becomes
increasingly difficult to understand, verify, and modify. In those
cases, the combination of BPMN and DMN is particularly beneficial
given the advantages induced by the separation of the process and
decision modelling concerns, i.e., process scalability, process and
decision flexibility, decision logic reusability, and last but not least,
the ability to modularly aggregate context information.

In future work we will empirically assess the complexity,
understandability, and maintainability of standard BPMN models
and integrated BPMN and DMN models in IoT settings in order to
provide an empirical assessment as an additional form of evaluation
for the work presented in this chapter. Furthermore, we plan to
compare the BPMN extensions proposed in literature with the
combination of BPMN and DMN, focusing on the pragmatics of
the conceptual modelling quality framework.

Part III

Decision as a Service
(DaaS)

CHAPTER 5

Decision as a Service (DaaS): A
Service-Oriented Architecture
Approach for Decisions in
Processes

“I too play with symbols [...]; but I play in such a way
that I do not forget that I am playing. For nothing is
proved by symbols [...]; things already known are merely
fitted; unless by sure reasons it can be demonstrated that
they are not merely symbolic but are descriptions of the
ways in which the two things are connected and of the
causes of this connection.”

Letter to Joachim Tancke, Gesammelte Werke, XVI
— Johannes Kepler

This chapter was published as follows:
Faruk Hasić, Johannes De Smedt, Seppe vanden Broucke,

Estefanía Serral Asensio. Decision as a Service (DaaS):
A Service-Oriented Architecture Approach for Decisions in
Processes. IEEE Transactions On Services Computing,
article in press, 2020.

A preliminary version of this paper was published in:
Faruk Hasić, Johannes De Smedt, Jan Vanthienen. A Service-

Oriented Architecture Design of Decision-Aware Information
Systems: Decision as a Service. 25th International
Conference on Cooperative Information Systems
(CoopIS), Rhodes (Greece), 353-361, 2017.

91

92

Abstract. Separating decision modelling from the processes
modelling concern recently gained significant support in literature,
as incorporating both concerns into a single model impairs the
scalability, maintainability, flexibility and understandability of
both processes and decisions. Most notably the introduction of
the Decision Model and Notation (DMN) standard by the Object
Management Group provides a suitable solution for externalising
decisions from processes and automating decision enactments for
processes. This chapter introduces a systematic way of tackling
the separation of the decision modelling concern from process
modelling by providing a Decision as a Service (DaaS) layered
Service-Oriented Architecture (SOA) which approaches decisions
as automated and externalised services that processes need to
invoke on demand to obtain the decision outcome. The DaaS
mechanism is elucidated by a formalisation of DMN constructs and
the relevant layer elements. Furthermore, DaaS is evaluated against
the fundamental characteristics of the SOA paradigm, proving its
contribution in terms of abstraction, reusability, loose coupling,
and other pertinent SOA principles. Additionally, the benefits
of the DaaS design on process-decision modelling and mining are
discussed. Finally, the DaaS design is illustrated on a real-life event
log of a bank loan application and approval process, and the SOA
maturity of DaaS is assessed.

CHAPTER 5. DECISION AS A SERVICE (DAAS) 93

5.1 Introduction

Recent business process management literature moves towards
accommodating decision management into the paradigms of
Separation of Concerns (SoC) [16, 52, 61, 63, 65, 132] and
Service-Oriented Architecture (SOA). This implies externalising
decisions and encapsulating them into separate decision models,
hence implementing decisions as externalised services. Literature
proposes several conceptual decision service platforms and
frameworks [22, 96, 151], as well as ontologies [89]. Industry
has adopted this trend, as several decision service management
systems have appeared, e.g., SAP Decision Service Management
[118]. This separation of concerns provides a plethora of advantages
regarding understandability, maintainability, and flexibility of both
the business process and the decision models [16, 52, 60, 61, 63, 79,
132].

A recently introduced decision modelling standard, the Decision
Model and Notation (DMN) [106], has enjoyed significant interest
in literature [61, 78, 104, 108]. DMN consists of two levels that
are to be used in conjunction. First, the decision requirement level
represented by the Decision Requirement Diagram (DRD) which
depicts the requirements of decisions and the dependencies between
elements involved in the decision model. Second, the decision
logic level, which presents ways to specify the underlying decision
logic. DMN aims at providing a clear and simple representation of
decisions in a declarative form and offers no decision resolution
mechanism of its own. Rather, the invoking context, e.g., a
business process, is responsible for ensuring a correct invocation
and enactment of the decision, as well as ensuring data processing
and the storage and propagation of data and decision outcomes
throughout the process. This makes DMN particularly interesting
for a SOA, as DMN is independent of the applications and the
invoking context.

However, there is no clearly and formally defined SOA design
dealing with DMN decision services in business processes. This
leads to violations against the SoC and SOA paradigms in
previously produced models in research, where decisions tend
to be embedded or hard-coded within the process, and where
decision logic tends to be duplicated in both the process and

94 5.1. INTRODUCTION

decision models. This chapter aims at bringing DMN to the
service-orientation paradigm in order to exploit the benefits
of SOA characteristics in terms of maintainability, scalability,
understandability, and flexibility. Thus, the contribution of this
chapter is a layered design framework and a formalisation of its
key concepts to abstract the decision logic and decouple it from the
process layer according to the SoC [52] and SOA paradigms. The
layered architecture consists of a process layer, a service layer, and a
decision layer. The two latter are connected to the former through
a decision service interface. The separated layers are presented in
Figure 5.2. The evaluation of the contribution is fourfold:

1. The proposed DaaS design is assessed in terms of fundamental
SOA principles, proving its merit in terms of service
discoverability, loose coupling, standardisation, location
transparency, abstraction, statelessness, longevity, reusability,
and composability.

2. The implications of the DaaS design on process and decision
modelling and mining are conferred in terms of scalability,
maintainability, flexibility and understandability of both the
processes and the decisions.

3. Additionally, we illustrate the DaaS design on an event log
containing information on a real-life bank loan application
and approval process. We show from the real-life event log
that decisions are invoked as services, in compliance with the
principles of SOA and that the DaaS design aids in conducting
decision service compliance verification for processes. As such,
we show that the mining of decision services can be achieved
as illustrated by the example at the end of the chapter.

4. Finally, we assess the maturity of the DaaS SOA design using
a state-of-the-art SOA maturity model.

This chapter is structured as follows. Section 5.2 constitutes a
related work section while Section 5.3 outlines the methodology of
the chapter. Section 5.4 provides formal definitions for key concepts
needed for the understanding of the layered SOA. In Section 5.5
the layered architecture design is established and elucidated and
in Section 5.6 the proposed Decision as a Service architecture

CHAPTER 5. DECISION AS A SERVICE (DAAS) 95

is evaluated against the core characteristics of SOA design. In
Section 5.7 the implications of the proposed design for integrated
process and decision modelling and mining are discussed in terms
of advantages and disadvantages. Section 5.8 illustrates the DaaS
approach on a real-life enriched event log, thus showing that
decision services can be mined, and providing opportunities for
decision service compliance verification. Next, Section 5.9 assesses
the maturity of the proposed design according to a state-of-the-
art SOA maturity model. Section 5.10 discusses limitations of the
approach and finally, Section 5.11 concludes.

5.2 Related Work

The SoC paradigm is already well-established in the software
modelling and design domains [52, 81, 103]. With the introduction
of DMN, the paradigm is introduced in the Business Process
Management (BPM) domain as well, effectively shifting the domain
towards a SOA, by representing business decisions as externalised
services. Most modelling and mining approaches in literature
still breach the SoC between process control flow on the one
hand, and data and decision aspects on the other. Consequently,
issues concerning maintainability, scalability, reusability, and
understandability arise [61, 66], given the fact that most decisions
are hard-coded within the process flow.

The intersection between data and processes, classical data
mining and process mining is rapidly gaining traction in literature
[62, 93, 122, 132, 133, 134]. Separating multi-perspective modelling
and mining tasks proves to be beneficial in multiple ways, as long
as the separation and interaction between the models is conducted
in a sound and consistent way [16, 61, 66, 132]. Some literature on
decision service platforms exists. In [22] decisions are approached
from an organisational process control flow perspective rather
than a data and decision management perspective. Other works
recognise that decision logic and process logic should indeed be
separated, as application logic is specified in terms of processes
while decision rules specify conditions to adapt the application
behaviour [96, 151]. However, these works consider simple decisions
and business rules rather than holistic and intertwined decision

96 5.2. RELATED WORK

models, i.e., modular subdecisions that are part of a holistic
decision that spans across the whole process execution span and
that is not confined to a single decision point in the process.

Furthermore, the works discuss general requirements and
solutions, rather than a standardised approach towards decision
management. Decisions did receive attention in the process
mining domains, as researchers have utilised DMN to automatically
discover decisions from event logs that are compatible with the
discovered processes. However, these works define decisions in
specific locations within a process known as decision points, i.e.,
exclusive gateways splitting the control flow of a process [12, 32].
Seminal work on mining decisions independently from process
control flow is presented in [122], where decisions can span across
the entire process execution span rather than being embedded in a
single decision point of the process. This leads to the discovery of
a holistic decision model that is decomposable and reusable across
the process, thus, introducing a form of decision modularity and
composition that is inherent to service-orientation.

Externalising decisions and setting them up as services is not
the first example of adapting the SoC and SOA paradigms in
the domain of processes: SOAs were already applied for business
processes and for the interaction between business rules and
processes [51, 89, 101, 118, 140, 141]. However, business rules
are very granular and atomic and do not provide modularity, and
aggregation and abstraction possibilities. DMN decisions, however,
are an aggregation of rules and data and they provide abstraction
from individual business rules by aggregating them into modular
decision nodes. Thus, with DMN, a comparable approach can
be applied to decisions by implementing decisions as externalised
services, which we call Decision as a Service (DaaS). Processes,
or other concerns, can invoke those decision services on demand
by providing the relevant input data to the service through an
interface. The invocations do not necessarily need to be at classical
decision points or gateways. Rather, they can occur anywhere in
the process. We call this Decision on Demand (DoD). Such an
approach aims at capitalising on the benefits of SOA, such as loose
coupling, service standardisation, abstraction, and composability.

CHAPTER 5. DECISION AS A SERVICE (DAAS) 97

Relevance Design Rigour
• Maintainability
• Flexibility
• Scalability
• Complexity
• Lack of formalisation

• Decision as a Service (DaaS)
• Separation of Concerns
• Service-Oriented Architecture

• Adherence to SOA principles
• Implications for modelling
• DaaS in a real-life event log
• DaaS SOA maturity level

Figure 5.1: Overview of the followed cycles of the design science
methodology.

5.3 Methodology

This chapter follows a design science approach [73], structured
along three different cycles to obtain an artifact, being the SOA-
based Decision as a Service (DaaS) design. Figure 5.1 provides
an overview of the followed methodology.

First of all, during the relevance cycle we have identified the
problem of inefficient use of decisions within processes and as a
result the issues that arise regarding maintainability, scalability,
flexibility, and complexity and understandability of both decisions
and processes in Sections 5.1 and 5.2. We have argued that
these are the relevant issues tackled when separating concerns
in modelling endeavours through the use of the separation of
concerns and SOA paradigms. Based on previous work of the
authors, as outlined in the related work section above, and relevant
literature - both academic and from industry - it was noted that
there is no clearly and formally defined approach towards decision
services in processes, and that from previously produced models
in research multiple violations towards the separation of concerns
and SOA paradigms were committed. Thus, we have built and
evaluated the solution artifact in the form of a Decision as a
Service (DaaS) design against core SOA and SoC principles during
the design cycle (Sections 5.4 and 5.5). Next, the artifact, i.e.
the proposed Decision as a Service (DaaS) design, which will
be outlined in Section 5.5, was validated according to the rigour
cycle against the key principles of Service-Orientation (Section 5.6).
Additionally, the effects of the proposed solution were evaluated
against the key problems identified in the relevance cycle (Section

98 5.4. PRELIMINARIES

5.7). Furthermore, this work aims at bringing the proposed design
to the body of literature on decision and process modelling and
mining by exhibiting the artifact on a real-life enriched event log
from industry, i.e., an enriched event log pertaining to a bank loan
application and allocation process. It is demonstrated in Section
5.8 that decision data propagation within the log of a process
indeed exhibits the invocation of decision logic through variable
shifts throughout the process. As a final evaluation, the design was
assessed in terms of its maturity in a state-of-the-art SOA maturity
model.

5.4 Preliminaries

In this section, we provide a formalisation for key DMN concepts
needed for the understanding of the Decision as a Service
architecture, which will be discussed in the following sections. We
adhere to the definitions provided in [66] and extend them to
represent decision services as well. The DMN standard employs
rectangles to depict decisions and subdecisions and ovals to
represent data input. The decision logic is usually represented in
decision table form.

Definition 5.1. A decision requirement diagram DRD is a tuple
(Ddm, ID, IR) consisting of a finite non-empty set of decision
nodes Ddm, a finite non-empty set of input data nodes ID, and
a finite non-empty set of directed edges IR representing the
information requirements such that IR ⊆ (Ddm ∪ ID) × Ddm,
and (Ddm ∪ ID, IR) is a directed acyclic graph (DAG).

The term decision can have a number of meanings. According
to the DMN specification a decision is the logic used to determine
an output from a given input. Meanwhile, in process modelling a
decision is an activity or the act of using the decision logic, e.g. the
business rule task in BPMN. Another common meaning is that a
decision is the actual result, which we call the output of a decision,
or simply the decision result. For the case of Decision as a Service,
a decision is defined as follows:

Definition 5.2. A decision d ∈ Ddm is a tuple (Id, Od, L), where
I ⊆ ID is a set of input symbols, O a set of output symbols and

CHAPTER 5. DECISION AS A SERVICE (DAAS) 99

L the decision logic defining the relation between symbols in Id
and symbols in Od.

In case of decision tables, I and O contain the variables of the
input and output elements respectively, and L is the table itself,
i.e. the set of decision rules present in the table. Note that, since
a DRD is a DAG, Id ∩ Od = ∅. In DRDs these decisions di are
represented by the decision nodes Di ∈ Ddm. We will use D to
refer to both a decision and its representing node in a DRD.

According to the DMN standard, a decision requirement
diagram can be an incomplete or partial representation of the
decision requirements in a decision model. The set of all DRDs in
the decision model constitutes the exhaustive set of requirements.
The information contained in this set can be combined into a single
DRD representing the decision requirements level as a whole. The
DMN standard refers to such a DRD as a decision requirement
graph (DRG). We expand the notion of a DRG, in such a way that
a DRG is a DRD which is self-contained, i.e. for every decision in
the diagram all its requirements are also represented in the diagram.

Definition 5.3. A DRD is a decision requirement graph DRG if
∪DRD∈M(Ddm, ID, IR)DRD = (Ddm, ID, IR)DRG, with M being
the set of all DRDs. It holds that IRDRG ⊆ (Ddm

DRG∪IDDRG)×
Ddm

DRG, and (Ddm
DRG ∪ IDDRG, IRDRG) is a directed acyclic

graph (DAG).

From Definition 5.3, it is clear that every decision D in the DMN
model has a unique decision requirement graphDRGD with D as its
single top-level decision. A DRG contains exactly all information
requirements of its top-level decisions. Hence, only one DRG exists
with D as its single top-level decision. We use DRGD to denote
this DRG. Furthermore, all the decisions in the DRG, except the
top-level decision, are consequently subdecisions of the top-level
decision. In other words, the top-level decision requires these lower-
level subdecisions.

Definition 5.4. A decision D′ is a subdecision of decision D if
and only if it is part of DRGD, but not D itself.

This order of decisions and subdecisions can be defined by using
the property that DRDs are directed acyclic graphs, from Definition

100 5.5. DECISION AS A SERVICE (DAAS)

5.1. From this property we know that each DRD has a topological
order. The concept of topological orders is closely related to partial
orders.
Property 1. The topological order of a DRD induces a partial
order ≤ on the decisions contained in the DRD.

5.5 Decision as a Service (DaaS)

Separating the decision modelling concern from the process
modelling concern implies modelling in two separate models or
layers [61, 63, 66]. In Figure 5.2, the Decision as a Service
layered architecture is presented through an example of a customer
acceptance process with its corresponding customer acceptance
decision model. The bottom layer depicts the processes layer,
while at the top the decision layer is represented. In the service-
oriented approaches, the services are implemented offering a single
decoupled point of entry to the services. That way, the bottom
layer, i.e. the process layer, only needs the information regarding
the point of entry, or more specifically the interface, in order to
invoke the higher-level layers. This single point of entry provides an
abstraction specifying how clients should interact with the decision
services.

In Figure 5.2 the service layer is implemented as the
connection between the process layer and the decision layer. The
communication between the process layer and the service layer is
bridged by the interface. Consequently, the processes are only
aware of the interface and agnostic about the underlying service
layer and decision layer. Thus, to invoke the services and the
decisions the processes simply need to keep information regarding
the interface and not regarding the higher level layers.

To formally define the interface and the decision services we first
need to define the input requirement set of a decision as follows:
Definition 5.5. The decision input requirement set dirsD of a
decisionD is the set of all sets of input data which are sufficient to
invoke D. dirsD contains sets of input data directly or indirectly
required by D. The largest set in dirsD is the set of all input
data nodes for which there exists a path to D in DRGD. The
smallest set in dirsD is D’s input set ID.

CHAPTER 5. DECISION AS A SERVICE (DAAS) 101

dirsD is constructed inductively by the following rules:

– ID ∈ dirsD

– For all s ∈ dirsD if there is an i ∈ s such that i ∈ OD′ for
some D′ in DRGD, then s \ {i} ∪ ID′ ∈ dirsD.

As expressed in the last bullet point of the definition, the input
requirement set is constructed by exploring the whole subtree of
the DRD with root D. Each decision in a DRD has its own output
set, as formalised in Definition 5.2. As seen in Figure 5.2, a decision
service is used to invoke a decision from the decision model.

Definition 5.6. A decision service DSD of a decision D is a
tuple (sD, OD), where sD ∈ dirsD is a set of input data sufficient
to invoke the decision D and OD the output set representing the
decision outcomes of D.

The decision service is somewhat of a proxy for a part of the
decision layer. As such, it can be argued that a subset of the
DRG corresponds to a decision service and that decision services
are in essence an abstraction of the decision model. The decision
logic is encapsulated in the decision model and when a decision
service is derived from the decision model, the logic that pertains
to that service can be inferred from the decision model against
which the service is defined. As such, the logic is kept in one layer,
avoiding issues regarding decision logic duplication, inconsistency,
and maintenance if the underlying logic in the decision model were
to evolve, i.e., to undergo changes.

Note that multiple decision services can be defined for a single
decision D, depending on which input data set sD, as defined
and constructed in Definition 5.5, is used to access the decision
layer. Consider the decision model in the decision layer of Figure
5.2. For Decision Background Check two decision services can be
defined: DSBC1 with tuple ({OCIV , pr}, OBC) where OCIV is the
output of Subdecision Customer Identity Verification, which
serves as the input for Decision Background Check and pr is the
Public Records input file; and DSBC2 with tuple ({cid, pr}, OBC)
where cid is the Customer ID input data object required
for the decision enactment of Subdecision Customer Identity
Verification and consequently the Background Check decision,

102 5.5. DECISION AS A SERVICE (DAAS)

and pr, i.e. the Public Records input data object. Which decision
service will be activated depends on the input data set provided
through the interface by the process in the process layer. Hence,
the interface will steer the information towards the suitable service
that is able to invoke the required decision based on the input data
set received from the process. Thus, a decision service’s interface
is the combination of its input requirement set and its output set.
Decision interfaces can be defined as in Definition 5.7.
Definition 5.7. The interface IFD of a decision service DSD

is defined as a tuple (dirsD, OD), where dirsD is the input
requirement set and OD the output set of the underlying decision
D.

Now we have formally defined the decision layer, the service
layer and the interface layer present in Figure 5.2. What is left is to
define how the process layer and the different interactions with the
service interface. Decisions in processes do not surface solely as the
driver of control flow. Rather, they both encompass the routing, i.e.
because of decision outcomes that steer toward a certain activity
tailored towards supporting its output, and the changes in the data
layer of the process as well. The latter introduces numerous types
of activities that are representatives of the decision model in the
process model:
Definition 5.8. The input and output data variables of business
activities are defined as follows:

– I : A→ V , function assigning activities which receive input
of a certain variable,

– O : A → V , function assigning activities which deliver
output for a certain variable.

This enables the construction of the following activity types:
1. Operational activities ((no) inputs, no outputs): do

not have any influence on the process’ decision dimension and
only act as a performer of a specific action that is tied to that
specific place in the control flow. They might serve as the
conclusion of a decision. They are provided with the decision
inputs needed, which are not used further in the process,
Ao = {a ∈ A | O(a) = ∅, }.

CHAPTER 5. DECISION AS A SERVICE (DAAS) 103

2. Administrative activities (no inputs, outputs): have
the purpose to introduce decision inputs into the process,
Aa = {a ∈ A | I(a) = ∅ ∧ O(a) 6= ∅}.

3. Decision activities (inputs, outputs): serve a true
autonomous decision purpose as they transform decision
inputs into a decision outcome,
Ad = {a ∈ A | I(a) 6= ∅ ∧O(a) 6= ∅}.

Note that it holds that Aa ∪ Ao ∪ Ad = A.
With the activity classification in mind, we can now make

the connection with decisions in business processes and decision
models. A decision in a business process can be defined as follows:

Definition 5.9. A decision in a process model, da ∈ Ddm is a
tuple (Ida , Oda , Lda), where a ⊆ Ad, Ida ⊆ I(a), Oda ⊆ O(a) and
Lda ⊆ L.

This last definition connects a decision activity with a decision
and it shows than one decision activity can be tied with multiple
decisions. The latter implies that, within an event log, the same
activity can make different decisions, i.e., changes in variable values,
and can be represented as different decision nodes within a decision
model, as well as different activity types. This interpretation of
how activities are present in process models is the main difference
with other decision mining and modelling techniques, who keep the
one-to-one mapping of activities and decisions.

We have formally defined elements from all three layers in the
DaaS design in Figure 5.2: the decision layer, the decision service
layer, the decision service interface, and the constructs from the
process layer that are relevant for decision services and decision
enactment in processes. Whether a process will correctly call upon
a decision service depends on the information that the process
itself provides to the decision service interface. In order to invoke
a decision service successfully and unambiguously the input data
objects needed for the invocation of the underlying decision need
to be both complete and correct. This is defined in the decision
Service Adherence Criterion (SAC) in Definition 5.10, which
states when a process is compliant to the decision service it wishes
to invoke.

104 5.5. DECISION AS A SERVICE (DAAS)

Definition 5.10. The Service Adherence Criterion (SAC): A
process fully adheres to the decision service DSD of decision D if
and only if at the time of invocation, the process has internally
produced and/or externally received all x ∈ sD with sD ∈ dirsD
and provided all x ∈ sD to the decision service interface IFD.
Only then will the decision service DSD of decision D be able to
provide a decision outcome o ∈ OD to decision activity d ∈ Ad

that called upon the decision service DSD.

In summation, a process can call upon a decision by providing
a data input set that is required for the enactment of the decision
to the decision interface. The interface will steer the information
provided by the process towards the suitable decision service.
Subsequently, the decision service will invoke the requested decision
from the decision model. Consequently, the decision model will
enact the decision, reach a decision outcome, and output it to the
decision service. The decision service will forward the outcome
back to the interface, and through the interface the outcome of
the decision will finally reach the process layer. This mechanism
is illustrated in Figure 5.2. The SOA design provided in the figure
makes it possible to define decisions as services, which we call
Decision as a Service (DaaS). These decisions and services
can be invoked on demand by information systems, e.g. processes,
through a well-defined interface.

With the design provided in Figure 5.2, the SoC paradigm
between processes and decisions can easily be respected, as the
process is included in the bottom layer, while the decision model is
situated in the top layer. Caution is still necessary when modelling
the process and decision models: information regarding decisions
and decision logic should not be implemented in the bottom process
layer, but rather externalised and encapsulated in the decision layer
[16, 61, 66, 122].

We link the main elements present in the DaaS example in
Figure 5.2 to the formalisation of the DaaS design and DMN
constructs as elaborated upon in the current and the previous
sections. We use the abbreviations of the names given to elements
in Figure 5.2 in the subscript of the symbols to refer to those
elements for a compact notation as well as the abbreviations of
the data object elements (pertaining to both the process layer and
the decision layer) in lower case letters to reference them.

CHAPTER 5. DECISION AS A SERVICE (DAAS) 105

Service Layer Process LayerDecision Layer

Id
en

tit
y

V
er

ifi
ca

tio
n

S
er

vi
ce

In
te

rf
a
ce

B
ac

kg
ro

un
d

C
he

ck

C
us

to
m

er
 Id

en
tit

y
V

er
ifi

ca
tio

n

P
ub

lic
 R

ec
or

ds

C
us

to
m

er
 A

cc
ep

ta
n

ce

R
is

k
Le

ve
l

F
in

an
ci

al
 P

os
iti

o
n

C
he

ck

F
in

an
ci

al
 S

ta
te

m
en

ts
F

in
an

ci
al

 In
fo

rm
at

io
n

C
us

to
m

er
 ID

P
ro

sp
ec

t r
eq

ue
st

D
et

er
m

in
e

ris
k

le
ve

l

D
ra

w
 u

p
co

nt
ra

ct

D
ra

w
 u

p
re

je
ct

io
n

no
tif

ic
at

io
n

A
cc

ep
t p

ro
sp

ec
t

R
ej

ec
t p

ro
sp

ec
t

D
is

cu
ss

 in
ex

ec
ut

iv
e

m
ee

tin
g

A
cc

ep
t

cu
st

om
er

R
is

k
as

se
ss

m
en

t
fo

rm

C
ol

le
ct

do
cu

m
en

ts

R
eq

ue
st

 v
al

id
id

en
tif

ic
at

io
n

V
er

ify
 id

e
nt

ity

C
us

to
m

er
 ID

Lo
ok

 u
p

in
fo

rm
at

io
n

F
in

an
ci

al
in

fo
rm

at
io

n
P

ub
lic

re
co

rd
s

ac
ce

pt

re
je

ct

pe
nd

in
g

V
al

id

In
va

lid

F
in

an
ci

al
st

at
em

en
t

C
us

to
m

er
fil

e

Id
en

tit
y

ve
rif

ic
at

io
n

R
is

k
Le

ve
l

S
er

vi
ce

C
us

to
m

er
 A

cc
ep

ta
n

ce
S

er
vi

ce

F
ig
ur
e
5.
2:

D
ec
is
io
n
as

a
Se
rv
ic
e
(D

aa
S)

la
ye
re
d
ar
ch
it
ec
tu
re
.

106 5.6. COMPLIANCE WITH THE PRINCIPLES OF SOA

Decision activities: Ad = {aV I , aDRL, aAC}.
aV I is a tuple (cid, iv, LDCIV

);
aDRL is a tuple ({fs, iv, fi, pr}, raf, LDRL

);
aAC is a tuple (raf, cf, LDAC

).
Decision services: DS = {DSCIV , DSRL, DSCA}.

DSCIV is a tuple (cid,OCIV)
with sCIV = {cid} ∈ dirsCIV ;

DSRL is a tuple ({fs, iv, fi, pr}, ORL)
with sRL = {fs, iv, fi, pr} ∈ dirsRL ;

DSCA is a tuple (raf,OCA)
with sCA = {raf} ∈ dirsCA.

Service interfaces: IF = {IFCIV , IFRL, IFCA}.
IFCIV is a tuple (dirsCIV , OCIV);
IFRL is a tuple (dirsRL, ORL);
IFCA is a tuple (dirsCA, OCA).

Decisions: Ddm = {DCIV , DBC , DFPC , DRL, DCA}.
DCIV is a tuple (cid,OCIV , LCIV);
DBC is a tuple ({oCIV , pr}, OBC , LBC)

with oCIV ∈ OCIV ;
DFPC is a tuple ({fs, fi}, OFPC , LFPC);
DRL is a tuple ({oBC , oFPC}, ORL, LRL)

with oBC ∈ OBC and oFPC ∈ OFPC ;
DCA is a tuple (oRL, OCA, LCA)

with oRL ∈ ORL.

5.6 Compliance with the Principles of SOA

In this section, we will evaluate the adherence of the proposed DaaS
design to the key Software-Oriented Architecture characteristics as
defined in fundamental literature on SOA design [19, 36, 45, 46,
80, 82, 131], both in theory and through the example proposed in
Figure 5.2.

5.6.1 Service selection

A client calling upon a service must be able to select the appropriate
service based on information provided at runtime. After the
service is executed, the client that called the service must be able

CHAPTER 5. DECISION AS A SERVICE (DAAS) 107

to interpret the outcome. In the DaaS design, the services are
selected at runtime by the process. A process activity provides
the service interface IFD with the decision reference name of the
decision D that it wants to invoke and the relevant input data
sD ∈ dirsD for that decision. The interface IFD will select the
decision service DSD that matches with that signature, i.e., input
data and requested decision reference. This service is executed and
decision outcome o ∈ OD is passed on through the interface IFD

to the invoking process activity for further interpretation. Given
the modular hierarchy of the decision model, multiple decision
services, i.e., with a different input requirements set, can be defined
for the same decision. Which decision service will be selected
depends on the data input set provided to the interface. This
concept is similar to method overloading, which corresponds to
methods having the same name and similar functionality but with
a different list of arguments. Calling such an overloaded method
(abstract decision service) runs one specific definition of the method
(a specific decision service) that is appropriate to the context of the
call, which is defined by the input set provided to by the process.

In the example in Figure 5.2, decision activity Determine
risk level provides the input set {fs, iv, fi, pr}, i.e. the four
input data objects of the activity, to the interface. The interface
guides, given the input set and the decision requested by the
decision activity, the invocation of the correct decision service,
i.e. the DSRL. This leads to the invocation of the Risk Level
decision in the decision layer. Through the service and the decision
service interface, the outcome of the decision will be returned to
decision activity Determine risk level which will produce the
Risk assessment form containing the decision outcome.

5.6.2 Standardised service communication and
loose coupling

Communication between the invoking context, e.g. a business
process, and the services, e.g. decision services tied to a decision
model, should be standardised and addressed systematically.
Besides, a loose coupling between clients and services is preferred
above a tight coupling. In a loose coupling there are a few well-
defined dependencies between the different modules, while a tight

108 5.6. COMPLIANCE WITH THE PRINCIPLES OF SOA

coupling produces a vast array of dependencies that might not all
be observed. Furthermore, in order to provide transparency in
design and to avoid issues concerning redundancy, services should,
in analogy with service communications, be standardised and
systematised. The notion of a service should be unambiguous and
coherent. In the DaaS design, a decision service DSD of a decision
D is a tuple (sD, OD), with sD ∈ dirsD a set of input data sufficient
to invoke D and OD the set of decision outcomes of D. Thus, all
new decision services should be designed according to these well-
delineated concepts in order to ensure the correct invocation of
those new services by potential clients, since the communication
between clients from the process layer and the decision service
DSD of a certain decision D is standardised through a well-defined
interface IFD. The interface is the sole channel of communication
between the clients and the services, and thus serves as a loose
coupling mechanism between the two. Ergo, the clients are aware
of the existence of a service, given that the clients can witness and
access the interface IFD of a decision service DSD. However, the
coupling does not go beyond the simple interface connection and
the client’s awareness of the existence of a decision service.

In the example in Figure 5.2, the Risk Level Service
is designed as a tuple ({fs, iv, fi, pr}, ORL) with sRL =
{fs, iv, fi, pr} and ORL being the output set of the decision
Risk Level. Thus, the decision service follows the standard
design regarding input requirement and output sets. Furthermore,
the communication between a decision activity, e.g. Determine
risk level and the decision service of Risk Level Service is
standardised and loosely coupled through the decision service
interface IFRL, defined as a tuple (dirsRL, ORL). The decision
activity can only invoke its underlying decision, i.e. Risk Level by
providing the input data relevant for the invocation of the decision
service, i.e. sRL ∈ dirsRL. Likewise, the decision model will render
the outcome of the Risk Level decision oRL ∈ ORL to the invoking
decision activity through the interface.

5.6.3 Service location transparency

The invoking context of a service should not be burdened with
the knowledge of the service location within the network, yet the

CHAPTER 5. DECISION AS A SERVICE (DAAS) 109

client should be able to invoke a service at any time, regardless of
the service location. This service location transparency allows the
service location to change within the network without impairing
service availability to clients. In the DaaS design, the process layer
is agnostic about the location of a decision service DSD. Once a
correct data input set sD ∈ dirsD is provided to the interface IFD,
the interface will, given the decision D that the client wants to
invoke and the set sD, discover the location of the relevant decision
serviceDSD and consequently invoke that service. This all happens
without any client in the process layer knowing the location of the
invoked decision service within the network. Hence, the decision
services can be moved around the network and stored anywhere in
the network without compromising the availability and accessibility
of a decision service.

In the example in Figure 5.2, the Risk Level Service is
designed as a tuple ({fs, iv, fi, pr}, ORL). Thus, given the input
requirement set sRL = {fs, iv, fi, pr} ∈ dirsRL, the interface will
discover the location of decision service DSRL, without the client,
i.e. decision activity Determine risk level being aware of the
location of the Risk Level Service DSRL.

5.6.4 Service abstraction

The service abstraction characteristic denotes the proposition that
services should be conceived as a black box by the invoking context
or the clients. Thus, the clients invoking the service are alleviated
from the burden of understanding the underlying decision logic
and mechanisms the services pertain to. In the DaaS design, the
decision logic is encapsulated in the decision model in the top layer,
i.e. the decision layer, given that a decision D was defined as a
tuple (ID, OD, L), where ID is a set of input symbols, OD a set
of output symbols and L the decision logic defining the relation
between symbols in ID and symbols in OD. Hence, the decision
logic L is encapsulated in decision nodes in the decision model and
the services merely invoke the decisions from the decision model and
pass the output, through the interface, to the clients in the process
layer. Therefore, the clients are agnostic about the underlying
decision logic and experience the decision services as a black box.
All the clients need to worry about is providing the relevant inputs

110 5.6. COMPLIANCE WITH THE PRINCIPLES OF SOA

to the interface of the decision services in order to ensure a sound
decision enactment.

In the example in Figure 5.2, the decision logic invoked by the
Determine risk level decision activity (aDRL) through DSRL

is encapsulated in the decision node Risk Level (DRL) of the
DRD in the decision layer. Hence, the Determine risk level
decision activity is agnostic about the decision logic underpinning
its execution, and the decision activity conceives the Risk Level
Service DSRL, and consequently the Risk Level decision, as a
black box that merely returns the decision outcome o ∈ ORL when
provided with an input set sRL ∈ dirsRL.

5.6.5 Service statelessness

Services should be implemented as simple mechanisms that either
return the relevant outcome or throw an exception if no conclusion
can be reached, i.e. services should be stateless and consequently
resource efficient. Thus, the state of the service should be separated
from the service itself, providing the service with more flexibility
and reusability. In the DaaS design, a decision service DSD of a
decision D is defined as a tuple (sD, OD), where sD ∈ dirsD is
a set of sufficient input data and OD the output set representing
the decision outcomes of D. Hence, decision services in the DaaS
design will return an outcome from the set OD or an empty set
serving as an exception if no conclusion can be reached within a
reasonable time frame.

In the example in Figure 5.2, the Risk Level Service DSRL

simply invokes the Risk Level decision at the request of the
Determine risk level decision activity, and passes the decision
outcome outcome o ∈ ORL back to the invoking decision activity.
The Risk Level Service itself does not keep a state, but simply
serves as a bridge between the process and the decision.

5.6.6 Service longevity

Service longevity denotes the objective that a service should remain
unchanged and in existence during a considerably long time.
Services should change only when utterly necessary in order to
avoid that clients must adapt time and again to the newly changed

CHAPTER 5. DECISION AS A SERVICE (DAAS) 111

service. Hence, services should be designed carefully with the intent
to last long. In the DaaS design, it is clear that a decision service
DSD of a decision D will only change if the underlying decision
model in the decision layer changes as well. Since a decision service
DSD of a decision D is defined as a tuple (sD, OD), the decision
service DSD will only need to change if the input set sD and/or the
output set OD of the underlying decision D are subject to change.
Once changes to a decision service occur, clients in the process
may need to adapt to ensure a proper invocation of the underlying
decisions. Note that if the input sets and output sets of the decision
services remain the same, while the underlying decision logic that
relates the inputs to the outputs undergoes adaptation, the decision
services remain the same from the perspective of the clients, i.e.,
the processes, since the processes experience the decision logic as a
black box.

In the example in Figure 5.2, the Risk Level Service
DSRL is designed as a tuple ({fs, iv, fi, pr}, ORL) with sRL =
{fs, iv, fi, pr} and ORL being the output set of the decision Risk
Level. Hence, the defined service will only need to undergo change
if sRL and/or ORL exhibit any changes. In all other changes
to either the decision layer or the process layer, the Risk Level
Service DSRL remains valid.

5.6.7 Service reusability

Service reusability refers to designing services so that their
solution logic is independent of any particular business process or
technology, thus eliminating the need for creating new services with
the same functionalities for every individual business process that
they are required in. That way, the services are not embedded
in a single business process, and they can be invoked by different
processes and applications as well. Additionally, services should
be constructed in a modular way in order to enhance the reuse of
parts of the underlying logic. In the DaaS design, the logic L is
stored in the decision model as part of the decision layer across
multiple decision nodes D, given that a decision D was defined
as a tuple (ID, OD, L) with the decision logic L being part of the
decisionD. Ergo, the decision logic is stored in modules represented
by the decision nodes, and is not linked to or embedded in any

112 5.6. COMPLIANCE WITH THE PRINCIPLES OF SOA

particular business process. For every decision node D multiple
decision services DSD can be created, as discussed in Section 5.5.
Hence, the underlying decision logic L can be accessed in smaller
modules linked to a number of decision services DSD, allowing for
the invocation and reusability of the decision services by multiple
processes.

In the example in Figure 5.2, the logic contained in the Risk
Level decision node in the decision model can be reused by
multiple clients as long as the clients provide the necessary input
requirement set sRL = {fs, iv, fi, pr} to the Risk Level Service
DSRL.

5.6.8 Service composability

Several services might be composed into a single larger service
thanks to the modular design inherent to the SOA paradigm. This
modular design allows to assemble smaller services into coherent
larger ones or even into an application. This characteristic is
closely related to the characteristic of service granularity, or more
specifically: the degree of modularity that the services should have.
Decision service composability is inherently enabled by the modular
and hierarchical structure of the DMN model, i.e., a higher-
level decision is composed of its lower-level decisions. As such,
the higher-level decision service is composed of these lower-level
decision services as well. Note that composing decision services
happens in the decision service layer by combining elements from
the decision model. As such, decision service composition is process
layer agnostic.

In the DaaS design example in Figure 5.2, multiple decision
services or modules are implicitly part of larger decision services
or modules. Take for instance the Risk Level decision node in
the decision layer: for this decision, multiple decision services
can be defined. Previously, we defined the Risk Level Service
DSRL as ({fs, iv, fi, pr}, ORL) with sRL = {fs, iv, fi, pr} and
ORL being the output set of the decision Risk Level. Another
Risk Level Service can be defined as well: DSRL2

as a tuple
({oBC , oFPC}, ORL) where oBC ∈ OBC and oFPC ∈ OFPC are
the outputs of the Background Check decision and the Financial
Position Check decision respectively. For both the Background

CHAPTER 5. DECISION AS A SERVICE (DAAS) 113

Check and the Financial Position Check decision, invocable
decision services can be defined as well, e.g. DSBC as a
tuple ({oCIV , pr}, OBC) and DSFPC as a tuple ({fs, fi}, OFPC).
Hence, it can be argued that the Risk Level Service DSRL2

is a composition of the Background Check Service DSBC ,
the Financial Position Check Service DSFPC , and some
additional decision logic encapsulated in the module of the Risk
Level decision node.

5.7 Implications of DaaS for Processes and
Decisions

The advantages of the separation of modelling and mining concerns
are emphasised in literature [12, 16, 52, 61, 66, 122]. These works
especially highlight the scalability, maintainability, flexibility, and
understandability of decisions and processes. However, they do
not provide a clear design or framework on how to systematically
address these issues and how to guarantee a sound SoC by design.
In this section we will discuss these advantages of separating the
concerns and we will relate them to the DaaS design.

5.7.1 Scalability

A straightforward advantage of separating the process and decision
modelling concerns is scalability. Here, scalability does not refer to
the performance of a service (scaling with respect to the number of
service clients or with the size of service input). Rather, scalability
in this chapter refers to the expansion of business process models
when adding decision constructs to them. Given the fact that,
when separating concerns, the decision logic is not modelled within
the process, the decision logic does not clutter the process model
and the decision model can be concurrently invoked by many
clients. This also promotes the reusability of the decisions and
the underlying decision logic.

In the DaaS design in Figure 5.2, it is clear that multiple
processes from the process layer can call upon a number of services
simultaneously and that all the services can access the decision
model at the same time. In cases where the modelling concerns

114 5.7. IMPLICATIONS OF DAAS

are not separated, e.g. a typical way of modelling the process
and decision concerns in one model is using an intricate setup of
gateways, the decisions and the decision logic are embedded in the
process. This leads to large processes and provides no opportunities
for the reuse of logic and decisions and no possibilities for parallel
invocation and enactment of the decisions. The DaaS design in
Figure 5.2 clearly avoids these convoluted situations, as the decision
logic is stored in the decision model as part of the decision layer,
while the control flow is part of the process layer. The two do
not convolute each other, however, the decisions can easily be
invoked by any process as long as the process is able to provide the
right input set to the interface of the decision service. That way,
the process is not cluttered with decision constructs and multiple
processes can access the decision model and make use of the decision
logic concurrently.

5.7.2 Maintainability

Another clear advantage of SoC is maintainability. Take for
example the situation of a convoluted process-decision model where
decisions are hard coded into gateways and the control flow of the
process: if either the process or a decision changes, the convoluted
model needs to be adapted. This creates a need for constant
maintenance of the convoluted process-decision model. When
adopting the SoC paradigm, this issues of maintainability and
convolution of models are circumvented.

In the DaaS design in Figure 5.2, the decisions and the processes
are not convoluted as they are separated into different modules of
their respective layers. If parts of a process change in the process
layer, the decisions in the decision layer are not affected. This
corresponds to a decision-first approach, as opposed to the process-
first approach that is present a convoluted process-decision model
with cascading gateways [67]. The maintenance of the process does
not affect the underlying decisions. On the other hand, if parts of
the decision model change, some services and processes will need
to adapt to the changes in order to be able to invoke said decisions
correctly. However, not all the services and processes will need
to undergo adaptations; only the ones that are directly affected by
the decisions that were modified. Other services and processes that

CHAPTER 5. DECISION AS A SERVICE (DAAS) 115

do not pertain to the adjusted decision will still function properly
without any need for adaptation. Noteworthy is that in the case
of the DaaS design, where the modelling concerns are separated,
all the decision logic is concentrated in the decision model as part
of the decision layer. If anything concerning the decisions needs to
change, the adaptation happens only in one place, i.e. the decision
model. However, if decisions change in the process-first approach,
every process containing those decisions will need to adapt as well
[13]. Hence, DaaS advances the maintainability of both processes
and decisions.

5.7.3 Flexibility

Flexibility refers to the ad-hoc reuse of decisions and decision logic,
as well as the flexibility in adapting and changing the underlying
decision logic. Clearly, the process-first approach where modelling
concerns are not separated does not support flexibility in any way:
no reuse of logic is possible, since the logic is embedded in the
control flow of the process and not stored in a separate module; and
adapting the decision logic is rather cumbersome, since the logic
is dispersed across multiple processes and hidden in convoluted
process paths. Therefore, the process-first approach shows little
flexibility in general.

In the DaaS design in Figure 5.2, the concerns are separated
into their respective layers, and as explained earlier, the separated
decision logic can be invoked ad-hoc by any client from the process
layer conforming to the interface needed to invoke a decision
service and consequently the necessary decision. Besides, changing
the underlying decision logic is less of a burden, since the logic
is concentrated in a single model, rather than dispersed across
a process or even across multiple distributed or collaborating
processes. Hence, the DaaS design offers a higher level of flexibility,
both in terms of reusability of decisions and decision logic, as well
as in terms of flexibility in logic adaptation.

116 5.7. IMPLICATIONS OF DAAS

5.7.4 Complexity and understandability

The complexity and understandability of models is of particular
importance. When modelling concerns are not separated the
process quickly becomes overly complicated due to the cascading
gateways. This is especially the case in knowledge-intensive
processes where a lot of decisions need to be made based
on a certain underlying logic. Often the term spaghetti-like
processes [53] is used to refer to this phenomenon of intricate
and convoluted control flows. Furthermore, more understandable
models contribute to more maintainable models as well [23].

When opting for a DaaS design, the decisions and the decision
logic are externalised and encapsulated in a separate layer as
part of the decision model. Therefore, the control flow of the
process is alleviated from the burden of representing the different
decision paths. As a consequence, the actual process becomes
visible and more understandable. However, because of the fact
that decisions have been externalised, the process is still burdened
with data management and data propagation, i.e. the process is
responsible for the collection and propagation of the data needed
for the invocation of a decision service. The decision model does
not concern itself with these issues of data propagation and data
management. It simply transforms the input data, obtained from
the process through the decision service, into a decision output
which is sent back to the invoking process. Hence, in the DaaS
design, process complexity in terms of control flow will decrease,
however, the complexity of data management is likely to increase.
Thus data management and data propagation within processes
becomes of paramount importance. Besides, when separating the
decisions from the process, the overall view of the entire problem
might be clouded, as processes take abstraction of decisions and
simply approach decisions as a black box that answers to input,
without concerning themselves with the underlying decision logic.
Therefore, when applying the DaaS design, the emphasis should be
put on the decisions and on a decision-first approach. The process
might take abstractions from decisions and conceive them as a black
box, however, everything stands or falls with the correct definition
of the decisions, as both the decision services and the processes
need to heavily rely on the decisions to function properly.

CHAPTER 5. DECISION AS A SERVICE (DAAS) 117

5.8 Evaluation of DaaS Design on a Real-
Life Event Log

In this section, the DaaS approach is illustrated with automatically
discovered decision services from an enriched event log. Literature
on automatic discovery of DMN decision models from event logs
has seen a considerable surge over the past few years [12, 32, 122].
The work in [122] is particularly interesting as it addresses decisions
within a processes over multiple activities or even across the entire
process execution span, rather than containing decisions to local
decision points in the process. This Process Mining Integrating
Decisions (P-MInD) framework provides interesting insights in
the interaction between processes on the one hand, and data,
rules, and decisions on the other. We capitalise on the findings
in [122] by adapting the technique in order to unveil decision
services within processes, which will better explain the interaction
between the processes and the decisions. In the remainder of
this section we explain the changes applied to P-MInD needed
to acknowledge decision services, thus rendering the discovered
models consistent with the SOA paradigm. We call this approach
the Service-Oriented Architecture Process Mining Integrating
Decisions (SOAP-MInD). This section is concluded with a real-
world example of DaaS-compatible decision services derived from
an enriched event log containing information on a bank loan
application and approval process.

5.8.1 SOAP-MInD

While P-MInD [122] discovers holistic decision models from
event logs, it does not clearly illustrate how the process model
communicates with its underlying decision model. In order to
clarify the decision invocations by the process it is necessary
to explain which decisions the process invokes at which specific
points in the process. Additionally, it is required to know how
the process invokes the desired decision, i.e. with which input
data objects. In other words, for each invoked decision D the
decision services DSD that are called upon by the process need
to be identified. P-MInD abstracts from the idea of services and
is only concerned with the decision layer and process layer in

118 5.8. EVALUATION ON A REAL-LIFE EVENT LOG

Figure 5.2. However, to understand the interactions between the
process and decision layers, the specific invocations of the process
layer, i.e. the service calls, need to be acknowledged. Thus, we
expand P-MInD to Service-Oriented Architecture Process Mining
Integrating Decisions (SOAP-MInD), a framework for mining
integrated decision services and the respective process traces where
they are invoked. SOAP-MInD builds further on the principles of
P-MInD and we refer to that seminal work on holistic decision
modelling for details [122]. In what follows, we briefly describe the
adaptation of P-MInD to render SOAP-MInD. SOAP-MInD was
made compatible with the ProM framework as it is available as a
ProM plugin, thus making the code open source7.

The basis for both the P-MInD and SOAP-MInD approaches lies
in the classification of activities according to Definition 5.8. This
classification aides in understanding the interaction between the
decision services and the decision service interface on the one hand,
and the process itself on the other. Clearly, the set of operational
activities (Ao) is not involved in decision making and is therefore
irrelevant for the decision service layer and the decision service
interface. Administrative activities have the purpose to introduce
input data objects for decisions and are therefore relevant for the
decision service layer and interface. An administrative activity
a ∈ Aa will provide an output set O(a) which can be used as
inputs for future decision activities in the process. A decision
activity d ∈ Ad will receive an input set I(d) which is composed of
the outputs of previously executed administrative activities and/or
outputs of previously executed decision activities. The decision
activity d ∈ Ad will call upon the decision service DSD through
the decision service interface IFD in order to invoke underlying
decision D.

Algorithm 1 captures how both the the decisions are stored
and possible decision services are identified. First, the influence
of activities over variables is identified through checking which
shifts exist in an event log, i.e., whether the value of a variable v
changed during an activity a compared to its previous occurrence
in a trace. This is taken as evidence that the activity influences
v, and both are stored as potential decisions (lines 2-3). Next, all
potential decisions are checked for their occurrence, to see whether
7https://svn.win.tue.nl/repos/prom/Packages/PMinD/

https://svn.win.tue.nl/repos/prom/Packages/PMinD/

CHAPTER 5. DECISION AS A SERVICE (DAAS) 119

a certain decision happens (enough times, see mintraces) before
another (ai < aj), and hence whether it might have an influence
over each other’s variables (lines 4-5). Note that this allows for
decisions in which ai serves as input to aj , and vice versa. For
all traces where this is the case, the correlation between both
variables is calculated to see whether there is a link between both
decisions (line 6). The variable/activity pair (VP) occurring the
latest ((vj, aj)) is stored as a potential decision with inputs and
outputs including the variable(s) of the earlier occurring activity
ai. This happens until all these connections are made, and the
full input set of aj is established. Next, all different decision
sequences that happen in all traces are distilled, depending on
what decision-relations were established through the correlations.
After this, all possible decision services are discovered as well, in
set DS. For each cluster of decisions, the values attached to the
corresponding variable/activity pair are used to train a predictive
model Ld, completing the decision (lines 10-13). More details on
the extraction of the shifts, as well as correlation and thresholds
are discussed in [122]. Furthermore, due to page restrictions, we
provide a parameter assessment of SOAP-MInD in a technical
report published at our institution [68].

Algorithm 1 Decision service discovery in an event log.
1: procedure Find_Decision_Services(event log L)
2: Retrieve all shifts in the event log, i.e., all activities a ∈ A for which a variable’s

v value changes during its execution
3: V P ← (v, a), a potential candidate decision D where v ∈ Oda and a ∈ Ad

4: for (vi, ai), (vj , aj) ∈ V P × V P do
5: if |{t ∈ L | ai, aj ∈ t ∧ ai < aj ∧ vi ∈ I(vj)}| > mintraces then
6: if corr(vi, vj) > corrthres then
7: D ← d = (Id ← vi, Od = vj , L = ∅) . See Def. 5.2
8: DSd ∈ DS ← (Id, Od)
9: end if
10: end if
11: end for
12: Cluster traces in set CT where the same subsets DSCT

⊆ DSd are present
13: for c ∈ CT do
14: for DSd ∈ DSCT

do
15: train predictive model Ld over Id to predict Od

16: D ← d = (Id, Od, Ld)
17: end for
18: end for
19: end procedure

Hence, the trace clusters are grouped based on the decision

120 5.8. EVALUATION ON A REAL-LIFE EVENT LOG

services they invoke. Note that in Definition 5.6, a decision
service DSd of a decision d was defined as a tuple (sd, Od), where
sd ∈ dirsd is a set of input data sufficient to invoke the decision d
and Od the output set representing the decision outcomes of d. The
traces in this step of the SOAP-MInD approach are clustered based
on the set of input data sd ∈ dirsd needed to invoke a decision d
and to obtain a decision outcome o ∈ Od. Hence, the clusters
present different execution sequences in which the decision services
were invoked through the interfaces.

5.8.2 Decision service compliance verification

SOAP-MInD renders two models per trace cluster of variable shift
sequences: a process model and a decision service model. This
offers opportunities of decision service compliance verification, i.e.
per trace cluster it can be investigated whether the discovered
process model is able to correctly invoke the services pertaining
to that same trace cluster.

Naively it can be stated that the process model either complies
with the decision service or it does not comply with the service, as
defined in the decision Service Adherence Criterion (SAC)
in Definition 5.10. If the process model complies with the
decision service, it inherently provides the necessary decision
input requirements set sD ∈ dirsD needed for the invocation of
decision service DSD pertaining to decision D. Clearly, this input
requirements set sD must be readily available to the process before
the point in the process where the decision service DSD is invoked.
That way, the process can correctly provide the decision service
interface IFD with its corresponding input data. Consequently,
the decision service DSD will invoke decision D and an outcome
o ∈ OD will be returned to the process through the interface IFD.
However, if no valid decision input requirements set sD ∈ dirsD
is available in the process at the time when the process invokes
decision D by calling upon its decision service DSD through the
interface IFD, the process is not complying with the decision
service. Hence, no crisp decision outcome o ∈ OD of decision D
will be returned to the process by the decision model through the
decision service DSD and the decision interface IFD.

This is a rather naive approach towards decision service

CHAPTER 5. DECISION AS A SERVICE (DAAS) 121

compliance verification, as decision service invocations are only
considered to enact an underlying decision if the input data
provided is both complete and correct. However, decision reasoning
on incorrect and incomplete data can be applied as well. If for
instance one input data element is missing from the decision input
requirements set sD ∈ dirsD, the decision service DSD might still
be able to invoke its underlying decision model and provide all
possible decision outcomes, given the known values is sD and all
possible values for the missing data element in sD. The process
would then, instead of one decision outcome, be provided with a set
of possible decision outcomes ODM

∈ OD. As a result, the process
could still be able to continue properly after the decision enactment
and reach a sound conclusion, given the correct interpretation of the
decision outcomes in the process flow. Hence, the situation is more
nuanced as it can be argued that a process can partially comply
with a decision service as well, i.e. the process does not fully comply
with the decision service in terms of input requirements sets, data
hierarchies, and data propagation, however, given the data that the
process provides to the decision service, a set of decision outcomes
might still be reachable and useful for further process enactment.
In that case, the decision Service Adherence Criterion (SAC) of
Definition 5.10 can be relaxed towards a weaker version of decision
service compliance.

W_Complete application->org:resource

W_Call incomplete files->Action

1125

W_Call after offers->Action

1125

W_Complete application->org:resource

A_Cancelled->org:resource

625

W_Call after offers->Action

625

Figure 5.3: Discovered decision services.

5.8.3 Illustration and discussion

In this subsection, we illustrate the DaaS design by applying the
SOAP-MInD framework to a real-life enriched event log containing
information on a bank loan application and approval process, made
available for the 2017 BPI Challenge8. The log was filtered to a time
8https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-
86ae4c7a310b

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

122 5.8. EVALUATION ON A REAL-LIFE EVENT LOG

A
_C

reate A
pplication

A
_S

ubm
itted

W
_A

ssess potential fraud

W
_S

hortened com
pletion

W
_H

andle leads

A
_C

oncept

A
_A

ccepted

W
_C

om
plete application

W
_C

all after offers

O
_C

reate O
ffer

O
_C

reated
O

_S
ent (m

ail and online)

A
_C

om
plete

W
_C

all incom
plete files

W
_V

alidate application
A

_V
alidating

O
_R

eturned
A

_Incom
plete

A
_C

ancelled

O
_C

ancelled

F
igure

5.4:
Fragm

ent
of

the
trace

cluster
not

adhering
to

the
decision

service.

CHAPTER 5. DECISION AS A SERVICE (DAAS) 123

window containing data between 26 August 2016 and 28 October
2016, i.e. 9 weeks of data. The filtered log contains 77,317 events
over 4,382 cases. No additional pre-processing was performed and
the unaltered log was used to create the output. Figure 5.3 provides
two decision services that were extracted from the log. The decision
services pertain to two trace clusters. Figure 5.4 depicts a part of
the mined trace cluster relating to the rightmost decision service
from Figure 5.4. Due to page restrictions, the full mined process
models representing the trace clusters have been made available
online9,10.

The leftmost decision service in Figure 5.3 is invoked in
the trace cluster containing 1,125 traces. In these traces, the
Complete application decision has to be made. In order for the
service to invoke this decision, the outcomes of two subdecisions
need to be provided by the process to the decision service.
The outcomes of the Call incomplete files and Call after
offers decisions form the input requirement set needed for the
correct invocation of the Complete application decision. Hence,
this DMN model represents a decision service that is invoked in the
trace cluster it pertains to. Note that in this model the information
requirement arrows are coloured black, indicating that the trace
cluster conforms to the discovered decision service, i.e. the Service
Adherence Criterion (SAC) in Definition 5.10 is adhered to
in terms of input requirements for the decisions that are invoked.
Thus, the order of the decision activities in the process model
conforms to the hierarchy as depicted in the decision service model.

On the other hand, the rightmost decision service in Figure 5.3
is not adhered to by the trace cluster which invokes that decision
service. Notice that the arrows in this model are coloured red
to indicate that the order of decision activities in the process
model, representing the 625 traces cluster, violates the decision
hierarchy demanded by the decision service model. Namely, the
service requires the outputs of the Application cancelled and
Call after offers decisions in order to invoke the Complete
application decision. As shown in the corresponding process
model in Figure 5.4, and the full process model that is provided

9https://feb.kuleuven.be/public/u0111379/TSC/
10The mined trace cluster relating to the leftmost decision service from Figure
5.4 is provided in Figure B.1 in Appendix B.

https://feb.kuleuven.be/public/u0111379/TSC/

124 5.9. EVALUATING DAAS SOA MATURITY

online, this hierarchy is not respected and at the time of
invocation of the decision service in the process, the necessary input
requirement set is not available to the process. As a consequence,
the process can not call upon the decision service in a proper
manner and hence the decision model can not enact the invoked
decision without the relevant input data. Thus, no sound decision
outcome will be provided to the process, and the process might not
be able to resume.

Next to the input requirement arrows in Figure 5.3 the number
of traces that invoke the decision service are depicted. These
traces are clustered according to the decision input and output
propagation, as discussed in Section 5.8.1. Hence, the data
propagation within the trace indicates which input requirement
sets are passed on within the process and thus which decision
services are invoked at specific points in the process. Thus,
service-orientation and SoC provide a view into the intersection
and interplay between data and processes, process modelling and
decision modelling, process mining and classical data mining.
Capitalising on the DaaS design, the advantages inherent to service-
orientation can be exploited when separating multi-perspective
modelling and mining tasks, such as the process perspective and
the decision perspective.

5.9 Evaluating DaaS SOA Maturity

Maturity models can be used to assess the maturity of a system
and thus to provide a roadmap towards a successful implementation
of the system. For the purpose of SOA adoption, SOA maturity
models have been proposed in literature. However, [110] point out
that existing SOA maturity models are in most cases developed by
vendors of SOA solutions and that they are therefore dependent on
the specific products they are designed for. Hence, they propose
an independent SOA Maturity Model (iSOAMM), i.e., a SOA
maturity model that is independent of the used technologies and
products. They develop SOA maturity model levels which are
oriented at the capability of an SOA to support business processes.
This means that a SOA with higher maturity possesses more
features, which are useful within business processes. An overview

CHAPTER 5. DECISION AS A SERVICE (DAAS) 125

of the iSOAMM maturity levels for the architectural viewpoint is
provided in Figure 5.5.

Figure 5.5: Independent SOA Maturity Model (iSOAMM) [110]

Level 1: Trial SOA: This level recognises the existence of
services. However, different services use incompatible technologies
and standards. Hence, the services exhibit a lack of standardisation
and they form a collection of unconnected service islands and not
a true service-oriented architecture.
Level 2: Integrative SOA: This maturity level introduces a
standardised service interface such that a high-level application,
e.g., a business process, can use the interface to access the different
services that are provided by the system.
Level 3: Administered SOA: This maturity level introduces
service orchestration, i.e., it allows for composing several
existing fine-grained services into a single higher order composite
service. This modular service approach promotes the reuse and
manageability of service components.
Level 4: Cooperative SOA: This level supports the
choreography of processes, i.e., cooperation between processes.
Additionally, human users are often vital to process execution
support. Hence, choreography can be employed to close the gap

126 5.10. LIMITATIONS OF THE DAAS DESIGN

between services on the one hand, and human users and (external)
business processes on the other.
Level 5: On Demand SOA: In this maturity level, the predefined
services are replaced with service selection at runtime.

In what follows, we briefly explain the adherence to each
maturity level and we apply the iSOAMM to the DaaS design
proposed in this chapter. The DaaS design conforms to maturity
level 1 as it provides services. Since the design provides a
standardised service interface in the form of Definition 5.7, and
since services are developed according to Definition 5.6, using the
same standard, i.e., DMN, the DaaS design conforms to maturity
level 2 as well. Given the modular design of DMN decision models,
as defined in Definitions 5.1 and 5.3, the designed decision services
exhibit modularity as well as they provide opportunities for decision
service composition and decomposition as explained in Subsection
5.6.8. This ensures conformance to maturity level 3. Adherence
to maturity level 4, i.e., cooperation between processes and human
user support of processes, is not explicitly included in the DaaS
design, as collaborative business processes were considered out of
scope in this chapter. However, the DaaS design allows for adding
another layer that is concerned with communication between the
process in the DaaS design and human actors or external processes.
Furthermore, the process layer inherently allows for choreography
between process and human users by employing pools and lanes
within the process models. Finally, the DaaS design adheres to
maturity level 5 as well, since it provides a decision on demand
service to business processes, i.e., the services are invoked at
runtime by the process by providing the decision name that the
process wants to invoke, together with the input set necessary for
the invocation of the decision.

5.10 Limitations of the DaaS Design

Organising process-aware information systems (PAIS) according
to the SOA DaaS design requires system redesign. This induces
limitations and obstacles as the processes in the legacy system
did not follow the SOA and SoC paradigms. First, the decisions
embedded in the process flows need to be externalised into a

CHAPTER 5. DECISION AS A SERVICE (DAAS) 127

separate DMN decision model. This leads to the introduction
of additional complexity because of new types of models that
are becoming part of the system, i.e., the decision models.
Furthermore, the business processes need to undergo redesign [67]
to eliminate the decision construct that were present in the legacy
process models. This is done to avoid ambiguity and overlap
between decision constructs in the process model and the decision
specified in the decision model. As such, the SoC paradigm between
processes and decisions is instated. Additionally, the redesigned
process models need to be compatible with the newly established
decision models and hence the decision services derived from them.
Thus, decision service consistency constraints apply according to
the service adherence criterion when designing processes that need
to call upon the decision logic through the decision services. Hence,
a more complicated data propagation management within processes
is inherent to the DaaS design, as opposed to designs where the SoC
paradigm is not respected.

5.11 Conclusion

In this chapter we have contributed a SOA design for process- and
decision-aware information systems, enhancing the understanding
of the interaction between decisions and processes according to
the SoC paradigm. The provided framework consists of a process
layer, interface, service layer, and decision layer, making possible
the implementation of decisions as services, or Decision as a
Service (DaaS). The processes can access the decisions through
this DaaS architecture on demand, which we named Decision on
Demand (DoD). Furthermore, this chapter formally defines the
key concepts of DaaS and DoD and the proposed design is evaluated
against key SOA characteristics, elucidating the benefits in terms
of service abstraction and usefulness of the DaaS/DoD mechanism.
Furthermore, implications of the proposed framework regarding
integrated process-decision modelling are elaborated upon as
well, demonstrating that the DaaS design greatly benefits the
SoC between processes and decisions, thus advancing scalability,
maintainability, flexibility and understandability. Additionally, we
illustrated that the proposed DaaS design exhibits itself in real-

128 5.11. CONCLUSION

life event logs by applying automatic decision service discovery
on an enriched event log on a real-life bank loan application and
approval process. Finally, the DaaS design was assessed in terms of
SOA maturity, illustrating that the design conforms to the highest
maturity levels.

CHAPTER 6

Parameter Assessment of
the Automated Decision
Service Discovery

“The goal to be reached is the mind’s insight into
what knowing is. Impatience asks for the
impossible, wants to reach the goal without the
means of getting there. The length of the journey
has to be borne with, for every moment is
necessary; [...] because by nothing less could that
all-pervading mind ever manage to become
conscious of what itself is — for that reason, the
individual mind [...] cannot expect by less toil to
grasp what its own substance contains.”

The Phenomenology of Spirit
— Georg Wilhelm Friedrich Hegel

This chapter presents sections 4 and 5 of the following paper:

Faruk Hasić, Johannes De Smedt, Seppe vanden Broucke,
Estefanía Serral Asensio. A Parameter Assessment of
Service-Oriented Architecture Process Mining Integrating
Decisions (SOAP-MInD). FEB Research Report KBI_1914
(KU Leuven), Leuven (Belgium), 1-9, 2019.

129

130

Abstract. This chapter provides a parameter assessment of
the Service-Oriented Architecture Process Mining Integrating
Decisions (SOAP-MInD) technique introduced in the previous
chapter. For this purpose, we capitalise on the existing Process
Mining Integrating Decisions (P-MInD) framework, which allows
decisions to be mined from a process event log. We adapted P-
MInD to the Service-Oriented Architecture (SOA) paradigm in
order to reflect the interaction between processes and decisions
in trace clusters that are constructed based on the sequence of
input data interactions between the process and the decisions. The
code for this adapted Service-Oriented Architecture Process Mining
Integrating Decisions (SOAP-MInD) is provided as an open-source
plugin in the ProM framework for process mining. We illustrate
the workings of SOAP-MInD by running a parameter assessment
and providing the results in terms of the amount of discovered trace
clusters, decision services, the granularity of the decision services,
and the run time.

CHAPTER 6. PARAMETER ASSESSMENT 131

6.1 Parameter Assessment

To illustrate the existence of decision logic invocations in real-life
enriched event logs, we apply the SOAP-MInD framework on a
bank loan application and approval event log, made available for
the 2017 Business Process Intelligence (BPI) Challenge11. The
event log consists of 1,202,267 events in 31,509 traces, containing
26 activity types and 18 variables.

Table 6.1 provides the assessment of run experiments with
different parameter levels and information regarding the models
obtained with these parameter settings. All the parameters are
expressed in percentages. The parameter minsup is used to
establish whether there was a causal link between a shifted variable
and the other variables in the process activity. To determine
whether the activity alters the value of a particular variable
enough times to assume there is an influence over the variable,
the parameter shiftratio is established. The parameter corrthres
determines whether to store the inputs that are correlated with
values of a variable. Depending on the overlap of the traces,
new trace clusters are made. This is managed by the parameter
mindev, which ensures a sufficient enough deviation in clusters
before splitting them up into separate ones. Finally, the parameter
mintrace is used to see whether a certain decision happens enough
times before another, and hence whether it might have an influence
over each other’s variables. For a more detailed account of the
parameters, we refer to [122].

For every combination of the input parameters, Table 6.1
provides the time (in milliseconds) it took ProM to run on a desktop
(Xeon E3-1230 v5 CPU, 32GB RAM in Java 8) to obtain the
decision requirement diagram (DRD) models. Furthermore, the
number of decision models, which also corresponds to the number
of trace clusters that were discovered, is recorded. Additionally,
the average number of nodes in the DRD, the average number of
edges in the DRD, the average DRD depth, and the maximum
DRD depth are displayed. These are all taken across all the
discovered DRDs in all the trace clusters pertaining to a parameter
combination. It is clear from Table 6.1 that the longest running
11https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-
86ae4c7a310b

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

132 6.1. PARAMETER ASSESSMENT

Table 6.1: Parameter assessment applied to the BPI 2017 Challenge
log. Parameters are expressed in percentages.

minsup shiftratio corrthres mindev mintrace run time #models #nodes #edges depth maxdepth

60

20

10
80

20 961967 19 4 5 2 4
30 803001 9 3 3 2 3

90
20 1037709 19 4 5 2 4
30 890162 9 3 3 2 3

20
80

20 865582 12 3 2 2 3
30 779830 8 3 2 2 3

90
20 923489 12 3 2 2 3
30 839108 8 3 2 2 3

30
80

20 821627 7 3 2 2 3
30 754334 5 3 2 2 3

90
20 799169 7 3 2 2 3
30 765590 5 3 2 2 3

30

10
80

20 770324 16 5 5 2 4
30 612680 7 4 4 2 3

90
20 722334 16 5 5 2 4
30 593650 7 4 4 2 3

20
80

20 629718 10 3 2 2 3
30 584915 6 3 2 2 3

90
20 618483 10 3 2 2 3
30 568513 6 3 2 2 3

30
80

20 597231 5 3 2 2 3
30 611252 3 3 2 2 3

90
20 663545 5 3 2 2 3
30 597269 3 3 2 2 3

70

20

10
80

20 906217 19 4 5 2 4
30 746997 9 3 3 2 3

90
20 830106 19 4 5 2 4
30 743171 9 3 3 2 3

20
80

20 745552 12 3 2 2 3
30 707089 8 3 2 2 3

90
20 736886 12 3 2 2 3
30 686325 8 3 2 2 3

30
80

20 704901 7 3 2 2 3
30 684567 5 3 2 2 3

90
20 735997 7 3 2 2 3
30 672633 5 3 2 2 3

30

10
80

20 814774 16 5 5 2 4
30 707149 7 4 4 2 3

90
20 808342 16 5 5 2 4
30 690853 7 4 4 2 3

20
80

20 720558 10 3 2 2 3
30 662769 6 3 2 2 3

90
20 716551 10 3 2 2 3
30 693305 6 3 2 2 3

30
80

20 703106 5 3 2 2 3
30 649494 3 3 2 2 3

90
20 677885 5 3 2 2 3
30 655080 3 3 2 2 3

CHAPTER 6. PARAMETER ASSESSMENT 133

parameter combination runs for 1,037,709 milliseconds and that
the average number of nodes and the average number of edges per
model never exceed five, thus rendering models that are relatively
small and comprehensible. All the unique decision services that
were discovered for the parameter settings in Table 6.1 are provided
online in the form of DMN decision requirement diagrams in
Portable Network Graphics (PNG) format12.

6.2 Conclusion

In this chapter, we have performed a parameter assessment
of the SOAP-MInD technique, an adaptation of P-MInD [122]
that is capable of representing modular service-oriented decision
invocations that can be spread across multiple places within a
process. Furthermore, SOAP-MInD shows that different process
variants interact with the decisions in a different fashion, since the
traces are clustered according to decision variable shift sequences
in the process. SOAP-MInD is implemented as a plug-in to the
ProM framework for process mining, hence making the source code
open-source.

12https://feb.kuleuven.be/public/u0111379/TSC/Assessment

https://feb.kuleuven.be/public/u0111379/TSC/Assessment

Part IV

Change Patterns,
Model Evolution,
and Tool Support

CHAPTER 7

Decision Model Change
Patterns for Dynamic
System Evolution

‘The chief benefit, which results
from philosophy, arises in an
indirect manner, and proceeds
more from its secret, insensible
influence, than from its
immediate application.”

Treatise of Human Nature
— David Hume

This chapter was published as follows:
Faruk Hasić, Carl Corea, Jonas Blatt, Patrick Delfmann,

Estefanía Serral Asensio. Decision Model Change Patterns
for Dynamic System Evolution. Knowledge And Information
Systems, article in press, 2020.

A preliminary version of this paper was published in:
Faruk Hasić, Estefanía Serral Asensio. Change Patterns

for Decision Model and Notation (DMN) Model Evolu-
tion. The 18th Belgium-Netherlands Software Evolution
Workshop (BENEVOL), Brussels (Belgium), article in press,
2020.

137

138

Abstract. In the modern digital era, information systems must
operate in increasingly interconnected and dynamic environments,
which force them to be changeable yet consistent. Such
modern information systems are usually decision- and knowledge-
intensive. A recently introduced standard, the Decision Model
and Notation (DMN), has been adopted in both industry and
academia as a suitable method for modelling decisions and
decision rules. Noteworthy is that, despite the dynamic nature of
modern knowledge-intensive systems, DMN was only studied and
implemented in a static fashion, as decision schema change patterns
have not received any attention so far. This chapter identifies and
analyses the change patterns that can occur in a DMN decision
model. A change in the decision model can require the triggering
of other changes in order to safeguard consistency. As such,
this chapter will also investigate for each change pattern which
further changes should be performed to ensure model consistency.
The patterns presented in this chapter will not only facilitate the
understanding of decision change management and within-model
consistency, but can also be capitalised on for developing and
implementing flexible decision management systems. To illustrate
this, we present a modelling environment prototype that provides
modelling support when applying the proposed change patterns.

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 139

7.1 Introduction

Decision Model and Notation (DMN) is a recently introduced
decision modelling standard that has enjoyed significant interest in
literature [24, 25, 42, 58, 59, 66, 76, 106]. DMN consists of two levels
that are to be used in conjunction. First, the decision requirement
level represented by the Decision Requirement Diagram (DRD)
which depicts the requirements of decisions and the dependencies
between elements involved in the decision model. Second, the
decision logic level, which presents ways to specify the underlying
decision logic. The DMN standard employs rectangles to depict
decisions and subdecisions, ovals to represent data input, corner-
cut rectangles for business knowledge models, and curved rectangles
to represent knowledge sources. A schematic example of a DRD
is provided in Figure 7.1. The decision logic level is usually
represented in the form of decision tables.

DMN has mainly been adopted in business process management
(BPM) literature, which moves towards accommodating decision
management into the paradigms of Separation of Concerns
(SoC) and Service-Oriented Architecture (SOA), by externalising
decisions and encapsulating them into separate decision models
[32, 39, 66, 74, 100, 116]. Hence, the decisions are implemented
as externalised services. This externalisation of decisions
from processes, provides a plethora of advantages regarding
maintainability and flexibility for the process [49, 60, 66, 70, 76,
79]. However, all current works approach DMN from a static
perspective, i.e., no attention has been given to changing or
adaptable decision models. Nevertheless, the dynamic nature of
modern knowledge-intensive systems demands a degree of flexibility
to cope with the changing requirements [57]. In this chapter
we approach this research gap by identifying and defining the
change patterns that can be applied to DMN decision models.
Additionally, we asses the effect of each applied change pattern
on decision model consistency and we investigate and determine
the change propagation that is needed to be triggered to keep
such consistency. A change pattern is defined as an operation that
inserts, deletes, moves, or modifies model elements [55]. Note that
moving or modifying model elements can be achieved by applying
the insert and delete patterns, as such the insert and delete patterns

140 7.1. INTRODUCTION

form the core change patterns that will be the subject of this
chapter. We also refer to them as as inclusion and exclusion
patterns. The findings in this chapter can aid in developing and
implementing dynamic decision management tools and systems
that meet the requirements that the digital era demands. To
illustrate this, we also provide a proof-of-concept tool for modelling
support.

The contribution of this chapter is fourfold:

1. We identify and define change patterns for DMN decision
models.

2. We analyse the influence of each decision model change
pattern on the within-model consistency.

3. We investigate the propagation of decision model change
patterns throughout the decision model, i.e., we discuss
the chain of change patterns that can be set in motion
to restore within-model consistency after applying a single
change pattern on the decision model.

4. We develop a proof-of-concept modelling environment
prototype which provides modelling support when applying
the change patterns proposed in this chapter.

This chapter is structured as follows. Section 7.2 discusses
related work and Section 7.3 provides preliminary formalisation
needed for the construction of the change patterns. In Section
7.4 we introduce a running example of a DMN decision model
which will be used to illustrate the change patterns. Section 7.5
introduces a set of DMN decision model change patterns, while
Section 7.6 discusses the inconsistencies and change propagation
induced by the change patterns. In Section 7.7 we present
the modelling environment prototype which provides modelling
support for change pattern administration in DMN decision models.
Finally, Section 7.8 provides conclusions and directions for future
research.

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 141

7.2 Related Work

DMN was first introduced by the Object Management Group
(OMG) in 2015. Since then, several works on DMN have emerged.
Most works have focused on the integration of process and decision
models from a modelling point of view e.g., [9, 16, 17, 18, 60, 62, 65,
66, 67]. Others focus on the automatic discovery of decision model
from enriched process event logs [32, 123]. Works on soundness of
DMN models have been proposed as well [6, 10]. Furthermore,
literature provides a set of tools for modelling DMN models
[39, 74, 75, 76]. Before the introduction of DMN, The Decision
Model (TDM) was introduced for modelling business logic and as
a new requirements artifact for decision-aware business processes
[138, 139]. Furthermore, works on ontologies for knowledge-
intensive business processes have been suggested [43, 117]. These
consider additional relevant aspects in decision making which DMN
does not cover or which cannot always be adequately represented
in a decision table, such as advantages, disadvantages, risks, facts,
evidence and feelings. Nonetheless, in certain knowledge-intensive
settings, these aspects can cause changes that affect the consistency
of a decision model.

The ability of a knowledge-based system to efficiently deal with
decision rule changes is considered of paramount importance in
literature [15, 26, 41, 86, 102]. This way, business rigidity is
avoided and the ability to transform the underlying business rules
to new realities is facilitated. However, the lack of research on
process models at runtime is emphasised in [128], and existing
DMN decision model literature addresses decision modelling from a
static perspective where decision models are built and used, without
any form of model evolution. Nevertheless, adaptable models are
considered of paramount importance [20, 92, 128]. Change patterns
are often used to define the possible evolution of models. These
change patterns rely on the elementary edit operations that can be
applied on the model elements, i.e., insertion and deletion, as well
as substitution, which in essence is a combination of insertion and
deletion [148]. Furthermore, change patterns can help facilitate
the understanding of model change management as they provide a
guide for implementing changes to models while maintaining model
consistency.

142 7.3. PRELIMINARIES

Change propagation throughout the model is an important
aspect in hierarchical structures where referential integrity needs
to be upheld. Typically, such structures are connected by tables,
such as the relational database structure. The changes in relational
tables are propagated by rules such as on delete cascade or on
update cascade [27, 107]. Decision tables that are used in decision
models are of a similar hierarchical structure, and hence, similar
change propagation can be expected. However, instead of cascading
an update or delete action throughout the whole model, the
change propagation can also be captured by applying other change
patterns. Furthermore, the authors of [11, 124] show that, despite
referential integrity being researched for database systems, the
verification capabilities for business rules management are still
lacking. As such, change patterns for decision models were not
addressed yet in literature and, to the best of our knowledge, this
is the first work on change pattern propagation for DMN decision
models.

7.3 Preliminaries

In this section, we also provide a formalisation for key DMN
concepts needed for the development of the change patterns that
will be discussed in the following sections. For the formalisation, we
rely on [13, 66]. The backbone of a DMN decision model is formed
by rectangles that depict decisions and subdecisions and ovals that
represent data input. Additionally, business knowledge models and
knowledge sources can be defined. The underlying decision logic is
usually represented in decision table form.

Definition 7.1 (Decision requirement diagram (DRD)). A DRD
is a tuple (Ddm, ID, BK, KS, IR, KR, AR) consisting of a finite
non-empty set of decision nodes Ddm, a finite non-empty set of
input data nodes ID, a finite non-empty set of business knowledge
model nodes BK, and a finite non-empty set of knowledge source
nodes KS. These nodes are connected by requirements into a
directed acyclic graph (DAG): a finite non-empty set of directed
edges IR representing the information requirements such that
IR ⊆ (Ddm ∪ ID) × Ddm, a finite non-empty set of knowledge
requirements KR such that KR ⊆ BK × (Ddm ∪ BK), and a

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 143

finite non-empty set of authority requirements AR such that
AR ⊆ (Ddm ∪ ID ∪KS)× (Ddm ∪ BK ∪KS).

A schematic DRD is represented in Figure 7.1. According to the
DMN standard, a decision requirement graph can be an incomplete
or partial representation of the decision requirements in a decision
model. The set of all DRDs in the decision model constitutes the
exhaustive set of requirements. The information contained in this
set can be combined into a single DRD representing the decision
requirements level as a whole. The DMN standard refers to such
a DRD as a decision requirement graph (DRG). We expand the
notion of a DRG, in such a way that a DRG is a DRD which is self-
contained, i.e. for every decision in the diagram all its requirements
are also represented in the diagram.

Decision node 1

Decision node 2

Input data node 2

Input data node 1

Business knowledge
model node

Knowledge
source node

Information
requirement

K
n
ow
le
d
g
e

re
q
u
ir
em
en
t

Authority
requirement

Figure 7.1: A schematic overview of DRD model elements.

Definition 7.2 (DRG). A decision requirement diagram DRD
is a decision requirement graph DRG if and only if for every
decision in the diagram all its requirements are also represented
in the diagram.

The term decision can have a number of meanings. According
to the DMN specification a decision is the logic used to determine

144 7.4. RUNNING EXAMPLE OF A DMN DECISION MODEL

an output from a given input. Meanwhile, in process modelling an
activity can be a decision task, e.g., the business rule task in the
Business Process Model and Notation (BPMN) standard [105] in
which a decision is made by applying decision logic [139].

Another common meaning is that a decision is the actual result,
which we call the output of a decision, or simply the decision result.
We define a decision as follows:

Definition 7.3 (Decision). A decision d ∈ Ddm is a tuple
(Id, Od, L), where I ⊆ ID is a set of input symbols, O a set
of output or result symbols and L the decision logic defining the
relation between symbols in Id and symbols in Od.

In case of decision tables, I and O contain the variables of the
input and output elements respectively, and L is the table itself,
i.e. the set of decision rules present in the table.

In DRDs these decisions di are contained by the decision nodes
Di ∈ Ddm. One can state that di and Di are equivalent views at
different levels of granularity: di looks at a decision on its own,
while Di places di in the hierarchy of the DRD. We will use D
to refer to both a decision and its representing node in a DRD.
From the definition of DRGs, it is clear that every decision D in a
DMN model has a unique decision requirement graph DRGD with
D as its single top-level decision. A DRG contains all information
requirements of its top level decisions. Hence, only one DRG exists
with D as its single top-level decision, i.e., DRGD. Furthermore, all
the decisions in a DRGD, except D, are consequently subdecisions
of D. In other words, the top-level decision requires these lower
level subdecisions.

7.4 Running Example of a DMN Decision
Model

Consider a patient health monitoring system for a person diagnosed
with the Chronic Obstructive Pulmonary Disease (COPD). COPD
is a disease that obstructs the lungs and obstructs the airflow
and breathing of the patient. Acute attacks of the disease can
happen. In that case the patient can experience uncomfortable
complications such as fast breathing, a fast heart rate, hyperactive

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 145

use of muscles, and a cold skin [72]. In scientific literature it has
been recognised as well that a patient monitoring system can help
increase the life quality of the patient and decrease the risks that
are inherent to the disease [72]. Multiple sensors and wearable
technologies exist that can collect patient data relevant for the
patient monitoring process [72]:

– Electrocardiogram (ECG) sensors monitor the heart.

– Respiratory sensors check the breathing rate.

– Skin temperature sensors monitor the skin temperature.

– Muscular Electromyography (EMG) sensors monitor the
muscle activity.

All these sensors collect measurements on the patient’s health.
Note that a single sensor or even a few sensors combined are not
enough to capture the COPD. For instance, the patient might
take a walk outside in the winter and a sensor registers a low
skin temperature. In that case, the patient is not necessarily
suffering from COPD at that moment. However, an expert can
build patient-specific decision rules to capture COPD in such a
monitoring system. For instance, if the sensors register a low
skin temperature, a short and fast breathing rate, together with
high blood pressure, the monitoring process might decide that the
patient is suffering an attack and running out of oxygen.

A suitable way of modelling such decisions in complex
environments is through the Decision Model and Notation
(DMN) standard, since the standard provides maintainability and
understandability of decisions [77, 78, 106]. Figure 7.2 gives an
example decision requirements graph of a DMN model for COPD
severeness based on data gathered by the sensors. Figure 7.3
provides the top-level COPD decision table.

7.5 Decision Model Change Patterns

To accommodate changes, designers should be able to evolve the
decision models. A number of changes can occur in the decision
model. The core elements of a decision model are depicted in

146 7.5. DECISION MODEL CHANGE PATTERNS

COPD severeness

Heart rhythm Respiration

ECG data Respiratory data

Muscle activity Skin temperature

Skin sensor dataEMG data

Decision node
(top-level decision)

Decision node
(subdecision)

Input data node

Information
requirement

Figure 7.2: A DRD model for COPD severeness based on data from
the sensors.

Figure 7.3: A decision table for COPD severeness.

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 147

Figure 7.2, i.e. the input data and the decision nodes within a
DRD, connected via information requirements arrows. The logic
encapsulated in a decision node is usually modelled with decision
tables, such as shown in Figure 7.3. To determine the change
patterns, we investigate the changes that can manifest themselves
on core DMN elements, provided in the metamodel of the DMN
specification [106], at different levels of granularity. An overview of
the full DMN metamodel is provided in Figure C.1 in Appendix C,
followed by more detailed meta models for the distinctive parts
of DMN. First, we assess the change patterns within a single
decision rule, i.e., changing the inputs and outcomes of a single
rule. Next, we look at change patterns for a decision rule in its
entirety, i.e., adding or deleting decision rules from a decision table.
These change patterns all pertain to a single node of the DRD,
i.e., a single decision table, according to the DMN decision table
metamodel (see Figure C.2). Furthermore, we investigate change
patterns on the topological structure of the DRD itself, i.e., the
addition and deletion of core DRD elements (decision nodes and
data input nodes), as specified in the metamodels in Figures C.3
and C.4. The change patterns are derived from the formalisation of
core decision model elements in Section 7.3 and the elementary edit
operations that can be applied on the elements, i.e., insertion and
deletion, as well as substitution, which in essence is a combination
of insertion and deletion [148]. We illustrate each change pattern on
the running example introduced in Section 7.4. Table 7.1 provides
an overview of the change patterns directly relating to core DMN
elements.

7.5.1 Decision table change patterns

For changing decision rules, we can distinguish a plethora of change
patterns. We denote a change pattern with ∆Π, Π refers to a
pattern, while ∆ stands for change, e.g., ∆Id denotes a change in
the input variables of a decision node. In essence, three elements in
the decision table can undergo changes, as derived from Definition
7.3: the inputs Id, the outputs Od and the logic L mapping the
inputs to the outputs, i.e. the decision rules. We define these
changes in what follows.

148 7.5. DECISION MODEL CHANGE PATTERNS

Figure 7.4: Decision table with changed inputs.

7.5.1.1 Changes within decision rules

Changing inputs

∆Π∆Π∆Π 1 (Decision input exclusion). A change ∆Id− indicates a
change in the input set Id of a decision D as follows: an input
variable, or an existing value of a variable, can be deleted from a
decision table.

εεε 1 (Example). Suppose that in the top-level decision table
represented in Figure 7.3, the input of muscle activity is
considered irrelevant for the decision on COPD severeness.
Hence, this input variable is entirely deleted from the decision
table. Figure 7.4 presents the decision table after change pattern
∆Π1 was applied. Note that this decision table has been
refactored to avoid overlapping and missing rules, since simply
deleting an input variable can render the decision table to be
incomplete and incorrect [31].

∆Π∆Π∆Π 2 (Decision input inclusion). A change ∆Id+
indicates a

change in the input set Id of a decision D as follows: opposite to
∆Π1, an input variable, or a new value for an existing variable,
can be added to a decision table.

εεε 2 (Example). Adding a new input variable results in the exact
opposite changes as in the previous change pattern: if the input
variable of muscle activity were to be added again to the decision
table in Figure 7.4, that would result in the decision table in
Figure 7.3.

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 149

Changing outcomes

∆Π∆Π∆Π 3 (Decision output inclusion). A change ∆Od+
indicates a

change in the output set Od of a decision D as follows: a new
output value can be added to a decision table.

εεε 3 (Example). Suppose that in the table presented in Figure 7.3,
the COPD severeness decision outcome of the first decision rule
changes from severe to lethal. This new table is given in Figure
7.5. Notice that the outcome value lethal is a new outcome that
was not represented in the decision table before.

∆Π∆Π∆Π 4 (Decision output exclusion). A change ∆Od− indicates a
change in the output set Od of a decision D as follows: an existing
output value can be deleted from a decision table.

εεε 4 (Example). Suppose that in the table presented in Figure 7.5,
the COPD severeness decision outcome of the first decision rule
changes from lethal to severe, i.e., the outcome of lethal is deleted
from the decision table. The table in Figure 7.5 is consequently
reverted to the situation in Figure 7.3.

Changing decision logic

∆Π∆Π∆Π 5 (Decision rule logic change). A change ∆L indicates a
change in the logic L of a decision D, i.e., a change in relating
the existing input symbols Id to the existing output symbols Od

within the decision table.

Figure 7.5: Decision table with changed outcomes.

150 7.5. DECISION MODEL CHANGE PATTERNS

εεε 5 (Example). Suppose that in the table presented in Figure
7.3, the logic in the fourth decision rule changes. Instead of
mapping the input values to an output of mild, the inputs are now
considered to be of a severe nature. This change is exemplified
in the decision table in Figure 7.6.

7.5.1.2 Changes on decision rules in their entirety

∆Π∆Π∆Π 6 (Decision rule exclusion). If a decision rule id ∈ Id
L−→

od ∈ Od is deemed irrelevant at a certain point in time, it can be
deleted in its entirety from a decision table.

εεε 6 (Example). Suppose that decision rule 7 is entirely deleted
from the decision table in Figure 7.3, rendering the decision
table depicted in Figure 7.7. Notice that the decision table does
not anymore contain the output none, and that by deleting the
decision rule, the decision table is not complete anymore, i.e.,
the combination of input values that was present in rule 7 in
Figure 7.3 can perhaps still manifest itself in real life. However,
the decision table is not able to return an outcome for this input
combination. This could lead to a deadlock in the system. To
avoid this, either the decision table should be completed and
the input values at hand should be mapped to other existing
decision outcomes, or the system should be redesigned to capture
the possibility of no decision outcome being returned.

Figure 7.6: Decision table with changed logic.

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 151

Figure 7.7: Decision table with a deleted decision rule.

∆Π∆Π∆Π 7 (Decision rule inclusion). If a new decision rule id ∈ Id
L−→

od ∈ Od is deemed relevant at a certain point in time, it can be
added in its entirety to an existing decision table.

εεε 7 (Example). Suppose that the decision rule deleted in the
previous change pattern is reintroduced again to the decision
table. Thus, to the decision table in Figure 7.7, one rule is added,
rendering the decision table in Figure 7.3.

7.5.2 DRD change patterns

This subsection deals with the deletion or addition of entire
elements in the DRD model. Here, we focus on the core elements
of a DRD model, i.e., decision nodes and input data nodes. By
deleting the input data and decision nodes from the DRD, the
information requirement arrows that connect them are deleted as
well.

7.5.2.1 Decision node changes

∆Π∆Π∆Π 8 (Decision node exclusion). A decision node D ∈ Ddm

can be deleted from the DRD. This corresponds to deleting all
decision rules (Id

L−→ Od) from a decision node D. Hence, this
change pattern is an aggregation of multiple ∆Π6 changes. Note
that deleting a decision node D also deletes all its incoming and
outgoing information requirements arrows from the set IR.

152 7.5. DECISION MODEL CHANGE PATTERNS

COPD severeness

Respiration Skin temperatureHeart rhythm

ECG data Respiratory data Skin sensor data

Figure 7.8: DRD adapted to changed inputs in the top-level decision.

εεε 8 (Example). Suppose that the subdecision Muscle activity
in the DRD in Figure 7.2 is excluded from the model. The
updated decision model is then given in Figure 7.8.

∆Π∆Π∆Π 9 (Decision node inclusion). A new decision node D can
be added to the set of decision nodes Ddm. This corresponds to
adding a new decision table, and thus, adding multiple decision
rules (Id

L−→ Od) encapsulated in the decision node D. Hence,
this change pattern is in essence an aggregation of multiple
∆Π7 changes. Note that adding a decision node D also adds
the necessary incoming and outgoing information requirements
arrows to the set IR.

εεε 9 (Example). Suppose that a decision node Muscle activity
is added to the decision requirements diagram in Figure 7.8,
effectively producing the DRD presented in Figure 7.2, as the
EMG data input is added to the DRD as well.

7.5.2.2 Input data node changes

∆Π∆Π∆Π 10 (Input data node inclusion). A new data input node can be
added to the set of data input nodes ID. By adding a data input
node, its necessary input requirement arrows are also added to the
set of IR and connected to the relevant decision nodes in Ddm.
Notice that this change pattern on the DRD level corresponds to
adding a new input variable to the decision table that requires

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 153

the newly added data input node. Hence, this change pattern is
equivalent to ∆Π2.

εεε 10 (Example). Consider the decision model provided in Figure
7.8. Assume that an additional input data node is added that
provides information on muscle activity. The new decision model
is then given in Figure 7.9.

∆Π∆Π∆Π 11 (Input data node exclusion). A data input node can be
deleted from the set of data input nodes ID. By deleting a data
input node, all its input requirement arrows are also deleted from
to the set of IR. Notice that this change pattern on the DRD level
corresponds to deleting an input variable from the decision table
that required the input data node. Hence, this change pattern is
again equivalent to ∆Π1.

εεε 11 (Example). Consider the decision model provided in Figure
7.9. Assume that the Muscle activity input data node is
deleted from the requirements diagram since this information
is now deemed invalid to make the top-level COPD severeness
decision. The newly obtained DRD is then given in Figure 7.8.

7.5.3 Change patterns on non-core DMN elements

So far, we have enumerated change patterns that have a
considerable impact on the core DMN elements according to
the metamodel presented in the standard specification [106] (see

COPD severeness

Respiration

Respiratory data

Skin temperature

Skin sensor data

Heart rhythm

ECG data Muscle activity

Figure 7.9: A DRD with an added input data node.

154 7.5. DECISION MODEL CHANGE PATTERNS

Table 7.1: Overview of decision model change patterns.

Decision table change patterns
Changes within decision rules

∆Π1 Decision input exclusion.
∆Π2 Decision input inclusion.
∆Π3 Decision output inclusion.
∆Π4 Decision output exclusion.
∆Π5 Decision rule logic change.

Changes on decision rules
∆Π6 Decision rule exclusion.
∆Π7 Decision rule inclusion.

Decision requirements diagram change patterns
Decision node changes

∆Π8 Decision node exclusion.
∆Π9 Decision node inclusion.

Input data node changes
∆Π10 Input data node inclusion.
∆Π11 Input data node exclusion.

Appendix C). These are: the input data nodes, the decision
nodes, and the underlying decision tables and their components.
However, changes related to non-core elements of the model are
possible as well. We give an overview of those changes. First, we
enumerate the changes that are in essence the same as the core
changes presented in this section, since the elements that undergo
the changes are either composed out of the elements that have
already been discussed, or they connect the previously discussed
core elements.

– Business knowledge models (BKM) and associated knowledge
requirements can be introduced in a DRD and, therefore, they
can undergo changes as well. The encapsulated decision logic
of business knowledge models is often represented in the form
of decision tables as well (see the metamodel in Figure C.5).
Hence, the change patterns the BKMs can go through are
analogous to those of the decision nodes and their related
decision tables.

– Decision services are built up of core elements of the DRD,

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 155

as shown in the metamodel in Figure C.6. Hence, changing
the decision services corresponds to changing the individual
core elements within the DRD that are encapsulated in the
decision services. As such, these changes have been addressed
above. Note that according to the latest DMN standard
specification [106], there is an element which can be used in
the DRD to represent a decision service. This decision service
element encapsulates a subset of the core elements of a DRD,
much like a subprocess task in BPMN encapsulates a subset
of logically related process elements of a master process.

– The requirement connections between DRD elements can
change, i.e., the requirement arrows can be added or deleted.
This has possible impact on both the begin and end nodes
associated to the requirement arrows, as shown in the decision
metamodel in Figure C.3. If the requirement arrow is deleted
and the begin node has no other requirements associated to
it, it needs to be deleted as well. If a new requirement arrow
is added, the relevant information passed through that arrow
should be incorporated in the designated end node.

Next to these non-core DMN elements that are closely related
to the core DMN elements, other DMN components exist as well,
as specified in the metamodels in Appendix C, and, therefore, they
too can be subject to change.

– The data types of the input and/or outputs can be changed
(see Figure C.2).

– The names of all the elements within the decision model can
be changed (see Figure C.1).

– Knowledge sources and associated authority requirements can
be added to the DRD, as shown in the metamodels in Figures
C.3 and C.5, and they can undergo change as well. However,
the knowledge source and authority requirements in DMN are
mainly used for documentation purposes and do not affect the
rest of the model.

– Text annotations and associations can be added, deleted, or
changed to provide additional textual information on elements

156 7.6. CHANGE PROPAGATION

within the DRD, as depicted in the metamodel in Figure C.7.
These are meant for documentation and clarification purposes
and do not affect the decision model in any way if they are
subject to change.

– The hit policies of decision tables can be altered as well, as
shown in the decision table metamodel in Figure C.2. This
usually leads to refactoring and remodelling the decision table
[31], however, it has no further influence on the decision model
elements from the input side or the output side. When the
hit policy of the decision table is changed, as the decision
rules will often need to undergo reordering to fit the newly
assigned hit policy. However, researchers have argued to stick
with unique hit decision tables and to avoid hit policies such
as first hit and priority hit in order to avoid ambiguity and
overlapping rules as a design principle [49, 147].

– Note that refactoring and simplifying decision tables does,
however, change how they represent logic. Modelling logic
with decision tables has been discussed in previous works,
in particular when it comes finding overlapping and missing
rules in decision tables, and on refactoring the decision tables
to remedy these issues [8, 91]. Furthermore, decision table
simplification was researched as well [31, 40]. Here, the
goal is to represent the decision logic in a decision table
in an unambiguous and understandable way by for instance
contracting the inputs of decision rules which lead to the
same decision outcome. As such, the notions of decision table
refactoring and simplification are well researched and they
have led to tools that support the automatic refactoring and
simplification of decision tables.

7.6 Change Propagation

Applying a single change pattern to a decision model can have
repercussions across multiple elements of a DRD. More precisely, an
applied change pattern can render the decision model inconsistent.
To restore consistency other change patterns may need to be
triggered. In what follows, we investigate how each change pattern

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 157

should trigger a chain of change patterns within the decision model.
For each change pattern, we state which inconsistencies the change
may induce into the decision model. Next, we indicate which
change patterns need to be triggered and propagated to resolve
the inconsistencies. We provide an overview of change pattern
propagation in Table 7.2.

7.6.1 ∆Π1-induced change pattern propagation

7.6.1.1 Induced inconsistencies

Deleting an input from a decision rule (∆Π1) corresponds to
deleting the input requirements of that decision table. The input of
a decision consists of its input data elements and/or the outcomes
of its subdecisions. Hence, deleting the input of the decision table
without deleting its predecessors that supply the inputs, renders
the decision model inconsistent.

7.6.1.2 Resolving inconsistencies

Given the hierarchical topology of a DRD, ∆Π1 implies changing
the elements that are required by the decision whose inputs undergo
changes:

– If the deleted input is obtained from a data input node, this
manifests itself by deleting input data nodes (∆Π11).

– If the deleted input was obtained from another decision node,
i.e., a subdecision, the propagated change patterns to the
subdecisions can be manifold.

– An existing decision outcome in the subdecision table
can be deleted (∆Π4). Note that this only applies
if the subdecision outcome is not used as an input
in another decision table. Otherwise, other decision
tables that require the subdecision outcome are rendered
inconsistent.

– Another option is to exclude a whole decision rule in
the subdecision whose decision outcome feeds into the
decision table with the changed input (∆Π6).

158 7.6. CHANGE PROPAGATION

– If an entire input variable is deleted, rather than just
an existing value of an existing input variable, the entire
subdecision node that feeds its outcome into the higher-
level decision where the input is deleted in the first place
(∆Π8).

Thus, applying ∆Π1 can on its turn trigger change patterns
∆Π4, ∆Π6, ∆Π8, and ∆Π11. Take for instance the deletion of
the variable muscle activity from the inputs in the decision table
in Figure 7.3, rendering decision table 7.4. This also affects the
decision hierarchy in the DRD in Figure 7.2. The subdecision
Muscle activity, together with its input data, i.e., EMG data,
are not part of the top-level decision anymore. As such, they should
be discarded from the decision requirements diagram. In this case,
∆Π1 also triggers change patterns ∆Π8 and ∆Π11. The updated
decision requirements model is provided in Figure 7.8.

7.6.2 ∆Π2-induced change pattern propagation

7.6.2.1 Induced inconsistencies

Adding an input to a decision rule (∆Π2) corresponds to changing
the input requirements of that decision table. The input of a
decision consists of its input data elements and/or the outcomes
of its subdecisions. Hence, adding an input to the decision table
without changing its predecessors that supply the inputs, renders
the decision model inconsistent.

7.6.2.2 Resolving inconsistencies

Given the hierarchical topology of a DRD, ∆Π2 implies changing
the elements that are required by the decision whose inputs undergo
changes:

– If the added input is obtained from a data input node, this
manifests itself by adding input data nodes (∆Π10).

– If the added input is obtained from another decision node,
i.e., a subdecision, the propagated change patterns to the
subdecisions can be manifold.

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 159

– A new decision outcome in the subdecision table can be
added (∆Π3).

– Another option is to include a whole new decision rule
in the subdecision whose decision outcome feeds into the
decision table with the changed input (∆Π7).

– If a new input variable is introduced, rather than just
a new value for existing input variables, a whole new
decision node that feeds its outcome into the higher-level
decision where the input is added can be included(∆Π9).

Thus, applying ∆Π2 can on its turn trigger change patterns
∆Π3, ∆Π7, ∆Π9, and ∆Π10. Take for instance decision table 7.4
and suppose that the muscle activity variable is added again. The
DRD should reintroduce the subdecision Muscle activity and
its required EMG data. Thus, this change pattern version would
return the models to the initial state as shown in Figures 7.2 and
7.3, by initiating change patterns ∆Π9 and ∆Π10 after ∆Π2.

7.6.3 ∆Π3-induced change pattern propagation

7.6.3.1 Induced inconsistencies

Given the hierarchical topology of a DRD, adding a decision
outcome to a decision rule (∆Π2) also affects the input
requirements, i.e. the inputs, of the higher level decision table
that requires the added decision outcome, assuming that the added
decision outcome does not belong to the top-level decision node
of the DRD. Simply changing the outcome of a decision without
adapting the higher-level decision tables that require that outcome,
leads to an inconsistent decision model.

7.6.3.2 Resolving inconsistencies

Applying ∆Π3 can trigger change pattern ∆Π2 in all higher-
level decision tables that require the decisions affected by ∆Π3.
Note that newly added outcome values can be captured in higher-
level decision tables by introducing new decision rules (∆Π7),
or even new decision nodes (∆Π9) if an entirely new decision
outcome variable is introduced. Take for instance the decision table

160 7.6. CHANGE PROPAGATION

represented in Figure 7.3, the COPD severeness decision outcome
of the first decision rule changes from severe to lethal. This new
table is given in Figure 7.5. Notice that in this case the DRD in
Figure 7.2 does not undergo any change, since the changed decision
outcome belongs to the top-level decision of the DRD. Hence, the
outcome does not affect any decision constructs that are higher in
the decision hierarchy.

7.6.4 ∆Π4-induced change pattern propagation

7.6.4.1 Induced inconsistencies

Given the hierarchical topology of a DRD, deleting a decision
outcome to a decision rule (∆Π4) also affects the input
requirements, i.e. the inputs, of the higher level decision table that
requires the deleted decision outcome, assuming that the deleted
decision outcome does not belong to the top-level decision node
of the DRD. Here too, simply changing the outcome of a decision
without adapting the higher-level decision tables that require that
outcome, leads to an inconsistent decision model.

7.6.4.2 Resolving inconsistencies

Applying ∆Π4 should trigger change pattern ∆Π1 in all higher-
level decision tables that require the decisions affected by ∆Π4.
Similar to the previous change pattern, deleted outcome values can
be resolved by deleting decision rules that require the outcome
values in higher-level decision tables ((∆Π6), or deleting entire
higher-level decision nodes if the outcome variable is deleted in
its entirety (∆Π8) It is worthwhile to notice the exact opposite
changes in the model occur as in the previous change pattern. If in
the decision table of Figure 7.5, the lethal outcome were again to
be replaced by the severe outcome, then the decision table would
undergo redesign to revert back to the model presented in the
running example, i.e., Figure 7.3.

7.6.5 ∆Π5-induced change pattern propagation

Since ∆Π5 is only concerned with the logic within one decision node
of the decision model, no additional change patterns are propagated

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 161

as a result of applying ∆Π5. This is due to the fact that the input
and outcome sets of the decision table do not change, but merely
the logic that maps the inputs onto the outcomes. The inputs and
outcomes are linking elements for the information requirements
that construct the decision hierarchy. Since this change pattern
does not alter the inputs and outcomes, no change propagation to
other elements in the decision model can occur as long as the set
of input values and the set of output values remain the same.

7.6.6 ∆Π6-induced change pattern propagation

7.6.6.1 Induced inconsistencies

Excluding a decision rule (∆Π6) is in essence a combination of
deleting inputs (∆Π1), deleting decision outcomes (∆Π4), and the
logic that connects them (∆Π5). Hence, this change pattern can
possibly induce the same model inconsistencies as patterns ∆Π1
and ∆Π4.

7.6.6.2 Resolving inconsistencies

Thus, applying ∆Π6 can on its turn trigger change patterns ∆Π1,
∆Π4, ∆Π5 and ∆Π6 again. Notice that if no input variables or
rule outcomes are deleted when ∆Π6 occurs, then this pattern
corresponds to ∆Π3, i.e., a mere change in underlying logic,
without any further change propagation.

When applying ∆Π6 to decision rule 7 in the decision table in
Figure 7.3, obtaining the decision table depicted in Figure 7.7, a
unique decision output value, i.e., none, is deleted. However, this
does not affect the rest of the decision model, since the affected
decision table corresponds to the top-level decision. As such,
these change patterns cannot propagate any patterns affecting the
higher levels in the decision hierarchy. Furthermore, the lower-level
elements in the decision hierarchy are not affected either, since the
deleted input values are not unique, and no input variable was
deleted in its entirety. Thus, in this case, ∆Π6 only triggers a
change in underlying logic (∆Π5) without affecting the hierarchy
of the DRD. However, the decision table in Figure 7.7 is not longer
complete and should undergo redesign according to [31] to capture
all possible input combinations.

162 7.6. CHANGE PROPAGATION

7.6.7 ∆Π7-induced change pattern propagation

7.6.7.1 Induced inconsistencies

Including a decision rule (∆Π7) is, in analogy with ∆Π6
propagation, a combination of ∆Π2, ∆Π3, ∆Π5 in the case of
deleting existing values of existing input variables or outcomes.
Hence, this change pattern can possibly trigger the same
inconsistencies as patterns ∆Π2 and ∆Π3 when inputs or outcomes
are added to a decision rule, assuming new values of existing
variables are introduced.

7.6.7.2 Resolving inconsistencies

Thus, applying ∆Π7 can on its turn trigger change patterns ∆Π2,
∆Π3, ∆Π5 and ∆Π7 again. Notice that if no unique values of input
variables and rule outcomes are introduced when ∆Π7 occurs, then
this pattern corresponds to ∆Π5, i.e., a mere change in underlying
logic, without any further change propagation.

When applying ∆Π7 by decision rule 7 in the decision table in
Figure 7.7, obtaining the decision table depicted in Figure 7.3, a
unique decision output, i.e., none, is added. As such the table is
complete. However, in analogy with ∆Π6, no other elements in the
decision hierarchy undergo any changes in this example.

7.6.8 ∆Π8-induced change pattern propagation

7.6.8.1 Induced inconsistencies

Deleting an entire decision node (∆Π8) corresponds to applying
∆Π6 on every decision rule contained within the decision table of
that decision node, i.e. deleting the decision table related to that
node. As such, the same chain of inconsistencies is established. All
elements that are lower in the decision hierarchy and that are only
connected to the deleted decision node, become obsolete as well.
The elements that are higher in the decision hierarchy and that
require the outcome of the deleted decision node, render the model
inconsistent, since the required inputs can no longer be obtained
due to the deletion of the lower-level decision node.

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 163

7.6.8.2 Resolving inconsistencies

All input nodes, i.e., input data nodes and subdecisions, that feed
into the deleted decision node and are only connected to that
decision node, need to be deleted, effectively triggering ∆Π8 and
∆Π11. This applies to decision model elements that are lower in
the decision hierarchy than the deleted decision node. For elements
that are higher in the decision hierarchy, change pattern ∆Π1
should be triggered as well, i.e., whole input variables are deleted,
since the required decision node that provides those variables is
deleted as well. As such, the underlying decision logic of the
decision model can be subject to changes as well ∆Π5.

Suppose that the subdecision Muscle activity in the DRD
in Figure 7.2 is excluded from the model. This also deletes the
subdecision’s input data, i.e., EMG data (∆Π11). The updated
decision model is then given in Figure 7.8. Since the deleted
decision node is connected to a higher-level decision node, i.e., COPD
severeness, which requires the deleted decision node as input,
inconsistencies arise in the decision model. Namely, the decision
table in Figure 7.3 has a muscle activity input that can no longer
be obtained due to the deletion of the Muscle activity decision
node. As such, ∆Π8 also triggers ∆Π1 in this example, effectively
transforming the decision table in Figure 7.3 into the decision table
given in Figure 7.4 by deleting the input variable muscle activity.
As such, the decision model is rendered consistent again.

7.6.9 ∆Π9-induced change pattern propagation

7.6.9.1 Induced inconsistencies

Inserting an entire decision node (∆Π9) corresponds to adding an
entirely new decision table, i.e., applying ∆Π7 on every decision
rule contained within the decision table of that decision node.
Hence, the same inconsistencies arise as in ∆Π7.

7.6.9.2 Resolving inconsistencies

For all decision elements that require the inserted decision node, a
new variable will need to be introduced in the inputs (∆Π2). For
the inserted decision node itself, the relevant input requirements

164 7.6. CHANGE PROPAGATION

need to be provided, either by linking existing decision nodes and
input data nodes to the inserted decision node, or by introducing
new decision nodes and input data nodes (∆Π9 and ∆Π10). This
also affects the decision logic (∆Π5).

Suppose that the subdecision Muscle activity is added to the
DRD in Figure 7.8, obtaining the DRD in Figure 7.2. This also adds
the subdecision’s input data, i.e., EMG data (∆Π10) to the DRD
model in Figure 7.2. Furthermore, the decision table in Figure 7.4
corresponding to the COPD severeness decision needs to be altered
as well to incorporate the addition of the new decision node. As
such the muscle activity variable is added to reflect the information
requirement between the Muscle activity subdecision and the
COPD severeness decision (∆Π2). This way, the decision table
in Figure 7.3 is obtained. As such, the consistency between the
different decision model elements is restored.

7.6.10 ∆Π10-induced change pattern propagation

7.6.10.1 Induced inconsistencies

Including a new input data node (∆Π10) in a DRD renders the
decision model inconsistent if the decision table to which the input
data node is connected, is not updated as well to consider that
input node.

7.6.10.2 Resolving inconsistencies

Including a new input data node (∆Π10) also corresponds to
changing the inputs of all decision rules in all decision nodes that
require the added input data node (∆Π2). This also changes the
decision logic (∆Π5). Hence, all decision nodes that require the
input data node need to introduce the variable concerning the newly
added input data node to their inputs.

Consider the decision model provided in Figure 7.8 with its
corresponding top-level decision table in Figure 7.4. Assume that
an additional input data node is added that provides information
on muscle activity. The new DRD model is then given in Figure
7.9. However the newly introduced Muscle activity node induces a
change in the decision table in Figure 7.4 as well (∆Π2). More
precisely, the inputs of that decision table need to change to

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 165

incorporate the muscle activity variable, rendering the decision
table in Figure 7.3. As such, the consistency between the decision
model elements is restored.

7.6.11 ∆Π11-induced change pattern propagation

7.6.11.1 Induced inconsistencies

Excluding an input data node (∆Π11) from a DRD renders the
decision model inconsistent if the decision table to which the input
data node was connected, is not updated as well.

7.6.11.2 Resolving inconsistencies

Excluding an input data node (∆Π11) corresponds to changing
the inputs of all decision rules in all decision nodes that require
the deleted input data node (∆Π1). This also changes the decision
logic (∆Π5). Hence, the variable derived from the deleted input
data node is deleted from all the decision nodes that required the
input data node. Since the input data nodes are by definition (see
Definition 7.1) the lowest elements in the decision hierarchy, they
can only propagate their changes to higher-level decision nodes.
This holds both for change propagation induced by ∆Π11, as well
as ∆Π10.

Consider the decision model provided in Figure 7.9 with its
corresponding top-level decision table in Figure 7.3. Assume that
the Muscle activity input data node is deleted. The new DRD
model is then given in Figure 7.8. However, the deleted Muscle
activity node should induce a change in the decision table in Figure
7.3 as well (∆Π1). More precisely, the inputs of that decision table
need to change to incorporate the deletion of the muscle activity
variable, rendering the decision table in Figure 7.4. As such, the
consistency between the decision model elements is restored.

7.6.12 Overview of induced change pattern
propagation

Notice that all the applied change patterns can also induce a change
in the decision logic (∆Π5), i.e., the mapping between input and
output elements. When a change pattern is applied to the decision

166 7.6. CHANGE PROPAGATION

model, it can trigger another change pattern. That triggered
change pattern can in turn trigger yet another change pattern.
Thus, a chain of triggered patterns may need to be propagated
through the decision model until the system stabilises. Table 7.2
gives an overview of how this change pattern propagation chain
can come into existence. Figure 7.10 provides a depiction of the
change propagation graph. For instance, when pattern ∆Π1 is
applied, ∆Π8 may need to be triggered. Change pattern ∆Π8
can in turn trigger ∆Π11 after which the propagation of changes
stop and the system returns to a stable state. Note that, as
indicated in Table 7.2, the change patterns can also induce a change
in decision logic (∆Π5). However, we have excluded ∆Π5 from
the change propagation graph in order to render the graph more
comprehensible.

Table 7.2: Change propagation: an overview of decision model change
patterns that may need to be triggered in other elements of the decision
model to restore consistency.

Applied ∆Π Propagated ∆Π possibly triggered by initial ∆Π

∆Π1 ∆Π4, ∆Π5, ∆Π6, ∆Π8, ∆Π11

∆Π2 ∆Π3, ∆Π5, ∆Π7, ∆Π9, ∆Π10

∆Π3 ∆Π2, ∆Π5, ∆Π7, ∆Π9

∆Π4 ∆Π1, ∆Π5, ∆Π6, ∆Π8

∆Π5

∆Π6 ∆Π1, ∆Π4, ∆Π5, ∆Π6

∆Π7 ∆Π2, ∆Π3, ∆Π5, ∆Π7

∆Π8 ∆Π1, ∆Π5, ∆Π8, ∆Π11

∆Π9 ∆Π2, ∆Π5, ∆Π9, ∆Π10

∆Π10 ∆Π2, ∆Π5

∆Π11 ∆Π1, ∆Π5

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 167

ΔΠ2

ΔΠ1

ΔΠ3 ΔΠ4

ΔΠ6

ΔΠ7

ΔΠ8

ΔΠ9ΔΠ10

ΔΠ11

Figure 7.10: Overview of change propagation: change patterns that
can possibly follow each other. Note that ∆Π5 should be considered as
a consequence of applying any change pattern, but it is not included in
the graph in order to provide a more comprehensible overview.

7.7 A Modelling Environment for DMN
Model Evolution

This section presents a modelling environment prototype which
provides modelling tool support for the evolution of DMN
decision models. The modelling environment is based on the
open source Camunda13 modeller which we have advanced with
verification capabilities. The modeller can apply any of the
change patterns discussed in this chapter. After doing so,
the modelling environment checks for consistency errors and
displays error messages. The modelling environment can highlight
the errors and suggests actions to remedy the inconsistencies.
After the modeller selects an action, the modelling environment
automatically performs it and checks for errors again. This way,
the DMN can be evolved iteratively in a consistent way. In what
follows, we explain the interface of the modelling environment and
we show its verification capabilities with an example.

13https://camunda.com/download/modeler/

https://camunda.com/download/modeler/

168 7.7. A MODELLING ENVIRONMENT PROTOTYPE

7.7.1 The modelling environment

Figures 7.11 and 7.12 show the interface of the DMN modelling
environment, with numbers indicating the different parts of the
tool, which are as follows:

1. Display of the DRD model.

2. Buttons to upload a DMN model into the environment,
to download the model from the environment, to generate
an empty DMN model, and to connect the modelling
environment to an existing model repository.

3. DMN elements which can be selected by the modeller to add
to the DMN model.

4. The modeller can switch between the different views of the
DMN model, e.g., by selecting a decision, the tool switches
from the DRD view in Figure 7.11 to the decision table view
in Figure 7.12.

5. Different verfication mechanisms are offered. The modeller
can select the verifiers which are relevant, i.e., the errors that
the modelling environment should check for. Alternatively,
instead of selecting a single verifier, all verifiers can be selected
as to display all errors that the modelling environment
discovers.

6. The Verify button. By clicking this button the modelling
environment checks for errors (specified in the previous point)
in the current DMN model.

7. The Reverify check box. By checking this box the modelling
tool will perform a verification of the model every time
the modeller performs one of the change patterns on the
model. Unchecking this box deactivates this feature, as an
experienced modeller may not need to check the consistency
after every action performed. However, after applying a
whole chain of changes, the modeller can again re-enable the
verification feature of the tool.

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 169

1

4

2

3

5
6

7

8

9

1
0

F
ig
ur
e
7.
11
:
T
he

D
R
D

vi
ew

of
th
e
D
M
N

ve
ri
fic
at
io
n
to
ol
.

170 7.7. A MODELLING ENVIRONMENT PROTOTYPE

4

2

5
6

7

8

9

1
0

1
1

1
2

F
igure

7.12:
T
he

decision
table

view
of

the
D
M
N

verification
tool.

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 171

8. Drop-down menu to display the verification results. After the
verification happens, the modeller can select which errors,
i.e., which verification results to display. Alternatively, the
modeller can opt to display all verification results.

9. Feedback for the modeller that explains the errors. Here, the
error messages as a result of the verification mechanism of the
modelling environment are displayed. The error messages are
explained as well, both in general terms, as well as in specific
terms, i.e., indicating the names of the DMN elements that
are affected.

10. Action buttons to highlight or resole the errors. Next to
the specific error messages, automatic actions are suggested
by the modelling environment that can resolve the errors.
By clicking the Show button, the modelling environment
highlights the errors in the DMN model in a red colour.
By clicking any of the other suggested action buttons, the
modelling environment automatically performs the selected
action.

11. Display for the decision table view. Instead of the DRD
model, a decision table that has been selected is displayed
in the central view of the tool, as shown in Figure 7.12.

12. The View DRD button. By clicking this button the modeller
can switch back from the decision table view to the DRD view
in the modelling environment.

7.7.2 Example of change propagation as supported
by the modelling environment

In this subsection we provide a short example to show how the
DMN verification tool works. The DMNmodel presented in Figures
7.2 and 7.3 is uploaded into the modelling environment. Suppose
that instead of assessing muscle activity through the Muscle
Activity subdecision with data obtained from the EMG sensor,
the physician wishes to investigate the patient and to manually
enter the muscle activity classification. Hence, the Muscle Activity
subdecision from Figure 7.2 is obsolete and the modeller decides to

172 7.7. A MODELLING ENVIRONMENT PROTOTYPE

delete it (i.e., the modeller applies decision node exclusion). The
modelling environment raises two errors: Lonely Data Input, i.e.,
an input data node which is not connected to any decision node,
and Missing Input, i.e., an input column in the top-level COPD
Severeness decision which does not have any input data node or
subdecision node providing the required input. Figure 7.13 shows
the situation after applying this change pattern and clicking the
Show button for the unconnected input data node.

By clicking the Remove button next to the input data
node error, the change pattern of input data node exclusion is
automatically performed. The modelling environment then re-
verifies the model to check for new inconsistencies (arising through
the application of the change pattern), leaving only the missing
input error relating to the top-level COPD Severeness decision.
Figure 7.14 highlights this error in the DRD view of the modelling
environment, while Figure 7.15 highlights the error in the decision
table view.

As shown in Figures 7.14 and 7.15, the modelling environment
suggests a number of actions to remedy the issues surrounding the
missing input in the top-level decision. Inputs can be secured
in three different ways: adding a new data input (i.e., input
data inclusion), adding a new input decision (i.e., decision node
inclusion), or adding outputs to existing subdecision nodes (i.e.
decision output inclusion). Alternatively, the situation can be
remedied by deleting the input column which does not have the
required inputs (i.e., decision input exclusion). After deciding that
a physician will manually provide the information needed as input
in the COPD Severeness decision table, the action of adding new
data input is selected and the modelling environment automatically
introduces a matching input data node, yielding a consistent model
as show in Figure 7.16.

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 173

F
ig
ur
e
7.
13
:
Si
tu
at
io
n
af
te
r
ap

pl
yi
ng

de
ci
si
on

no
de

ex
cl
us
io
n.

174 7.7. A MODELLING ENVIRONMENT PROTOTYPE

F
igure

7.14:
Situation

after
applying

input
data

node
exclusion

(D
R
D

view
).

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 175

F
ig
ur
e
7.
15
:
Si
tu
at
io
n
af
te
r
ap

pl
yi
ng

in
pu

t
da

ta
no

de
ex
cl
us
io
n
(d
ec
is
io
n
ta
bl
e
vi
ew

).

176 7.7. A MODELLING ENVIRONMENT PROTOTYPE

F
igure

7.16:
Stable

situation
after

applying
input

data
node

inclusion.

CHAPTER 7. DECISION MODEL CHANGE PATTERNS 177

7.8 Conclusion and Future Work

This chapter investigates and defines possible decision model
change patterns for the evolution of DMN decision models.
Through a running example we have illustrated that the adaptation
of DMN decision model can lead to within-model inconsistencies. In
order to remedy these inconsistencies, additional changes may need
to be propagated throughout the entire decision model, effectively
triggering other change patterns. This way, consistency between
the different decision model elements is upheld. The proposed
change patterns illustrate how decision models can evolve and
which inconsistency concerns rise up when evolving the DMN
models. Furthermore, the change patterns can aid in developing
and implementing flexible and dynamic decision management
systems in order to move away from the static approaches present
both in literature and in industry. We illustrate the feasibility of the
approach by providing a proof-of-concept modelling environment
prototype which provides modelling support and automation for
change pattern administration on DMN decision models.

In future work, we will investigate how changing decision
models impact other systems and models that rely on the logic
encapsulated in the decision models. More specifically, we will
examine how the proposed change patterns influence process and
decision model consistency in an integrated process (BPMN) and
decision (DMN) model environment. Changing the underlying
decisions of a process can lead to a construction of a new process
variant. Additionally, in the case of knowledge-intensive processes,
instead of BPMN, change patterns can be considered for Case
Management Model and Notation (CMMN) models, as they allow
to model activities that can be performed in an unpredictable order
by knowledge workers. Furthermore, it should be investigated
whether DMN can be extended with a decision ontology to better
cope with knowledge-intensive aspects that cannot adequately be
represented in a decision table [30]. Moreover, flexible decision
models are of particular interest to Internet-of-Things (IoT) process
settings [56, 83], as IoT process are inherently subject to a dynamic
and changeable environment.

CHAPTER 8

Performance Assessment of
the Modelling Environment
for DMN Model Evolution

“Nothing has such power to
broaden the mind as the ability to
investigate systematically and
truly all that comes under your
observation in life.”

Meditations, Book III
— Marcus Aurelius

This chapter was published as follows:

Faruk Hasić, Carl Corea, Jonas Blatt, Patrick Delfmann, Este-
fanía Serral Asensio. A Tool for the Verification of Decision
Model and Notation (DMN) Models. 14th International
Conference on Research Challenges in Information
Science (RCIS), Demo Session, Limassol (Cyprus), 2020.

179

180

Abstract. The Decision Model and Notation (DMN) is a
decision modelling standard consisting of two levels: the decision
requirement diagram (DRD) level which depicts the dependencies
between elements involved in the decision model, and the decision
logic level, which specifies the underlying decision logic, usually in
the form of decision tables. As the decision tables and DRD are
modelled in conjunction, the need to verify the consistency of both
levels arises. While there have been some works geared towards
the verification of decision tables, the DRD-level has been strongly
neglected. In this work, we therefore present a tool for the model
verification of DMN models at both the logic and the DRD level,
along with the performance assessment of the tool.

CHAPTER 8. ASSESSMENT OF MODELLING ENVIRONMENT 181

8.1 Introduction

The Decision Model and Notation has at its the core the business
rule decision logic usually modelled by means of decision tables
(decision logic level). The standard can also provide decision
requirement diagrams (DRD level), which allow specifying the
requirements and relations of decisions involved in the decision
model [42, 62, 66].

While DMN standardizes how to represent decision logic and
decision requirements, no means are provided to guide experts in
consistently modelling the two levels. In result, modelling errors
can easily occur. This can be seen in Figure 8.1, which show an
inconsistent DMN decision model. First, there are errors within
the decision logic, specifically, the income conditions for rules 1
and 2 are overlapping (when the input is exactly 20). Second,
the DRD level and the decision table are inconsistent because the
Assets requirement is missing on the DRD level.

Such modelling errors are a problem currently faced in practice,
as proven by interviews with key practitioners who unanimously
report problems in verifying the correctness of DMN models [124].
Also, empirical results on detected modelling errors within the
decision logic of a large insurance company are presented in [11].
This calls for automated means to support companies in the
verification of decision models.

Figure 8.1: DMN model: DRD (left) and decision table (right) with
modelling errors.

Table 8.1 shows an overview of existing DMN verification
approaches. As can be seen from the DRD level verification
capabilities in Table 8.1, recent research is sparse. In a previous
work [40], we presented means to detect a selection of decision
logic level verification capabilities as proposed in the business rule
management capability framework [124]. In the work at hand,

182 8.2. TOOL DESCRIPTION AND USAGE EXAMPLE

we present novel verification capabilities for the DRD level, as
well as some novel decision logic level capabilities derived from
[69]. To the best of our knowledge, our tool is the first to provide
such an extensive set of verification mechanisms. As can be seen
from Table 8.1, this work extends the verification capabilities of
[40] with the following verification capabilities: unused predefined
value verification, missing predefined value verification, missing in-
/output value verification, missing in-/output column verification,
idle data input data verification, missing input verification, multiple
input verification and inconsistent type verification. We will discuss
these capabilities in detail in Section 8.2. We refer to the work in
[40] for the decision logic level verification capabilities that were
part of that work and are also incorporated in the tool presented
here.

8.2 Tool Description and Usage Example

The developed tool relies on the camunda-dmn14 library and is
available for demonstration15. The tool allows to upload and
analyse DMN models directly in the browser. The tool presented
in this work extends the one presented in [40] with the following
novel decision logic and DRD level verification capabilities derived
from [69]:

8.2.1 Decision logic capabilities (verification of
decision logic within a decision table):

– Missing predefined value verification. Detecting if there
is a value in a rule which is not part of the predefined values.

– Unused predefined value verification. Detecting whether
there are predefined values for a column, but no rule for that
value.

– Missing input value. Detecting whether there is an output
value of another table (where that table is an input to the

14https://github.com/camunda/camunda-engine-dmn
15https://bit.ly/2OEPEpH

https://github.com/camunda/camunda-engine-dmn
https://bit.ly/2OEPEpH

CHAPTER 8. ASSESSMENT OF MODELLING ENVIRONMENT 183

T
ab

le
8.
1:

O
ve
rv
ie
w

of
ve
ri
fic
at
io
n
ca
pa

bi
lit
ie
s
co
ve
re
d
by

ex
is
ti
ng

ap
pr
oa
ch
es

(X
=

fu
ll
an

d
o
=

pa
rt
ia
ls

up
po

rt
).

D
ec
is
io
n
lo
gi
c
le
ve
l

D
R
D

le
ve
l

Li
te
ra
tu
re

IdenticalRules

EquivalentRules

SubsumedRules

Indeterminism

OverlappingConditions

PartialReduction

MissingRules

UnusedPredefinedValue

MissingPredefinedValue

Missinginputvalue

Missingoutputvalue

Missinginputcolumn

Missingoutputcolumn

Idledatainput

Missing(data)input

Multiple(data)input

Inconsistenttypes

C
al
va
ne

se
et

al
.
(2
01
6)

[2
9]

X
o

X
X

X
L
au

rs
on

et
al
.
(2
01
6)

[9
1]

X
X

o
X

o
X

B
at
ou

lis
et

al
.
(2
01
7)

[8
]

X
X

X
X

C
al
va
ne

se
et

al
.
(2
01
7)

[3
0]

X
o

X
o

X
X

O
ch
oa

et
al
.
(2
01
7)

[1
04
]

X
X

B
at
ou

lis
et

al
.
(2
01
8)

[7
]

X
X

X
o

C
al
va
ne

se
et

al
.
(2
01
8)

[3
1]

X
o

X
o

X
o

X
C
or
ea

et
al
.
(2
01
9)

*
[4
0]

X
X

X
X

X
X

X
T
h
is

w
or
k

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

184 8.2. TOOL DESCRIPTION AND USAGE EXAMPLE

table under consideration), but the table does not have a
corresponding input value (missing rule).

– Missing output value. Detecting whether there is an
input value in a table, but the subdecision does not have a
corresponding output value (and thus, the current rule would
be unreachable).

8.2.2 DRD level capabilities (verification of
interconnection between logic modules,
i.e., between different decision tables in
the DRD, as well as between input data
and decision tables):

– Missing input column verification. Given a decision
and a subdecision, detecting whether the subdecision has
an output column, but the decision table of the higher-level
decision does not have a corresponding input column.

– Missing output column verification. Given a decision
and a subdecision, detecting whether the higher-level decision
has an input column, but the subdecision table does not have
a corresponding output column.

– Idle data input verification. There is a data input node
that is not used.

– Missing (data) input verification. There is (data or
subdecision) input that is used in a decision, but it is missing
in the DRD.

– Multiple (data) input verification. For any input column,
detecting whether there are too many inputs.

– Inconsistent type verification. Given a decision and a
subdecision, detecting whether the corresponding columns
have the same data type.

Figure 8.2 provides a usage example of the tool. The user can
upload and verify a DMN model (1). Note that modellers can
easily switch from the DRD-level to the table level by clicking on

CHAPTER 8. ASSESSMENT OF MODELLING ENVIRONMENT 185

an individual table. The tool identifies all errors based on the shown
verification capabilities and displays error messages (2). The tool
can highlight the errors and allows the user to quickly browse the
issues. Next to this issue, the tool suggests actions to remedy the
modeling issues and allows the modeller to select one, which is
then automatically performed by the tool (3). Additionally, the
modeller can then re-verify the resulting model (see checkbox next
to (1)). This way, the modeller can incrementally apply actions to
restore a consistent model. The tool can be used to verify arbitrary
DMN models, but can also be connected to workflow engines such
as Camunda. Here, the user can deploy the updated and verified
decision model directly from the tool (4).

8.3 Maturity and Outlook

For evaluation, we performed run-time experiments and analysed
a total of 900 synthetic decision models. As parameters for
generating these models, our custom generator16 accepts the
number of rows and columns in a single decision table, as well
as the number of overall nodes on a DRD level. As the novel
DRD level capabilities are the focus of this work, we continue
discussing the results for a varying number of DRD level nodes in
the model. Please see [40] for further experiments on the decision
logic verification capabilities with a varying number of columns and
rows.

For the experiments, we selected {18,36,...,180} as the number
of nodes on the DRD level, and {10,20,...,100} as the number
of rules per table from (i.e., 10x10 possible combinations). Note
that most models in literature employ less than 20 nodes and at
most a few tens of rules per node. For each of the 100 possible
combinations of rows and nodes, we generated 9 decision models as
follows: on the DRD-level, the decision tables and input nodes were
connected at random, which allowed to create synthetic decision
models with actual errors such as missing or redundant input data.
The respective rules of these tables were generated by using random
integer conditions (see [40] for details). The number of columns for
each decision table ranged from 2 to 5 at random. Consequently, for

16An interface to use our generator can be found at https://bit.ly/31q1U2r

https://bit.ly/31q1U2r

186 8.3. MATURITY AND OUTLOOK

F
igure

8.2:
T
he

D
R
D

view
of

the
D
M
N

verification
tool.

CHAPTER 8. ASSESSMENT OF MODELLING ENVIRONMENT 187

10050

100
0

200

400

Nod
esRules

R
un

-t
im

e
in

m
ill
is
ec
on

ds

Figure 8.3: Run-time statistics for the analysed synthetic decision
models with up to 180 nodes on the DRD-level and 100 rules per table.

each of the 10x10 combinations, we applied the verification tool for
the 9 respective models and computed the average run-time for each
parameter configuration, as shown in Figure 8.3. The experiments
were run on Ubuntu Xenial with E312 processor and 16GB RAM.

As it can be seen in Figure 8.3, the run-time for analysing a
model with 180 DRD nodes and 100 rules per table averages to
roughly 0.4 seconds. Thus, for the analysed data set, our tool
allowed for a feasible analysis.

8.4 Conclusion

The tool presented in this chapter allows to analyse DMN models
both on a logic level and on a DRD level, which is a current issue
faced in practice. As shown in Table 8.1, our work closes existing
research gaps by implementing all depicted verification capabilities
in a unified tool. Our tool supports the current DMN standard,
allowing companies to perform model verification on their DMN
models. Through a direct integration with workflow management
systems, our tool can be used for consistent model evolution and

188 8.4. CONCLUSION

thus facilitates sustainable business rule management. In future
work, we aim to apply our tool to industrial data sets and to
conduct usability studies with practitioners.

CHAPTER 9

Consistent Evolution of
Process and Decision
Models

“I judge pleasure and pain to be of small
importance compared to knowledge, the
appreciation and contemplation of beauty,
and a certain intrinsic excellence of mind
which, apart from its practical effects,
appears to me to deserve the name of
virtue. Many years it seemed to me
perfectly self-evident that pleasure is the
only good and pain the only evil. Now,
however, the opposite seems to me
self-evident.”

Letter to Gilbert Murray, April 3, 1902
— Bertrand Russel

This chapter will be submitted for publication as follows:

Faruk Hasić, Carl Corea, Jonas Blatt, Patrick Delfmann,
Estefanía Serral Asensio. Consistent Evolution of Integrated
Process and Decision Models. To be submitted for publication,
2020.

189

190

Abstract. Business processes often rely on decision knowledge.
Such decision-aware processes are often modelled through
integrated Business Process Model and Notation (BPMN) and
Decision Model and Notation (DMN) models. Decision knowledge
is not necessarily static and can change over time. Therefore,
processes should be able to cope with these changes which can
occur both at the process model level as well as the decision
model level. Process model change patterns have been studied
extensively in literature. However, decision model change patterns
are still an open field of research. This chapter discusses decision
model change patterns that affect both the decision and process
models in order to ensure between-model consistency. We provide
a fully functioning online modelling environment that is capable
of handling change patterns applied on the decision model and
of automatically safeguarding the consistency between the process
and decision models.

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 191

9.1 Introduction

Business processes (BPs) are chains of events, activities, and
decisions, that are performed in a coordinated manner within an
organisational and technical environment and ultimately add value
to the organisation and its customers [44]. BPs rely on decisions
to take the best line of actions at a particular context. Since
complex decisions are hard to represent in a classical procedural
business process model, e.g. a Business Process Model and
Notation (BPMN) model [105], the Decision Model and Notation
(DMN) standard [106] has recently been proposed to describe these
decisions in a proper manner. Several works have already studied
the integration of DMN with BPMN, often referred to as decision-
aware processes [13, 24, 33, 37, 38, 66], while other have proposed
tools that use the BPMN and DMN standards [25, 34, 74, 76].

Today organisations’ competitiveness and continued existence
depends on the ability of their processes to adapt to the different
execution contexts and changing requirements. Furthermore, tools
that support such changes are vital, as process change management
is a challenging endeavour which cuts through different units and
levels of an organisation [87]. Although several works exist that deal
with BPMN model changes [4, 113, 145], and only preliminary work
dealing with DMN model changes [57], no work on the support of
the evolution of integrated process and decision models exists yet.
Therefore, we investigate how to deal with such evolution. The
contribution of this paper is twofold:

1. We analyse the influence of decision model change patterns
on process and decision model consistency and determine how
the consistency of the integrated models can be restored.

2. We provide proof-of-concept modelling tools that allow for
applying the change patterns to evolve decision models and
to automatically refactor the process and decision models to
restore consistency.

This paper is structured as follows. Section 9.2 constitutes a
section with a running example and related work demonstrating
that current approaches do not support the problem statement as
described in the running example. Section 9.3 provides preliminary

192 9.2. RUNNING EXAMPLE AND RELATED WORK

formalisation. In Section 9.4 we present the change patterns based
on the links between the process and decision models described
in Section 9.3. Section 9.5 focuses on the propagation of decision
model change patterns throughout the decision model, as well as
the impact of change propagation on the process model. Section
9.6 presents the modelling environment that we have created
which supports decision model change patterns and decision model
evolution, together with automatic change propagation throughout
the decision model as well as automatic re-integration of the process
model with the newly established decision model. Finally, Section
9.7 concludes and provides directions for future research.

9.2 Running Example and Related Work

Here we constitute a running example of a decision-aware process
that will be used throughout the paper. Additionally, we discuss
current approaches in the literature dealing with process evolution,
as well as the lack of research on the evolution of decision-aware
processes.

9.2.1 Running example of a decision-aware process

Consider a patient health monitoring system for a person diagnosed
with the Chronic Obstructive Pulmonary Disease (COPD). COPD
is a disease that obstructs the lungs and obstructs the airflow
and breathing of the patient. Acute attacks of the disease can
happen. In that case the patient can experience uncomfortable
complications such as fast breathing, a fast heart rate, hyperactive
use of muscles, and a cold skin [72]. In scientific literature it has
been recognised as well that a patient monitoring process based on
Internet of Things (IoT) can help increase the life quality of the
patient and decrease the risks that are inherent to the disease [72].
Multiple sensors and wearable technologies exist that can collect
patient data relevant for the patient monitoring process [72]:

– Electrocardiogram (ECG) sensors monitor the heart.

– Respiratory sensors check the breathing rate.

– Skin temperature sensors monitor the skin temperature.

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 193

– Muscular Electromyography (EMG) sensors monitor the
muscle activity.

All these sensors collect measurements on the patient’s health.
IoT settings are often data- and decision-intensive. Note that a
single sensor or even a few sensors combined are not enough to
capture the COPD. For instance, the patient might take a walk
outside in the winter and a sensor registers a low skin temperature.
In that case, the patient is not necessarily suffering from COPD
at that moment. However, an expert can build patient-specific
decision rules to capture COPD in such a monitoring system. For
instance, if the sensors register a low skin temperature, a short
and fast breathing rate, together with high blood pressure, the
monitoring process might decide that the patient is suffering an
attack and running out of oxygen. In such a situation the process
can trigger the administration of an oxygen mask to the patient.
An illustrative COPD monitoring IoT process is given in Figure 9.3.
First the heart rhythm of the patient is checked and the emergency
alarm is activated if needed. Afterwards, the severeness of the
COPD is assessed, and given the assessment, the process ends or
treatments with oxygen masks or inhalers are carried out.

Note that complex decision rules are hard to represent in
a classical procedural business process model, e.g. a Business
Process Model and Notation (BPMN) [105] model, as BPMN
has only limited capabilities of modelling decisions [79]. These
kind of decisions in BPMN would be represented in a spaghetti-
like process with a lot of gateways chained together. Hence,
the understandability and maintainability of such a process
model becomes a burden. From the spaghetti-model it is not
always immediately clear which decision logic is followed, and
if the decision logic or decision outcomes need to change, the
maintainability becomes a burden as well in such a complicated
process model. On top of that, being a procedural language, the
order in which the gateways are placed greatly impacts the decision
making process and the link between the sensors and the process
model. Like that, the needed decision data is collected in a step wise
manner and the decision making is turned into a procedural process,
rather than a declarative endeavour based on decision rules.

A more suitable way of modelling such complex decisions
is through the Decision Model and Notation (DMN) standard

194 9.2. RUNNING EXAMPLE AND RELATED WORK

COPD severeness

Heart rhythm Respiration

ECG data Respiratory data

Muscle activity Skin temperature

Skin sensor dataEMG data

Figure 9.1: A DMN model for COPD severeness.

[106], thus securing maintainability, understandability, and the
declarative nature of decisions. DMN is a recently introduced
decision modelling standard that has enjoyed significant interest
in literature. DMN consists of two levels that are to be used
in conjunction. First, the decision requirement level represented
by the Decision Requirement Diagram (DRD) which depicts the
requirements of decisions and the dependencies between elements
involved in the decision model. Second, the decision logic level,
which presents ways to specify the underlying decision logic. The
DMN standard employs rectangles to depict decisions and sub-
decisions, corner-cut rectangles for business knowledge models, and
ovals to represent data input. Figure 9.1 gives an example decision
requirements graph of a DMN model for COPD severeness based on
data gathered by the IoT sensors. Figure 9.2 provides the COPD
decision table.

These decisions and decision outcomes can be integrated in
the BPMN process model and consequently interpreted by the
process for further execution and evolution of the process. Previous
work has focused on decision-centric approaches towards process
modelling. These approaches start with the construction of a
DMN decision model [106] and the process model is constructed
afterwards in such a way that it is automatically consistent with
the provided decision model. This holistic decision approach has
been described in [61, 63, 65, 66], where a strict separation of

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 195

Figure 9.2: A decision table for COPD severeness.

concerns between process and decision logic is adhered to. The
decisions can influence the process execution in multiple ways:
by affecting process conclusion and termination, by guiding the
process control flow, or by influencing the data perspective of the
process. Hence, decisions can be the driver of process execution
as decisions can be defined in a Service-Oriented Architecture
(SOA) approach which can be invoked by processes [63]. In [66],
the integration of decisions and processes was addressed in more
detail. Changing the underlying decisions of a process, i.e. the
data perspective of the process or the context under which the
process is to be executed, will also have repercussions on the process
itself. Hence, by changing an underlying decision, the process that
is to be executed can change as well. These changes can manifest
themselves on different perspectives of the process, e.g. changes in
terms of process and control flow elements, or simply changes in
the data perspective of the process. Strategies towards refactoring
processes to conform to a decision model were briefly discussed in
[67]. Noteworthy is that the integration of BPMN and DMN was
deemed useful for modelling ubiquitous business processes [149].

9.2.2 Current approaches for process evolution

With different decision models belong possibly different process
executions. What kind of patient monitoring and care process
will be executed depends on the decisions made based on the data
obtained from the sensors. Therefore, the process must be flexible
in order to adapt to this context captured by the sensors in the
physical world.

196 9.2. RUNNING EXAMPLE AND RELATED WORK

C
heck C

O
P

D
severen

ess

S
ound

em
ergency
alarm

heart rh
ythm

R
ead skin
sensor

R
ead

respiratory
sensor

R
ead E

M
G

sensor

skin
tem

p.
resp.

E
M

G

R
ead E

C
G

sensor
C

heck heart
rhythm

A
dm

inister
oxygen m

a
sk

A
dm

inister
inhale

r

O
K

else

none

E
C

G

severe
attack

m
ild

attack

F
igure

9.3:
A

C
O
P
D

m
onitoring

process.

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 197

The need for flexible and adapting business processes has been
recognised in the process literature [2, 3, 4, 85, 111, 112, 113,
114, 119, 126, 142, 145, 149]. However, these works mainly focus
on control flow change patterns, e.g., adding activities, deleting
activities, changing the activity sequence, replacing activities,
adding or deleting gateways, and adding or deleting control flow
elements. As such, evolving the decision perspective of processes
has not received sufficient attention in research, despite the inherent
need of modern knowledge-based system to efficiently deal with
decision rule changes [15, 26, 41, 86, 102]. Only preliminary work
on DMN changes exists [57]. Therefore, we approach this research
gap in this paper by introducing decision model change patterns
for decision-aware process evolution, as well as by introducing a
modelling environment which supports the evolution of decision-
aware processes.

9.3 Preliminaries

In this section, we provide a formalisation for key DMN concepts
needed for the development of the change patterns that will be
discussed in the following sections. The backbone of a DMN
decision model is formed by rectangles that depict decisions and
subdecisions and ovals that represent data input. The underlying
decision logic is usually represented in decision table form.

Definition 9.1 (Decision requirement diagram (DRD)). A DRD
is a tuple (Ddm, ID, IR) consisting of a finite non-empty set of
decision nodes Ddm, a finite non-empty set of input data nodes
ID, and a finite non-empty set of directed edges IR representing
the information requirements such that IR ⊆ (Ddm∪ ID)×Ddm,
and (Ddm ∪ ID, IR) is a directed acyclic graph (DAG).

According to the DMN standard, a decision requirement graph
can be an incomplete or partial representation of the decision
requirements in a decision model. The set of all DRDs in the
decision model constitutes the exhaustive set of requirements. The
information contained in this set can be combined into a single
DRD representing the decision requirements level as a whole. The
DMN standard refers to such a DRD as a decision requirement

198 9.3. PRELIMINARIES

graph (DRG). We expand the notion of a DRG, in such a way that
a DRG is a DRD which is self-contained, i.e. for every decision in
the diagram all its requirements are also represented in the diagram.

Definition 9.2 (DRG). A decision requirement diagram DRD
is a decision requirement graph DRG if and only if for every
decision in the diagram all its modelled requirements, present in
at least one diagram, are also represented in the diagram.

The term decision can have a number of meanings. According
to the DMN specification a decision is the logic used to determine
an output from a given input. Meanwhile, in process modelling a
decision is taken in a decision activity, e.g. the business rule task in
BPMN. Another common meaning is that a decision is the actual
result, which we call the output of a decision, or simply the decision
result. We define a decision as follows:

Definition 9.3 (Decision). A decision d ∈ Ddm is a tuple
(Id, Od, L), where I ⊆ ID is a set of input symbols, O a set
of output symbols and L the decision logic defining the relation
between symbols in Id and symbols in Od.

In case of decision tables, I and O contain the variables of the
input and output elements respectively, and L is the table itself,
i.e. the set of decision rules present in the table.

In DRDs these decisions di are represented by the decision nodes
Di ∈ Ddm. We will use D to refer to both a decision and its
representing node in a DRD. From the definition of DRGs, it is
clear that every decision D in that model has a unique decision
requirement graph DRGD with D as its single top-level decision. A
DRG contains exactly all information requirements of its top level
decisions. Hence, only one DRG exists with D as its single top-
level decision. We use DRGD to denote this DRG. Furthermore,
all the decisions in the DRG, except the top level decision, are
consequently subdecisions of the top level decision. In other words,
the top-level decision requires these lower level subdecisions.

Now we have formally defined the basic concepts of a DMN
decision model, we need to define how these decisions manifest
themselves within a business process. Decisions in processes do
not surface solely as the driver of control flow. Rather, they both
encompass the routing, i.e. because of decision outcomes that steer

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 199

toward a certain activity tailored towards supporting its output,
and the changes in the data layer of the process as well. The latter
introduces numerous types of activities that are representatives of
the decision model in the process model:

Definition 9.4 (Variable and activity classification). The input
and output data variables of activities are defined as follows:

– I : A→ V , function assigning activities which receive input
of a certain variable,

– O : A → V , function assigning activities which deliver
output for a certain variable.

This enables the construction of the following activity types:

1. Operational activities ((no) inputs, no outputs): do
not have any influence on the process’ decision dimension and
only act as a performer of a specific action that is tied to that
specific place in the control flow. They might serve as the
conclusion of a decision. They are provided with the decision
inputs needed, which are not used further in the process,
Ao = {a ∈ A | O(a) = ∅, }.

2. Administrative activities (no inputs, outputs): have
the purpose to introduce decision inputs into the process,
Aa = {a ∈ A | I(a) = ∅ ∧ O(a) 6= ∅}.

3. Decision activities (inputs, outputs): serve a true
autonomous decision purpose as they transform decision
inputs into a decision outcome,
Ad = {a ∈ A | I(a) 6= ∅ ∧O(a) 6= ∅}.

Note that it holds that Aa ∪ Ao ∪ Ad = A.
With the activity classification in mind, we can now make

the connection with decisions in business processes and decision
models. A decision in a business process can be defined as follows:

Definition 9.5 (Decision in a process model (da)). A da ∈ Ddm

is a tuple (Ida , Oda , Lda), where a ⊆ Ad, Ida ⊆ I(a), Oda ⊆ O(a)
and Lda ⊆ L.

200 9.4. DECISION MODEL CHANGE PATTERNS

This last definition connects a decision activity with a decision
in the decision model. Notice that a business process will provide
the decision model with the decision it wants to invoke, and an
input requirements set for that decision. This input requirements
set will be provided to the decision activity a ⊆ Ad which invokes
the decision model in the form of Ida ⊆ I(a).

9.4 Decision Model Change Patterns

To adapt to different execution contexts and requirements,
designers or users should be abele to evolve the process and decision
models. Process model evolution has been studied at length, as
indicated in the related work (Section 9.2). However, decision
model evolution is still an open subject. A number of changes
can occur in the decision model. Moreover, given that the process
model relies on the decision model for decisions that affect the
control flow and the data perspective of the process, a change
in the decision model will possibly affect the process model as
well. Consistency between the process and decision models must
at all times be guaranteed [66]. Hence, the process model may
need to undergo adaptations in order to conform to the underlying
decisions.

Notice that according to the formal definitions in the previous
section, the process and decision models are loosely coupled, i.e.,
the process model perceives the logic in the decision model as a
black box and the link between the two is established via the input
and output data of the decisions. The core elements of a decision
model are depicted in Figure 9.1. As can be seen from the figure,
the input data and the decision nodes within a DRD are connected
via information requirement arrows. The logic encapsulated in
a decision node is usually modelled with decision tables, such as
shown in Figure 9.2. These core elements of the DMN model are
relevant to the business process. Hence we investigate the change
patterns that can manifest themselves on these elements at different
levels of granularity.

An overview of decision model change patterns is provided in
Table 9.1. In what follows, we discuss these change patterns
and their effects on process models in more detail. The first

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 201

Table 9.1: Overview of decision model change patterns from [69].

Decision table change patterns
Changes within decision rules

∆Π1 Decision input exclusion.
∆Π2 Decision input inclusion.
∆Π3 Decision output inclusion.
∆Π4 Decision output exclusion.
∆Π5 Decision rule logic change.

Changes on decision rules
∆Π6 Decision rule exclusion.
∆Π7 Decision rule inclusion.

Decision requirements diagram change patterns
Decision node changes

∆Π8 Decision node exclusion.
∆Π9 Decision node inclusion.

Input data node changes
∆Π10 Input data node inclusion.
∆Π11 Input data node exclusion.

subsection assesses the change patterns within a single decision
table, i.e., changing the preconditions and outcomes of a decision
rules. Furthermore, we look at change patterns for a decision
rule in its entirety, i.e., adding or deleting decision rules from a
decision table. The second subsection investigates change patterns
on the topological structure of the DRD itself, i.e., the addition
and deletion of core DRD elements (decision nodes and data input
nodes). The change patterns taken from [69] and are derived
from the formalisation of decision model elements in Section 9.3
and the elementary edit operations that can be applied on the
elements, i.e., insertion, deletion, and substitution, which in essence
is a combination of insertion and deletion [148]. For each change
pattern, we specify how the changes can impair process and decision
model consistency and how the inconsistencies can be remedied.
Furthermore, we illustrate the change patterns, inconsistencies, and
remedies on the running example introduced in Section 9.2. Table
9.2 provides an summary of the findings in this Section.

202 9.4. DECISION MODEL CHANGE PATTERNS

9.4.1 Decision table change patterns

For changing decision rules, we can distinguish a plethora of change
patterns. We denote a change pattern with ∆Π, Π refers to a
pattern, while ∆ stand for change, e.g., ∆Id denotes a change in the
input variables of a decision node. In essence, three elements in the
decision table can undergo changes, as derived from Definition 9.3:
the inputs Id, the outputs Od and the logic L mapping the inputs
to the outputs, i.e. the decision rules. We define these changes
in what follows. Changes can induce inconsistencies between the
process and decision models (χ), and the process itself needs to
undergo changes to resolve these inconsistencies (Ψ).

9.4.1.1 Decision input exclusion

∆Π∆Π∆Π 1 (Decision input exclusion). A change ∆Id− indicates a
change in the input set Id of a decision D as follows: an input
variable, or an existing value of a variable, can be deleted from a
decision table.

χχχ 1 (Induced inconsistencies). The process must provide the
input data needed for decision enactment. If a variable is deleted,
the variable is no longer required for decision enactment due to
changes in the input set of a decision. Hence, the data objects in
the process relating to the deleted variable in the decision model
may become redundant data.

Ψ 1 (Resolving inconsistencies). The redundant data objects
relating to the deleted variables in the decision model can be
discarded from the process model as well if they are not used for
anything else in the process other than as input relating to the
deleted decision variable.

εεε 1 (Example). Suppose that in the top-level decision table
represented in Figure 9.2, the precondition of muscle activity
is considered irrelevant for the decision on COPD severeness.
Hence, this input variable is entirely deleted from the decision
table. Figure 9.4 presents the decision table after change pattern
∆Π1 was applied. Note that this decision table has been
refactored to avoid overlapping and missing rules, since simply
deleting a precondition variable can render the decision table to

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 203

be incomplete and incorrect [31]. The legacy process model in
Figure 9.3, still reads the muscle activity sensor and provides the
data as input to the decision activity Check COPD Severeness.
This is remedied in the redesigned process model in Figure 9.5.
Furthermore, deleting a variable from the preconditions also
affects the decision hierarchy in the DRD in Figure 9.1. The
subdecision Muscle activity, together with its input data, i.e.,
EMG data, are not part of the top-level decision anymore. As
such, they should be discarded from the decision requirements
diagram. The updated decision model is provided in Figure 9.6.

9.4.1.2 Decision input inclusion

∆Π∆Π∆Π 2 (Decision input inclusion). A change ∆Id+
indicates a

change in the input set Id of a decision D as follows: opposite to
∆Π1, an input variable, or a new value for an existing variable,
can be added to a decision table.

χχχ 2 (Induced inconsistencies). The process must provide the
input data needed for decision enactment. If additional input
data is required due to changes in the input set of a decision, the
process is no longer capable of calling upon that decision.

Ψ 2 (Resolving inconsistencies). The process needs to be
redesigned to incorporate the new data that functions as part
of the input for the decision. Thus, Ida ⊆ I(a) must include the
newly added input data when the decision activity a ⊆ Ad calls
upon decision D. This data must either be obtained from outside
the process or produced within the process itself.

εεε 2 (Example). Notice that adding a new precondition variable
results in the exact opposite changes to be applied on the process
and decision models as the ones presented for ∆Π1. If the
precondition variable of muscle activity were to be added again
to the decision table in Figure 9.4, the DRD should reintroduce
the subdecision Muscle activity and its required EMG data.
Furthermore, the process should be redesigned to be able to read
the muscle activity sensor in order to provide the required input
data to decision activity Check COPD Severeness, as to ensure
the correct invocation of the decisions. Thus, this change pattern

204 9.4. DECISION MODEL CHANGE PATTERNS

Figure 9.4: Decision table with changed preconditions.

version would return the models to the initial state as shown in
Figures 9.1, 9.2, and 9.3.

9.4.1.3 Decision output inclusion

∆Π∆Π∆Π 3 (Decision output inclusion). A change ∆Od+
indicates a

change in the output set Od of a decision D as follows: a new
output value can be added to a decision table.

χχχ 3 (Induced inconsistencies). The process must be able to
interpret the decision outcomes for a sound process continuation.
If the newly added decision outcomes impact the process control
flow, the process should capture these outcomes in the control
flow. Otherwise a deadlock occurs in the process.

Ψ 3 (Resolving inconsistencies). The process may need to be
redesigned to incorporate the newly added decision outcomes.
Thus, if a decision impacts the control flow of the process, all
od ∈ Oda ⊆ O(a) must be captured in the process control flow
following the decision activity a ⊆ Ad that calls upon decision D.

εεε 3 (Example). Suppose that in the top-level decision table
represented in Figure 9.2, the COPD severeness decision outcome
of the first decision rule changes from severe to lethal. This
new table is given in Figure 9.7 Notice that the outcome value
lethal is a new outcome that was not represented in the decision
table before. The process model in Figure 9.3 is not able to
interpret this outcome in the decision point following the Check
COPD Severeness decision activity. Hence the process model

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 205

C
he

ck
 h

ea
rt

rh
yt

hm
C

he
ck

 C
O

P
D

se
ve

re
n

es
s

A
dm

in
is

te
r

ox
yg

en
 m

a
sk

A
dm

in
is

te
r

in
ha

le
r

S
ou

nd
em

er
ge

nc
y

al
ar

m
E

C
G

he
ar

t r
h

yt
hm

R
ea

d
E

C
G

se
ns

or

R
ea

d
sk

in
se

ns
or

sk
in

te
m

p.

O
K

el
se

no
ne

m
ild

at
ta

ck

se
ve

re
at

ta
ck

R
ea

d
re

sp
ira

to
ry

se
ns

or

re
sp

.

F
ig
ur
e
9.
5:

P
ro
ce
ss

m
od

el
ad

ap
te
d
to

ch
an

ge
d
pr
ec
on

di
ti
on

s.

206 9.4. DECISION MODEL CHANGE PATTERNS

COPD severeness

Respiration Skin temperatureHeart rhythm

ECG data Respiratory data Skin sensor data

Figure 9.6: DRD adapted to changed preconditions in the top-level
decision.

needs redesign to be able to capture that specific decision outcome
as well, otherwise a deadlock can occur if the underlying COPD
Severeness decision evaluates the patient condition to be lethal.
The redesigned process, given in Figure 9.8, is able to interpret
this outcome as well. Notice that in this case the DRD in Figure
9.1 does not undergo any change, since the changed decision
outcome belongs to the top-level decision of the DRD. Hence, the
outcome does not affect any decision constructs that are higher
in the decision hierarchy.

9.4.1.4 Decision output exclusion

∆Π∆Π∆Π 4 (Decision output exclusion). A change ∆Od− indicates a
change in the output set Od of a decision D as follows: an existing
output value can be deleted from a decision table.

χχχ 4 (Induced inconsistencies). If a decision outcome that affects
the control flow of the process is deleted from the decision
model without redesigning the process model, dead branches, i.e.,
branches that used to capture the deleted decision outcome, may
be introduced into the process.

Ψ 4 (Resolving inconsistencies). An od ∈ Oda ⊆ O(a) that
is deleted from the decision table should result in eliminating
its corresponding process branch or process branch conditions
following the decision activity a ⊆ Ad.

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 207

Figure 9.7: Decision table with changed outcomes.

εεε 4 (Example). The exact opposite changes to those in ∆Π3
occur in the models when this change pattern leads to deleting a
decision outcome from the decision table. If in the decision table
of Figure 9.7, the lethal outcome were again to be replaced by the
severe outcome, then the decision table and process model would
undergo redesign to revert back to the models presented in the
running example, i.e., Figures 9.2 and 9.3.

9.4.1.5 Decision rule logic change

∆Π∆Π∆Π 5 (Decision rule logic change). A change ∆L indicates a
change in the logic L of a decision D, i.e., a change in relating
the existing input symbols Id to the existing output symbols Od

within the decision table.

χχχ 5 (Induced inconsistencies). Given that the process and
decision models were correctly integrated, a change in the
underlying decision logic as such does not affect the consistency
between the models. This is due to the fact that the process
model and decision model are loosely coupled based on their input
and output sets, as described in Definitions 9.3-9.5. Hence, the
consistency between the models is dependent on these sets, and
not on the underlying decision logic.

Ψ 5 (Resolving inconsistencies). There is no need for process
redesign, since changes in the underlying decision logic itself do
not induce process and decision model inconsistencies.

εεε 5 (Example). Suppose that in the top-level decision table
represented in Figure 9.2, the logic in the fourth decision rule

208 9.4. DECISION MODEL CHANGE PATTERNS

C
heck heart
rhythm

C
heck C

O
P

D
severen

ess

S
ound

em
ergency
alarm

E
C

G

heart rh
ythm

R
ead E

C
G

sensor

R
ead skin
sensor

R
ead re

spiratory
sensor

R
ead E

M
G

sensor

skin
tem

p.
resp.

E
M

G

O
K

else
A

dm
inister

oxygen m
a

sk

P
rep

are
opera

tion room

A
dm

inister
inhale

r

severe
attack

none

lethal

m
ild

attack

F
igure

9.8:
P
rocess

m
odeladapted

to
changed

outcom
es.

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 209

Figure 9.9: Decision table with changed logic.

changes. Instead of mapping the precondition values to an output
of mild, the preconditions are now considered to be of a severe
nature. This change is exemplified in the decision table in Figure
9.9. Note that this change does not affect the consistency between
the process and decision models in Figure 9.3 and 9.1. This is
due to the fact that only the underlying logic is altered by ∆Π5,
and not the input and output sets that form the loose coupling
connections between the process and decision model [63, 66]. As
such, the process in Figure 9.3 is still able to provide the decision
model with the relevant input data, as well as to interpret the
decision outcomes returned by the decision model. Thus, no
process redesign is needed when this change pattern is applied.

9.4.1.6 Decision rule exclusion

∆Π∆Π∆Π 6 (Decision rule exclusion). If a decision rule id ∈ Id
L−→

od ∈ Od is deemed irrelevant at a certain point in time, it can be
deleted in its entirety from a decision table.

χχχ 6 (Induced inconsistencies). This change pattern in essence
triggers the same inconsistencies as three previously defined
patterns, i.e., ∆Π1,∆Π4, and ∆Π5, since this change pattern
is a combination of these individual patterns: it deletes the
preconditions of a decision rule, the outcome of the decisions rule,
as well as part of the logic that maps the preconditions to the
outcomes. Hence, deriving from ∆Π1, if the process still provides
the combination of the deleted preconditions to the decision
model, the decision model is not able to enact the requested

210 9.4. DECISION MODEL CHANGE PATTERNS

Figure 9.10: Decision table with a deleted decision rule.

decision and inconsistency between the models arises. Likewise,
deriving from ∆Π4, since a decision outcome was possibly deleted
from the decision model, the process can possess dead branching
conditions if the outcome for the deleted decision rule was a
unique decision outcome within its decision table.

Ψ 6 (Resolving inconsistencies). Resolving inconsistencies
happens according to ∆Π1,∆Π4, and ∆Π5 as well. On the one
hand, an od ∈ Oda ⊆ O(a) that is the outcome of the deleted
decision rule should result in eliminating its corresponding process
branch conditions following the decision activity a ⊆ Ad, if the
deleted od is unique for its decision table. On the other hand, the
process should make sure that the input set combination id ∈ Id is
not provided to the decision model when decision activity a ⊆ Ad

calls upon decision D. This is due to the fact this that specific
input combination has been deleted from the decision table and
is thus not leading to a decision outcome that can be returned
to the process for further interpretation. Thus, resolving these
inconsistencies requires to redesign the process to fit both the
input and output sides of the requested decision table excluding
the deleted decision rule.

εεε 6 (Example). Suppose that decision rule 7 is entirely deleted
from the decision table in Figure 9.2, rendering the decision table
depicted in Figure 9.10. Notice that the decision table does not
anymore contain the output none. However, the process model
in Figure 9.3 does contain a control flow branch that captures
this output of none. As a consequence, this branch in the control
flow becomes a dead branch, since the decision outcome of none

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 211

will never be reached in the Check COPD severeness decision
activity. As such, this dead brach should be discarded from the
process, as is the case in the redesigned process in Figure 9.11.

Notice, however, that by deleting the decision rule, the
decision table is not complete anymore, i.e., the combination
of precondition values that was present in rule 7 in Figure 9.2
can still manifest itself. However, the decision table is not able
to return an outcome for this precondition combination. This
could lead to a deadlock in the process. To avoid this, either the
decision table should be completed and the preconditions values
at hand should be mapped to other existing decision outcomes, or
the process should be redesigned to capture the possibility of no
decision outcome being returned. In Figure 9.11 this is achieved
by terminating the process if the decision activity Check COPD
severeness is not able to retrieve a decision outcome from the
process model.

9.4.1.7 Decision rule inclusion

∆Π∆Π∆Π 7 (Decision rule inclusion). If a new decision rule id ∈ Id
L−→

od ∈ Od is deemed relevant at a certain point in time, it can be
added in its entirety to an existing decision table.

χχχ 7 (Induced inconsistencies). Again, in analogy with ∆Π6, this
change pattern is a combination of ∆Π2,∆Π3, and ∆Π5: it adds
both the preconditions and the outcome of a new decisions rule,
as well as part of the logic that maps the preconditions to the
outcomes. Hence, deriving from ∆Π2, if the process is unable
to provide the newly added combination of preconditions to the
decision model, the decision model will never be able to trigger
the newly included decision rule. Likewise, deriving from ∆Π3,
since a possibly new decision outcome was added to the decision
model, the current process can possibly not capture that outcome,
and thus, the process continuation is impaired if the new rule is
triggered.

Ψ 7 (Resolving inconsistencies). Resolving inconsistencies
happens according to ∆Π2,∆Π3, and ∆Π5 as well. On the one
hand, an od ∈ Oda ⊆ O(a) that is the outcome of the added

212 9.4. DECISION MODEL CHANGE PATTERNS

C
heck heart
rhythm

C
heck C

O
P

D

severeness

A
dm

inister
inhaler

S
ound

em
ergency
alarm

E
C

G

heart rhythm

R
ead E

C
G

sensor

R
ead skin
sensor

R
ead respiratory

sensor

R
ead E

M
G

sensor

resp.

E
M

G

O
K

else

m
ild

attack

A
dm

inister
oxygen m

ask

severe
attack

skin
tem

p.

F
igure

9.11:
P
rocess

m
odeladapted

to
exception

handle
deleted/m

issing
rules.

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 213

decision rule should result in additional corresponding process
branch conditions following the decision activity a ⊆ Ad. On
the other hand, the process should make sure that the input
set combination id ∈ Id is provided to the decision model when
decision activity a ⊆ Ad calls upon decision D. This is due
to the fact this that specific input combination has been added
to the decision table and is leading to a decision outcome that
can be returned to the process for further interpretation. Thus,
resolving these inconsistencies requires to redesign the process to
fit both the input and output sides of the requested decision table
including the added decision rule.

εεε 7 (Example). Suppose that the decision rule deleted in the
previous change pattern is reintroduced again to the decision
table. Thus, to the decision table in Figure 9.10, one rule is added,
rendering the decision table in Figure 9.2. Note that the changes
that need to be applied here are opposite to the ones discussed in
the previous subsection. As such, the original process model in
Figure 9.3 is obtained by redesigning the process model in Figure
9.11.

9.4.2 Decision requirements diagram change
patterns

In the previous subsection, we have investigated changes localised
within a single decision table. However, entire elements can be
added or deleted from the DRD model as well. Definition 9.1
defines the elements of the DRD that can be added or deleted, i.e.,
decision nodes and input data nodes. By deleting the input data
and decision nodes from the DRD, the information requirement
arrows that connect them are deleted as well.

9.4.2.1 Decision node exclusion

∆Π∆Π∆Π 8 (Decision node exclusion). A decision node D ∈ Ddm

can be deleted from the DRD. This corresponds to deleting all
decision rules (Id

L−→ Od) from a decision node D. Hence, this
change pattern is an aggregation of multiple ∆Π6 changes. Note

214 9.4. DECISION MODEL CHANGE PATTERNS

that deleting a decision node D also deletes all its incoming and
outgoing information requirements arrows from the set IR.

χχχ 8 (Induced inconsistencies). Since deleting an entire decision
node corresponds to deleting all the individual rules encapsulated
in that decision node, i.e., ∆Π6, the induced inconsistencies are
the same as in χ6.

Ψ 8 (Resolving inconsistencies). As multiple ∆Π6 change
patterns result in multiple χ6 inconsistencies, they are all
remedied according to Ψ6 as well.

εεε 8 (Example). Suppose that the subdecision Muscle activity
in the DRD in Figure 9.1 is excluded from the model. This
also deletes the subdecision’s input data, i.e., EMG data. The
updated decision model is then given in Figure 9.6. The
deleted Muscle activity subdecision was required by the top-
level COPD severeness decision. Hence, the Muscle activity
subdecision provided it’s decision output as a precondition to the
decision table underlying the COPD severeness decision. Since
the Muscle activity subdecision is deleted, the preconditions
of the higher-level decisions requiring the subdecision should be
deleted as well, rendering a new COPD decision table presented
in Figure 9.4. The process from Figure 9.3 needs to be adapted
as well to reflect the changes, leading to the process depicted in
Figure 9.5.

9.4.2.2 Decision node inclusion

∆Π∆Π∆Π 9 (Decision node inclusion). A new decision node D can
be added to the set of decision nodes Ddm. This corresponds
to adding multiple decision rules (Id

L−→ Od) to a new decision
node D. Hence, this change pattern is essence an aggregation
of multiple ∆Π7 changes. Note that adding a decision node
D also adds the necessary incoming and outgoing information
requirements arrows to the set IR.

χχχ 9 (Induced inconsistencies). Since adding an entire decision
node corresponds to adding all the individual rules encapsulated
in that decision point, i.e., ∆Π7, the induced inconsistencies are
the same as in χ7.

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 215

Ψ 9 (Resolving inconsistencies). As multiple ∆Π7 change
patterns result in multiple χ7 inconsistencies, they are all
remedied according to Ψ7 as well.

εεε 9 (Example). Suppose that a decision node Muscle activity
is added to the the decision requirements diagram in Figure
9.6, effectively producing the DRD presented in Figure 9.1, as
the EMG data input is added to the DRD as well. Since
the top-level COPD severeness decision requires the Muscle
activity subdecision, the preconditions in the COPD severeness
decision table should reflect the outcomes provided by the Muscle
activity decision table. As such, these preconditions are added
to the top-level decision table, transforming the decision table in
Figure 9.4 to the decision table provided in Figure 9.2. Likewise,
the process needs to be adapted as well to reflect the changes
applied to the decision model. As such, the process in Figure 9.5
is redesigned to become the process depicted in Figure 9.3.

9.4.2.3 Input data node inclusion

∆Π∆Π∆Π 10 (Input data node inclusion). A new data input node can be
added to the set of data input nodes ID. By adding a data input
node, its necessary input requirement arrows are also added to the
set of IR and connected to the relevant decision nodes in Ddm.
Notice that this change pattern on the DRD level corresponds to
adding a new input variable to the decision table that requires
the newly added data input node. Hence, this change pattern is
equivalent to ∆Π2.

χχχ 10 (Induced inconsistencies). Given the equivalence with ∆Π2,
χ2 inconsistencies apply. The legacy process is no longer capable
of calling upon the decision, as it does not provide the necessary
input data, given the addition of a new input data node.

Ψ 10 (Resolving inconsistencies). As in Ψ2, Ida ⊆ I(a) must
include the newly added input data when the decision activity
a ⊆ Ad calls upon decision D. This data must either be obtained
from outside the process or produced within the process itself.

εεε 10 (Example). Consider the decision model provided in Figure
9.6 with the top-level decision table in Figure 9.4. Assume that

216 9.4. DECISION MODEL CHANGE PATTERNS

COPD severeness

Respiration

Respiratory data

Skin temperature

Skin sensor data

Heart rhythm

ECG data Muscle activity

Figure 9.12: A DRD with an added input data node.

an additional input data node is added that provides information
on muscle activity. The new decision model is then given in
Figure 9.12, with the decision table in Figure 9.2 representing
the underlying logic of the top-level decision. The process model
in Figure 9.5 needs to undergo change to include the newly
added input data. The process given in Figure 9.13 does exactly
this. The Perform muscle check user task is carried out by a
physician and the muscle activity is decided on by the physician
and is input into the system such that the top-level decision COPD
severeness can be evaluated.

9.4.2.4 Input data node exclusion

∆Π∆Π∆Π 11 (Input data node exclusion). A data input node can be
deleted from the set of data input nodes ID. By deleting a data
input node, all its input requirement arrows are also deleted from
to the set of IR. Notice that this change pattern on the DRD level
corresponds to deleting an input variable from the decision table
that required the input data node. Hence, this change pattern is
again equivalent to ∆Π1.

χχχ 11 (Induced inconsistencies). Given the equivalence with ∆Π1,
χ1 inconsistencies apply. The legacy process does no longer need
to provide the deleted input data.

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 217

C
he

ck
 h

ea
rt

rh
yt

hm
C

he
ck

 C
O

P
D

se
ve

re
n

es
s

A
dm

in
is

te
r

ox
yg

en
 m

a
sk

S
ou

nd
em

er
ge

nc
y

al
ar

m

E
C

G

he
ar

t r
h

yt
hm

R
ea

d
E

C
G

se
ns

or

sk
in

te
m

p.

P
er

fo
rm

 m
us

cl
e

ac
tiv

ity
 c

he
ck

R
ea

d
sk

in
se

ns
or

R
ea

d
re

sp
ira

to
ry

se
ns

or

A
dm

in
is

te
r

in
ha

le
r

O
K

el
se

no
ne

se
ve

re
at

ta
ck

m
us

c.
ac

tiv
ity

m
ild

at
ta

ck

re
sp

.

F
ig
ur
e
9.
13
:
P
ro
ce
ss

m
od

el
ad

ap
te
d
to

m
an

ag
e
th
e
in
pu

t
da

ta
re
la
te
d
to

an
ad

de
d
in
pu

t
da

ta
no

de
in

th
e
D
R
D
.

218 9.5. CHANGE PROPAGATION

Ψ 11 (Resolving inconsistencies). As in Ψ1, Ida ⊆ I(a) does
not longer need to include the newly added input data when the
decision activity a ⊆ Ad calls upon decision D.

εεε 11 (Example). Consider the decision model provided in Figure
9.12 with the top-level decision table in Figure 9.2. Assume
that the Muscle activity input data node is deleted from
the requirements diagram since this information is now deemed
invalid to make the top-level COPD severeness decision. The
newly obtained DRD is then given in 9.6 with Figure 9.4 as the
corresponding decision table. Again, the process needs to undergo
redesign to adapt to the newly established decision model. As
such, the process in Figure 9.13 is transformed into the process
in Figure 9.5.

9.5 Change Propagation

In the previous section we have only assessed the direct effects of
a change pattern in the decision model on the process and decision
consistency. However, a single decision model change pattern can
invoke a chain of additional change patterns in the decision model in
order to ensure within-model consistency in the decision model, and
consequently, may also have indirect additional effects on between-
model consistency. For every change applied to the decision model,
and for every additional change in the decision model triggered by
the initial change, the process and decision consistency needs to be
checked and maintained. Therefore, it is of paramount importance
to assess the propagation of changes within the decision model. In
what follows, we respectively discuss change propagation within the
decision model and from the decision model to the process model.

9.5.1 Change propagation within the decision
model

Change propagation throughout a model is an important aspect
in hierarchical structures where referential integrity needs to be
upheld. Typically, such structures are connected by tables, such
as the relational database structure, where changes are propagated

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 219

T
ab

le
9.
2:

A
n
ov
er
vi
ew

of
de
ci
si
on

m
od

el
ch
an

ge
pa

tt
er
ns

an
d
th
ei
r
in
flu

en
ce

on
th
e
pr
oc
es
s
m
od

el
.

C
h
an

ge
p
at
te
rn

(∆
Π
)

In
d
u
ce
d
in
co
n
si
st
en

cy
(χ
)

R
es
ol
vi
n
g
in
co
n
si
st
en

ci
es

(Ψ
)

∆
Π

1
:
de

ci
si
on

in
pu

t
ex
cl
us
io
n

χ
1:

P
os
si
bl
y
re
du

nd
an

t
da

ta
ob

je
ct
s
in

th
e
pr
oc
es
s.

Ψ
1:

R
ed

es
ig
n
pr
oc
es
s
to

ge
t
ri
d
of

re
du

nd
an

t
da

ta
.

∆
Π

2
:
D
ec
is
io
n
in
pu

t
in
cl
us
io
n

χ
2:

P
os
si
bl
y
in
su
ffi
ci
en
t
in
pu

t
da

ta
to

en
ac
t
th
e
de

ci
si
on

.
Ψ
2:

R
ed

es
ig
n
pr
oc
es
s
to

in
co
rp
or
at
e
ne

w
in
pu

t
da

ta
.

∆
Π

3
:
D
ec
is
io
n
ou

tc
om

e
in
cl
us
io
n

χ
3:

N
ew

de
ci
si
on

ou
tc
om

es
ar
e
no

t
ca
pt
ur
ed

in
th
e
co
nt
ro
lfl

ow
.

Ψ
3:

R
ed

es
ig
n
pr
oc
es
s
w
it
h
ne

w
br
an

ch
co
nd

it
io
ns
.

∆
Π

4
:
D
ec
is
io
n
ou

tc
om

e
ex
cl
us
io
n

χ
4:

D
el
et
ed

ou
tc
om

es
ca
n
le
av
e
de

ad
br
an

ch
es

in
th
e
pr
oc
es
s
flo

w
.

Ψ
4:

R
ed

es
ig
n
pr
oc
es
s
by

de
le
ti
ng

re
du

nd
an

t
br
an

ch
co
nd

it
io
ns
.

∆
Π

5
:
D
ec
is
io
n
ru
le

lo
gi
c
ch
an

ge
χ
5:

P
ro
ce
ss
es

an
d
de

ci
si
on

s
ar
e
lo
os
el
y
co
up

le
d
th
ro
ug

h
in
pu

t
an

d
Ψ
5:

N
o
ne

ed
fo
r
pr
oc
es
s
re
de

si
gn

as
th
er
e
is

no
ch
an

ge
in

th
e

ou
tp
ut

se
ts
.
T
hu

s,
no

in
co
ns
is
te
nc

ie
s
ar
is
e
by

ch
an

gi
ng

th
e
m
ap

pi
ng

.
in
pu

t
an

d
ou

tp
ut

se
ts
.

∆
Π

6
:
D
ec
is
io
n
ru
le

ex
cl
us
io
n

χ
6:

T
hi
s
pa

tt
er
n
is

a
co
m
bi
na

ti
on

of
∆

Π
1,

∆
Π
4,

an
d

∆
Π
5.

H
en

ce
,t
he

Ψ
6:

In
pr
oc
es
s:

de
le
te

re
du

nd
an

t
da

ta
(Ψ

1)
an

d
de

le
te

sa
m
e
in
co
ns
is
te
nc

ie
s
ar
is
e
he

re
as

w
el
l,
i.e
.,
χ
1
an

d
χ
4.

re
du

nd
an

t
co
nd

it
io
ns

(Ψ
4)
.

∆
Π

7
:
D
ec
is
io
n
ru
le

in
cl
us
io
n

χ
7:

A
ga

in
,t
hi
s
pa

tt
er
n
is

a
co
m
bi
na

ti
on

of
∆

Π
2,

∆
Π
3,

an
d

∆
Π
5
an

d
th
e

Ψ
7:

In
pr
oc
es
s:

ad
d
ad

di
ti
on

al
da

ta
(Ψ

2)
an

d
ad

d
ne

w
sa
m
e
in
co
ns
is
te
nc

ie
s
ar
is
e
he

re
as

w
el
l,
i.e
.,
χ
2
an

d
χ
3.

br
an

ch
in
g
co
nd

it
io
ns

(Ψ
3)
.

∆
Π

8
:
D
ec
is
io
n
no

de
ex
cl
us
io
n

χ
8:

T
hi
s
pa

tt
er
n
is

an
ag

gr
eg
at
io
n
of

m
ul
ti
pl
e

∆
Π
6
ch
an

ge
s.

Ψ
8:

In
pr
oc
es
s:

de
le
te

re
du

nd
an

t
da

ta
(Ψ

1)
an

d
de

le
te

H
en

ce
,t
he

sa
m
e
in
co
ns
is
te
nc

ie
s
ap

pl
y
ag

ai
n,

i.e
.,
χ
1
an

d
χ
4.

re
du

nd
an

t
co
nd

it
io
ns

(Ψ
4)
.

∆
Π

9
:
D
ec
is
io
n
no

de
in
cl
us
io
n

χ
9:

T
hi
s
pa

tt
er
n
is

an
ag

gr
eg
at
io
n
of

m
ul
ti
pl
e

∆
Π
7
ch
an

ge
s.

Ψ
9:

In
pr
oc
es
s:

ad
d
ad

di
ti
on

al
da

ta
(Ψ

2)
an

d
ad

d
ne

w
H
en

ce
,t
he

sa
m
e
in
co
ns
is
te
nc

ie
s
ap

pl
y
ag

ai
n,

i.e
.,
χ
2
an

d
χ
3.

br
an

ch
in
g
co
nd

it
io
ns

(Ψ
3)
.

∆
Π

10
:
In
pu

t
no

de
in
cl
us
io
n

χ
10

:
G
iv
en

th
e
eq
ui
va
le
nc

e
w
it
h

∆
Π
2,
χ
2
in
co
ns
is
te
nc

ie
s
ap

pl
y.

Ψ
10

:
In

pr
oc
es
s:

ad
d
ad

di
ti
on

al
da

ta
(Ψ

2)
.

∆
Π

11
:
In
pu

t
no

de
ex
cl
us
io
n

χ
11

:
G
iv
en

th
e
eq
ui
va
le
nc

e
w
it
h

∆
Π
1,
χ
1
in
co
ns
is
te
nc

ie
s
ap

pl
y.

Ψ
11

:
In

pr
oc
es
s:

de
le
te

re
du

nd
an

t
da

ta
(Ψ

1)
.

220 9.5. CHANGE PROPAGATION

by rules such as on delete cascade or on update cascade [27, 107].
Decision tables that are used in decision models are of a similar
hierarchical structure, and hence, similar change propagation can
be expected. However, instead of cascading an update or delete
action throughout the whole model, the change propagation can
also be captured by applying other change patterns.

When applying one of the change patterns presented in Table
9.1, the referential integrity of the DMN model in its entirety needs
to be upheld. As such, for every change pattern performed, the
effects on the decision hierarchy need to be assessed. This is done
by both taking into account the propagation to the higher as well
as lower levels of the DMN decision model hierarchy:

– If a change pattern deletes an element from the DMN decision
model:

– The higher-level elements that are potentially requiring
the deleted element can render the decision model
inconsistent as the deleted information is no longer
provided. Resolving this issue requires additional change
patterns that:

∗ Either delete the higher-level elements that are not
provided with the required information.

∗ Or introduce new lower-level elements that provided
the required information.

– The lower-level elements that are potentially providing
information concerning the deleted element can render
the decision model inconsistent, as the provided
information is no longer captured. Resolving this issue
requires additional change patterns that:

∗ Either delete the lower-level elements whose
information is no longer used higher up in the
decision hierarchy.

∗ Or introduce new higher-level elements that capture
the information provided by the lower-level elements.

– If a change pattern adds an element to the DMN decision
model:

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 221

– The higher-level elements are potentially receiving
information that they can not capture adequately. As
such, the newly added element renders the decision model
inconsistent. Resolving this issue requires additional
change patterns that:

∗ Either introduce higher-level elements that capture
the information provided by the newly added
element.

∗ Or delete the newly added element to restore the
within-model consistency.

– The lower-level elements are potentially not providing
the adequate information to the newly added element. As
such, the newly added element renders the decision model
inconsistent. Resolving this issue requires additional
change patterns that:

∗ Either introduce lower-level elements that provide
the required information to the newly added element.

∗ Or delete the newly added element to restore the
within-model consistency.

As such, resolving within-model inconsistencies requires the
administration of additional change patterns that on their turn
either exclude elements from the decision model or include new
elements to the decision model. These additionally triggered change
patterns can in turn trigger yet other change patterns. Thus, a
chain of triggered patterns may need to be propagated through
the decision model until the system stabilises. For instance, when
pattern ∆Π1 is applied, ∆Π8 may need to be triggered. Change
pattern ∆Π8 can in turn trigger ∆Π11 after which the propagation
of changes stops and the system returns to a stable state.

9.5.2 Change propagation to the process model

This subsection deals with change propagation from the decision
model to the process model. Applying a change pattern to the
decision model can induce inconsistencies in the integration of
the process and decision models. Hence, when a decision model
change pattern is applied, one must assess its effects on the process

222 9.5. CHANGE PROPAGATION

model, i.e., whether the decision model change pattern propagates
changes to the process model as well. Notice that only change
patterns that impact the inputs and/or outputs of a decision
used in the process model are relevant for change propagation
to the process model. This is due to the fact that consistently
integrated process and decision models view decisions as services
which provide decision outputs after being invoked by the process
that presents the relevant input data [63, 66]. If the change patterns
applied to the decision model provoke a change to the process model
for consistency reasons, changes need to be applied to the process
model to restore consistency.

In the previous sections, we have demonstrated which change
patterns can occur in a decision model, and how the change
patterns generate inconsistencies. Furthermore, for every specified
change pattern, we have demonstrated how to redesign the process
to restore consistency between the process model and its underlying
decision model. Notice that, as specified in Table 9.2, for every
change pattern-induced process and decision model inconsistency,
the problem can be threefold: either the process is not providing
the relevant data as input to the decision model due to the applied
change pattern; or the process is not able to interpret the decision
result returned by the decision model due to the applied change
pattern; or both the inputs provided by the process to the decision
model and the interpretation of the decision outputs in the process
provide difficulties. Thus, after applying decision model change
patterns, these inconsistencies between the process and decision
models can arise. Resolving these inconsistencies is achieved, on
the one hand, through ensuring that the interfacing between the
process and the decision model inputs is correct; and on the other
hand, through safeguarding the interfacing between the decision
model outputs and the process. Hence, in those cases, changes need
to be applied to the process model to restore the between-model
consistency.

9.5.3 Resolving decision input inconsistencies

Notice that a process and decision model consistency implies that
for each (sub)decision invoked in the process it must be guaranteed
that the (sub)decision is invocable at that stage of the process

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 223

[66]. In order to invoke a certain decision in the process through a
decision activity, all relevant data needed for invoking that decision
and its subdecisions must be available. Additionally, if subdecisions
of the decision that is invoked are modelled within the process
by means of decision activities, the intermediate results of the
subdecisions must be readily available as well. Violations against
the invocability of decisions from the process can be resolved in
three simple steps [66]:

1. Apply the topological hierarchy of decisions from the decision
model to the order of modelled decision activities in the
process.

2. Ensure that all input data needed in the decision model is
present in the process model as well, either as external data
or as internally produced process data.

3. For every decision activity in the process make sure that
all input data and intermediate results of its subdecision
activities in the process are linked to the decision activity
as input data objects.

Thus, applying these changes (adding all relevant input data or
subdecision outcomes in the hierarchical order) to the process will
ensure that the process model is aligned with the decision model
inputs.

9.5.4 Resolving decision output inconsistencies

The previously enumerated process changes solve the process
and decision model inconsistencies from the input perspective.
However, the process still needs to correctly interpret the decision
outcomes after the decision has been enacted [10, 67]. Hence,
the process needs to catch the relevant decision outcomes in its
control flow and to disregard irrelevant decision outcomes that are
not possible anymore due to decision model changes. Note that
the decision outcomes do not necessarily influence the control flow
perspective of the process. Often, the decision outcome influences
the data perspective of the process and is used as a data object
that can be consumed by another activity later on in the process.
For instance, the outcome of a subdecision can be incorporated as a

224 9.6. A PROOF-OF-CONCEPT MODELLING ENVIRONMENT

data object in the process, which on its turn can be consumed by a
decision activity which invokes a higher-level decision that requires
the outcome of the subdecision. Likewise, decision outcome data
objects can be used as input for operational activities or automated
tasks.

Hence, applying these changes (adding all relevant output
objects, branches, and conditions needed to capture decision
outcomes) to the process will ensure that the process model is
aligned with the decision model outputs.

9.6 A Proof-of-Concept Modelling
Environment

In this section we present the capabilities of the proof-of-concept
modelling environment we have developed for providing modelling
support for decision-aware business process evolution. We describe
the capabilities of the tool and illustrate how the modelling
environment works through an example.

9.6.1 Description of the modelling environment

The described approach for decision-aware process evolution was
implemented as a modelling environment to interactively guide
modellers in change propagation and model evolution. The
modelling environment exists out of two components:

1. A first component checks the within-model consistency of
the DMN decision model after one of the change patterns
from Table 9.1 is applied17. After discovering errors in
the model, the tool suggests actions which can be taken
to resolve the errors. By selecting one of the actions, the
tool automatically performs the action and checks for within-
model inconsistencies again. As such, the model can be
evolved consistently in an iterative fashion.

17The first component (within-model checking) can be accessed at http:
//dmn.fg-bks.uni-koblenz.de/?dmnurl=dmn/BaselineModel.dmn. This
component was described in the previous two chapters.

http://dmn.fg-bks.uni-koblenz.de/?dmnurl=dmn/BaselineModel.dmn
http://dmn.fg-bks.uni-koblenz.de/?dmnurl=dmn/BaselineModel.dmn

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 225

2. The second component checks for between-model consistency,
i.e., the consistent integration between a DMN decision model
and a BPMN process model18. Here too, the modelling
environment proposes concrete actions that the user can chose
to resolve possible inconsistencies. Consequently, the system
will automatically perform the actions.

Figure 9.14 shows the interface of the BPMN + DMN
verification in the modelling environment, with numbers indicating
the different parts of the tool, which are as follows:

1. Display of the BPMN process model.

2. Buttons to upload a BPMN model into the environment, to
download the model from the environment, and to generate
an empty BPMN model.

3. BPMN elements which can be selected by the modeller to add
to the BPMN model.

4. Display of the DMN model. By clicking on one of the decision
nodes, the decision table view can be accessed. In that view,
a View DRD button can bring the modeller back to the DRD
view.

5. Buttons to upload a DMN model into the environment, to
download the model from the environment, and to generate
an empty DMN model.

6. DMN elements which can be selected by the modeller to add
to the DMN model.

7. The Check synchronization button. By clicking this button,
the modelling environment checks wether the BPMN and
DMN models are consistenly integrated, i.e., whether there
are errors which need to be corrected.

8. Feedback for the modeller that explains the errors. Here,
the error messages as a result of the verification mechanism
between the DMN and BPMN models of the modelling
environment are displayed and explained.

18The second component (between-model checking) can be accessed at http:
//dmn.fg-bks.uni-koblenz.de/bpmn-verifier/index.html

http://dmn.fg-bks.uni-koblenz.de/bpmn-verifier/index.html
http://dmn.fg-bks.uni-koblenz.de/bpmn-verifier/index.html

226 9.6. A PROOF-OF-CONCEPT MODELLING ENVIRONMENT

1
4

23

5

6

7

8
9

F
igure

9.14:
T
he

B
P
M
N

+
D
M
N

verification
view

of
the

m
odelling

environm
ent

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 227

9. Action buttons to resolve the errors. Next to the error
messages, automatic actions are suggested by the modelling
environment that can resolve the errors. By clicking any
of the suggested action buttons, the modelling environment
automatically performs the selected action to the BPMN or
DMN model.

The core of the environment is the detection of inconsistencies,
either within the decision model, or between the decision model
and the process model. Means to detect the inconsistencies
are denoted as individual verification capabilities. The work in
[40] already presents a small survey of DMN decision logic level
capabilities supported by existing tools. For this work, the survey
was extended in order to classify existing approaches with regard
to the new verification capabilities discussed in this work. Table
9.3 shows an overview of supported verification capabilities by
existing approaches for analysing DMN models on the decision
logic level as well as the decision requirements level. Additionally,
the table shows between-model verification capabilities for DMN
and BPMN models. As can be derived from Table 9.3, most work
has focused on decision logic verification capabilities, i.e., checking
for inconsistencies within a decision table. However, decision logic
verification between linked decision tables, decision requirements
hierarchy verification, and process-decision verification capabilities
are still underrepresented in the literature. Hence, in our proof-
of-concept modelling environment, we also include these neglected
verification capabilities. The verification capabilities mentioned in
Table 9.3 are in part based on the classifications from [40, 124].
In what follows, we briefly describe all the verification capabilities
mentioned in Table 9.319.

Overview of verification capabilities covered by existing
approaches (X = full and o = partial support).

9.6.1.1 BPMN + DMN verification capabilities

– Unused Data Object Reference verification (BPMN).
Detecting data object references in the BPMN model which
are missing in the DRD.

19For the description of the decision logic and DRD verification capabilities,
we refer to the previous chapter.

228 9.6. A PROOF-OF-CONCEPT MODELLING ENVIRONMENT

T
able

9.3:
O
verview

of
verification

capability
coverage

(X
=

fulland
o
=

partialsupport).

D
ecision

logic
cap

ab
ilities

D
R
D

level
cap

ab
ilities

B
P
M
N

+
D
M
N

Literature

Identical Rules

Equivalent Rules

Subsumed Rules

Indeterminism

Overlapping Conditions

Partial Reduction

Missing Rules

Unused Predefined Value

Missing Predefined Value

Missing input value

Missing output value

Missing input column

Missing output column

Idle data input

Missing (data) input

Multiple (data) input

Inconsistent types

Unused Data Object Reference

Missing Data Object Reference

Unused Data Input

Missing Data Input

Unused Table Output

Missing Table Output

C
alvanese

et
al.

(2016)
[29]

X
o

X
X

X
L
aurson

et
al.

(2016)
[91]

X
X

o
X

o
X

B
atoulis

et
al.

(2017)
[8]

X
X

X
X

X
X

C
alvanese

et
al.

(2017)
[30]

X
o

X
o

X
X

O
choa

et
al.

(2017)
[104]

X
X

B
atoulis

et
al.

(2018)
[7]

X
X

X
o

C
alvanese

et
al.

(2018)
[31]

X
o

X
o

X
o

X
C
orea

et
al.

(2018)*
[39]

X
X

X
C
orea

et
al.

(2019)*
[40]

X
X

X
X

X
X

X
T
h
is

w
ork

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 229

– Missing Data Object Reference verification (BPMN).
Detecting missing data object references in the BPMN model
which are present in the DRD.

– Unused Data Input verification (DMN). Detecting data
input nodes in the DMN model which are missing in the
BPMN model.

– Missing Data Input verification (DMN). Detecting
missing data input nodes in the DMNmodel which are present
in the BPMN model.

– Unused table output verification. Detecting if there is
a rule output which is not referenced in the BPMN model
(either as an edge after the rule task or a data output).

– Missing table output verification. Detecting if there
is an option in the BPMN, e.g. an outgoing edge, but no
corresponding rule output (i.e., that path in the BPMN is
unreachable).

The modelling environment is based on the open source
Camunda20 modeller which we have advanced with verification
capabilities. The modeller can apply any of the change patterns
discussed in this paper. After doing so, the modelling environment
checks for consistency errors and displays error messages. The
modelling environment can highlight the errors and suggests actions
to remedy the inconsistencies. After the modeller selects an action,
the modelling environment automatically performs it and checks
for errors again. This way, the DMN can be evolved iteratively in
a consistent way and the consistency with the BPMN model can
be checked.

9.6.2 Example of model evolution as supported by
the modelling environment

In this subsection we provide a short example to show how,
respectively, the DMN evolution and verification, and the BPMN +

20https://camunda.com/download/modeler/

230 9.6. A PROOF-OF-CONCEPT MODELLING ENVIRONMENT

DMN evolution and verification work21. We would like to remind
the reader that the modelling environment can be accessed online
(see link in Section 7.1).

9.6.2.1 BPMN + DMN model evolution and
verification

Suppose that a process model is built which makes use of the initial
decision model presented in Figure 9.1. In the BPMN + DMN view
presented in Figure 9.15, the two models are visible next to each
other. In what follows, we illustrate some of the BPMN + DMN
verification capabilities of the modelling environment, which were
mentioned in Table 9.3.

Suppose that the EMG data object is deleted from the BPMN
model in Figure 9.15, i.e., one of the necessary decision inputs
for the COPD severeness decision is deleted. After checking for
the synchronisation between the BPMN and DMN models, the
modelling environment displays and highlights errors as shown
in Figure 9.16. The EMG input data node in the DRD is
highlighted as it is not referenced by the process model. The
modelling environment suggests actions which can be taken towards
remedying the situation: either deleting the input data node from
the decision model, or adding a corresponding data object to the
BPMN process model. By selecting one of the BPMN process
activities from one of the drop-down menus (Add as input or Add
as output), a data object referencing the relevant input data node
in the DRD is added to the selected activity as an input or output
object respectively. By selecting Add as input to the Check COPD
severeness activity, the initial situation in Figure 9.15 is restored.

Suppose now that the input data node EMG data is deleted in
the DRD model. As such, a data object in the BPMN model,
i.e., EMG data, which serves as an input to the Check COPD
severeness decision activity, does not have a corresponding input
data node in the DRD model, as shown in Figure 9.17. The
modelling environment suggests either to delete the data object
from the BPMN process model or to add an input data node to
one the decision nodes in the DRD. After selecting the latter, the

21For the DMN evolution and verification part, we refer to the previous two
chapters.

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 231

F
ig
ur
e
9.
15
:
In
it
ia
lv

ie
w

of
th
e
in
te
gr
at
ed

B
P
M
N

an
d
D
M
N

m
od

el
s
in

th
e
m
od

el
lin

g
en
vi
ro
nm

en
t.

232 9.6. A PROOF-OF-CONCEPT MODELLING ENVIRONMENT

F
igure

9.16:
D
etecting

a
m
issing

data
object

needed
for

decision
input

in
the

B
P
M
N

process
m
odel.

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 233

F
ig
ur
e
9.
17
:
D
et
ec
ti
ng

an
in
pu

t
da

ta
no

de
in

th
e
D
R
D

m
od

el
w
hi
ch

is
re
fe
re
nc
ed

by
a
da

ta
ob

je
ct

in
th
e
B
P
M
N

m
od

el
.

234 9.6. A PROOF-OF-CONCEPT MODELLING ENVIRONMENT

F
igure

9.18:
D
etecting

a
decision

rule
output

w
hich

is
not

captured
in

the
B
P
M
N

m
odel.

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 235

F
ig
ur
e
9.
19
:
D
et
ec
ti
ng

an
un

re
ac
ha

bl
e
pa

th
in

th
e
B
P
M
N

m
od

el
(n
o
co
rr
es
po

nd
in
g
de
ci
si
on

ou
tp
ut

in
th
e
ta
bl
e)
.

236 9.7. CONCLUSION AND FUTURE WORK

initial situation in Figure 9.15 is restored again.
Suppose that in the initial situation in Figure 9.15 the edge

which captures the COPD severeness decision outcome of none is
deleted from the process model. Figure 9.18 shows this situation.
The decision rule whose outcome is not captured in the BPMN
process model is highlighted in the decision table view of the DMN
model. The modeller can either delete the decision rule that is not
captured in the process, or remodel the outgoing edge following
the Check COPD severeness decision activity to recapture the
neglected decision outcome. After opting for the latter, the initial
situation in Figure 9.15 is obtained.

Suppose that, instead of deleting an edge that captures a
decision rule outcome in the process model, the decision rule itself is
deleted from the decision table while the edge remains intact, e.g.,
the highlighted decision rule 7 in Figure 9.18 is deleted. As such, the
COPD severeness decision outcome of none is no longer available
in the decision table, while a control flow edge in the BPMN model
exists that tries to capture this decision outcome. Thus, this edge
is no longer reachable in the BPMN process model. This situation
is illustrated in Figure 9.19. The modeller can either decide to
remodel the decision rules with the outcomes that are present in
the non-covered edges. Alternatively, if the deleted decision rule is
indeed deemed unnecessary, the idle edge itself can be deleted from
the BPMN process model.

9.7 Conclusion and Future Work

This paper investigates change patterns in an integrated decision-
and process modelling environment. As we have shown through
a running example, changes in the decision model can lead to
inconsistencies, either within the decision model itself, or between
the decision model and the process model. Here, executing
other change patterns to resolve these inconsistencies might be
necessary. To this aim, decision model change patterns and
their influence on the process model are defined in this work,
allowing to propagate change patterns and thus to ensure consistent
model evolution. The means presented in this work allow to
pin-point those inconsistencies that can arise during modelling,

CHAPTER 9. EVOLUTION OF PROCESSES AND DECISIONS 237

and prescribe specific change patterns to promote flexible and
sustainable development of both process and decision models in
integrated modelling environments. Furthermore, we illustrate the
feasibility of our approach by providing a modelling environment
prototype, which can be used for consistent model evolution.
The prototype implements inconsistency detection via so-called
verification capabilities and suggests change patterns to resolve
inconsistencies in a semi-automated manner.

In future work, we will evaluate our modelling environment
prototype on industrial case-studies and usability tests. Here, we
aim to further investigate the feasibility of our approach with real-
life data sets, and to examine the cognitive effects of using the
tool for human modellers, e.g., whether the tool allows to evolve
models with higher efficiency, less errors, and less mental effort
needed. Furthermore, we will investigate how extending DMN
and BPMN with a shared ontology can be exploited to ensure
consistency between process and decision models, as well as the use
of DMN for context aggregation in processes [97]. Such a shared
viewpoint could allow to incorporate external domain knowledge in
order to further promote consistent model evolution. We will also
look into evolving decision and process models at runtime, as it is
necessary to evolve models without incurring costs that are related
to shutting down the system to perform the required adaptations
[121].

Part V

Epilogue

CHAPTER 10

Final Remarks
“Shvatam te:
Čovjek si u jednom prostoru i vremenu
Što živi tek sada i ovdje
I ne zna za bezgranični
Prostor vremena
U kojem se nalazim
Prisutan
Od dalekog jučer
Do dalekog sjutra
Misleći
O tebi
Ali to nije sve”

(“I understand you:
You are a man in one space and time
Who lives only here and now
And knows nothing about the infinite
Space of time
Where I am
Present
From distant yesterday
Till distant tomorrow
Thinking
About you
But that’s not all.”)

Putovi
— Mehmedalija Mak Dizdar

This chapter provides assumptions, clarifications, and final remarks
with regard to the contributions detailed in Parts II - IV.

241

242 10.1. PART II: INTEGRATING PROCESSES AND DECISIONS

10.1 Part II: Integrating Processes and
Decisions

When moving from process models that contain hard-coded
decision logic to the separation of modelling concerns and their
subsequent consistent integration, we have opted for the merging
and parametrisation of activities that are carried out as a result of
a decision path. This was the case in the transition from Figure 2.3
to Figures 2.4 and 2.5 in Chapter 2, where the distinct activities
for drawing up a contract were merged and parametrised into a
singe Draw up contract activity. A similar approach was used
in Chapter 4: in the transition from Figure 4.2 to Figure 4.3,
the distinct cooling system activities that were used in Figure
4.2 to execute the conclusion of the decision path, were merged
and parametrised into a single Set cooling level activity in
Figure 4.3. Note that this approach moves part of the complexity
from the visual process model to the parametrisation of the newly
merged activity. Furthermore, it is worthwhile noticing that such
an approach of activity merging and parametrisation cannot always
be applied. Indeed, often there is a need to maintain distinct
activities, notwithstanding their limited differences. This need for
activity differentiation can for instance be motivated by resource
allocation: despite the limited distinction between the activities, a
different resource may need to be allocated to the specific activities.
For instance, in Figure 2.3, the company’s policy may be that low
risk customer contracts are drawn up by the administrative staff,
while high risk contracts are to be drawn up by the risk manager.
In comparable cases, activity merging and parametrisation are
not advised. Rather, this merging and parametrisation should be
carried out in cases of decision automation or system automated
tasks, i.e., in situations where changing resource allocation and
handover of work are not issues that need to be considered for the
specific activities.

In this thesis, we indeed mainly focused on modelling decisions
that are crisp and explicit for automated decision making. However,
modelling tacit decision knowledge of workers is often a major
challenge. For instance, in Figure 3.3, we opted to model the
Appraise property activity as a regular activity rather than a

CHAPTER 10. FINAL REMARKS 243

decision activity whose logic is stored in the underlying decision
model, assuming that property appraisal is carried out by an
expert, whose tacit knowledge and experience provide the expert
with the ability to appraise the property by inspecting it. Making
this knowledge and experience explicit by modelling it in a decision
table format is a challenging endeavour, as many variables are in
play, with each property being specific and with many possible
exemptions and special cases.

Note that, unlike in related works as explained in Chapter 2,
in this dissertation, we adopt a broad definition of a decision in
a process, since we recognise that decisions can be modular and
distributed across the entire process, rather than localised to a
single decision point. We define a decision in a process as the
transformation of inputs to outputs given a certain logic in a
decision activity, as stated in Definition 2.9. The instances that
pass through the activity carry all the data that are attached
to that instance and not only the data relevant for the decision
invocation. Therefore the input data for the decision Ida is a subset
of all the data carried as input to the decision activity I(a). The
same holds for the output data leaving the activity. A subset,
Oda , of the data that is leaving the activity O(a), represents the
outcome of the decision. As such, theoretically, a single decision
activity can in fact invoke multiple decisions with each their own
decision logic Lda ⊆ L. A simple example would be a decision table
with two output columns (output sets). These would be considered
two decisions in the process. In event logs it is possible that
different logic is perceived in the same process activity, mapping
different inputs to different outputs in that same activity (i.e.,
manifesting multiple decisions in the same activity). Given the
narrow definitions of a decision in other works, we opted to define
decisions as broadly as possible such that the definition of a decision
in a process holds both for modelling and mining purposes.

10.2 Part III: Decision as a Service (DaaS)

In analogy with Part II, the decision model in this part is considered
as given, correct, and static. This part deals with the interactions
that processes can have with the given decision model. These

244 10.2. PART III: DECISION AS A SERVICE (DAAS)

interactions are determined by the possible decision services that
can be derived from the decision model. As such, this part presents
a decision-first approach, i.e., based on the decision model, for the
interaction between processes in general and a decision model that
they want to invoke. This decision-first approach is why the Figure
5.2 is oriented the way it is: the decision layer is at the top as we
start from the decision model. The decision service layer is derived
from the decision model in the decision layer: possible decision
services that allow for the invocation of the underlying decision
model, or parts of it, are constructed. Note that for the invocation
of the same decision, different decision services can be used. For
the sake of clear representation, Figure 5.2 only shows the decision
services that are called upon by the process variant depicted in the
process layer. Other process variants, or indeed, other processes,
can use other decision services.

Whether a process will be able to correctly invoke a decision
service will be determined by the Service Adherence Criterion in
Definition 5.10. Note that a process can adhere to one decision
service that invokes a decision, while not conforming to other
decision services that pertain to the same decision in the decision
model. As such, the integration criteria that are discussed in Part
II are based on the interaction of a single process with a decision
model. The DaaS design and the service adherence criterion imply
that different process variants or indeed entirely different processes
can interact with a decision model in multiple ways, as long as they
adhere to one of the decision services that is capable of invoking
their requested decision.

As mentioned earlier, a process can interact with the decision
model in multiple ways, even when considering a single decision. To
illustrate this consider the top-level decision in the decision model
in Figure 10.1, i.e., decision A. Multiple decision services, and thus
multiple ways of invoking the decision logic, can be defined for
this decision, depending on the input set that the process provides.
According to Definition 5.5 of Chapter 5, the direct input set of
decision A is defined as follows: IA = {oB, oC} with IA ∈ dirsA
and oB ∈ OB and oC ∈ OC . Following the same Definition 5.5, the
input requirements set for decision A can be constructed to obtain
the following: dirsA = ({i1, i2}, {i1, oC}, {oB, i2}, {oB, oC}) with
oB ∈ OB and oC ∈ OC . With this, all possible decision services for

CHAPTER 10. FINAL REMARKS 245

decision A in Figure 10.1 can be constructed based on Definitions
5.5 and 5.6 from Chapter 5. Similarly, decision services for decisions
B and C are obtained:

DS1
A is a tuple ({i1, i2}, OA)
with s1A = {i1, i2} ∈ dirsA

DS2
A is a tuple ({i1, oC}, OA)
with s2A = {i1, oC} ∈ dirsA and oC ∈ OC

DS3
A is a tuple ({oB, i2}, OA)
with s3A = {oB, i2} ∈ dirsA and oB ∈ OB

DS4
A is a tuple ({oB, oC}, OA)
with s4A = {oB, oC} ∈ dirsA and oB ∈ OB and oC ∈ OC

DS1
B is a tuple ({i1}, OB)
with s1B = {i1} ∈ dirsB

DS1
C is a tuple ({i2}, OC)
with s1C = {i2} ∈ dirsC

B

A

C

i1 i2

Figure 10.1: An example of a decision requirements diagram (DRD).

Note that due to the hierarchical graph structure of the DMN
decision model, lower-level decision services can be composed into
higher-level decision services. For instance, if DS1

A is invoked,
lower-level decision services can be invoked by DS1

A in order to
enact decision A. As such, DS1

A can call upon DS1
B and DS1

C ,
since s1B ∈ s1A and s1C ∈ s1A. This way, oB ∈ OB and oC ∈ OC are
obtained, i.e., IA, which can be used as inputs to enact decision A.
This corresponds to invoking DS4

A. As such, we have illustrated
that DS1

A composes services DS1
B and DS1

C to provide inputs for
the decision serviceDS4

A, which is the equivalent ofDS1
A due to the

construction of the decision input requirements set for decision A

246 10.2. PART III: DECISION AS A SERVICE (DAAS)

Administrative
activity X

Do something
with decision A

outcome

i1

i2

Decision A
outcome

Decision activity
A

Figure 10.2: An example of a process using DS1
A of decision A from

the decision model in Figure 10.1.

i1

i2

Decision activity
A

Do something
with decision C

outcome

Administrative
activity X

Decision activity
C

Do something
with decision A

outcome

Decision C
outcome

Decision A
outcome

Figure 10.3: An example of a process using DS2
A of decision A from

the decision model in Figure 10.1.

according to Definition 5.5 of Chapter 5. This composition allows
for decision services to invoke lower-level decision services, thus
avoiding the need for the replication of decision logic in equivalent
decision services.

These different decision services provide processes with different
ways of interacting with the underlying decision model. For
instance, the process in Figure 10.2 uses DS1

A to interact with
the decision model, while the process in Figure 10.3 uses DS2

A.
Similarly, the process in Figure 10.4 uses DS3

A and the process in
Figure 10.5 uses DS4

A. Note however, that other process variants
are possible as well. For instance, in a process similar to the

CHAPTER 10. FINAL REMARKS 247

Do something
with decision A

outcome

i1

i2

Decision A
outcome

Do something
with decision B

outcome

Decision B
outcome

Administrative
activity X

Decision activity
B

Decision activity
A

Figure 10.4: An example of a process using DS3
A of decision A from

the decision model in Figure 10.1.

process in Figure 10.5, DS4
A may still be used without necessarily

executing Decision activity B and Decision activity C, and
consequently the decision services these decision activities pertain
to, i.e., DS1

B andDS1
C . In such a variant the outcomes of the lower-

level decisions A and B are known without the need to invoke the
subdecisions. Such a variant is given in Figure 10.6. Note that,
according to Definition 5.10, this process variant only conforms to
DS4

A, while the variant given in Figure 10.5 conforms to all the
decision services defined above for the decision model in Figure
10.1.

In analogy, the same can be done for the decision model in
Figure 5.2: for each decision, possibly multiple decision services
can be defined, thus allowing different process variants, or indeed
entirely different processes and applications, to invoke the necessary
decision as long as they provide an input set for that decision that
is contained in the decision’s input requirements set.

10.3 Part IV: Change Patterns, Model
Evolution, and Tool Support

In this dissertation we base the decision model evolution on change
patterns. Some of these change patterns are in part overlapping or
equivalent. For instance, change patterns ∆Π1 -∆Π4 in Table 7.1 of
Chapter 7 handle the inclusion and exclusion of inputs and outputs

248 10.3. PART IV: CHANGE, MODEL EVOLUTION, AND TOOLS

A
dm

inistrative
activity X

D
o som

ething
w

ith decisio
n A

outcom
e

D
ecision

 activity
A

D
ecision

 activity
B

D
ecision

 activity
C

D
o som

ething
w

ith decisio
n C

outcom
e

D
o som

ething
w

ith decisio
n B

outcom
e

D
ecision

 A
outcom

e

i2 i1

D
ecision

 B
outcom

e

D
ecision

 C
outcom

e

F
igure

10.5:
A
n
exam

ple
of

a
process

using
D
S
4A
of

decision
A

from
the

decision
m
odelin

F
igure

10.1.

CHAPTER 10. FINAL REMARKS 249

Administrative
activity Y

Do something
with decision A

outcome

Decision C
outcome

Decision A
outcome

Decision activity
A

Decision B
outcome

Figure 10.6: Another example of a process using DS4
A of decision A

from the decision model in Figure 10.1.

in the decision table. Broadly speaking, these change patterns also
influence the decision logic. As such, one can state that change
pattern ∆Π5, i.e., the change in decision logic, partially overlaps
with change patterns ∆Π1 -∆Π4. However, we have defined the
change in decision logic (∆Π5) as a change in the mapping between
the existing inputs and outputs. As such, the inclusion or exclusion
of inputs and outputs is not considered a change in decision logic
in the strict sense. We adopted this nuanced distinction of decision
logic change in order to more precisely assess the effects of each
change pattern. As is elaborated in Chapter 7, the change in
decision logic in the strict sense (∆Π5), i.e., changing the mapping
between existing inputs and outputs, does not necessarily impact
the consistency of the decision model, as long as the set of input
values and the set of output values of a decision table remain the
same. Applying one of the inclusion or exclusion change patterns
(∆Π1 -∆Π4) on the other hand, most likely leads to induced
inconsistencies in the referential integrity of the decision model.
Therefore, this distinction of change patterns that leads to some
overlap was needed to assess the effects of the respective change
patterns on the decision hierarchy.

Similar overlaps in the defined change patterns were needed to
assess the effects of administered changes on the different levels
of the decision model, i.e., the decision requirements level and the
decision logic level. For instance, some overlap exists with between,

250 10.3. PART IV: CHANGE, MODEL EVOLUTION, AND TOOLS

on the one hand, the input inclusion and exclusion patterns (∆Π1
and ∆Π2), and on the other hand, the input data node inclusion
and exclusion patterns (∆Π10 and ∆Π11). The former refer to
the decision logic level, while the latter pertain to the decision
requirements level. Despite the overlap, both types of patterns
need to be defined in order to assess their effects on all levels of the
decision model and throughout the entire decision model hierarchy.
Indeed, excluding an input data node from a decision requirements
diagram leads to the exclusion of an input variable at the decision
logic level, i.e., in a decision table. However, the opposite is
not necessarily always true, as excluding an input variable from
a decision table may also lead to the deletion of a subdecision that
provides the input variable, and not to the deletion of an input data
node. In order to safeguard such nuances and to enable the analysis
of these changes in both levels of the decision model and throughout
the decision model hierarchy, equivalent change patterns for both
levels of the decision model need to be defined. Hence, despite a
partial overlap between some change patterns, the patterns are not
identical.

CHAPTER 11

Conclusions

“Sada je kraj pjesme
Sada je moje slovo cijelo”

(“Now is the end of the song
Now my letter is whole”)

Uspavanka
— Mehmedalija Mak Dizdar

This final chapter summarises this doctoral dissertation by
reiterating the main contributions and limitations. Additionally,
attention is given to future research opportunities that arise from
the research presented. While specific contributions, limitations,
and future research opportunities are discussed in the different
chapters throughout this dissertation, this final chapter provides
a brief and more general overview of these aspects.

251

252 11.1. CONTRIBUTIONS

11.1 Contributions

This dissertation revolves around the introduction of decisions
as a systems modelling perspective in process-aware information
systems in order to achieve decision-aware processes. By
doing so, this dissertation acknowledges the importance of
decision models in model-driven process systems engineering
since organisations are increasingly relying on decision knowledge
for the development, execution, evolution, and automation of
their processes. Therefore, consistently integrating decisions and
processes is of paramount importance for a sound development and
management of knowledge-based processes. In this dissertation,
the integration of decisions into processes is handled in a holistic
fashion, meaning that decisions in processes are viewed as modular
interconnected parts that can occur across the entire process and,
as such, introduce long-distance decision dependencies into the
process that need to be accounted for when aiming at a sound
integration. While the contributions and implications of this
dissertation are manifold, they can be categorised into three main
areas, all of them advancing the overall contribution.

Firstly, principles and guidelines for the one-on-one integrated
modelling of process and decision models are established and
evaluated against cases from industry and literature, spanning
different application areas. Decision models are viewed as given and
static, and the process model is tailored to fit the decision model.
As such, processes are augmented with decision intelligence which
can influence the process from different perspectives, among others,
the process control flow, process termination, process automation,
as well as the data propagation throughout the process.

Secondly, a Service-Oriented Architecture (SOA) approach to
decisions in processes is contributed, thus cementing decision
services in a well-established theoretical framework. Here too,
the decision model is viewed as given and static. However,
the introduction of decision services specifies the different ways
processes can interact with the decision model. Thus, rather than a
one-on-one integration, here we consider the integration of a given
and static decision model with processes in general. Additionally,
the effective modelling of decisions in processes is linked to the

CHAPTER 11. CONCLUSIONS 253

automated discovery of data-aware processes, illustrating that
decisions do manifest themselves as services in real-life enriched
event logs.

Thirdly, decision model change patterns for dynamic system
evolution are determined, allowing to evolve decision models while
safeguarding their consistency. As such, unlike the in the two
previous parts, here we consider dynamic decision models, i.e.,
models that are not static and that can change over time. Likewise,
unlike in the first two parts, this part does not assume that
the decision model is always correct, as change patterns can
induce inconsistencies into the model. Moreover, the dependencies
between decision model change patterns and decision-aware process
models are unveiled and their effects on the consistency between
the decision and process model are mitigated. All these aspects
are supported by prototype modelling environments with built-
in consistency verification capabilities, feedback mechanisms, and
automated actions for consistency recovery.

In conclusion, this dissertation provides methods for a sound
development of decision-aware processes along with mechanisms
for the consistent evolution of decision models and decision-aware
processes. Hence, this dissertation acknowledges the need for
continuous decision and process evolution and improvement in
knowledge-based systems.

11.2 Limitations

Introducing a decision perspective into process-aware information
systems implies the introduction of an additional model, i.e., the
decision model, into the system. This entails the introduction of
additional complexity since new types of models are introduced.
Additionally, the dependencies between the models in the system,
i.e., the integration between process models and decision models,
are a source of additional complexity in re-engineering processes
for decision-awareness. This process re-engineering for decision-
awareness implies eliminating the decision constructs that were
present in the legacy process models. Additionally, the redesigned
process models need to be compatible with the newly established
decision models. Hence, consistency verification mechanisms need

254 11.3. FUTURE RESEARCH DIRECTIONS

to be put in place to ensure a sound system integration.
Consequently it can be stated that, while the decision-aware

approach to process management provides a plethora of advantages
as elaborated upon in this dissertation, it introduces an additional
cost in terms of higher system complexity. As such, a trade-off
exists between on the one hand, introducing decision-awareness into
processes by externalising decision constructs into separate decision
models and subsequently redesigning the process to consistently
integrate it with its newly established underlying decision model;
and on the other hand, establishing additional forms of complexity
by introducing new types of models and dependencies between
different models. When a low level of decision-awareness is
required, the systems engineer may opt to include the decision
constructs into the process model itself. As such, no additional
complexity is introduced into the system for merely a marginal
gain in decision-awareness [71].

Additionally, it is worth emphasising that process re-engineering
is necessary to achieve decision-aware processes. The transition
from processes that convolute decision constructs with process
constructs to processes that are aligned with an external decision
model may prove to be a challenge in complex organisational
settings. Rather than an abrupt transition, a step-wise and gradual
transition between the two paradigms might be advisable in order
to ensure a smooth process transformation.

Moreover, while this dissertation provides new methods for
the development of decision-aware processes, additional empirical
evaluation is indispensable for the support of the theoretical aspects
contributed in this dissertation. These empirical evaluation aspects
will be elucidated in the future research section which follows below.

11.3 Future Research Directions

Empirical evaluation on the understandability, maintainability,
and complexity of decision-aware processes as introduced in this
dissertation is required. The empirical information obtained for
decision-aware processes should be compared to the empirical
information obtained for regular processes that convolute process
and decision constructs in a single model. As such, the advantages

CHAPTER 11. CONCLUSIONS 255

and disadvantages of decision-aware processes can be quantified
and compared against regular processes.

The prototype modelling environments introduced in this dis-
sertation provide additional opportunities for empirical evaluation.
A comparison between modelling with and without the feedback
mechanisms and automatic consistency recovery actions in the
modelling environments can be performed. This way, it can be in-
vestigated whether the modelling support built into the modelling
environments provides sufficient advantages over modelling freely
without the feedback mechanisms enabled.

The feedback mechanisms and automatic consistency restore
actions built into the modelling environments can be improved
by relying on applied human-computer interaction research. More
specifically, eye tracking studies can be performed to investigate
the manner in which the modellers interact with the automated
feedback mechanisms and how this influences their modelling
capacity. Insights into redesigning the user-interface of the
modelling environments or the way the feedback is provided to the
modeller can be obtained.

An additional area for research is the development of a
methodology for giving consistent guidelines for modelling DMN
decision models, as well as integrated BPMN and DMN models.
The DMN modelling methodology should provide guidelines and
steps towards constructing a sound decision model. In particular,
attention should be given to model granularity, i.e., the composition
and decomposition of decisions within the decision model. In
essence, one could model every DMN model as a single decision
node in the decision requirements diagram. As such, that decision
node encapsulates the decision logic entirely. Alternatively, one
can opt to decompose this large decision table into smaller ones,
effectively creating a hierarchy of decision tables, i.e., multiple
decision nodes within the decision requirements diagram. Finding
a balance between a single, entirely composed decision table, and a
very granular, entirely decomposed decision model is a challenge
that needs to be tackled. Note that in transitioning between
these two situations complexity is moved from one level of the
decision model to the other: in cases of a single decision table,
the size and complexity of the decision requirements diagram is

256 11.3. FUTURE RESEARCH DIRECTIONS

minimised, while the underlying decision table is capturing most
of the complexity. In a more granular and decomposed decision
model, the decision tables are smaller and simpler, while the
decision requirements diagram boasts more elements and relations
between these elements, thus increasing its complexity. A modelling
methodology could for instance impose decomposition on parts of
the logic that is often used standalone. As such, the modular design
of the decision requirements diagram would facilitate the reusability
of those standalone pieces of logic.

Similarly, a modelling methodology for the balance of DMN
invocations within a BPMN model needs to be established. When
considering a granular decision requirements diagram whose top-
level decision is of interest to the BPMN process, a methodology
should determine which, if any, of the subdecisions of the decision
model should explicitly be invoked in the process model through
decision activities. As such, a balance should be determined on the
inclusion and exclusion of decision model links from the process
model. In order to minimise the impact on process size and
complexity only the necessary subdecisions should be included,
i.e., the subdecisions whose standalone logic impacts one of the
perspectives of the process. This impact can be on the resource
perspective and handover of work if different decisions are carried
out by different workers or systems or if they impact subsequent
activities allocted to different resources. Similarly, subdecision
invocations may need to be included in the process if they impact
the control flow perspective of the process or if their intermediate
results are used explicitly in a part of the process.

While this thesis handles the integration of process models and
decision models, the combination of DMN with other requirements
engineering approaches and other models may provide possibilities
for additional research opportunities. Researchers have already
combined knowledge representation at strategic, tactical and
operational levels by integrating goal models, business use case
models, and business process models [143, 144]. Since DMN
is mainly used to model operational decisions it is situated at
the operational level of knowledge representation. However,
as this dissertation has argued, decisions are often the drivers
of processes and they can impact the processes from multiple
perspectives. Therefore, approaches that combine knowledge

CHAPTER 11. CONCLUSIONS 257

representation at strategic, tactical and operational levels can
benefit by incorporating DMN into the mix. For that purpose the
business use case model can be expanded to include an element
that represents decisions at a tactical level. In analogy with
tracing business use case realisations and business processes, by
introducing a tactical decision element, tracing decisions at a
tactical and operational level becomes a possibility. A further
mapping between business use case elements and DMN can be
established by for instance mapping actors to knowledge sources.
As such, a knowledge worker or a system can for instance take a
decision which drives a business use case, which on its turn supports
a business goal, which at the end contributes to a business objective.

Furthermore, a remaining research gap is the integration
of process models, decision models, and data models. Both
established [54, 125] and recent [135] research on the integration
of static data models and dynamic behavioural models exists. The
inclusion of decision models into this integration is still lacking
and can prove to be an interesting research direction in order to
explicitly connect processes and decisions to data models, rather
than merely including some data elements in the process model as
is often the case.

This dissertation focused on the integration of decisions and
procedural process models. However, declarative process models
may prove to be a better fit for knowledge-intensive processes
where flexibility in execution is required. Since knowledge-
intensive processes often rely on decisions as well, the integration
of declarative processes and decisions emerges as a promising
research vain in decision-aware information systems. Furthermore,
mixed-paradigm process modelling, which combines procedural and
declarative process aspects into a single process model, provides
processes that span a spectrum ranging from entirely structured
to completely loosely coupled process models. Such mixed-
paradigm models are capable of capturing a bigger array of realities.
Integrating decisions with mixed-paradigm process models can
consequently be achieved by consolidating the results provided
in this dissertation with the results of the integration between
decisions and declarative process models.

258 11.4. FINAL WORD

11.4 Final Word

I hope that you enjoyed reading this dissertation as much as I
have enjoyed writing it. Since research is an everlasting journey
of improvement, I am sure that a lot of concepts in this book are
subject to enhancement in the period to come. Therefore, I hope
this work has inspired you to augment the horizon of this research
or to embark on your own journey of discovery.

Faruk Hasić
May, 2020

APPENDIX A

Additional Models

This appendix provides additional models that are referred to from
Chapter 4.

260

F
igure

A
.1:

O
riginalm

odelfrom
from

[130]w
ith

errors
indicated

in
red.

APPENDIX A. ADDITIONAL MODELS 261

Check
temperature

Determine
cooling level

Set cooling
system

Figure A.2: Case 1 BPMN model with script task.

Figure A.3: Case 1 script task code.

262

5 m
in

M
eeting

.start=
now

R
ead presence

m
eeting

 room R
ead C

O
2

m
eeting

 room

R
ead presence

m
eeting

 room

R
egula

te
ventilation

A
ctivate

ventilation

S
top ventila

tion

V
entilatio

n
adjustm

e
nt

C
heck pre

sence

yes

M
eeting

.end>
now

no

F
igure

A
.4:

C
ase

2
B
P
M
N

m
odelw

ith
script

task.

APPENDIX A. ADDITIONAL MODELS 263

Figure A.5: Case 2 script task code.

264

C
heck heart
rhythm

A
dm

inister
oxygen m

a
sk

A
dm

inister
inhale

r

respiration

skin
tem

p

m
uscle

activity

heart rh
ythm

m
uscle

activity

R
ead E

C
G

sensor

R
ead

respiratory
sensor

R
ead skin
sensor

S
ound

em
ergency
alarm

R
ead E

M
G

sensor

O
K

fast

norm
al

hyper

norm
al

fast

hyper norm
al

norm
al

norm
al

else

cold

fast

norm
al

heart rh
ythm

<
scrip

tTa
sk id

=
"ch

e
ckH

e
a
rtR

h
y
th

m
">

<
e
x
te

n
sio

n
E
le

m
e
n
ts>

<
in

p
u
tO

u
tp

u
t>

<
in

p
u
t h

e
a
rtR

a
te

 =
 0

..5
0

0
>

<
o
u
tp

u
t h

e
a
rtR

h
y
th

m
 =

 ['O
K

','e
lse

']>
<

scrip
t>

if (h
e
a
rtR

a
te

 >
 1

0
0

) {
 h

e
a
rtR

h
y
th

m
 =

 "e
lse

";
 }

 e
lse

 {
 h

e
a
rtR

h
y
th

m
 =

 "O
K

";
 }

<

/scrip
t>

<
/o

u
tp

u
t>

<
/in

p
u
t>

 <
/in

p
u
tO

u
tp

u
t>

<

/e
x
te

n
sio

n
E
le

m
e
n
ts>

<
/scrip

tTa
sk>

F
igure

A
.6:

C
ase

2
B
P
M
N

m
odelw

ith
script

task
and

script
task

code.

APPENDIX A. ADDITIONAL MODELS 265

Figure A.7: Case 2 air quality subdecision table.

Figure A.8: Case 2 presence subdecision table.

Figure A.9: Case 3 heart rhythm subdecision table.

266

Figure A.10: Case 3 muscle activity subdecision table.

Figure A.11: Case 3 respiration subdecision table.

Figure A.12: Case 3 skin temperature subdecision table.

APPENDIX A. ADDITIONAL MODELS 267

A
dm

in
is

te
r

ox
yg

en
 m

a
sk

A
dm

in
is

te
r

in
ha

le
r

C
he

ck
 C

O
P

D
se

ve
re

n
es

s

R
ea

d
sk

in
se

ns
or

R
ea

d
re

sp
ira

to
ry

se
ns

or

R
ea

d
E

M
G

se
ns

or

R
ea

d
E

C
G

se
ns

or

no
ne

m
ild

at
ta

ck

se
ve

re
at

ta
ck

F
ig
ur
e
A
.1
3:

C
as
e
3
B
P
M
N

pr
oc
es
s
m
od

el
w
it
h
ca
ll
ac
ti
vi
ty

(s
ub

pr
oc
es
s)
.

268

skin
temp

skin
temp

respiration

respiration
fast

normal

fast

muscle activity

heart rhythm

heart rhythm

fast
normal

hyper

normal

normal

fast

skin
temp

skin
temp

normal

cold

respiration

normal

cold

respiration

respiration

respiration

respiration

respiration

normal

cold

normal

cold

mild attack

none

normal

fast

severe attack
fast

normal

fast

fast

normal

normal

fast

normal

normal

fast

normal

Figure A.14: Case 3 Check COPD Severeness callable BPMN decision
subprocess.

APPENDIX B

Conforming Trace Cluster

This appendix provides a fragment of the mined trace cluster
relating to the leftmost decision service in Figure 5.4 of Section
5.8. The full mined process models representing the trace clusters
can be viewed online:
https://feb.kuleuven.be/public/u0111379/TSC/.

https://feb.kuleuven.be/public/u0111379/TSC/

270

A
_C

reate A
pplication

A
_S

ubm
itted

W
_H

andle leads

A
_C

oncept

A
_A

ccepted

O
_C

reate O
ffer

W
_C

om
plete application

O
_C

reated

O
_S

ent (online only)

W
_V

alidate application

W
_C

all incom
plete files

O
_R

eturned

W
_C

all after offers

O
_S

ent (m
ail and online)

O
_A

ccepted

O
_C

ancelled

W
_A

ssess potential fraud

A
_C

ancelled

A
_V

alidating

A
_Incom

plete

A
_C

om
plete

A
_P

ending

A
_D

enied
O

_R
efused

F
igure

B
.1:

Fragm
ent

of
the

trace
cluster

adhering
to

the
decision

service.

APPENDIX C

DMN Metamodel

This appendix gives an overview of the DMN metamodel, as
specified in the latest DMN standard specification [106].

272

Figure C.1: Overview of the DMN meta model.

APPENDIX C. DMN METAMODEL 273

Figure C.2: Decision table meta model.

Figure C.3: Decision meta model.

274

Figure C.4: Input data meta model.

Figure C.5: Business knowledge model meta model.

APPENDIX C. DMN METAMODEL 275

Figure C.6: Decision service meta model.

Figure C.7: Definitions meta model.

List of Figures

1.1 Overview of the dissertation. 4

2.1 Decision model for customer acceptance at a Belgian
accounting firm. 24

2.2 Process model for customer acceptance at a Belgian
accounting firm. 25

2.3 Iteration 1. 38
2.4 Iteration 2. 41
2.5 Iteration 3. 43
2.6 Iteration 4. 45
2.7 Iteration 5. 47

3.1 Decision model for a bank loan approval. 56
3.2 Process model for a bank loan approval. 57
3.3 Process model for loan approval consistent with the

decision model. 58

4.1 Hierarchy and aggregation of context [90]. 68
4.2 An IoT-enhanced smart transportation process. 70
4.3 Decision-aware smart transportation process. 71
4.4 Smart transportation DRD. 71
4.5 Cooling level decision table. 72
4.6 Smart ventilation convention centre core IoT process,

modified from [130]. 73
4.7 Smart ventilation convention centre decision-aware process. 74
4.8 Smart ventilation decision model. 75
4.9 Ventilation adjustment decision table. 76
4.10 An IoT-enhanced COPD monitoring process. 77
4.11 A decision-aware process model for a COPD monitoring

IoT process. 78
4.12 COPD severeness DMN model based on IoT data. 79

277

278 LIST OF FIGURES

4.13 The COPD severeness decision table. 79

5.1 Overview of the followed cycles of the design science
methodology. 97

5.2 Decision as a Service (DaaS) layered architecture. 105
5.3 Discovered decision services. 121
5.4 Fragment of the trace cluster not adhering to the decision

service. 122
5.5 Independent SOA Maturity Model (iSOAMM) [110] 125

7.1 A schematic overview of DRD model elements. 143
7.2 A DRD model for COPD severeness based on data from

the sensors. 146
7.3 A decision table for COPD severeness. 146
7.4 Decision table with changed inputs. 148
7.5 Decision table with changed outcomes. 149
7.6 Decision table with changed logic. 150
7.7 Decision table with a deleted decision rule. 151
7.8 DRD adapted to changed inputs in the top-level decision. . 152
7.9 A DRD with an added input data node. 153
7.10 Overview of change propagation: change patterns that

can possibly follow each other. Note that ∆Π5 should
be considered as a consequence of applying any change
pattern, but it is not included in the graph in order to
provide a more comprehensible overview. 167

7.11 The DRD view of the DMN verification tool. 169
7.12 The decision table view of the DMN verification tool. . . . 170
7.13 Situation after applying decision node exclusion. 173
7.14 Situation after applying input data node exclusion (DRD

view). 174
7.15 Situation after applying input data node exclusion

(decision table view). 175
7.16 Stable situation after applying input data node inclusion. . 176

8.1 DMN model: DRD (left) and decision table (right) with
modelling errors. 181

8.2 The DRD view of the DMN verification tool. 186
8.3 Run-time statistics for the analysed synthetic decision

models with up to 180 nodes on the DRD-level and 100
rules per table. 187

9.1 A DMN model for COPD severeness. 194
9.2 A decision table for COPD severeness. 195

LIST OF FIGURES 279

9.3 A COPD monitoring process. 196
9.4 Decision table with changed preconditions. 204
9.5 Process model adapted to changed preconditions. 205
9.6 DRD adapted to changed preconditions in the top-level

decision. 206
9.7 Decision table with changed outcomes. 207
9.8 Process model adapted to changed outcomes. 208
9.9 Decision table with changed logic. 209
9.10 Decision table with a deleted decision rule. 210
9.11 Process model adapted to exception handle

deleted/missing rules. 212
9.12 A DRD with an added input data node. 216
9.13 Process model adapted to manage the input data related

to an added input data node in the DRD. 217
9.14 The BPMN + DMN verification view of the modelling

environment . 226
9.15 Initial view of the integrated BPMN and DMN models in

the modelling environment. 231
9.16 Detecting a missing data object needed for decision input

in the BPMN process model. 232
9.17 Detecting an input data node in the DRD model which is

referenced by a data object in the BPMN model. 233
9.18 Detecting a decision rule output which is not captured in

the BPMN model. 234
9.19 Detecting an unreachable path in the BPMN model (no

corresponding decision output in the table). 235

10.1 An example of a decision requirements diagram (DRD). . . 245
10.2 An example of a process using DS1

A of decision A from the
decision model in Figure 10.1. 246

10.3 An example of a process using DS2
A of decision A from the

decision model in Figure 10.1. 246
10.4 An example of a process using DS3

A of decision A from the
decision model in Figure 10.1. 247

10.5 An example of a process using DS4
A of decision A from the

decision model in Figure 10.1. 248
10.6 Another example of a process using DS4

A of decision A
from the decision model in Figure 10.1. 249

A.1 Original model from from [130] with errors indicated in red.260
A.2 Case 1 BPMN model with script task. 261
A.3 Case 1 script task code. 261
A.4 Case 2 BPMN model with script task. 262

280 LIST OF FIGURES

A.5 Case 2 script task code. 263
A.6 Case 2 BPMN model with script task and script task code. 264
A.7 Case 2 air quality subdecision table. 265
A.8 Case 2 presence subdecision table. 265
A.9 Case 3 heart rhythm subdecision table. 265
A.10 Case 3 muscle activity subdecision table. 266
A.11 Case 3 respiration subdecision table. 266
A.12 Case 3 skin temperature subdecision table. 266
A.13 Case 3 BPMN process model with call activity (subprocess).267
A.14 Case 3 Check COPD Severeness callable BPMN decision

subprocess. 268

B.1 Fragment of the trace cluster adhering to the decision service.270

C.1 Overview of the DMN meta model. 272
C.2 Decision table meta model. 273
C.3 Decision meta model. 273
C.4 Input data meta model. 274
C.5 Business knowledge model meta model. 274
C.6 Decision service meta model. 275
C.7 Definitions meta model. 275

List of Tables

2.1 5PDM: five principles for integrated process and decision
modelling. 36

4.1 Size-based complexity metrics. 83
4.2 Adherence to principles for designing cognitively effective

notations. Precise definitions of principles: see [98]. 86

6.1 Parameter assessment applied to the BPI 2017 Challenge
log. Parameters are expressed in percentages. 132

7.1 Overview of decision model change patterns. 154
7.2 Change propagation: an overview of decision model change

patterns that may need to be triggered in other elements
of the decision model to restore consistency. 166

8.1 Overview of verification capabilities covered by existing
approaches (X = full and o = partial support). 183

9.1 Overview of decision model change patterns from [69]. . . . 201
9.2 An overview of decision model change patterns and their

influence on the process model. 219
9.3 Overview of verification capability coverage (X = full and

o = partial support). 228

281

List of Algorithms

1 Decision service discovery in an event log. 119

283

Bibliography

[1] Eram Abbasi and Kashif Abbasi. Business process modeling and
decision model integration. In 2013 5th International Conference
on Information and Communication Technologies, pages 1–7, 2013.
doi: 10.1109/ICICT.2013.6732789. URL https://ieeexplore.
ieee.org/abstract/document/6732789.

[2] Clara Ayora, Victoria Torres, Barbara Weber, Manfred Reichert,
and Vicente Pelechano. Enhancing modeling and change support
for process families through change patterns. In Selmin
Nurcan, Henderik Alex Proper, Pnina Soffer, John Krogstie,
Rainer Schmidt, Terry A. Halpin, and Ilia Bider, editors,
Enterprise, Business-Process and Information Systems Modeling -
14th International Conference, BPMDS 2013, 18th International
Conference, EMMSAD 2013, Held at CAiSE 2013, Valencia, Spain,
June 17-18, 2013. Proceedings, volume 147 of Lecture Notes in
Business Information Processing, pages 246–260. Springer, 2013.
doi: 10.1007/978-3-642-38484-4_18. URL https://doi.org/
10.1007/978-3-642-38484-4_18.

[3] Clara Ayora, Victoria Torres, Barbara Weber, Manfred Reichert,
and Vicente Pelechano. VIVACE: A framework for the systematic
evaluation of variability support in process-aware information
systems. Information & Software Technology, 57:248–276, 2015. doi:
10.1016/j.infsof.2014.05.009. URL https://doi.org/10.1016/
j.infsof.2014.05.009.

[4] Clara Ayora, Victoria Torres, Jose Luis de la Vara, and Vicente
Pelechano. Variability management in process families through
change patterns. Information & Software Technology, 74:86–104,
2016. doi: 10.1016/j.infsof.2016.01.007. URL https://doi.org/
10.1016/j.infsof.2016.01.007.

285

https://ieeexplore.ieee.org/abstract/document/6732789
https://ieeexplore.ieee.org/abstract/document/6732789
https://doi.org/10.1007/978-3-642-38484-4_18
https://doi.org/10.1007/978-3-642-38484-4_18
https://doi.org/10.1016/j.infsof.2014.05.009
https://doi.org/10.1016/j.infsof.2014.05.009
https://doi.org/10.1016/j.infsof.2016.01.007
https://doi.org/10.1016/j.infsof.2016.01.007

286 BIBLIOGRAPHY

[5] Kimon Batoulis and Mathias Weske. A tool for checking soundness
of decision-aware business processes. In Robert Clarisó, Henrik
Leopold, Jan Mendling, Wil M. P. van der Aalst, Akhil Kumar,
Brian T. Pentland, and Mathias Weske, editors, Proceedings of
the BPM Demo Track and BPM Dissertation Award co-located
with 15th International Conference on Business Process Modeling
(BPM 2017), Barcelona, Spain, September 13, 2017, volume 1920
of CEUR Workshop Proceedings. CEUR-WS.org, 2017. URL http:
//ceur-ws.org/Vol-1920/BPM_2017_paper_184.pdf.

[6] Kimon Batoulis and Mathias Weske. Soundness of decision-aware
business processes. In Josep Carmona, Gregor Engels, and Akhil
Kumar, editors, Business Process Management Forum - BPM
Forum 2017, Barcelona, Spain, September 10-15, 2017, Proceedings,
volume 297 of Lecture Notes in Business Information Processing,
pages 106–124. Springer, 2017. doi: 10.1007/978-3-319-65015-9\
_7. URL https://doi.org/10.1007/978-3-319-65015-9_7.

[7] Kimon Batoulis and Mathias Weske. Disambiguation of DMN
decision tables. In Witold Abramowicz and Adrian Paschke, editors,
Business Information Systems - 21st International Conference, BIS
2018, Berlin, Germany, July 18-20, 2018, Proceedings, volume 320
of Lecture Notes in Business Information Processing, pages 236–
249. Springer, 2018. doi: 10.1007/978-3-319-93931-5_17. URL
https://doi.org/10.1007/978-3-319-93931-5_17.

[8] Kimon Batoulis and Mathias Weske. A tool for the uniqueification
of DMN decision tables. In Wil M. P. van der Aalst, Fabio
Casati, Raffaele Conforti, Massimiliano de Leoni, Marlon Dumas,
Akhil Kumar, Jan Mendling, Surya Nepal, Brian T. Pentland, and
Barbara Weber, editors, Proceedings of the Dissertation Award,
Demonstration, and Industrial Track at BPM 2018 co-located with
16th International Conference on Business Process Management
(BPM 2018), Sydney, Australia, September 9-14, 2018, volume
2196 of CEUR Workshop Proceedings, pages 116–119. CEUR-
WS.org, 2018. URL http://ceur-ws.org/Vol-2196/BPM_2018_
paper_24.pdf.

[9] Kimon Batoulis, Anne Baumgraß, Nico Herzberg, and Mathias
Weske. Enabling dynamic decision making in business processes
with DMN. In Manfred Reichert and Hajo A. Reijers,
editors, Business Process Management Workshops - BPM 2015,
13th International Workshops, Innsbruck, Austria, August 31 -
September 3, 2015, Revised Papers, volume 256 of Lecture Notes

http://ceur-ws.org/Vol-1920/BPM_2017_paper_184.pdf
http://ceur-ws.org/Vol-1920/BPM_2017_paper_184.pdf
https://doi.org/10.1007/978-3-319-65015-9_7
https://doi.org/10.1007/978-3-319-93931-5_17
http://ceur-ws.org/Vol-2196/BPM_2018_paper_24.pdf
http://ceur-ws.org/Vol-2196/BPM_2018_paper_24.pdf

BIBLIOGRAPHY 287

in Business Information Processing, pages 418–431. Springer, 2015.
doi: 10.1007/978-3-319-42887-1_34. URL https://doi.org/
10.1007/978-3-319-42887-1_34.

[10] Kimon Batoulis, Stephan Haarmann, and Mathias Weske. Various
notions of soundness for decision-aware business processes. In
Heinrich C. Mayr, Giancarlo Guizzardi, Hui Ma, and Oscar Pastor,
editors, Conceptual Modeling - 36th International Conference, ER
2017, Valencia, Spain, November 6-9, 2017, Proceedings, volume
10650 of Lecture Notes in Computer Science, pages 403–418.
Springer, 2017. doi: 10.1007/978-3-319-69904-2_31. URL
https://doi.org/10.1007/978-3-319-69904-2_31.

[11] Kimon Batoulis, Alexey Nesterenko, Guenther Repitsch, and
Mathias Weske. Decision management in the insurance industry:
Standards and tools. In Marco Brambilla and Thomas T.
Hildebrandt, editors, Proceedings of the BPM 2017 Industry Track
co-located with the 15th International Conference on Business
Process Management (BPM 2017), Barcelona, Spain, September 10-
15, 2017, volume 1985 of CEUR Workshop Proceedings, pages 52–
63. CEUR-WS.org, 2017. URL http://ceur-ws.org/Vol-1985/
BPM17industry05.pdf.

[12] Ekaterina Bazhenova, Susanne Bülow, and Mathias Weske.
Discovering decision models from event logs. In Witold
Abramowicz, Rainer Alt, and Bogdan Franczyk, editors, Business
Information Systems - 19th International Conference, BIS 2016,
Leipzig, Germany, July, 6-8, 2016, Proceedings, volume 255 of
Lecture Notes in Business Information Processing, pages 237–
251. Springer, 2016. doi: 10.1007/978-3-319-39426-8_19. URL
https://doi.org/10.1007/978-3-319-39426-8_19.

[13] Ekaterina Bazhenova, Francesca Zerbato, Barbara Oliboni, and
Mathias Weske. From BPMN process models to DMN decision
models. Information Systems, 83:69–88, 2019. doi: 10.1016/j.is.
2019.02.001. URL https://doi.org/10.1016/j.is.2019.02.
001.

[14] Jörg Becker and Daniel Pfeiffer. Solving the conflicts of distributed
process modelling: Towards an integrated approach. In Willie
Golden, Thomas Acton, Kieran Conboy, Hans van der Heijden,
and Virpi Kristiina Tuunainen, editors, 16th European Conference
on Information Systems, ECIS 2008, Galway, Ireland, 2008, pages
1555–1568, 2008. URL http://aisel.aisnet.org/ecis2008/90.

https://doi.org/10.1007/978-3-319-42887-1_34
https://doi.org/10.1007/978-3-319-42887-1_34
https://doi.org/10.1007/978-3-319-69904-2_31
http://ceur-ws.org/Vol-1985/BPM17industry05.pdf
http://ceur-ws.org/Vol-1985/BPM17industry05.pdf
https://doi.org/10.1007/978-3-319-39426-8_19
https://doi.org/10.1016/j.is.2019.02.001
https://doi.org/10.1016/j.is.2019.02.001
http://aisel.aisnet.org/ecis2008/90

288 BIBLIOGRAPHY

[15] Zohra Bellahsene. Schema evolution in data warehouses.
Knowledge and Information Systems, 4(3):283–304, 2002. doi:
10.1007/s101150200008. URL https://doi.org/10.1007/
s101150200008.

[16] Thierry Biard, Alexandre Le Mauff, Michel Bigand, and Jean Pierre
Bourey. Separation of decision modeling from business process
modeling using new "decision model and notation" (DMN) for
automating operational decision-making. In Luis M. Camarinha-
Matos, Frédérick Bénaben, and Willy Picard, editors, Risks and
Resilience of Collaborative Networks - 16th IFIP WG 5.5 Working
Conference on Virtual Enterprises, PRO-VE 2015, Albi, France,
October 5-7, 2015, Proceedings, volume 463 of IFIP Advances
in Information and Communication Technology, pages 489–496.
Springer, 2015. doi: 10.1007/978-3-319-24141-8_45. URL
https://doi.org/10.1007/978-3-319-24141-8_45.

[17] Thierry Biard, Jean Pierre Bourey, and Michel Bigand. DMN
(decision model and notation) : De la modélisation à
l’automatisation des décisions. In Actes du XXXVème Congrès
INFORSID, Toulouse, France, May 30 - June 2, 2017, pages 327–
342, 2017. URL http://inforsid.fr/actes/2017/INFORSID_
2017_paper_24.pdf.

[18] Thierry Biard, Jean-Pierre Bourey, Michel Bigand, and Jean-
Claude Bocquet. Modélisation des prises de décisions dans les
processus métier grâce à DMN (Decision Model and Notation). In
12ème Congrès International de Génie Industriel 2017, Compiègne,
France, 2017. URL https://hal.archives-ouvertes.fr/hal-
01519433.

[19] Guy Bieber and Jeff Carpenter. Introduction to service-
oriented programming (rev 2.1). OpenWings Whitepaper,
2001. URL http://lig-membres.imag.fr/donsez/ujf/m2r/
glacs/services/ServiceOrientedIntroduction.pdf.

[20] Gordon S. Blair, Nelly Bencomo, and Robert B. France. Models@
run.time. IEEE Computer, 42(10):22–27, 2009. doi: 10.1109/MC.
2009.326. URL https://doi.org/10.1109/MC.2009.326.

[21] Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio, and
Emiliano Paglia. A BPMN extension for modeling cyber-physical-
production-systems in the context of industry 4.0. In Giancarlo
Fortino, MengChu Zhou, Zofia Lukszo, Athanasios V. Vasilakos,
Francesco Basile, Carlos Enrique Palau, Antonio Liotta, Maria Pia

https://doi.org/10.1007/s101150200008
https://doi.org/10.1007/s101150200008
https://doi.org/10.1007/978-3-319-24141-8_45
http://inforsid.fr/actes/2017/INFORSID_2017_paper_24.pdf
http://inforsid.fr/actes/2017/INFORSID_2017_paper_24.pdf
https://hal.archives-ouvertes.fr/hal-01519433
https://hal.archives-ouvertes.fr/hal-01519433
http://lig-membres.imag.fr/donsez/ujf/m2r/glacs/services/ServiceOrientedIntroduction.pdf
http://lig-membres.imag.fr/donsez/ujf/m2r/glacs/services/ServiceOrientedIntroduction.pdf
https://doi.org/10.1109/MC.2009.326

BIBLIOGRAPHY 289

Fanti, Antonio Guerrieri, and Andrea Vinci, editors, 14th IEEE
International Conference on Networking, Sensing and Control,
ICNSC 2017, Calabria, Italy, May 16-18, 2017, pages 599–604.
IEEE, 2017. doi: 10.1109/ICNSC.2017.8000159. URL https:
//doi.org/10.1109/ICNSC.2017.8000159.

[22] Alexander Bock, Heiko Kattenstroth, and Sietse Overbeek.
Towards a modeling method for supporting the management of
organizational decision processes. In Hans-Georg Fill, Dimitris
Karagiannis, and Ulrich Reimer, editors, Modellierung 2014, 19.-
21. März 2014, Wien, Österreich, volume P-225 of Lecture Notes
in Informatics, pages 49–64. GI, 2014. URL https://dl.gi.de/
20.500.12116/17065.

[23] Barry W. Boehm, Bradford Clark, Ellis Horowitz, J. Christopher
Westland, Raymond J. Madachy, and Richard W. Selby. Cost
models for future software life cycle processes: COCOMO 2.0.
Annals of Software Engineering, 1:57–94, 1995. doi: 10.1007/
BF02249046. URL https://doi.org/10.1007/BF02249046.

[24] Dominik Bork, Dimitris Karagiannis, and Benedikt Pittl.
Systematic analysis and evaluation of visual conceptual modeling
language notations. In 12th International Conference on Research
Challenges in Information Science, RCIS 2018, Nantes, France,
May 29-31, 2018, pages 1–11. IEEE, 2018. doi: 10.1109/RCIS.
2018.8406652. URL https://doi.org/10.1109/RCIS.2018.
8406652.

[25] Dominik Bork, Robert Buchmann, Dimitris Karagiannis, Moonkun
Lee, and Elena-Teodora Miron. An open platform for
modeling method conceptualization: The omilab digital ecosystem.
Communications of the Association for Information Systems, 44:
673–697, 2019. ISSN 1529-3181. doi: 10.17705/1CAIS.04432. URL
http://eprints.cs.univie.ac.at/5462/.

[26] Jerome Boyer and Hafedh Mili. Agile Business Rule Development
- Process, Architecture, and JRules Examples. Springer, 2011.
ISBN 978-3-642-19040-7. doi: 10.1007/978-3-642-19041-4. URL
https://doi.org/10.1007/978-3-642-19041-4.

[27] Coral Calero, Mario Piattini, and Marcela Genero. Empirical
validation of referential integrity metrics. Information & Software
Technology, 43(15):949–957, 2001. doi: 10.1016/S0950-5849(01)
00202-6. URL https://doi.org/10.1016/S0950-5849(01)
00202-6.

https://doi.org/10.1109/ICNSC.2017.8000159
https://doi.org/10.1109/ICNSC.2017.8000159
https://dl.gi.de/20.500.12116/17065
https://dl.gi.de/20.500.12116/17065
https://doi.org/10.1007/BF02249046
https://doi.org/10.1109/RCIS.2018.8406652
https://doi.org/10.1109/RCIS.2018.8406652
http://eprints.cs.univie.ac.at/5462/
https://doi.org/10.1007/978-3-642-19041-4
https://doi.org/10.1016/S0950-5849(01)00202-6
https://doi.org/10.1016/S0950-5849(01)00202-6

290 BIBLIOGRAPHY

[28] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Marco
Montali, and Ario Santoso. Ontology-based governance of data-
aware processes. In Markus Krötzsch and Umberto Straccia, editors,
Web Reasoning and Rule Systems - 6th International Conference,
RR 2012, Vienna, Austria, September 10-12, 2012. Proceedings,
volume 7497 of Lecture Notes in Computer Science, pages 25–
41. Springer, 2012. doi: 10.1007/978-3-642-33203-6_4. URL
https://doi.org/10.1007/978-3-642-33203-6_4.

[29] Diego Calvanese, Marlon Dumas, Ülari Laurson, Fabrizio Maria
Maggi, Marco Montali, and Irene Teinemaa. Semantics and
analysis of DMN decision tables. In Marcello La Rosa, Peter
Loos, and Oscar Pastor, editors, Business Process Management -
14th International Conference, BPM 2016, Rio de Janeiro, Brazil,
September 18-22, 2016. Proceedings, volume 9850 of Lecture Notes
in Computer Science, pages 217–233. Springer, 2016. doi: 10.1007/
978-3-319-45348-4_13. URL https://doi.org/10.1007/978-
3-319-45348-4_13.

[30] Diego Calvanese, Marlon Dumas, Fabrizio Maria Maggi, and Marco
Montali. Semantic DMN: formalizing decision models with domain
knowledge. In Stefania Costantini, Enrico Franconi, William Van
Woensel, Roman Kontchakov, Fariba Sadri, and Dumitru Roman,
editors, Rules and Reasoning - International Joint Conference,
RuleML+RR 2017, London, UK, July 12-15, 2017, Proceedings,
volume 10364 of Lecture Notes in Computer Science, pages 70–
86. Springer, 2017. doi: 10.1007/978-3-319-61252-2_6. URL
https://doi.org/10.1007/978-3-319-61252-2_6.

[31] Diego Calvanese, Marlon Dumas, Ülari Laurson, Fabrizio Maria
Maggi, Marco Montali, and Irene Teinemaa. Semantics, analysis
and simplification of DMN decision tables. Information Systems,
78:112–125, 2018. doi: 10.1016/j.is.2018.01.010. URL https:
//doi.org/10.1016/j.is.2018.01.010.

[32] Júlio Campos, Pedro H. Piccoli Richetti, Fernanda Araújo
Baião, and Flávia Maria Santoro. Discovering business rules
in knowledge-intensive processes through decision mining: An
experimental study. In Ernest Teniente and Matthias Weidlich,
editors, Business Process Management Workshops - BPM 2017
International Workshops, Barcelona, Spain, September 10-11,
2017, Revised Papers, volume 308 of Lecture Notes in Business
Information Processing, pages 556–567. Springer, 2017. doi: 10.

https://doi.org/10.1007/978-3-642-33203-6_4
https://doi.org/10.1007/978-3-319-45348-4_13
https://doi.org/10.1007/978-3-319-45348-4_13
https://doi.org/10.1007/978-3-319-61252-2_6
https://doi.org/10.1016/j.is.2018.01.010
https://doi.org/10.1016/j.is.2018.01.010

BIBLIOGRAPHY 291

1007/978-3-319-74030-0_44. URL https://doi.org/10.1007/
978-3-319-74030-0_44.

[33] Bernardo Cánovas-Segura, Francesca Zerbato, Barbara Oliboni,
Carlo Combi, Manuel Campos, Antonio Morales Nicolás, Jose M.
Juarez, Roque Marín, and Francisco Palacios. A process-oriented
approach for supporting clinical decisions for infection management.
In 2017 IEEE International Conference on Healthcare Informatics,
ICHI 2017, Park City, UT, USA, August 23-26, 2017, pages 91–
100. IEEE Computer Society, 2017. doi: 10.1109/ICHI.2017.73.
URL https://doi.org/10.1109/ICHI.2017.73.

[34] Bernardo Cánovas-Segura, Francesca Zerbato, Barbara Oliboni,
Carlo Combi, Manuel Campos, Antonio Morales Nicolás, Jose M.
Juarez, Francisco Palacios, and Roque Marín. A decision support
visualization tool for infection management based on BMPN and
DMN. In Rafael Valencia-García, Katty Lagos-Ortiz, Gema
Alcaraz-Mármol, Javier del Cioppo, Néstor Vera-Lucio, and Martha
Bucaram-Leverone, editors, Technologies and Innovation - Third
International Conference, CITI 2017, Guayaquil, Ecuador, October
24-27, 2017, Proceedings, volume 749 of Communications in
Computer and Information Science, pages 158–168. Springer, 2017.
doi: 10.1007/978-3-319-67283-0_12. URL https://doi.org/
10.1007/978-3-319-67283-0_12.

[35] Ching-Yu Chen, Jui Hsi Fu, Today Sung, Ping-Feng Wang, Emery
Jou, and Ming-Whei Feng. Complex event processing for the
internet of things and its applications. In 2014 IEEE International
Conference on Automation Science and Engineering, CASE 2014,
New Taipei, Taiwan, August 18-22, 2014, pages 1144–1149. IEEE,
2014. doi: 10.1109/CoASE.2014.6899470. URL https://doi.
org/10.1109/CoASE.2014.6899470.

[36] Henry Chesbrough and Jim Spohrer. A research manifesto for
services science. Communications of the ACM, 49(7):35–40, 2006.
doi: 10.1145/1139922.1139945. URL https://doi.org/10.
1145/1139922.1139945.

[37] Carlo Combi, Barbara Oliboni, Alessandro Zardiniy, and Francesca
Zerbato. Seamless design of decision-intensive care pathways. In
2016 IEEE International Conference on Healthcare Informatics,
ICHI 2016, Chicago, IL, USA, October 4-7, 2016, pages 35–45.
IEEE Computer Society, 2016. doi: 10.1109/ICHI.2016.9. URL
https://doi.org/10.1109/ICHI.2016.9.

https://doi.org/10.1007/978-3-319-74030-0_44
https://doi.org/10.1007/978-3-319-74030-0_44
https://doi.org/10.1109/ICHI.2017.73
https://doi.org/10.1007/978-3-319-67283-0_12
https://doi.org/10.1007/978-3-319-67283-0_12
https://doi.org/10.1109/CoASE.2014.6899470
https://doi.org/10.1109/CoASE.2014.6899470
https://doi.org/10.1145/1139922.1139945
https://doi.org/10.1145/1139922.1139945
https://doi.org/10.1109/ICHI.2016.9

292 BIBLIOGRAPHY

[38] Carlo Combi, Barbara Oliboni, Alessandro Zardini, and Francesca
Zerbato. A methodological framework for the integrated
design of decision-intensive care pathways—an application to the
management of copd patients. Journal of Healthcare Informatics
Research, 1(2):157–217, 2017. ISSN 2509-498X. doi: 10.1007/
s41666-017-0007-4. URL https://doi.org/10.1007/s41666-
017-0007-4.

[39] Carl Corea and Patrick Delfmann. A tool to monitor consistent
decision-making in business process execution. In Wil M. P. van der
Aalst, Fabio Casati, Raffaele Conforti, Massimiliano de Leoni,
Marlon Dumas, Akhil Kumar, Jan Mendling, Surya Nepal,
Brian T. Pentland, and Barbara Weber, editors, Proceedings of the
Dissertation Award, Demonstration, and Industrial Track at BPM
2018 co-located with 16th International Conference on Business
Process Management (BPM 2018), Sydney, Australia, September
9-14, 2018, volume 2196 of CEUR Workshop Proceedings, pages 76–
80. CEUR-WS.org, 2018. URL http://ceur-ws.org/Vol-2196/
BPM_2018_paper_16.pdf.

[40] Carl Corea, Jonas Blatt, and Patrick Delfmann. A tool for
decision logic verification in DMN decision tables. In Benoît
Depaire, Johannes De Smedt, Marlon Dumas, Dirk Fahland, Akhil
Kumar, Henrik Leopold, Manfred Reichert, Stefanie Rinderle-
Ma, Stefan Schulte, Stefan Seidel, and Wil M. P. van der
Aalst, editors, Proceedings of the Dissertation Award, Doctoral
Consortium, and Demonstration Track at BPM 2019 co-located with
17th International Conference on Business Process Management,
BPM 2019, Vienna, Austria, September 1-6, 2019, volume 2420 of
CEUR Workshop Proceedings, pages 169–173. CEUR-WS.org, 2019.
URL http://ceur-ws.org/Vol-2420/papeDT11.pdf.

[41] Flavio Corradini, Alberto Polzonetti, and Oliviero Riganelli. Busi-
ness rules in e-government applications. CoRR, abs/1802.08484,
2018. URL http://arxiv.org/abs/1802.08484.

[42] Marjolein Deryck, Faruk Hasić, Jan Vanthienen, and Joost
Vennekens. A case-based inquiry into the decision model
and notation (DMN) and the knowledge base (KB) paradigm.
In Christoph Benzmüller, Francesco Ricca, Xavier Parent,
and Dumitru Roman, editors, Rules and Reasoning - Second
International Joint Conference, RuleML+RR 2018, Luxembourg,
September 18-21, 2018, Proceedings, volume 11092 of Lecture Notes
in Computer Science, pages 248–263. Springer, 2018. doi: 10.1007/

https://doi.org/10.1007/s41666-017-0007-4
https://doi.org/10.1007/s41666-017-0007-4
http://ceur-ws.org/Vol-2196/BPM_2018_paper_16.pdf
http://ceur-ws.org/Vol-2196/BPM_2018_paper_16.pdf
http://ceur-ws.org/Vol-2420/papeDT11.pdf
http://arxiv.org/abs/1802.08484

BIBLIOGRAPHY 293

978-3-319-99906-7_17. URL https://doi.org/10.1007/978-
3-319-99906-7_17.

[43] Juliana Baptista dos Santos França, Joanne Manhães Netto, Juliana
do E. Santo Carvalho, Flávia Maria Santoro, Fernanda Araujo
Baião, and Mariano Gomes Pimentel. KIPO: the knowledge-
intensive process ontology. Software and Systems Modeling, 14(3):
1127–1157, 2015. doi: 10.1007/s10270-014-0397-1. URL https:
//doi.org/10.1007/s10270-014-0397-1.

[44] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A.
Reijers. Fundamentals of Business Process Management. Springer,
2013. ISBN 978-3-642-33142-8. doi: 10.1007/978-3-642-33143-5.
URL https://doi.org/10.1007/978-3-642-33143-5.

[45] Thomas Erl. SOA: principles of service design. Prentice Hall Press,
2007.

[46] Thomas Erl. SOA design patterns. Pearson Education, 2008.

[47] Ilker Etikan, Sulaiman Abubakar Musa, and Rukayya Sunusi
Alkassim. Comparison of convenience sampling and purposive
sampling. American Journal of Theoretical and Applied Statistics,
5(1):1–4, 2016. URL http://ajtas.org/article?journalid=
146&doi=10.11648/j.ajtas.20160501.11.

[48] Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo A. Reijers,
Barbara Weber, Matthias Weidlich, and Stefan Zugal. Declarative
versus imperative process modeling languages: The issue of
understandability. In Terry A. Halpin, John Krogstie, Selmin
Nurcan, Erik Proper, Rainer Schmidt, Pnina Soffer, and Roland
Ukor, editors, Enterprise, Business-Process and Information
Systems Modeling, 10th International Workshop, BPMDS 2009,
and 14th International Conference, EMMSAD 2009, held at CAiSE
2009, Amsterdam, The Netherlands, June 8-9, 2009. Proceedings,
volume 29 of Lecture Notes in Business Information Processing,
pages 353–366. Springer, 2009. doi: 10.1007/978-3-642-01862-6\
_29. URL https://doi.org/10.1007/978-3-642-01862-6_29.

[49] Kathrin Figl, Jan Mendling, Gül Tokdemir, and Jan Vanthienen.
What we know and what we do not know about DMN. Enterprise
Modelling and Information Systems Architectures, 13:2:1–16, 2018.
doi: 10.18417/emisa.13.2. URL https://doi.org/10.18417/
emisa.13.2.

https://doi.org/10.1007/978-3-319-99906-7_17
https://doi.org/10.1007/978-3-319-99906-7_17
https://doi.org/10.1007/s10270-014-0397-1
https://doi.org/10.1007/s10270-014-0397-1
https://doi.org/10.1007/978-3-642-33143-5
http://ajtas.org/article?journalid=146&doi=10.11648/j.ajtas.20160501.11
http://ajtas.org/article?journalid=146&doi=10.11648/j.ajtas.20160501.11
https://doi.org/10.1007/978-3-642-01862-6_29
https://doi.org/10.18417/emisa.13.2
https://doi.org/10.18417/emisa.13.2

294 BIBLIOGRAPHY

[50] Riadh Ghlala, Zahra Kodia Aouina, and Lamjed Ben Said. BPMN
decision footprint: Towards decision harmony along BI process. In
Giedre Dregvaite and Robertas Damasevicius, editors, Information
and Software Technologies - 22nd International Conference, ICIST
2016, Druskininkai, Lithuania, October 13-15, 2016, Proceedings,
volume 639 of Communications in Computer and Information
Science, pages 269–284, 2016. doi: 10.1007/978-3-319-46254-7\
_22. URL https://doi.org/10.1007/978-3-319-46254-7_22.

[51] Stijn Goedertier and Jan Vanthienen. Compliant and flexible
business processes with business rules. In Gil Regev, Pnina
Soffer, and Rainer Schmidt, editors, Proceedings of the CAISE*06
Workshop on Business Process Modelling, Development, and
Support BPMDS ’06, Luxemburg, June 5-9, 2006, volume 236 of
CEUR Workshop Proceedings. CEUR-WS.org, 2006. URL http:
//ceur-ws.org/Vol-236/paper3.pdf.

[52] Jaap Gordijn, Hans Akkermans, and Hans van Vliet. Business
modelling is not process modelling. In Stephen W. Liddle,
Heinrich C. Mayr, and Bernhard Thalheim, editors, Conceptual
Modeling for E-Business and the Web, ER 2000 Workshops on
Conceptual Modeling Approaches for E-Business and The World
Wide Web and Conceptual Modeling, Salt Lake City, Utah, USA,
October 9-12, 2000, Proceedings, volume 1921 of Lecture Notes
in Computer Science, pages 40–51. Springer, 2000. doi: 10.
1007/3-540-45394-6_5. URL https://doi.org/10.1007/3-
540-45394-6_5.

[53] Christian W. Günther and Wil M. P. van der Aalst. Fuzzy mining -
adaptive process simplification based on multi-perspective metrics.
In Gustavo Alonso, Peter Dadam, and Michael Rosemann, editors,
Business Process Management, 5th International Conference, BPM
2007, Brisbane, Australia, September 24-28, 2007, Proceedings,
volume 4714 of Lecture Notes in Computer Science, pages 328–
343. Springer, 2007. doi: 10.1007/978-3-540-75183-0_24. URL
https://doi.org/10.1007/978-3-540-75183-0_24.

[54] Raf Haesen, Monique Snoeck, Wilfried Lemahieu, and Stephan
Poelmans. Existence dependency-based domain modeling for
improving stateless process enactment. In 2009 IEEE Congress
on Services, Part I, SERVICES I 2009, Los Angeles, CA, USA,
July 6-10, 2009, pages 515–521. IEEE Computer Society, 2009.
doi: 10.1109/SERVICES-I.2009.19. URL https://doi.org/10.
1109/SERVICES-I.2009.19.

https://doi.org/10.1007/978-3-319-46254-7_22
http://ceur-ws.org/Vol-236/paper3.pdf
http://ceur-ws.org/Vol-236/paper3.pdf
https://doi.org/10.1007/3-540-45394-6_5
https://doi.org/10.1007/3-540-45394-6_5
https://doi.org/10.1007/978-3-540-75183-0_24
https://doi.org/10.1109/SERVICES-I.2009.19
https://doi.org/10.1109/SERVICES-I.2009.19

BIBLIOGRAPHY 295

[55] Alena Hallerbach, Thomas Bauer, and Manfred Reichert.
Configuration and Management of Process Variants, pages 237–
255. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN
978-3-642-00416-2. doi: 10.1007/978-3-642-00416-2_11. URL
https://doi.org/10.1007/978-3-642-00416-2_11.

[56] Faruk Hasić and Estefanía Serral. Executing IoT processes in
BPMN 2.0: Current support and remaining challenges. In Manuel
Kolp, Jean Vanderdonckt, Monique Snoeck, and Yves Wautelet,
editors, 13th International Conference on Research Challenges in
Information Science, RCIS 2019, Brussels, Belgium, May 29-31,
2019, pages 1–6. IEEE, 2019. doi: 10.1109/RCIS.2019.8876998.
URL https://doi.org/10.1109/RCIS.2019.8876998.

[57] Faruk Hasić and Estefanía Serral. Change patterns for Decision
Model and Notation (DMN) model evolution. In The 18th Belgium-
Netherlands Software Evolution Workshop (BENEVOL), Brussels,
Belgium, 28-29 November, 2019, pages 1–4. CEUR-WS.org, 2019.

[58] Faruk Hasić and Jan Vanthienen. Complexity metrics for DMN
decision models. Computer Standards & Interfaces, 65:15–37, 2019.
doi: 10.1016/j.csi.2019.01.006. URL https://doi.org/10.1016/
j.csi.2019.01.006.

[59] Faruk Hasić and Jan Vanthienen. From decision knowledge to e-
government expert systems: the case of income taxation for foreign
artists in Belgium. Knowledge and Information Systems, 62(5):
2011–2028, 2020. ISSN 0219-3116. doi: 10.1007/s10115-019-01416-
4. URL https://doi.org/10.1007/s10115-019-01416-4.

[60] Faruk Hasić, Johannes De Smedt, and Jan Vanthienen. An
Illustration of Five Principles for Integrated Process and Decision
Modelling (5PDM). Technical Report 1717, KU Leuven, 2017. URL
https://lirias.kuleuven.be/retrieve/466070.

[61] Faruk Hasić, Lesly Devadder, Maxim Dochez, Jonas Hanot,
Johannes De Smedt, and Jan Vanthienen. Challenges in refactoring
processes to include decision modelling. In Ernest Teniente
and Matthias Weidlich, editors, Business Process Management
Workshops - BPM 2017 International Workshops, Barcelona, Spain,
September 10-11, 2017, Revised Papers, volume 308 of Lecture Notes
in Business Information Processing, pages 529–541. Springer, 2017.
doi: 10.1007/978-3-319-74030-0_42. URL https://doi.org/
10.1007/978-3-319-74030-0_42.

https://doi.org/10.1007/978-3-642-00416-2_11
https://doi.org/10.1109/RCIS.2019.8876998
https://doi.org/10.1016/j.csi.2019.01.006
https://doi.org/10.1016/j.csi.2019.01.006
https://doi.org/10.1007/s10115-019-01416-4
https://lirias.kuleuven.be/retrieve/466070
https://doi.org/10.1007/978-3-319-74030-0_42
https://doi.org/10.1007/978-3-319-74030-0_42

296 BIBLIOGRAPHY

[62] Faruk Hasić, Johannes De Smedt, and Jan Vanthienen. Developing
a modelling and mining framework for integrated processes and
decisions. In Christophe Debruyne, Hervé Panetto, Georg
Weichhart, Peter Bollen, Ioana Ciuciu, Maria-Esther Vidal, and
Robert Meersman, editors, On the Move to Meaningful Internet
Systems. OTM 2017 Workshops - Confederated International
Workshops, EI2N, FBM, ICSP, Meta4eS, OTMA 2017 and
ODBASE Posters 2017, Rhodes, Greece, October 23-28, 2017,
Revised Selected Papers, volume 10697 of Lecture Notes in
Computer Science, pages 259–269. Springer, 2017. doi: 10.1007/
978-3-319-73805-5_28. URL https://doi.org/10.1007/978-
3-319-73805-5_28.

[63] Faruk Hasić, Johannes De Smedt, and Jan Vanthienen. A
service-oriented architecture design of decision-aware information
systems: Decision as a service. In Hervé Panetto, Christophe
Debruyne, Walid Gaaloul, Mike P. Papazoglou, Adrian Paschke,
Claudio Agostino Ardagna, and Robert Meersman, editors, On
the Move to Meaningful Internet Systems. OTM 2017 Conferences
- Confederated International Conferences: CoopIS, C&TC, and
ODBASE 2017, Rhodes, Greece, October 23-27, 2017, Proceedings,
Part I, volume 10573 of Lecture Notes in Computer Science, pages
353–361. Springer, 2017. doi: 10.1007/978-3-319-69462-7_23.
URL https://doi.org/10.1007/978-3-319-69462-7_23.

[64] Faruk Hasić, Johannes De Smedt, and Jan Vanthienen. Towards
assessing the theoretical complexity of the decision model and
notation (DMN). In Jens Gulden, Selmin Nurcan, Iris Reinhartz-
Berger, Wided Guédria, Palash Bera, Sérgio Guerreiro, Michael
Fellmann, and Matthias Weidlich, editors, Joint Proceedings of
the Radar tracks at the 18th International Working Conference on
Business Process Modeling, Development and Support (BPMDS),
and the 22nd International Working Conference on Evaluation
and Modeling Methods for Systems Analysis and Development
(EMMSAD), and the 8th International Workshop on Enterprise
Modeling and Information Systems Architectures (EMISA) co-
located with the 29th International Conference on Advanced
Information Systems Engineering 2017 (CAiSE 2017), Essen,
Germany, June 12-13, 2017, volume 1859 of CEUR Workshop
Proceedings, pages 64–71. CEUR-WS.org, 2017. URL http://
ceur-ws.org/Vol-1859/bpmds-07-paper.pdf.

[65] Faruk Hasić, Linus Vanwijck, and Jan Vanthienen. Integrating
processes, cases, and decisions for knowledge-intensive process

https://doi.org/10.1007/978-3-319-73805-5_28
https://doi.org/10.1007/978-3-319-73805-5_28
https://doi.org/10.1007/978-3-319-69462-7_23
http://ceur-ws.org/Vol-1859/bpmds-07-paper.pdf
http://ceur-ws.org/Vol-1859/bpmds-07-paper.pdf

BIBLIOGRAPHY 297

modelling. In Dominik Bork, Dimitris Karagiannis, and Jan
Vanthienen, editors, Proceedings of the 1st International Workshop
on Practicing Open Enterprise Modeling within OMiLAB (PrOse
2017) co-located with 10th IFIP WG 8.1 Working Conference on the
Practice of Enterprise Modelling (PoEM 2017), Leuven, Belgium,
November 22, 2017, volume 1999 of CEUR Workshop Proceedings.
CEUR-WS.org, 2017. URL http://ceur-ws.org/Vol-1999/
paper2.pdf.

[66] Faruk Hasić, Johannes De Smedt, and Jan Vanthienen. Augmenting
processes with decision intelligence: Principles for integrated
modelling. Decision Support Systems, 107:1–12, 2018. doi:
10.1016/j.dss.2017.12.008. URL https://doi.org/10.1016/j.
dss.2017.12.008.

[67] Faruk Hasić, Johannes De Smedt, and Jan Vanthienen. Redesigning
processes for decision-awareness: Strategies for integrated
modelling. In Antonia Bertolino, Vasco Amaral, Paulo Rupino, and
Marco Vieira, editors, 11th International Conference on the Quality
of Information and Communications Technology, QUATIC 2018,
Coimbra, Portugal, September 4-7, 2018, pages 247–250. IEEE
Computer Society, 2018. doi: 10.1109/QUATIC.2018.00043. URL
https://doi.org/10.1109/QUATIC.2018.00043.

[68] Faruk Hasić, Johannes De Smedt, Seppe vanden Broucke, and
Estefanía Serral. A Parameter Assessment of Service-Oriented
Architecture Process Mining Integrating Decisions (SOAP-MInD).
Technical Report 1914, KU Leuven, 2019. URL https://lirias.
kuleuven.be/retrieve/551259.

[69] Faruk Hasić, Carl Corea, Jonas Blatt, Patrick Delfmann, and
Estefanía Serral. Decision model change patterns for dynamic
system evolution. Knowledge and Information Systems, 2020. ISSN
0219-3116. doi: 10.1007/s10115-020-01469-w. URL https://
doi.org/10.1007/s10115-020-01469-w.

[70] Faruk Hasić, Johannes De Smedt, Seppe Vanden Broucke, and
Estefanía Serral. Decision as a Service (DaaS): A Service-
Oriented Architecture Approach for Decisions in Processes. IEEE
Transactions on Services Computing, pages 1–14, 2020. ISSN 2372-
0204. URL https://doi.org/10.1109/TSC.2020.2965516.

[71] Faruk Hasić, Estefanía Serral, and Monique Snoeck. Comparing
BPMN to BPMN + DMN for IoT Process Modelling: A Case-Based
Inquiry. In Proceeedings of the 35th ACM/SIGAPP Symposium On

http://ceur-ws.org/Vol-1999/paper2.pdf
http://ceur-ws.org/Vol-1999/paper2.pdf
https://doi.org/10.1016/j.dss.2017.12.008
https://doi.org/10.1016/j.dss.2017.12.008
https://doi.org/10.1109/QUATIC.2018.00043
https://lirias.kuleuven.be/retrieve/551259
https://lirias.kuleuven.be/retrieve/551259
https://doi.org/10.1007/s10115-020-01469-w
https://doi.org/10.1007/s10115-020-01469-w
https://doi.org/10.1109/TSC.2020.2965516

298 BIBLIOGRAPHY

Applied Computing (SAC) 2020, Brno, Czech Republic, March 30-
April 3, 2020, pages 53–60. Association for Computing Machinery
(ACM), 2020.

[72] Moeen Hassanalieragh, Alex Page, Tolga Soyata, Gaurav Sharma,
Mehmet Aktas, Gonzalo Mateos, Burak Kantarci, and Silvana
Andreescu. Health monitoring and management using internet-
of-things (iot) sensing with cloud-based processing: Opportunities
and challenges. In 2015 IEEE International Conference on Services
Computing, SCC 2015, New York City, NY, USA, June 27 - July 2,
2015, pages 285–292. IEEE Computer Society, 2015. doi: 10.1109/
SCC.2015.47. URL https://doi.org/10.1109/SCC.2015.47.

[73] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram.
Design science in information systems research. MIS Quarterly, 28
(1):75–105, 2004. URL http://misq.org/design-science-in-
information-systems-research.html.

[74] Knut Hinkelmann. Business process flexibility and decision-aware
modeling - the knowledge work designer. In Dimitris Karagiannis,
Heinrich C. Mayr, and John Mylopoulos, editors, Domain-Specific
Conceptual Modeling, Concepts, Methods and Tools, pages 397–
414. Springer, 2016. doi: 10.1007/978-3-319-39417-6_18. URL
https://doi.org/10.1007/978-3-319-39417-6_18.

[75] Knut Hinkelmann, Kyriakos Kritikos, Sabrina Kurjakovic,
Benjamin Lammel, and Robert Woitsch. A modelling environment
for business process as a service. In John Krogstie, Haralambos
Mouratidis, and Jianwen Su, editors, Advanced Information
Systems Engineering Workshops - CAiSE 2016 International
Workshops, Ljubljana, Slovenia, June 13-17, 2016, Proceedings,
volume 249 of Lecture Notes in Business Information Processing,
pages 181–192. Springer, 2016. doi: 10.1007/978-3-319-39564-7\
_18. URL https://doi.org/10.1007/978-3-319-39564-7_18.

[76] Knut Hinkelmann, Arianna Pierfranceschi, and Emanuele Laurenzi.
The knowledge work designer - modelling process logic and business
logic. In Stefanie Betz and Ulrich Reimer, editors, Modellierung
2016, 2.-4. März 2016, Karlsruhe - Workshopband, volume P-255
of Lecture Notes in Informatics, pages 135–140. GI, 2016. URL
https://dl.gi.de/20.500.12116/846.

[77] Flávio Eduardo Aoki Horita, Daniel Link, João Porto de Albu-
querque, and Bernd Hellingrath. oDMN: An integrated model to

https://doi.org/10.1109/SCC.2015.47
http://misq.org/design-science-in-information-systems-research.html
http://misq.org/design-science-in-information-systems-research.html
https://doi.org/10.1007/978-3-319-39417-6_18
https://doi.org/10.1007/978-3-319-39564-7_18
https://dl.gi.de/20.500.12116/846

BIBLIOGRAPHY 299

connect decision-making needs to emerging data sources in disas-
ter management. In Tung X. Bui and Ralph H. Sprague Jr., ed-
itors, 49th Hawaii International Conference on System Sciences,
HICSS 2016, Koloa, HI, USA, January 5-8, 2016, pages 2882–2891.
IEEE Computer Society, 2016. doi: 10.1109/HICSS.2016.361. URL
https://doi.org/10.1109/HICSS.2016.361.

[78] Flávio Eduardo Aoki Horita, João Porto de Albuquerque, Victor
Marchezini, and Eduardo M. Mendiondo. Bridging the gap between
decision-making and emerging big data sources: An application of a
model-based framework to disaster management in brazil. Decision
Support Systems, 97:12–22, 2017. doi: 10.1016/j.dss.2017.03.001.
URL https://doi.org/10.1016/j.dss.2017.03.001.

[79] Jing Hu, Ghazaleh Aghakhani, Faruk Hasić, and Estefanía Serral.
An evaluation framework for design-time context-adaptation of
process modelling languages. In Geert Poels, Frederik Gailly,
Estefanía Serral, and Monique Snoeck, editors, The Practice of
Enterprise Modeling - 10th IFIP WG 8.1. Working Conference,
PoEM 2017, Leuven, Belgium, November 22-24, 2017, Proceedings,
volume 305 of Lecture Notes in Business Information Processing,
pages 112–125. Springer, 2017. doi: 10.1007/978-3-319-70241-4\
_8. URL https://doi.org/10.1007/978-3-319-70241-4_8.

[80] IBM. SOA fundamentals in a nutshell, 2008. URL https:
//www.ibm.com/developerworks/webservices/tutorials/
ws-soa-ibmcertified/ws-soa-ibmcertified.html.

[81] IBM. PHP object orientation: Separating concerns, build-
ing more modular php applications. https://www.ibm.com/
developerworks/library/os-php-objectorient/os-php-
objectorient-pdf.pdf, 2009.

[82] IBM. New to SOA and web services, 2016. URL https://www.
ibm.com/developerworks/webservices/newto/index.html.

[83] Christian Janiesch, Agnes Koschmider, Massimo Mecella, Barbara
Weber, Andrea Burattin, Claudio Di Ciccio, Avigdor Gal, Udo
Kannengiesser, Felix Mannhardt, Jan Mendling, Andreas Oberweis,
Manfred Reichert, Stefanie Rinderle-Ma, WenZhan Song, Jianwen
Su, Victoria Torres, Matthias Weidlich, Mathias Weske, and Liang
Zhang. The internet-of-things meets business process management:
Mutual benefits and challenges. CoRR, abs/1709.03628, 2017. URL
http://arxiv.org/abs/1709.03628.

https://doi.org/10.1109/HICSS.2016.361
https://doi.org/10.1016/j.dss.2017.03.001
https://doi.org/10.1007/978-3-319-70241-4_8
https://www.ibm.com/developerworks/webservices/tutorials/ws-soa-ibmcertified/ws-soa-ibmcertified.html
https://www.ibm.com/developerworks/webservices/tutorials/ws-soa-ibmcertified/ws-soa-ibmcertified.html
https://www.ibm.com/developerworks/webservices/tutorials/ws-soa-ibmcertified/ws-soa-ibmcertified.html
https://www.ibm.com/developerworks/library/os-php-objectorient/os-php-objectorient-pdf.pdf
https://www.ibm.com/developerworks/library/os-php-objectorient/os-php-objectorient-pdf.pdf
https://www.ibm.com/developerworks/library/os-php-objectorient/os-php-objectorient-pdf.pdf
https://www.ibm.com/developerworks/webservices/newto/index.html
https://www.ibm.com/developerworks/webservices/newto/index.html
http://arxiv.org/abs/1709.03628

300 BIBLIOGRAPHY

[84] Laurent Janssens, Ekaterina Bazhenova, Johannes De Smedt,
Jan Vanthienen, and Marc Denecker. Consistent integration
of decision (DMN) and process (BPMN) models. In Sergio
España, Mirjana Ivanovic, and Milos Savic, editors, Proceedings
of the CAiSE’16 Forum, at the 28th International Conference
on Advanced Information Systems Engineering (CAiSE 2016),
Ljubljana, Slovenia, June 13-17, 2016, volume 1612 of CEUR
Workshop Proceedings, pages 121–128. CEUR-WS.org, 2016. URL
http://ceur-ws.org/Vol-1612/paper16.pdf.

[85] Thomas Johanndeiter, Anat Goldstein, and Ulrich Frank. Towards
business process models at runtime. In Nelly Bencomo, Robert B.
France, Sebastian Götz, and Bernhard Rumpe, editors, Proceedings
of the 8th Workshop on Models @ Run.time co-located with 16th
International Conference on Model Driven Engineering Languages
and Systems (MODELS 2013), Miami, FL, USA, September 29,
2013, volume 1079 of CEUR Workshop Proceedings, pages 13–
25. CEUR-WS.org, 2013. URL http://ceur-ws.org/Vol-1079/
mrt13_submission_13.pdf.

[86] Wan M.N. Wan Kadir and Pericles Loucopoulos. Linking
and propagating business rule changes to is design. In
Information Systems Development, pages 253–264. Springer,
2005. URL https://link.springer.com/content/pdf/10.
1007/0-387-28809-0_23.pdf.

[87] William J. Kettinger and Varun Grover. Special section: Toward a
theory of business process change management. J. of Management
Information Systems, 12(1):9–30, 1995. URL http://www.jmis-
web.org/articles/534.

[88] Krzysztof Kluza. Measuring complexity of business process models
integrated with rules. In Leszek Rutkowski, Marcin Korytkowski,
Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M.
Zurada, editors, Artificial Intelligence and Soft Computing - 14th
International Conference, ICAISC 2015, Zakopane, Poland, June
14-28, 2015, Proceedings, Part II, volume 9120 of Lecture Notes in
Computer Science, pages 649–659. Springer, 2015. doi: 10.1007/
978-3-319-19369-4_57. URL https://doi.org/10.1007/978-
3-319-19369-4_57.

[89] Elena Kornyshova and Rébecca Deneckère. Decision-making
ontology for information system engineering. In Jeffrey Parsons,
Motoshi Saeki, Peretz Shoval, Carson C. Woo, and Yair Wand,

http://ceur-ws.org/Vol-1612/paper16.pdf
http://ceur-ws.org/Vol-1079/mrt13_submission_13.pdf
http://ceur-ws.org/Vol-1079/mrt13_submission_13.pdf
https://link.springer.com/content/pdf/10.1007/0-387-28809-0_23.pdf
https://link.springer.com/content/pdf/10.1007/0-387-28809-0_23.pdf
http://www.jmis-web.org/articles/534
http://www.jmis-web.org/articles/534
https://doi.org/10.1007/978-3-319-19369-4_57
https://doi.org/10.1007/978-3-319-19369-4_57

BIBLIOGRAPHY 301

editors, Conceptual Modeling - ER 2010, 29th International
Conference on Conceptual Modeling, Vancouver, BC, Canada,
November 1-4, 2010. Proceedings, volume 6412 of Lecture Notes in
Computer Science, pages 104–117. Springer, 2010. doi: 10.1007/
978-3-642-16373-9_8. URL https://doi.org/10.1007/978-
3-642-16373-9_8.

[90] Agnes Koschmider, Felix Mannhardt, and Tobias Heuser. On the
contextualization of event-activity mappings. In Florian Daniel,
Quan Z. Sheng, and Hamid Motahari, editors, Business Process
Management Workshops - BPM 2018 International Workshops,
Sydney, NSW, Australia, September 9-14, 2018, Revised Papers,
volume 342 of Lecture Notes in Business Information Processing,
pages 445–457. Springer, 2018. doi: 10.1007/978-3-030-11641-5\
_35. URL https://doi.org/10.1007/978-3-030-11641-5_35.

[91] Ülari Laurson and Fabrizio Maria Maggi. A tool for the analysis of
DMN decision tables. In Leonardo Azevedo and Cristina Cabanillas,
editors, Proceedings of the BPM Demo Track 2016 Co-located with
the 14th International Conference on Business Process Management
(BPM 2016), Rio de Janeiro, Brazil, September 21, 2016, volume
1789 of CEUR Workshop Proceedings, pages 56–60. CEUR-WS.org,
2016. URL http://ceur-ws.org/Vol-1789/bpm-demo-2016-
paper11.pdf.

[92] Sihem Loukil, Slim Kallel, and Mohamed Jmaiel. An approach
based on runtime models for developing dynamically adaptive
systems. Future Generation Comp. Syst., 68:365–375, 2017. doi:
10.1016/j.future.2016.07.006. URL https://doi.org/10.1016/
j.future.2016.07.006.

[93] Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, and Wil
M. P. van der Aalst. Data-driven process discovery - revealing
conditional infrequent behavior from event logs. In Eric Dubois and
Klaus Pohl, editors, Advanced Information Systems Engineering,
pages 545–560. Springer International Publishing, 2017. ISBN 978-
3-319-59536-8.

[94] Jan Mendling, Hajo A. Reijers, and Wil M. P. van der Aalst. Seven
process modeling guidelines (7PMG). Information & Software
Technology, 52(2):127–136, 2010. doi: 10.1016/j.infsof.2009.08.004.
URL https://doi.org/10.1016/j.infsof.2009.08.004.

[95] Steven Mertens, Frederik Gailly, and Geert Poels. Enhancing
declarative process models with DMN decision logic. In Khaled

https://doi.org/10.1007/978-3-642-16373-9_8
https://doi.org/10.1007/978-3-642-16373-9_8
https://doi.org/10.1007/978-3-030-11641-5_35
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper11.pdf
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper11.pdf
https://doi.org/10.1016/j.future.2016.07.006
https://doi.org/10.1016/j.future.2016.07.006
https://doi.org/10.1016/j.infsof.2009.08.004

302 BIBLIOGRAPHY

Gaaloul, Rainer Schmidt, Selmin Nurcan, Sérgio Guerreiro, and
Qin Ma, editors, Enterprise, Business-Process and Information
Systems Modeling - 16th International Conference, BPMDS 2015,
20th International Conference, EMMSAD 2015, Held at CAiSE
2015, Stockholm, Sweden, June 8-9, 2015, Proceedings, volume 214
of Lecture Notes in Business Information Processing, pages 151–
165. Springer, 2015. doi: 10.1007/978-3-319-19237-6_10. URL
https://doi.org/10.1007/978-3-319-19237-6_10.

[96] Marinela Mircea, Bogdan Ghilic-Micu, and Marian Stoica. An
agile architecture framework that leverages the strengths of business
intelligence, decision management and service orientation. In
Business Intelligence-Solution for Business Development, pages
15–32. InTech, 2012. URL http://cdn.intechweb.org/pdfs/
27300.pdf.

[97] Angel Jiménez Molina, Jorge Gaete-Villegas, and Javier Fuentes.
Profuso: Business process and ontology-based framework to
develop ubiquitous computing support systems for chronic patients’
management. Journal of Biomedical Informatics, 82:106–127, 2018.
doi: 10.1016/j.jbi.2018.04.001. URL https://doi.org/10.1016/
j.jbi.2018.04.001.

[98] Daniel L. Moody. The "physics" of notations: Toward a scientific
basis for constructing visual notations in software engineering.
IEEE Transactions on Software Engineering, 35(6):756–779, 2009.
doi: 10.1109/TSE.2009.67. URL https://doi.org/10.1109/
TSE.2009.67.

[99] Isel Moreno-Montes de Oca and Monique Snoeck. Pragmatic
guidelines for business process modeling. Available at SSRN
2592983, pages 1–68, 2014. doi: 10.2139/ssrn.2592983. URL
https://ssrn.com/abstract=2592983.

[100] Sabine Nagel, Carl Corea, and Patrick Delfmann. Effects of
quantitative measures on understanding inconsistencies in business
rules. In Tung Bui, editor, 52nd Hawaii International Conference on
System Sciences, HICSS 2019, Grand Wailea, Maui, Hawaii, USA,
January 8-11, 2019, pages 1–10. ScholarSpace / AIS Electronic
Library (AISeL), 2019. URL http://hdl.handle.net/10125/
59455.

[101] Christoph Nagl, Florian Rosenberg, and Schahram Dustdar.
VIDRE - A distributed service-oriented business rule engine based
on ruleml. In Tenth IEEE International Enterprise Distributed

https://doi.org/10.1007/978-3-319-19237-6_10
http://cdn.intechweb.org/pdfs/27300.pdf
http://cdn.intechweb.org/pdfs/27300.pdf
https://doi.org/10.1016/j.jbi.2018.04.001
https://doi.org/10.1016/j.jbi.2018.04.001
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://ssrn.com/abstract=2592983
http://hdl.handle.net/10125/59455
http://hdl.handle.net/10125/59455

BIBLIOGRAPHY 303

Object Computing Conference (EDOC 2006), 16-20 October 2006,
Hong Kong, China, pages 35–44. IEEE Computer Society, 2006.
doi: 10.1109/EDOC.2006.67. URL https://doi.org/10.1109/
EDOC.2006.67.

[102] Natalya Fridman Noy and Michel C. A. Klein. Ontology evolution:
Not the same as schema evolution. Knowledge and Information
Systems, 6(4):428–440, 2004. URL http://www.springerlink.
com/index/10.1007/s10115-003-0137-2.

[103] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A
framework for expressing the relationships between multiple views
in requirements specification. IEEE Transactions on Software
Engineering, 20(10):760–773, 1994. doi: 10.1109/32.328995. URL
https://doi.org/10.1109/32.328995.

[104] Lina Ochoa and Oscar González Rojas. Analysis and re-
configuration of decision logic in adaptive and data-intensive
processes. In Hervé Panetto, Christophe Debruyne, Walid Gaaloul,
Mike P. Papazoglou, Adrian Paschke, Claudio Agostino Ardagna,
and Robert Meersman, editors, On the Move to Meaningful Internet
Systems. OTM 2017 Conferences - Confederated International
Conferences: CoopIS, C&TC, and ODBASE 2017, Rhodes, Greece,
October 23-27, 2017, Proceedings, Part I, volume 10573 of Lecture
Notes in Computer Science, pages 306–313. Springer, 2017. doi:
10.1007/978-3-319-69462-7_20. URL https://doi.org/10.
1007/978-3-319-69462-7_20.

[105] OMG. Business Process Model and Notation (BPMN). Version 2.0,
Object Management Group, 2011. URL https://www.omg.org/
spec/BPMN/2.0/PDF/.

[106] OMG. Decision Model and Notation (DMN). Version 1.2, Object
Management Group, 2019. URL https://www.omg.org/spec/
DMN/1.2/PDF/.

[107] Carlos Ordonez and Javier García-García. Referential integrity
quality metrics. Decision Support Systems, 44(2):495–508, 2008.
doi: 10.1016/j.dss.2007.06.004. URL https://doi.org/10.
1016/j.dss.2007.06.004.

[108] José Miguel Pérez-Álvarez, María Teresa Gómez López, Luisa
Parody, and Rafael M. Gasca. Process instance query language
to include process performance indicators in DMN. In Remco M.
Dijkman, Luís Ferreira Pires, and Stefanie Rinderle-Ma, editors,

https://doi.org/10.1109/EDOC.2006.67
https://doi.org/10.1109/EDOC.2006.67
http://www.springerlink.com/index/10.1007/s10115-003-0137-2
http://www.springerlink.com/index/10.1007/s10115-003-0137-2
https://doi.org/10.1109/32.328995
https://doi.org/10.1007/978-3-319-69462-7_20
https://doi.org/10.1007/978-3-319-69462-7_20
https://www.omg.org/spec/BPMN/2.0/PDF/
https://www.omg.org/spec/BPMN/2.0/PDF/
https://www.omg.org/spec/DMN/1.2/PDF/
https://www.omg.org/spec/DMN/1.2/PDF/
https://doi.org/10.1016/j.dss.2007.06.004
https://doi.org/10.1016/j.dss.2007.06.004

304 BIBLIOGRAPHY

20th IEEE International Enterprise Distributed Object Computing
Workshop, EDOC Workshops 2016, Vienna, Austria, September
5-9, 2016, pages 1–8. IEEE Computer Society, 2016. doi: 10.
1109/EDOCW.2016.7584381. URL https://doi.org/10.1109/
EDOCW.2016.7584381.

[109] Lila Rao, Gunjan Mansingh, and Kweku-Muata Osei-Bryson.
Building ontology based knowledge maps to assist business process
re-engineering. Decision Support Systems, 52(3):577–589, 2012. doi:
10.1016/j.dss.2011.10.014. URL https://doi.org/10.1016/j.
dss.2011.10.014.

[110] Christoph Rathfelder and Henning Groenda. isoamm: An
independent SOA maturity model. In René Meier and Sotirios
Terzis, editors, Distributed Applications and Interoperable Systems,
8th IFIP WG 6.1 International Conference, DAIS 2008, Oslo,
Norway, June 4-6, 2008. Proceedings, volume 5053 of Lecture Notes
in Computer Science, pages 1–15, 2008. doi: 10.1007/978-3-
540-68642-2_1. URL https://doi.org/10.1007/978-3-540-
68642-2_1.

[111] Manfred Reichert and Peter Dadam. Adeptflex-supporting
dynamic changes of workflows without losing control. Journal
of Intelligent Information Systems, 10(2):93–129, 1998. doi:
10.1023/A:1008604709862. URL https://doi.org/10.1023/A:
1008604709862.

[112] Manfred Reichert and Peter Dadam. Enabling adaptive process-
aware information systems with ADEPT2. In Jorge S. Cardoso
and Wil M. P. van der Aalst, editors, Handbook of Research on
Business Process Modeling, pages 173–203. IGI Global, 2009. doi:
10.4018/978-1-60566-288-6.ch008. URL https://doi.org/10.
4018/978-1-60566-288-6.ch008.

[113] Manfred Reichert and Barbara Weber. Ad hoc Changes of Process
Instances, pages 153–217. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012. ISBN 978-3-642-30409-5. doi: 10.1007/978-3-
642-30409-5_7. URL https://doi.org/10.1007/978-3-642-
30409-5_7.

[114] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Flexible
support of team processes by adaptive workflow systems.
Distributed and Parallel Databases, 16(1):91–116, 2004. doi: 10.
1023/B:DAPD.0000026270.78463.77. URL https://doi.org/
10.1023/B:DAPD.0000026270.78463.77.

https://doi.org/10.1109/EDOCW.2016.7584381
https://doi.org/10.1109/EDOCW.2016.7584381
https://doi.org/10.1016/j.dss.2011.10.014
https://doi.org/10.1016/j.dss.2011.10.014
https://doi.org/10.1007/978-3-540-68642-2_1
https://doi.org/10.1007/978-3-540-68642-2_1
https://doi.org/10.1023/A:1008604709862
https://doi.org/10.1023/A:1008604709862
https://doi.org/10.4018/978-1-60566-288-6.ch008
https://doi.org/10.4018/978-1-60566-288-6.ch008
https://doi.org/10.1007/978-3-642-30409-5_7
https://doi.org/10.1007/978-3-642-30409-5_7
https://doi.org/10.1023/B:DAPD.0000026270.78463.77
https://doi.org/10.1023/B:DAPD.0000026270.78463.77

BIBLIOGRAPHY 305

[115] Willem De Roover and Jan Vanthienen. On the relation be-
tween decision structures, tables and processes. In Robert Meers-
man, Tharam S. Dillon, and Pilar Herrero, editors, On the Move
to Meaningful Internet Systems: OTM 2011 Workshops - Con-
federated International Workshops and Posters: EI2N+NSF ICE,
ICSP+INBAST, ISDE, ORM, OTMA, SWWS+MONET+SeDeS,
and VADER 2011, Hersonissos, Crete, Greece, October 17-21,
2011. Proceedings, volume 7046 of Lecture Notes in Computer
Science, pages 591–598. Springer, 2011. doi: 10.1007/978-
3-642-25126-9_71. URL https://doi.org/10.1007/978-3-
642-25126-9_71.

[116] Flávia Maria Santoro and Fernanda Araujo Baião. Knowledge-
intensive process: A research framework. In Ernest Teniente
and Matthias Weidlich, editors, Business Process Management
Workshops - BPM 2017 International Workshops, Barcelona, Spain,
September 10-11, 2017, Revised Papers, volume 308 of Lecture Notes
in Business Information Processing, pages 460–468. Springer, 2017.
doi: 10.1007/978-3-319-74030-0_36. URL https://doi.org/
10.1007/978-3-319-74030-0_36.

[117] Flávia Maria Santoro, Tijs Slaats, Thomas T. Hildebrandt, and
Fernanda Araújo Baião. Dcr-kipn a hybrid modeling approach for
knowledge-intensive processes. In Alberto H. F. Laender, Barbara
Pernici, Ee-Peng Lim, and José Palazzo M. de Oliveira, editors,
Conceptual Modeling - 38th International Conference, ER 2019,
Salvador, Brazil, November 4-7, 2019, Proceedings, volume 11788 of
Lecture Notes in Computer Science, pages 153–161. Springer, 2019.
doi: 10.1007/978-3-030-33223-5_13. URL https://doi.org/
10.1007/978-3-030-33223-5_13.

[118] SAP. SAP decision service management, 2016. URL https://www.
sap.com/products/decision-service-management.html.

[119] David Schumm, Frank Leymann, and Alexander Streule. Process
viewing patterns. In Proceedings of the 14th IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2010,
Vitória, Brazil, 25-29 October 2010, pages 89–98. IEEE Computer
Society, 2010. doi: 10.1109/EDOC.2010.16. URL https://doi.
org/10.1109/EDOC.2010.16.

[120] Estefanía Serral, Johannes De Smedt, Monique Snoeck, and Jan
Vanthienen. Context-adaptive petri nets: Supporting adaptation
for the execution context. Expert Systems with Applications, 42

https://doi.org/10.1007/978-3-642-25126-9_71
https://doi.org/10.1007/978-3-642-25126-9_71
https://doi.org/10.1007/978-3-319-74030-0_36
https://doi.org/10.1007/978-3-319-74030-0_36
https://doi.org/10.1007/978-3-030-33223-5_13
https://doi.org/10.1007/978-3-030-33223-5_13
https://www.sap.com/products/decision-service-management.html
https://www.sap.com/products/decision-service-management.html
https://doi.org/10.1109/EDOC.2010.16
https://doi.org/10.1109/EDOC.2010.16

306 BIBLIOGRAPHY

(23):9307–9317, 2015. doi: 10.1016/j.eswa.2015.08.004. URL
https://doi.org/10.1016/j.eswa.2015.08.004.

[121] Estefanía Serral, Pedro Valderas, and Vicente Pelechano.
Addressing the evolution of automated user behaviour patterns
by runtime model interpretation. Software and Systems Modeling,
14(4):1387–1420, 2015. doi: 10.1007/s10270-013-0371-3. URL
https://doi.org/10.1007/s10270-013-0371-3.

[122] Johannes De Smedt, Faruk Hasić, Seppe K. L. M. vanden Broucke,
and Jan Vanthienen. Towards a holistic discovery of decisions in
process-aware information systems. In Josep Carmona, Gregor
Engels, and Akhil Kumar, editors, Business Process Management
- 15th International Conference, BPM 2017, Barcelona, Spain,
September 10-15, 2017, Proceedings, volume 10445 of Lecture Notes
in Computer Science, pages 183–199. Springer, 2017. doi: 10.1007/
978-3-319-65000-5_11. URL https://doi.org/10.1007/978-
3-319-65000-5_11.

[123] Johannes De Smedt, Faruk Hasić, Seppe K. L. M. vanden Broucke,
and Jan Vanthienen. Holistic discovery of decision models from
process execution data. Knowledge-Based Systems, 183:1–15, 2019.
doi: 10.1016/j.knosys.2019.104866. URL https://doi.org/10.
1016/j.knosys.2019.104866.

[124] Koen Smit, Martijn Zoet, and Matthijs Berkhout. Verification
capabilities for business rules management in the dutch
governmental context. In 2017 International Conference on
Research and Innovation in Information Systems (ICRIIS), pages
1–6, 2017. doi: 10.1109/ICRIIS.2017.8002499. URL https:
//ieeexplore.ieee.org/abstract/document/8002499/.

[125] Monique Snoeck, Stephan Poelmans, and Guido Dedene. An
architecture for bridging OO and business process modeling. In
TOOLS 2000: 33rd International Conference on Technology of
Object-Oriented Languages and Systems, 5-8 June 2000, St. Malo,
France, page 132. IEEE Computer Society, 2000. doi: 10.1109/
TOOLS.2000.848757. URL https://doi.org/10.1109/TOOLS.
2000.848757.

[126] Wei Song and Hans-Arno Jacobsen. Static and dynamic process
change. IEEE Transactions on Services Computing, 11(1):215–231,
2018. doi: 10.1109/TSC.2016.2536025. URL https://doi.org/
10.1109/TSC.2016.2536025.

https://doi.org/10.1016/j.eswa.2015.08.004
https://doi.org/10.1007/s10270-013-0371-3
https://doi.org/10.1007/978-3-319-65000-5_11
https://doi.org/10.1007/978-3-319-65000-5_11
https://doi.org/10.1016/j.knosys.2019.104866
https://doi.org/10.1016/j.knosys.2019.104866
https://ieeexplore.ieee.org/abstract/document/8002499/
https://ieeexplore.ieee.org/abstract/document/8002499/
https://doi.org/10.1109/TOOLS.2000.848757
https://doi.org/10.1109/TOOLS.2000.848757
https://doi.org/10.1109/TSC.2016.2536025
https://doi.org/10.1109/TSC.2016.2536025

BIBLIOGRAPHY 307

[127] Sherry X. Sun, J. Leon Zhao, Jay F. Nunamaker Jr., and Olivia
R. Liu Sheng. Formulating the data-flow perspective for business
process management. Inf. Syst. Res., 17(4):374–391, 2006. doi:
10.1287/isre.1060.0105. URL https://doi.org/10.1287/isre.
1060.0105.

[128] Michael Szvetits and Uwe Zdun. Systematic literature review of
the objectives, techniques, kinds, and architectures of models at
runtime. Software and Systems Modeling, 15(1):31–69, 2016. doi:
10.1007/s10270-013-0394-9. URL https://doi.org/10.1007/
s10270-013-0394-9.

[129] Feng Tian. An information System for Food Safety Monitoring
in Supply Chains based on HACCP, Blockchain and Internet of
Things. PhD thesis, WU Vienna University of Economics and
Business, 2018. URL https://epub.wu.ac.at/6090/.

[130] Stefano Tranquillini, Patrik Spieß, Florian Daniel, Stamatis
Karnouskos, Fabio Casati, Nina Oertel, Luca Mottola, Fe-
lix Jonathan Oppermann, Gian Pietro Picco, Kay Römer, and
Thiemo Voigt. Process-based design and integration of wireless
sensor network applications. In Alistair P. Barros, Avigdor Gal,
and Ekkart Kindler, editors, Business Process Management - 10th
International Conference, BPM 2012, Tallinn, Estonia, Septem-
ber 3-6, 2012. Proceedings, volume 7481 of Lecture Notes in Com-
puter Science, pages 134–149. Springer, 2012. doi: 10.1007/978-
3-642-32885-5_10. URL https://doi.org/10.1007/978-3-
642-32885-5_10.

[131] Mohammed Hadi Valipour, Bavar Amirzafari, Khashayar Niki
Maleki, and Negin Daneshpour. A brief survey of software
architecture concepts and service oriented architecture. In 2009
2nd IEEE International Conference on Computer Science and
Information Technology, pages 34–38, 2009. doi: 10.1109/ICCSIT.
2009.5235004. URL https://ieeexplore.ieee.org/abstract/
document/5235004.

[132] Han van der Aa, Henrik Leopold, Kimon Batoulis, Mathias Weske,
and Hajo A. Reijers. Integrated process and decision modeling for
data-driven processes. In Manfred Reichert and Hajo A. Reijers,
editors, Business Process Management Workshops - BPM 2015,
13th International Workshops, Innsbruck, Austria, August 31 -
September 3, 2015, Revised Papers, volume 256 of Lecture Notes
in Business Information Processing, pages 405–417. Springer, 2015.

https://doi.org/10.1287/isre.1060.0105
https://doi.org/10.1287/isre.1060.0105
https://doi.org/10.1007/s10270-013-0394-9
https://doi.org/10.1007/s10270-013-0394-9
https://epub.wu.ac.at/6090/
https://doi.org/10.1007/978-3-642-32885-5_10
https://doi.org/10.1007/978-3-642-32885-5_10
https://ieeexplore.ieee.org/abstract/document/5235004
https://ieeexplore.ieee.org/abstract/document/5235004

308 BIBLIOGRAPHY

doi: 10.1007/978-3-319-42887-1_33. URL https://doi.org/
10.1007/978-3-319-42887-1_33.

[133] Wil M. P. van der Aalst. Service mining: Using process mining to
discover, check, and improve service behavior. IEEE Transactions
on Services Computing, 6(4):525–535, 2013. doi: 10.1109/TSC.
2012.25. URL https://doi.org/10.1109/TSC.2012.25.

[134] Wil M. P. van der Aalst and Ernesto Damiani. Processes meet
big data: Connecting data science with process science. IEEE
Transactions on Services Computing, 8(6):810–819, 2015. doi:
10.1109/TSC.2015.2493732. URL https://doi.org/10.1109/
TSC.2015.2493732.

[135] Wil M. P. van der Aalst, Guangming Li, and Marco Montali.
Object-centric behavioral constraints, 2017. URL https://arxiv.
org/pdf/1703.05740.pdf.

[136] Irene T. P. Vanderfeesten, Hajo A. Reijers, and Wil M. P. van der
Aalst. Product based workflow support: Dynamic workflow
execution. In Zohra Bellahsene and Michel Léonard, editors,
Advanced Information Systems Engineering, 20th International
Conference, CAiSE 2008, Montpellier, France, June 16-20, 2008,
Proceedings, volume 5074 of Lecture Notes in Computer Science,
pages 571–574. Springer, 2008. doi: 10.1007/978-3-540-69534-9\
_42. URL https://doi.org/10.1007/978-3-540-69534-9_42.

[137] Jan Vanthienen, Filip Caron, and Johannes De Smedt. Business
rules, decisions and processes: five reflections upon living apart
together. In SIGBPS Workshop on Business Processes and Services,
pages 76–81, 2013. URL https://core.ac.uk/download/pdf/
34582439.pdf.

[138] Barbara Von Halle and Larry Goldberg. The decision model: a
business logic framework linking business and technology. Taylor &
Francis, 2009.

[139] Barbara von Halle and Larry Goldberg. The decision
model # 2: Improving process models and the require-
ments process. Technical report, Sapiens, 2010. URL
https://www.sapiens.com/wp-content/uploads/2019/11/
The-Decision-Model-2-Improving-Process-Models-and-
the-Requirements-Process.pdf.

https://doi.org/10.1007/978-3-319-42887-1_33
https://doi.org/10.1007/978-3-319-42887-1_33
https://doi.org/10.1109/TSC.2012.25
https://doi.org/10.1109/TSC.2015.2493732
https://doi.org/10.1109/TSC.2015.2493732
https://arxiv.org/pdf/1703.05740.pdf
https://arxiv.org/pdf/1703.05740.pdf
https://doi.org/10.1007/978-3-540-69534-9_42
https://core.ac.uk/download/pdf/34582439.pdf
https://core.ac.uk/download/pdf/34582439.pdf
https://www.sapiens.com/wp-content/uploads/2019/11/The-Decision-Model-2-Improving-Process-Models-and-the-Requirements-Process.pdf
https://www.sapiens.com/wp-content/uploads/2019/11/The-Decision-Model-2-Improving-Process-Models-and-the-Requirements-Process.pdf
https://www.sapiens.com/wp-content/uploads/2019/11/The-Decision-Model-2-Improving-Process-Models-and-the-Requirements-Process.pdf

BIBLIOGRAPHY 309

[140] Wei Wang, Marta Indulska, and Shazia Sadiq. Factors affecting
business process and business rule integration. In 25th Aus-
tralasian Conference on Information Systems, Auckland, New
Zealand, 8-10 December, 2014, pages 1–10, 2014. URL https://
openrepository.aut.ac.nz/bitstream/handle/10292/8060/
acis20140_submission_44.pdf?sequence=1&isAllowed=y.

[141] Wei Wang, Marta Indulska, and Shazia Sadiq. Guidelines for
business rule modeling decisions. Journal of Computer Information
Systems, 58(4):363–373, 2018. doi: 10.1080/08874417.2017.
1285683. URL https://doi.org/10.1080/08874417.2017.
1285683.

[142] Yi Wang, Jian Yang, Weiliang Zhao, and Jianwen Su. Change
impact analysis in service-based business processes. Service
Oriented Computing and Applications, 6(2):131–149, 2012. doi:
10.1007/s11761-011-0093-8. URL https://doi.org/10.1007/
s11761-011-0093-8.

[143] Yves Wautelet and Stephan Poelmans. Aligning the elements of
the RUP/UML business use-case model and the BPMN business
process diagram. In Paul Grünbacher and Anna Perini, editors,
Requirements Engineering: Foundation for Software Quality - 23rd
International Working Conference, REFSQ 2017, Essen, Germany,
February 27 - March 2, 2017, Proceedings, volume 10153 of Lecture
Notes in Computer Science, pages 22–30. Springer, 2017. doi: 10.
1007/978-3-319-54045-0_2. URL https://doi.org/10.1007/
978-3-319-54045-0_2.

[144] Yves Wautelet and Stephan Poelmans. An integrated enterprise
modeling framework using the RUP/UML business use-case model
and BPMN. In Geert Poels, Frederik Gailly, Estefanía Serral
Asensio, and Monique Snoeck, editors, The Practice of Enterprise
Modeling - 10th IFIP WG 8.1. Working Conference, PoEM 2017,
Leuven, Belgium, November 22-24, 2017, Proceedings, volume 305
of Lecture Notes in Business Information Processing, pages 299–
315. Springer, 2017. doi: 10.1007/978-3-319-70241-4_20. URL
https://doi.org/10.1007/978-3-319-70241-4_20.

[145] Barbara Weber, Stefanie Rinderle, and Manfred Reichert. Change
patterns and change support features in process-aware information
systems. In John Krogstie, Andreas L. Opdahl, and Guttorm
Sindre, editors, Advanced Information Systems Engineering, 19th
International Conference, CAiSE 2007, Trondheim, Norway, June

https://openrepository.aut.ac.nz/bitstream/handle/10292/8060/acis20140_submission_44.pdf?sequence=1&isAllowed=y
https://openrepository.aut.ac.nz/bitstream/handle/10292/8060/acis20140_submission_44.pdf?sequence=1&isAllowed=y
https://openrepository.aut.ac.nz/bitstream/handle/10292/8060/acis20140_submission_44.pdf?sequence=1&isAllowed=y
https://doi.org/10.1080/08874417.2017.1285683
https://doi.org/10.1080/08874417.2017.1285683
https://doi.org/10.1007/s11761-011-0093-8
https://doi.org/10.1007/s11761-011-0093-8
https://doi.org/10.1007/978-3-319-54045-0_2
https://doi.org/10.1007/978-3-319-54045-0_2
https://doi.org/10.1007/978-3-319-70241-4_20

310 BIBLIOGRAPHY

11-15, 2007, Proceedings, volume 4495 of Lecture Notes in
Computer Science, pages 574–588. Springer, 2007. doi: 10.1007/
978-3-540-72988-4_40. URL https://doi.org/10.1007/978-
3-540-72988-4_40.

[146] Barbara Weber, Manfred Reichert, Jan Mendling, and Hajo A.
Reijers. Refactoring large process model repositories. Computers
in Industry, 62(5):467–486, 2011. doi: 10.1016/j.compind.2010.12.
012. URL https://doi.org/10.1016/j.compind.2010.12.012.

[147] Geert Wets, Jan Vanthienen, and Harry J. P. Timmermans.
Modelling decision tables from data. In Xindong Wu, Kotagiri
Ramamohanarao, and Kevin B. Korb, editors, Research and
Development in Knowledge Discovery and Data Mining, Second
Pacific-Asia Conference, PAKDD-98, Melbourne, Australia, April
15-17, 1998, Proceedings, volume 1394 of Lecture Notes in
Computer Science, pages 412–413. Springer, 1998. doi: 10.1007/
3-540-64383-4_48. URL https://doi.org/10.1007/3-540-
64383-4_48.

[148] Andreas Wombacher and Maarten Rozie. Evaluation of workflow
similarity measures in service discovery. In Mareike Schoop,
Christian Huemer, Michael Rebstock, and Martin Bichler, editors,
Service Oriented Electronic Commerce: Proceedings zur Konferenz
im Rahmen der Multikonferenz Wirtschaftsinformatik, 20.-22.
Februar 2006 in Passau, Deutschland, volume P-80 of Lecture Notes
in Informatics, pages 57–71. GI, 2006. URL https://dl.gi.de/
20.500.12116/24294.

[149] Alaaeddine Yousfi, Marcin Hewelt, Christine Bauer, and Mathias
Weske. Toward uBPMN-based patterns for modeling ubiquitous
business processes. IEEE Transactions on Industrial Informatics,
14(8):3358–3367, 2018. doi: 10.1109/TII.2017.2777847. URL
https://doi.org/10.1109/TII.2017.2777847.

[150] Alaaeddine Yousfi, Kimon Batoulis, and Mathias Weske. Achieving
business process improvement via ubiquitous decision-aware
business processes. ACM Transactions on Internet Technology,
19(1):14:1–14:19, 2019. doi: 10.1145/3298986. URL https:
//doi.org/10.1145/3298986.

[151] Alireza Zarghami, Brahmananda Sapkota, Mohammad Zarifi
Eslami, and Marten van Sinderen. Decision as a service: Separating
decision-making from application process logic. In Chi-Hung
Chi, Dragan Gasevic, and Willem-Jan van den Heuvel, editors,

https://doi.org/10.1007/978-3-540-72988-4_40
https://doi.org/10.1007/978-3-540-72988-4_40
https://doi.org/10.1016/j.compind.2010.12.012
https://doi.org/10.1007/3-540-64383-4_48
https://doi.org/10.1007/3-540-64383-4_48
https://dl.gi.de/20.500.12116/24294
https://dl.gi.de/20.500.12116/24294
https://doi.org/10.1109/TII.2017.2777847
https://doi.org/10.1145/3298986
https://doi.org/10.1145/3298986

BIBLIOGRAPHY 311

16th IEEE International Enterprise Distributed Object Computing
Conference, EDOC 2012, Beijing, China, September 10-14, 2012,
pages 103–112. IEEE Computer Society, 2012. doi: 10.1109/
EDOC.2012.21. URL https://doi.org/10.1109/EDOC.2012.
21.

https://doi.org/10.1109/EDOC.2012.21
https://doi.org/10.1109/EDOC.2012.21

Publication List

Articles in internationally reviewed scientific
journals

1. Faruk Hasić, Carl Corea, Jonas Blatt, Patrick Delfmann,
Estefanía Serral Asensio. Decision Model Change Patterns
for Dynamic System Evolution. Knowledge And Information
Systems, article in press, 2020.

2. Faruk Hasić, Johannes De Smedt, Seppe vanden Broucke,
Estefanía Serral Asensio. Decision as a Service (DaaS):
A Service-Oriented Architecture Approach for Decisions in
Processes. IEEE Transactions On Services Computing,
article in press, 2020.

3. Faruk Hasić, Jan Vanthienen. From Decision Knowledge to
E-Government Expert Systems: The Case of Income Taxation
for Foreign Artists in Belgium. Knowledge And Information
Systems, 62 (5), 2011–2028, 2020.

4. Letha J. Sooter, Stephen Hasley, Robert Lario, Kenneth
S. Rubin, Faruk Hasić. Modeling a Clinical Pathway for
Contraception. Applied Clinical Informatics, 10 (5), 935-943,
2019.

5. Faruk Hasić, Jan Vanthienen. Complexity Metrics for DMN
Decision Models. Computer Standards & Interfaces, 65, 15-
37, 2019.

313

314

6. Johannes De Smedt, Faruk Hasić, Seppe vanden Broucke,
Jan Vanthienen. Holistic Discovery of Decision Models from
Process Execution Data. Knowledge-Based Systems, 183,
104866, 2019.

7. Faruk Hasić, Johannes De Smedt, Jan Vanthienen.
Augmenting Processes with Decision Intelligence: Principles
for Integrated Modelling. Decision Support Systems, 107, 1-
12, 2018.

Papers at international conferences and symposia,
published in full in proceedings

8. Faruk Hasić, Carl Corea, Jonas Blatt, Patrick Delfmann,
Estefanía Serral Asensio. A Tool for the Verification of Deci-
sion Model and Notation (DMN) Models. 14th International
Conference on Research Challenges in Information Science
(RCIS), Demo Session, Limassol (Cyprus), 2020.

9. Estefanía Serral Asensio, Caroline Vander Stede, Faruk
Hasić. Leveraging IoT in Retail Industry: A Maturity Model,
IEEE International Conference on Business Informatics
(IEEE CBI), Antwerp (Belgium), 2020.

10. Faruk Hasić, Monique Snoeck, Estefanía Serral Asensio.
Comparing BPMN to BPMN + DMN for IoT Process
Modelling: A Case-Based Inquiry. 35th ACM/SIGAPP
Symposium on Applied Computing (SAC), Brno (Czech
Republic) article in press, 2020.

11. Faruk Hasić, Estefanía Serral Asensio. Change Patterns
for Decision Model and Notation (DMN) Model Evolution.
The 18th Belgium-Netherlands Software Evolution Workshop
(BENEVOL), Brussels (Belgium), article in press, 2020.

12. Faruk Hasić, Estefanía Serral Asensio. Executing IoT
Processes in BPMN 2.0: Current Support and Remaining
Challenges. 13th IEEE International Conference on
Research Challenges in Information Science (RCIS), Brussels
(Belgium), 1-6, 2019.

PUBLICATION LIST 315

13. Faruk Hasić, Alexander De Craemer, Thijs Hegge, Gideon
Magala, Jan Vanthienen. Measuring the Complexity of DMN
Decision Models. Business Process Management Workshops
at BPM 2018, Sydney (Australia), 514-526, 2019.

14. Marjolein Deryck, Faruk Hasić, Jan Vanthienen. A Case-
Based Inquiry into the Decision Model and Notation (DMN)
and the Knowledge Base (KB) Paradigm. 2nd International
Joint Conference on Rules and Reasoning (RULEML + RR),
Luxembourg (Luxembourg), 248-263, 2018.

15. Faruk Hasić, Johannes De Smedt, Jan Vanthienen.
Redesigning Processes for Decision-Awareness: Strategies
for Integrated Modelling. 11th International Conference on
the Quality of Information and Communications Technology
(QUATIC), Coimbra (Portugal), 247-250, 2018.

16. Faruk Hasić, Johannes De Smedt, Jan Vanthienen.
Developing a Modelling and Mining Framework for Integrated
Processes and Decisions. On the Move to Meaningful Internet
Systems - OTM Academy - OTM 2017 Workshops, Rhodes
(Greece), 259-269, 2018.

17. Faruk Hasić, Lesly Devadder, Maxim Dochez, Jonas
Hanot, Johannes De Smedt, Jan Vanthienen. Challenges
in Refactoring Processes to Include Decision Modelling.
Business Process Management Workshops at BPM 2017,
Barcelona (Spain), 529-541, 2018.

18. Faruk Hasić, Johannes De Smedt, Jan Vanthienen. A
Service-Oriented Architecture Design of Decision-Aware In-
formation Systems: Decision as a Service. 25th International
Conference on Cooperative Information Systems (CoopIS),
Rhodes (Greece), 353-361, 2017.

19. Jing Hu, Ghazaleh Aghakhani, Faruk Hasić, Estefanía
Serral Asensio. An Evaluation Framework for Design-Time
Context-Adaptation of Process Modelling Languages. 10th

Conference on the Practice of Enterprise Modelling (PoEM),
Leuven (Belgium), 112-125, 2017.

316

20. Faruk Hasić, Linus Vanwijck, Jan Vanthienen. Integrating
Processes, Cases, and Decisions for Knowledge-Intensive
Process Modelling. 1st International Workshop on Practicing
Open Enterprise Modelling (PrOse 2017) @PoEM, Leuven
(Belgium), 13-24, 2017.

21. Johannes De Smedt, Faruk Hasić, Seppe vanden Broucke,
Jan Vanthienen. Towards a Holistic Discovery of Decisions
in Process-Aware Information Systems. 15th International
Conference on Business Process Management (BPM),
Barcelona (Spain), 183-199, 2017.

22. Faruk Hasić, Johannes De Smedt, Jan Vanthienen. Towards
Assessing the Theoretical Complexity of the Decision Model
and Notation (DMN). International Working Conference
on Business Process Modeling, Development and Support
(BPMDS) @CAiSE, Essen (Germany), 64-71, 2017.

Technical reports published by the author’s home
institution
23. Faruk Hasić, Johannes De Smedt, Seppe vanden Broucke,

Estefanía Serral Asensio. A Parameter Assessment of
Service-Oriented Architecture Process Mining Integrating
Decisions (SOAP-MInD). FEB Research Report KBI_1914
(KU Leuven), Leuven (Belgium), 1-9, 2019.

24. Faruk Hasić, Johannes De Smedt, Jan Vanthienen.
An illustration of Five Principles for Integrated Process
and Decision Modelling (5PDM). FEB Research Report
KBI_1717 (KU Leuven), Leuven (Belgium), 1-8, 2017.

Meeting abstracts and posters presented at
international scientific conferences and symposia
25. Jan Vanthienen, Thibaut Bender, Faruk Hasić. The

Support of Decision Modeling Features and Concepts in
Tooling. Decision Camp, Luxembourg (Luxembourg), 2018.

26. Faruk Hasić. Towards Integrated Process-Decision
Modelling and Mining. On the Move to Meaningful Internet
Systems - OTM Academy, Rhodes (Greece), 2017.

PUBLICATION LIST 317

Articles submitted for publication in internation-
ally reviewed scientific journals
27. Tevye Jacobs, Estefanía Serral Asensio, Faruk Hasić. A

Reference Architecture for IoT-Enhanced Business Processes.
Computer Standards & Interfaces, submitted, 2020.

Working papers to be submitted for publication

28. Faruk Hasić, Carl Corea, Jonas Blatt, Patrick Delfmann,
Estefanía Serral Asensio. Consistent Evolution of Integrated
Process and Decision Models. To be submitted for publication,
2020.

29. Faruk Hasić, Angel Jiménez-Molina, Estefanía Serral
Asensio. A Process Analytics Approach for Multi-Perspective
Understanding of Large Healthcare Processes with an
Application in Clinical Radiology. To be submitted for
publication, 2020.

30. Carl Corea, Jonas Blatt, Faruk Hasić, Estefanía Serral
Asensio, Patrick Delfmann. A Tool for Consistency
Verification Between Process (BPMN) and Decision (DMN)
Models. To be submitted for publication, 2020.

Author Biography

Faruk HASIĆ was born on June 19, 1993
in Srebrenica, Bosnia and Herzegovina. He
obtained a B.Sc. in Business Engineering
from Ghent University in 2014, a B.Sc.
in Business and Information Systems
Engineering from KU Leuven in 2015,
and an M.Sc. in Business Engineering
from KU Leuven in 2016, with a major
in quantitative methods and a minor in
informatics. In May 2020 he obtained his
Ph.D. from KU Leuven Research Centre

for Information Systems Engineering for his thesis “Decision-
Aware Information Systems: A Systems Modelling Perspective
Bridging Decisions and Processes”. His research has been
published in leading journals such as IEEE Transactions on
Services Computing, Knowledge-Based Systems, Decision Support
Systems, Computer Standards and Interfaces, and Knowledge and
Information Systems, and presented at high-ranked conferences,
such as the International Conference on Cooperative Information
Systems (CoopIS), the International Conference on Business
Process Management (BPM), and the ACM Symposium on Applied
Computing (ACM SAC). Furthermore, he has a keen interest in
technology, history, politics, and the philosophy and history of
science. He has an entrepreneurial spirit and enjoys embarking
on challenging adventures and projects, as well as travelling and
experiencing new people, places, and cultures.

319

Doctoral Dissertations
from the KU Leuven

A full list of the doctoral dissertations from the KU Leuven
can be found at:

www.kuleuven.ac.be/doctoraatsverdediging/archief.htm.

321

www.kuleuven.ac.be/doctoraatsverdediging/archief.htm

	Committee
	Acknowledgments
	Doctoral Dissertation Summary
	Samenvatting Doctoraal Proefschrift
	Résumé de la Thèse de Doctorat
	Zusammenfassung der Doktorarbeit
	Resumen de Tesis Doctoral
	Sažetak Doktorske Disertacije
	I Prologue
	Outline and Contributions
	Part I: Prologue
	Chapter 1: Outline and Contributions

	Part II: Integrating Processes and Decisions
	Chapter 2: Augmenting Processes with Decision Intelligence
	Chapter 3: An Illustration of 5PDM
	Chapter 4: Comparing BPMN to BPMN + DMN for IoT Process Modelling

	Part III: Decision as a Service (DaaS)
	Chapter 5: Decision as a Service: A Service-Oriented Architecture Approach for Decisions in Processes
	Chapter 6: Parameter Assessment of the Automated Decision Service Discovery

	Part IV: Change, Model Evolution, and Tools
	Chapter 7: Decision Model Change Patterns for Dynamic System Evolution
	Chapter 8: A Performance Assessment of the Modelling Environment for DMN Model Evolution
	Chapter 9: Consistent Evolution of Process and Decision Models

	Part V: Epilogue
	Chapter 10: Final Remarks
	Chapter 11: Conclusions

	II Integrating Processes and Decisions
	Augmenting Processes with Decision Intelligence
	Introduction
	Methodology
	Why Integrated Decision and Process Modelling?
	Motivation and related work
	Running example

	Formal Definitions
	Basic DMN constructs
	The key to integration: decision activities and intermediate results

	Integration Scenarios and Inconsistencies
	Integration scenarios
	List of inconsistencies

	Principles for Consistent Integration
	How to integrate decision and process models
	Inclusion of all decision outcomes in the control flow
	Exclusion of decision logic from the process model
	Inclusion of subdecisions directly influencing the process
	Inclusion of decision requirement hierarchy
	Inclusion of relevant data and advanced data management

	Resolving Inconsistencies
	Resolving the use of intermediate results
	Resolving invocability inconsistencies

	Conclusion and Future Work

	An Illustration of 5PDM
	An Example from Literature
	Conclusion

	Comparing BPMN to BPMN + DMN for IoT Process Modelling
	Introduction
	Preliminaries and Related Work
	IoT
	IoT processes
	IoT process modelling languages
	DMN

	IoT Processes Modelling Cases
	Case 1: smart transportation
	Case 2: smart ventilation
	Case 3: smart healthcare monitoring

	BPMN + DMN advantages over BPMN?
	DMN and context aggregation
	Scalability and complexity
	Flexibility
	Reusability of the decision logic
	Adherence to the physics of notations

	Conclusion and Future Work

	III Decision as a Service (DaaS)
	Decision as a Service (DaaS): A Service-Oriented Architecture Approach for Decisions in Processes
	Introduction
	Related Work
	Methodology
	Preliminaries
	Decision as a Service (DaaS)
	Compliance with the Principles of SOA
	Service selection
	Standardised service communication and loose coupling
	Service location transparency
	Service abstraction
	Service statelessness
	Service longevity
	Service reusability
	Service composability

	Implications of DaaS for Processes and Decisions
	Scalability
	Maintainability
	Flexibility
	Complexity and understandability

	Evaluation of DaaS Design on a Real-Life Event Log
	SOAP-MInD
	Decision service compliance verification
	Illustration and discussion

	Evaluating DaaS SOA Maturity
	Limitations of the DaaS Design
	Conclusion

	Parameter Assessment of the Automated Decision Service Discovery
	Parameter Assessment
	Conclusion

	IV Change Patterns, Model Evolution, and Tool Support
	Decision Model Change Patterns for Dynamic System Evolution
	Introduction
	Related Work
	Preliminaries
	Running Example of a DMN Decision Model
	Decision Model Change Patterns
	Decision table change patterns
	DRD change patterns
	Change patterns on non-core DMN elements

	Change Propagation
	DP-induced change pattern propagation
	DP-induced change pattern propagation
	DP-induced change pattern propagation
	DP-induced change pattern propagation
	DP-induced change pattern propagation
	DP-induced change pattern propagation
	DP-induced change pattern propagation
	DP-induced change pattern propagation
	DP-induced change pattern propagation
	DP-induced change pattern propagation
	DP-induced change pattern propagation
	Overview of induced change pattern propagation

	A Modelling Environment Prototype
	The modelling environment
	Example of change propagation as supported by the modelling environment

	Conclusion and Future Work

	Performance Assessment of the Modelling Environment for DMN Model Evolution
	Introduction
	Tool Description and Usage Example
	Decision logic verification capabilities
	DRD level verification capabilities

	Maturity and Outlook
	Conclusion

	Consistent Evolution of Process and Decision Models
	Introduction
	Running Example and Related Work
	Running example of decision-aware process
	Current approaches for process evolution

	Preliminaries
	Decision Model Change Patterns
	Decision table change patterns
	Decision requirements diagram change patterns

	Change Propagation
	Change propagation within the decision model
	Change propagation to the process model
	Resolving decision input inconsistencies
	Resolving decision output inconsistencies

	A Proof-of-Concept Modelling Environment
	Description of the modelling environment
	Example of model evolution as supported by the modelling environment

	Conclusion and Future Work

	V Epilogue
	Final Remarks
	Part II: Integrating Processes and Decisions
	Part III: Decision as a Service (DaaS)
	Part IV: Change Patterns, Model Evolution, and Tools

	Conclusions
	Contributions
	Limitations
	Future Research Directions
	Final Word

	Appendix Additional Models
	Appendix Conforming Trace Cluster
	Appendix DMN Metamodel
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Publication List
	Author Biography
	Doctoral Dissertations List

