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Abstract

Demodulation methods are one of the most widely used tools for bearing

diagnostics, and in particular, are methods based on the Squared Envelope

Spectrum (SES) with band pass filtering. One of the main challenges of

these methods is the detection of a suitable band for the demodulation of

the signal under varying speed conditions. Angular resampling methods may

synchronize the impulsive nature of bearing damages with a certain periodicity,

in the case of large speed fluctuations. On the other hand, the time-invariant

carrier frequencies may spread over the broadband of the spectrum, making

impossible the application of many band selection tools. Lately, focus has

been targeted to cyclostationary-based tools which show a high performance

in detecting hidden cyclic periodicities in their bi-variable representation, such

as the Cyclic Spectral Correlation (CSC) and the Cyclic Spectral Coherence

(CSCoh). Initially, these methods have been represented in the Frequency-

Frequency domain, however they have been extended to be able to describe

signals under varying speed condition in the Order-Order domain and the
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Order-Frequency domain. Furthermore, the integration of these bi-variable

maps on a specific band of frequencies results in equivalent to demodulated

spectra which effectively exhibit the bearing cyclic frequencies, in case they are

hidden under other component signatures or under the noise level. The challenge

is the selection of a proper band of integration to obtain these demodulated

spectra for bearing diagnostics purposes. In this paper, a novel tool called

Improved Envelope Spectrum via Feature Optimization-gram (IESFOgram) is

proposed as a band selection tool for the demodulation of the bi-variable map

(CSC or CSCoh) for bearing diagnostics. The method is represented in a

1/3-binary tree and is applicable under constant speed conditions, using the

Frequency-Frequency domain, as well as under variable speed conditions. The

methodology is tested and validated on real data captured on a laboratory

planetary gearbox and on an aircraft engine gearbox, under both constant

and varying speed conditions. Furthermore, the methodology is also compared

in terms of performance with the Fast Kurtogram and the Autogram-based

methods, under constant speed operating conditions.

Keywords: Bearing diagnostics, Planetary gearbox, Speed-varying operating

conditions, Cyclic Spectral Coherence, Order tracking

1. Introduction

Rolling element bearings are critical components of rotating machinery and

their failure can cause sudden breakdown of the system, leading to time-loss and

increased costs. Condition monitoring is the field where rotating machinery is

analysed, including bearings and gears and damages that may be present on the

structures can be detected. Therefore, maintenance and faulty component repair6

can be performed before breakdown. The diagnostics of bearings continues to

be a challenge however, as their signatures are usually masked under noise and

other stronger component signatures (e.g. gears). Lately condition monitoring

of complex machinery has seen increased research interest, due to their wide

application on critical mechanisms and to their high diagnostics difficulty caused
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by the plethora of components signatures which are present. Diagnostics under12

varying speed conditions has also attracted increased attention in the field, as

they represent the real machine operating conditions where the classical methods

often fail. Typical examples, including wind turbines [1, 2], aircraft engines [3]

and helicopter gearboxes [4, 5], operate usually under varying load and speed

conditions, which limit the detectability of damage present on these rotating

structures.18

One of the most well established methods is the Envelope Analysis, where the

signal is demodulated after band-pass filtering around the resonant frequencies

excited by the damage impulses, obtaining in the end a filtered Squared Envelope

Spectrum (SES). The main idea is to obtain an optimal filter band which

presents a high Signal-to-Noise ratio (SNR) leading to a SES after demodulation

where the fault harmonics are enhanced [6, 7]. The optimal selection of this24

frequency band for demodulation is an important, frequent and popular topic

present in the field. The main reason is that some sort of filtering processing

is common to most of condition monitoring applications, and the band can be

selected either by engineering knowledge or by a methodology that selects the

band in a (semi-)automated manner. Nowadays, the most widely used band

selection tool is the Fast Kurtogram (FK) [8, 9], which is an automated band30

selection tool based on the maximum kurtosis level. Apart from this tool, a

number of other band selection tools have been also developed to obtain the

SES. Moshrefzadeh and Fasana proposed the Autogram [10], which is a tool with

the same representation and the same objective of selecting the optimal band

for demodulation to obtain the SES. It is also based on the maximum kurtosis,

but unlike the FK, it is calculated based on the unbiased autocorrelation of the36

squared envelope of the demodulated signals. Moreover the Optimised Spectral

Kurtosis (OSK) [11] selects the band with the maximum kurtosis as well, while

retaining a narrow bandwidth in order to by-pass electro-magnetic interference

noise on the signals. Additionally the Sparsogram [12] is based on the sparsity

level on different bands based on the wavelet-packet, and the Infogram [13]

utilizes the negentropy as a feature to detect the impulsive bands of the signal42
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for demodulation.

Furthermore the Cyclic Spectral Correlation (CSC) and the Cyclic Spectral

Coherence (CSCoh) have been proposed in the last two decades as an alternative

for the SES-based methods [14, 15, 16, 17]. The main advantage of this method

falls on its ability to reveal hidden periodicities of second-order cyclostationarity,

like bearing signals that are masked under stronger signals, such as the48

gear signals. They are represented in bi-variable maps in the frequency-

frequency domain, where its spectral axis can be integrated to obtain either

the Enhanced Envelope Spectrum (EES) or the Improved Envelope Spectrum

(IES) [15, 18, 19]. Diagnostic features based on the sum of the gear related

harmonics on the bi-variable map (CSCoh and CSC) have also been proposed,

providing a good estimation of the change of conditions of planetary gearboxes54

[20]. Furthermore the enhancement of the CSCoh map through filtering selected

by kurtosis maximization and the denoising of the CSCoh map have also been

proposed in order to increase the SNR, targeting towards clear envelope spectra

presenting only the fault related harmonics [21]. Thus, spectral analysis based

on the bi-variable map (EES and IES) seems to improve the detection of

cyclostationary faulty signals when compared to the classical SES. However, to60

obtain the optimal band of demodulation for the CSC or CSCoh, its bi-variable

map needs to be analysed in order to select the optimal band for integration

along the spectral axis. The objective of this paper is to propose a band selection

tool, named the IESFOgram, which is similar to the FK but is applied on the

CSC and CSCoh bi-variable maps. The IESFOgram is displayed as a color-

mapped 1/3 binary tree like the FK and by the optimisation of a criterion it66

provides an optimal band of integration, resulting in an IES and allowing the

detection of the fault frequency harmonics.

However, the abovementioned cyclostationary-based tools are based on the

notion that only small speed fluctuations occur and not on the notion of varying

speed conditions. Under varying speed conditions, SES-based tools are usually

re-sampled in the angular domain [22], resulting in the Order Tracked Squared72

Envelope Spectrum (OTSES). The same Order Tracking method has also been
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applied to the CSC and to the CSCoh with success, providing robust diagnosis

of bearings. The methods rely on the theory that bearing faults are dependent

on the shaft angle and independent of time. Therefore, the hidden periodicities

remain on the angular domain although the signal are non-stationary in the

time domain. This fact generated the idea of classification of the bearing78

signals under varying speed conditions as cyclo-non-stationary signals and as

long as they are analysed on the order domain, diagnosis is possible [19, 18].

Moreover the transformation of the signals into the angular domain before

the calculation of the CSC-based methods in order to obtain the Order-Order

Cyclic Spectral Correlation/Coherence (OOCSC and OOCSCoh) concentrates

the cyclic frequencies, resulting in a robust detection of the hidden modulations84

under a carrier of random frequency. On the other hand, re-sampling of

the Time-Frequency domain on the angular domain, in order to obtain the

Angular-Frequency domain map leading to the Order-Frequency domain of the

bi-variable maps has also been proposed as a tool to detect hidden modulations

for vibration analysis of rotating machinery under varying speed conditions

[18, 19].90

The objective of this paper is the proposal of the IESFOgram as a band

selection tool to be applied on bi-variable maps based on CSC-based methods

for bearings diagnostics under constant or varying speed conditions. The

methodologies are validated on real signals of two datasets (one from a

Safran aircraft engine gearbox and one from a UNSW planetary gearbox).

Furthermore, the performance of the methodologies is compared with the band96

pass filtering selection based on the Fast Kurtogram and the Autogram. The

rest of the paper is outlined as follows. In Section 2, the background theory

needed for the application of the proposed method is detailed. In Section 3 the

proposed methodology is analytically presented. In Section 4, the methodology

is tested, validated and compared with state of the art methodologies under

constant speed conditions, and then is further validated under varying operating102

speed conditions. The paper closes in Section 5 with some conclusions.
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2. Background of cyclostationarity and cyclo-non-stationarity

2.1. Cyclostationary signals

Rotating mechanical components are likely to generate cyclic transient

signatures which are periodic in nature if the rotational speed is kept constant

during the acquisition of signals. These signals often carry information on the

health of machinery components, and signal processing and feature extraction

are widely used in order to extract this information and further exploit it

tracking their health condition. Following the cyclostationary theory, the signals

of interest acquired from rotating machinery can be defined based on the two

first orders of cyclostationary signals. Signals of first order of cyclostationarity

(CS1) are signals whose the first-order statistical moment is a periodic function

of T complying with the condition of Eq. 1.

C1x(t) = E{x(t)} = C1x(t+ T ) (1)

where E denotes the ensemble averaging operator, and t stands for the time.

In rotating machinery, CS1 vibrations signals are periodic waveforms related to

components phase-locked with the rotor speed( e.g. shaft misalignment, spalling

on meshing gears, etc.). On the other hand, a second-order cyclostationary

(CS2) signal is a signal whose the second order statistical moment is periodic

[23]. In particular, its autocorrelation function is periodic with period T as

described in Eq. 2.

C2x(t, τ) = E{x(t)x(t− τ)∗} = C2x(t+ T, τ) (2)

where τ corresponds to the time-lag variable. Bearing vibration signals are

often described as CS2, due to having a hidden periodicity related to the shaft

speed. Finally, nth-order cyclostationary (CSn) is a signal whose the nth-order108

statistical moment is periodic, but generally speaking signals with higher order

than CS2 are usually not taken into account, as CS1 and CS2 describe well the

signals of interest generated by rotating machinery.

The Cyclic Spectral Correlation (CSC) is a tool where the CS1 and CS2

signals are well described in the frequency-frequency domain. The method is
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represented as a distribution function of two frequency variables: the cyclic

frequency α linked to the modulation and the spectral frequency f linked to the

carrier signal. The tool can be described also as the correlation distribution of

the carrier and modulation frequencies of the signatures present in the signals,

defined in Eq. 3.

CSC(α, f) = lim
W→∞

1

W
E{FW [x(t)]FW [x(t+ τ)]∗} (3)

where FW [x(t)] stands for the Fourier transform of the signal x(t) over a

finite time duration of W . Processing the CSC results in the bi-variable map,

which reveals the hidden modulations, making it a robust tool for detecting the114

cyclostationarity in vibration signals [17, 15].

In order to minimize uneven distributions, a whitening operation can be

applied to the CSC. This extended tool, named the Cyclic Spectral Coherence

(CSCoh), describes the spectral correlations in normalized values between 0 and

1, and is defined as in Eq. 4:

CSCoh(α, f) =
CSCx(α, f)√

CSCx(0, f)CSCx(0, f + α)
(4)

Both the CSC and the CSCoh bi-variable maps can be integrated along

the spectral frequency axis in order to obtain a regular spectrum, resulting in

a one dimension spectrum function of the cyclic frequency α. The band of

spectral frequencies to be integrated can be defined as the full available band,

from zero up to the Nyquist frequency, resulting in a spectrum that exhibits all

modulations present in the signal. On the other hand, the band can be defined

as the one that maximizes the cyclic characteristic frequency of interest while

minimizing the background noise and the other frequency components that may

mask the frequency of interest. In this manner, the integration over a specific

band on the bi-variable map can improve the detection rate of the characteristic

frequency related to the present damage on the signal. The resulting spectrum

is then named Improved Envelope Spectrum (IES) and it is obtained from the

frequency-frequency domain according to Eq. 5 :

IES(α) =
1

F2 − F1

∫ F2

F1

|CSCohx(α, f)|df (5)
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2.2. Cyclo-non-stationary signals

Signals with an hidden periodicity related to the shaft angle can be defined

as cyclostationary in time under constant speed operating conditions. However,

under varying speed conditions, the impulses related to the shaft speed are

no longer cyclostationary in time, and carriers related to time are no longer120

cyclostationary in angle. Thus, they are defined as non-stationary. This signal

nature is known to be the definition of the signal of rolling element bearings

under varying operating conditions. Although the signals are neither time nor

angle-cyclostationary, a hidden periodicity is still present in the signal. These

signals are classified as Cyclo-Non-Stationary (CNS) signals, and some order

tracking techniques can be applied to the bi-variable map.126

The signal can be resampled into constant angle intervals before the

calculation of the CSC. Considering the time variable t as a function of equal

intervals of angle θ and angle-lag φ as t(θ) and as t(θ + φ),the CSC in the

Order-Order domain can be extracted, as defined in Eq. 6.

OOCSC(α(θ), f(φ)) = lim
W→∞

1

W
E{FW [x(t(θ))]FW [x(t(θ + φ))]∗} (6)

The method results in the bi-variable map function of spectral variable f

and cyclic variable α, which are now described in units of orders function of the

shaft speed. Therefore, the bi-variable function can be denominated as Order-

Order Cyclic Spectral Correlation (OOCSC). The Order-Order Cyclic Spectral

Coherence (OOCSCoh) can be extracted just as described previously in Eq. 4,

with the difference being that the variables α and f are now function of angle,132

and thus are represented in orders of the shaft speed.

Angle-cyclostationary signals are well represented with this method, however

CNS signals with time-invariant phenomena result in a distortion along the

spectral variable order axis f . In alternative, the so called ”angle-time

cyclostationary” (AT-CS) processes can be applied in order to extract a bi-

variable function of angle in the cyclic variable axis α and function of time

in the spectral variable axis f . This prevents the spread distribution of the

time-invariant carrier coefficients along the spectral axis, as well as preventing
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the spread distribution of the angle-invariant modulation coefficients along the

cyclic axis. The process can be defined as the correlation between two time

instants locked in angle position θ and spaced apart by a given time-lag τ .

Therefore, the correlation function between t(θ) and t(θ)− τ results in the CSC

function in the Order-Frequency domain (OFCSC) as defined in Eq. 7.

OFCSC(α(θ), f(t)) = lim
W→∞

1

W
E{FW [x(t(θ))]FW [x(t(θ) + τ)]∗} (7)

where the cyclic variable alpha is a function of the angle θ, while the spectral

variable f is a function of time t.

One useful definition of the CSC is as the double Fourier transform of the

covariance. For the Frequency-Frequency domain, the Time-Frequency domain

of the signal is extracted as a function of time, and then the second Fourier138

transform is applied to obtain the Frequency-Frequency domain CSC. In case

the signal is tracked in the angular domain, the Short Time Fourier Transform

results in the Angle-Order domain, and a further Fourier transform results in the

Order-Order CSC. On the last case, the order tracking is applied on the Time-

Frequency domain, resulting in the Angle-Time domain. Applying a second

Fourier transform results then in the Order-Frequency CSC.144

The use of these three different domains is a useful concept to take into

account depending on the nature of the signal to be analysed. For example, given

a simulated signal of an outer race damage on a rolling element bearing under

varying speed conditions, the carrier frequency of the excited resonant frequency

can be extracted at the spectral variable axis using the CSC in the Frequency-

Frequency domain. However, as the cyclic impulses are angle-invariant, the150

impulse frequency of the fault is spread over the cyclic variable. The Order-

Order domain of the CSC concentrates the cyclic modulations on the cyclic axis,

but on the other hand the carrier cannot be extracted, as the carrier frequency is

time-invariant and the spectral axis is represented in function of angle (orders).

Lastly, the Order-Frequency domain of the CSC allows the extraction of both

the carrier frequency and the cyclic order of the damaged bearing signal.156

The speed profile and bi-variable maps in the three domains are presented in
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Figure 1: (a) Instantaneous speed of the signal, (b) Frequency-frequency domain CSC, (c)

Order-Order CSC, (d) Order-Frequency CSC.

Fig. 1 as a demonstration of the described phenomenon. A bearing signal with a

Ball Pass Order of the Outer race (BPOO) of 3.5 orders of the shaft speed, with

a carrier frequency of 5 kHz, and varying speed following a parabolic function

is simulated using a bearing model [24] in order to demonstrate the described

phenomena in the three domains.162

3. Proposed methodology

Diagnosis using the bi-variable maps require a deep understanding of the

map in order to exploit its information. The analysis of one dimensional

spectra is far more easy and therefore widely applied in the academia and

industry. It has been seen that the integration of the bi-variable function along
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Figure 2: Schematic description of EA, classical SES, EES and IES.

its spectral variable results in a one dimensional spectrum, which would be a168

good tool on itself for diagnostics purposes. On the other hand, the diagnostics

information could still be masked under the noise and other components

signatures. Integration of the specific band that carries the signal of interest

can further enhance the spectrum and increase the performance in the detection

of the frequencies (or orders) of interest. The detection of the optimal band of

integration on the bi-variable map is not always straightforward.174

This paper proposes a band selection tool for the detection of the carriers of

the cyclic modulations of interest present in the bi-variable map. Band selection

tools are known to be applied in the classical methods, and the novelty of this

paper is to provide a band selection tool, named Improved Envelope Spectrum

via Feature Optimization-gram (IESFOgram), to be applied in the bi-variable

map as placed in the scheme depicted in gray in Fig. 2.180

The proposed method tries to optimize a Diagnostic Feature (DF) based

on the cyclic characteristics of interest (e.g. the rolling element bearing

characteristic fault frequencies/orders) on the demodulated spectrum resulting

from the integration of the bi-variable map. The method is thought to be
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general enough to be applied to either the CSC or the CSCoh in any of the

three domains: Frequency-Frequency; Order-Order; and Order-Frequency. As186

such, the variables on the cyclic axis alpha and spectral axis f are not defined

as specifically function of time or function of angle, and therefore any generic

unit for the two variables may be used in the detailing of the proposed method.

The resolution of the cyclic frequency α is equal to the proportional inverse of

the length of the signal. In other words, the cyclic frequency resolution dα will

be equal to 1/Td, where Td is the time duration. Moreover the cyclic order192

resolution dα will be equal to 1/Nr, where Nr is the number of measured shaft

rotations. The resolution of the spectral frequency df is equal to the half of the

sampling frequency (fs/2) divided by the number of windows (Nw) defined on

the calculation of the bivariable map. The scheme representing the IESFOgram

procedure is shown in Fig. 3 and the step-by-step details for its extraction are

described as follows.198

Step 1: In the first step, the bi-variable map is extracted from the

signal. The estimators of the CSC(α, f) can be based on the Averaged Cyclic

Periodogram, the Cyclic Modulation Spectrum or any other numerical method

[16] to extract the CSC bi-variable map previously described in Eq. 3. The CSC

can also be in its normalized version CSCoh(α, f), and its cyclic variable α and

spectral variable f can be represented in units of either frequency or orders of204

shaft speed. The user can define on its own discretion which method to use

in order to obtain the bi-variable map CSC(α, f). The reader is forwarded to

the references [19, 18], suggested as providers of the numerical implementation

of the CSC in the Order-Frequency domain, and to the reference [15] to the

Frequency-Frequency domain CSC, which if applied to the order tracked signal

as a function of angle results in the Order-Order domain CSC.210

Step 2: The next step consists in dividing the map along the spectral axis f

according to the 1/3-binary tree that is also applied to the Fast Kurtogram [8].

Each tree is defined by a series with a decreasing bandwidth bw and incremental

steps of center frequency cf which define the upper and the lower limit, f1 and f2

respectively, described in the integration of Eq. 5. Each band is then integrated
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Figure 3: Schematic description of the IESFOgram procedure.

and results in a demodulated spectrum IEScf,bw(α).216

Step 3: From each processed IEScf,bw(α), one Diagnostic Feature

DF (cf, bw) is extracted. This feature is based on the cyclic fault

frequency/order of interest. Therefore, to calculate this feature, as well as

the IESFOgram, this cyclic component needs to be loaded into the method

as input. The feature DF (n) is defined as the sum of the N -harmonics of

the characteristic fault frequency/order αfault normalized by the noise level

estimated in a bandwidth 2× fb, as described in Eq. 8.

DF (cf, bw) =

N∑
k=1

IEScf,bw(k × αfault)

1
2fb

[∫ kffault+fb
kffault−fb IEScf,bw(α)dα− IEScf,bw(k × alphafault)

]
(8)

where αfault is the characteristic frequency of interest (e.g. BPFO, BPFI, BSF,

etc.), and fb is the frequency band around the harmonics considered to be
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the background noise. The normalization procedure is important to be taken

into account. This is due to some bands having high peak values of noise,

and the direct absolute value at the fault frequencies can be higher than at

the optimal band. Normalizing with the background noise level at the peaks222

solves this problem, making high values of the DF to correspond to bands where

the frequency peaks of interest are present. The authors found that a good

background noise range fb is 1/3 of the shaft frequency that modulates the

bearing signal of interest. This value avoids capturing the sidebands around the

αfault and is simultaneously wide enough to provide a proper noise level. The

maximum level of the 1/3 binary level defines the precision of the band, and228

high levels increase exponentially the computational cost for the IESFOgram.

The authors found that a level between 5 and 7 for the computation of the 1/3

binary provides a good convergence for the optimal band.

Step 4: The objective of this step is to find the optimal band for integration

of the bi-variable. To quantify the presence of a cyclic component in each band,

the library of features DF (cf, bw) is used. The higher the value of DF, the

higher the presence of the component of interest. Thus, the optimal band OB

is identified as the argument which maximizes DF (cf, bw), as described in Eq.

9.

OB = arg max
cf,bw

[ DF (cf, bw) ] (9)

The colormap presentation of the values of DF as a function of (cf, bw) in a

1/3-binary tree is the IESFOgram, and its maximum value corresponds to the

selected optimal band for integration.234

Step 5: The final step is the integration of the bi-variable map along the

spectral axis on the optimal band OB selected by the IESFOgram. This step can

be considered not being part of the IESFOgram procedure, but as the extraction

of the IES with a high Signal-to-Noise Ratio (SNR) for diagnostic purposes.
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Figure 4: Test rig (left) inside view, (right) schematic representation.

4. Experimental application and results

In order to test and validate the proposed methodologies, vibration data have240

been captured from two separate test setups and divided into 3 case studies. One

dataset corresponds to one laboratory planetary gearbox with one damaged

bearing, and bearing diagnostics is studied under constant speed operating

conditions in Case 1, and under varying speed conditions in Case 2. In Case

3 the vibration signals correspond to a dataset acquired from a aircraft engine

gearbox with two damaged bearings under varying speed operating conditions.246

4.1. Case 1- Planetary gearbox under constant speed conditions

In a first comparison, the case under constant speed conditions of 5.4 Hz of

the input shaft speed is first studied. The vibration data have been captured

on the UNSW planetary gear test rig, which consists of one parallel and one

planetary gear stage as presented in Fig. 4.

The ring is fixed, while the output is the sun gear. The carrier is the252

input meshing with the parallel spur gear stage of the motor drive shaft. The

teeth number of each gear is 80, 34 and 23 for the ring, sun and planet gears

respectively. The planet gears rotate with a ratio of 2.66 times the drive shaft.

The damaged bearing is a radial cylindrical roller bearing (IKO RNAF 162812)

and is mounted on one of the planets. The damaged bearing has a fault on the

outer race with a width of 1.6 mm, while its roller diameter is 3.0 mm. Thus258
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Figure 5: (left) Vibration signal, (right) SES.

the expected Ball Pass Order of the Outer Race fault (BPOO) is 12.3 orders of

the drive shaft. For this case, with a constant input shaft speed of 5.4 Hz, the

Ball Pass Frequency of the Outer race (BPFO) is 66.4 Hz.

In order to capture the vibration signal, one external accelerometer was

mounted on the gearbox over the planet gears. The signals were acquired with

a sampling frequency of 150 kHz and synchronised by a National Instrument264

PXI data acquisition system. The signal was acquired for a duration of 30

seconds, and it can be seen in Fig. 5 alongside with its classical SES.

Classical demodulation by applying the Hilbert transform to the signal

exhibits the gear meshing frequencies and the shaft speeds. However, it fails to

exhibit the characteristic frequencies of the bearing fault, e.g. the harmonics

of the BPFO. To define if the extracted amplitude value on the spectrum of

the cyclic component are statistically relevant, a threshold is also calculated,

and visualized on this spectrum, as well as on all other spectra presented in

this paper. The threshold is the same as the one applied by Kaas et. al. [25]

for detecting statistically relevant peaks in the spectra, based on 3 times the

moving Median Absolute Deviation (MAD) of its spectra, defined as described

in Eq.10.

MAD = 1.4826×m[ |x−m(x)| ] (10)

where m(x) is the median of signal x. The window defined on all spectra

corresponds to the total number of samples of each corresponding spectrum
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Figure 6: (left) Fast Kurtogram, (right) Filtered SES.

divided by 27. The threshold was suggested as a robust method for outlier

detection in probabilistic studies in the psychology field because it is not as270

sensitive to outliers as the standard deviation [26]. Therefore, all values above

the threshold are considered to be statistically relevant for detection of the

frequency.

Applying the Fast Kurtogram and filtering on its selected band before

the demodulation of the signal also does not result in the detection of fault

frequencies. The Fast Kurtogram applied to the signal as well as the resulting276

SES based on its selected band is shown in Fig. 6.

The band with the maximum Spectral Kurtosis value does not result in

the optimal band for filtering, and thus the FK-based SES does not exhibit

statistically valid peak values at the BPFO. The same lack of diagnosis results

from the Autogram-based SES, where the harmonics of the BPFO are not

detected, as shown in Fig. 7.282

The proposed IESFOgram is applied next to the CSCoh in the Frequency-

Frequency domain, and both the IESFOgram and the IES from the integration

on the band of frequencies selected by the IESFOgram can be seen in Fig. 8.

The IESFOgram shows a good performance in detecting the optimal band

of frequencies in the CSCoh that contains the carrier of the BPFO harmonics.

As such, the integration on this band results in a demodulated spectrum in the288

frequency domain, whose BPFO harmonics are well above the MAD threshold
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Figure 7: (left) Autogram, (right) Filtered SES.

Figure 8: (left) IESFOgram, (right) IES from CSCoh.
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Figure 9: (left) Speed profile of the input shaft, (right) Vibration signal.

and the other components, present on the signal, are reduced. Additionally, the

sidebands of the planet shaft speed of 2.66 orders that modulate the BPFO in

planet bearing structures can also be detected in the spectrum. The detection of

bearing damage is dependent on the quality of the measurements and its sensors.

The accelerometers here acquire the signals at a high sampling frequency, which294

allows the IESFOgram to detect the carrier bands of frequency excited by the

bearing damage, at 46 kHz and 62 kHz. In case the signals were at 50 kHz,

observability of frequencies above the Nyquist would be lost, and detection of

the BPFO harmonics would become unfeasible. As such, this method allows a

confident diagnosis of the outer race damage on the planet bearing.

4.2. Case 2 - Planetary gearbox under varying speed conditions300

In this case, the dataset from the same UNSW setup is studied, but the

case is extended to operations under varying speed and therefore a case with a

speed variation between 2.8 Hz and 4.2 Hz is tested. Due to the fact that the

tachometer measures the speed of the drive shaft, all characteristic orders of the

mechanism are calculated and referenced in relation to the drive shaft speed.

The speed profile of the input shaft and the acquired vibration signal are shown306

in Fig. 9.

Under varying speed conditions, the bi-variable map needs to be either in

the Order-Order domain or in the Order-Frequency domain. Starting with
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Figure 10: EES from OOCSCoh.

the Order-Order domain, the OOCSCoh is first calculated on the signal and

the integration of its full available frequency band (from 0 Hz up to Nyquist

frequency) is then realised. The resulting Enhanced Envelope Spectrum from312

the OOCSCoh is shown in Fig. 10.

The first BPOO harmonic can be detected already with this method,

which gives an advantage when compared against the Fast Kurtogram and

the Autogram based SES. However only the first harmonic is detected, and

its amplitude is rather close to the threshold. Following this analysis, the

IESFOgram is extracted based on the BPOO of 12.3 orders. The IESFOgram318

and the band selected by the diagnostic tool allows the clear identification of

the BPOO after its integration on the Order-Order domain CSCoh. Both the

resulting IESFOgram and the IES with the harmonics of the BPOO above the

threshold are presented in Fig. 11.

When compared to the EES, the IES shows a higher performance in detecting
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Figure 11: (left) IESFOgram, (right) IES from OOCSCoh.

Figure 12: (left) Speed profile of the input shaft, (right) Vibration signal.

the presence of the outer race damage in the signal with its extraction of 2324

harmonics above the threshold, and reduced presence of other components of

the signal. The methodology is further applied on the CSCoh in the Order-

Frequency domain. The IESFOgram is prepared and the extracted IES based

on the selected integrated band is presented in Fig. 12. The first two harmonics

of the BPOO can be identified in the spectrum above the threshold, allowing

the clear detection and diagnosis of the outer race damage on the outer race of330

the planet bearing.

4.3. Case 3 - Planetary gearbox under varying speed conditions

The vibration signal from the Safran engine gearbox is analysed in this last

case. The signal corresponds to 100 seconds at a sampling frequency of fs = 50
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Figure 13: (left) IESFOgram, (right) IES from OFCSCoh.

kHz, under a run-up from 180 Hz to 210 Hz of the shaft rotation speed, as shown

in Fig. 13. The vibration dataset was provided by Safran and corresponds to336

the Safran contest which took place during the Conference Surveillance. It was

acquired under a lower sampling frequency than the one of the first two cases.

The engine has two main shafts and an accessory gearbox. The kinematics of

the gearbox are described in Fig. 14.

On the gearbox there are two damaged bearings: one on the radial drive shaft

L1 and one on the shaft L5. The ball bearing on L1 is damaged on the outer race342

with a heavy scratch of 0.3 mm of depth and 1 mm of width. The roller bearing

on shaft L5 is also damaged on the outer race but spalled on a wide area with a

depth of 0.1 mm. The speed reference is obtained from the tachometer mounted

on shaft L4, with a resolution of 44 pulses per revolution. The vibration signals

came from two accelerometers. One accelerometer is mounted near the shaft L1

and the second one is mounted in the vicinity of shaft L5. The fault order for348

the ball bearing outer race damage on shaft L1 is 4.066 orders of the shaft L1

and the fault order for the roller bearing outer race damage is 7.759 orders of

the shaft L5.

The vibration signal from the accelerometer near the L1 shaft was concluded

to have issues on its acquisition leading to the lack of source signature of the

fault bearings in the vibration signal. As such, only the signal acquired from354

the accelerometer near L5 is analysed in this paper, and the evidence of the
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Figure 14: Safran gearbox schematic.

Figure 15: (left) Order-Order bi variable map zoomed around the BPOO, (middle)

IESFOgram, (right) IES from the OOCSCoh.

presence of the outer-race fault of the bearing supporting shaft L5 is diagnosed.

The OOCSCoh is then estimated from the angular re-sampled signal. Next,

the IESFOgram is extracted based on this bi-variable map. Afterwards, the IES

based on the OOCSCoh is estimated based on the integration of the optimal

band defined by the IESFOgram, as presented in Fig. 15360

The method seems to select an optimal band that maximizes the first 3

harmonics of the BPOO. Upon closer analysis of the OOCSCoh, it is noticed that

the BPOO is excited across several bands over the spectral axis. The diagnosis

of the damage through the analysis of the map usually requires some level of

expertise but on the other hand, the OOIES presents clearly the harmonics of
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Figure 16: Safran gearbox schematic.

the damage on the spectrum, allowing a confident diagnosis.366

The Order-Frequency CSCoh based methodology is then studied, and shows

a similar result when compared to its Order-Order version, as the integration

is realised over all the spectral content. However the bi-variable map shows

the damage-related CS content to be more centralized on the middle range of

frequencies of the spectral axis and the gears and shaft harmonics are reduced

in the spectrum. This is most likely due to the nature of the OF-CSC theory,372

where the carrier information is kept as a function of time and thus not smearing

the time-dependent carrier frequencies over the spectral axis.

When IESFOgram is applied on the OFCSCoh, the previous statement can

be confirmed due to the selection of a narrow band, in the lower frequency

spectrum, as the optimal band. The IESFogram and the resulting OFIES can

be seen in Fig. 16.378

This dataset also provides a good example on the complexity of the analysis

for bi-variable maps. While the detection of the bearing damage cannot be

extracted in a straightforward manner from the analysis of the bi-variable maps,

the analysis of the resulting demodulated spectra provides a clear detection of

the fault order.
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5. Conclusion384

A new method is proposed in this paper to find proper carrier frequency

bands for bearing diagnostics based on the cyclo-non-stationary theory and

bi-variable maps of three domains. At first, the Cyclic Spectral Coherence

(CSCoh) bi-variable function on the Frequency-Frequency domain is extracted

on cases under constant operating speed conditions. The bi-variable map shows

good performance in revealing the hidden cyclic modulations generated by390

bearing damage. A Diagnostic Feature (DF) based on the bearing characteristic

frequency is extracted on a series of bands along the spectral axis. The DF values

are color-mapped in a 1/3-binary tree, named Improved Envelope Spectrum via

Feature Optimization-gram (IESFOgram). Its maximum value corresponds to

the optimal band, and its integration on the bi-variable map results in the

Improved Envelope Spectrum (IES) with robust diagnosis performance.vThe396

procedure can be extended to cases under varying speed conditions. The

speed profile needs to be known, with the objective of obtaining the bi-

variable maps which provide a good representation of the signal, in either the

Order-Order domain or the Order-Frequency domain. The advantage of the

IESFOgram as a band selection tool is indeed that it can be applied in any

of the three domains of the bi-variable maps. This means the methodology402

can be applied to either constant or varying speed conditions.vThe method has

been tested on two datasets: one planetary gearbox dataset with a damaged

planet bearing and one aircraft engine gearbox dataset with a damaged bearing.

The IESFOgram has been compared with the Fast Kurtogram-based and the

Autogram-based demodulation methods. The results demonstrate that the

IESFOgram achieves higher performance, allowing to effectively detect the408

bearing damage, when compared to the other methods under constant speed

conditions. The IESFOgram is further validated on the two datasets under

varying speed conditions and it is concluded that it is a robust methodology for

general bearing diagnostics.
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