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Abstract

The predictive capabilities of mean-field plasma edge transport codes
are significantly reduced by the empirically determined radial diffusion
coefficients commonly used to account for the turbulent transport. This
contribution aims to assess a two-equation model including both turbulent
kinetic energy and turbulent enstrophy for an improved description of the
mean-field turbulent transport. A turbulent enstrophy equation is ana-
lytically derived for isothermal, electrostatic, 2D, interchange-dominated
ExB turbulence in the scrape-off layer. Evaluation of this equation shows
that interchange is the dominant source, while the sheath loss and viscous
terms provide the main sinks of turbulent enstrophy. Transport effects
turn out to be of minor importance. A model for the combined turbu-
lent kinetic energy and enstrophy equations and the particle transport is
constructed starting from a one-equation model for the turbulent kinetic
energy. The resulting two-equation model is shown to retain the dominant
dynamics of the latter, while improving its scalings.

Key words: SOL, ExB turbulence, turbulent kinetic energy, turbu-
lent enstrophy
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1 Introduction

Transport processes in the plasma edge of magnetically confined fusion re-
actors are generally known to be governed by ExB drift turbulence [1, 2, 3],
but 3D turbulence simulations of reactor-scale machines are still beyond
the existing computational capabilities. Hence, mean-field plasma edge
transport codes remain key tools for the design of nuclear fusion reac-
tors and the divertor in particular. However, the predictive capabilities
of these codes are significantly reduced by ad-hoc, empirically determined
radial diffusion coefficients used to account for the turbulent transport
[4, 5, 6]. To improve the transport description, Bufferand et al.[7] and
Coosemans et al.[8] presented models that relate this diffusion coefficient
to the turbulent kinetic energy (k⊥), together with mean-field transport
equations for the turbulent kinetic energy. The resulting transport mod-
els contain only a few model parameters. Baschetti et al.[9] used machine
scaling laws to obtain a closure for the k⊥ equation proposed by Bufferand
et al., while Coosemans et al. used reference data from a turbulence code
to model the k⊥ equation.

While the model proposed by Coosemans et al. managed to fit turbu-
lence reference data rather well over a range of parameters, it was unable
to capture some trends, especially those with varying viscosity. More-
over, the model lumped the different sinks of the turbulent kinetic energy
together in one contribution. In this work we aim to extend this model
by including an equation for the turbulent enstrophy (ζ⊥), as there are
convincing physical grounds to expect the enstrophy to provide additional
information about the turbulent transport in the plasma edge.

The remainder of this paper is structured as follows. Section 2 in-
troduces the TOKAM2D turbulence code [10, 11, 12] that is used as a
reference in this work, as well as the one-equation k⊥ model. Next, sec-
tion 3 defines the enstrophy, and shows that the turbulent enstrophy (ζ⊥)
can be combined with the turbulent kinetic energy to obtain an improved
model for the turbulent particle diffusion coefficient. A turbulent enstro-
phy equation is derived analytically for the TOKAM2D model. It is used
to evaluate the enstrophy balance using TOKAM2D reference data. Sec-
tion 4 then develops a closed transport model for the combined k⊥-ζ⊥
system and the average particle transport. Section 5 shows results ob-
tained with the new model and compares them to the one-equation k⊥
model. Finally, section 6 summarizes the main findings and results of this
work.

2 TOKAM2D and turbulent kinetic en-
ergy equations

In this paper, isothermal, electrostatic, 2D, interchange-dominated ExB
turbulence in the scrape-off layer (SOL) is considered. Under these as-
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sumptions, the equation set reduces to [10, 11, 12]

∂n
∂t

+ [φ, n] = Sn − σNcsn exp(Λ− φ
Te

) +Dn∇2
⊥n, (1)

∂ω
∂t

+ [φ, ω] = 1
n

[nT, gx] + σW cs(1− exp(Λ− φ
Te

)) + ν∇2
⊥ω, (2)

ω = ∇2
⊥φ. (3)

In these equations, n is the density, φ the electrostatic potential, ω the
vorticity, Sn a particle source, σ a parameter characterizing the losses to
the sheath, cs the sound speed, T the temperature, Λ the sheath potential,
Dn a diffusion coefficient, g a parameter characterizing the magnetic field
curvature (see for example Ref. 10 for an analytical expression) and ν a
viscosity. The Poisson bracket is defined as [P,Q] = b·(∇P×∇Q), where b
is the magnetic field unit vector. Note that all quantities in these equations
are normalized to the reference ion gyro-frequency Ωref = qBref/m and
gyro-radius ρref = Ω−1

ref

√
Tref/m, where q is the ion charge, m the ion

mass and Bref the magnetic field strength. All equations in the remainder
of this paper will follow this same normalisation. Reference data for the
development of mean-field models for the turbulent transport is provided
by the finite volumes version of the TOKAM2D turbulence code [11, 12],
which is run in isothermal mode such that Ti and Te are considered to be
fixed parameters. Hence, this code solves equations 1 to 3 on a fine 2D
mesh with a small time step in order to resolve all the time and length
scales of the turbulence. The 2D mesh includes the radial direction of
the tokamak and the diamagnetic direction, which is a periodic direction.
Hence, average quantities of the plasma only vary in the radial direction
as the parallel direction is not resolved but replaced by a model for the
sheath.

Starting from this TOKAM2D turbulence model, the corresponding
k⊥ equation can be derived analytically [8]:

∂

∂t
n̄k⊥ +∇ · (Γ̄k⊥) +

σNcs
2

nV ′′2E exp(Λ− φ

Te
)

= −φ′([nT, gx])′︸ ︷︷ ︸
interchange

−σWφ′(csn(1− exp(Λ− φ

Te
))′︸ ︷︷ ︸

sheath loss

− νφ′(n∇2
⊥ω)′︸ ︷︷ ︸

viscosity

−nV ′′EV ′′E : (∇ṼE)T +
J̄p
n̄
n′∇φ′ + φ′(Vp · ∇n)′ +

1

2
V ′′2E Sn +

Dn
2
V ′′2E ∇2

⊥n, (4)

Γ̄k⊥ = n̄ṼEk⊥ + nV ′′EV
′′2
E /2 + φ′J ′p. (5)

In these equations, Reynolds averages are denoted by an overbar (x̄ =

limT→∞
∫ T

0
xdt) and Favre averages by a tilde (x̃ = nx/n̄) such that

turbulent quantities can be split in mean-flow and fluctuating components
(as x = x̄ + x′ or x = x̃ + x′′ respectively) [13, 14]. VE is the ExB drift
velocity, Jp the polarization current and the turbulent kinetic energy is

defined as n̄k⊥ = nV ′′2E /2. The analysis in Ref. 8 reveals that in this k⊥
equation, the dominant source is the interchange term, while the dominant
sink is the sheath loss term. A smaller role is played by the viscous term.
Other contributions, including the transport term on the left-hand side of
the equation, are negligible.
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To close the terms in this analytical k⊥ equation, the following 1D
mean-field transport model was proposed in Ref. 8:

∂n̄
∂t

+∇ · (n̄V̄E + Γ̄E,t −Dn∇⊥n̄) = −σcsn̄, (6)

Γ̄E,t = −CD
√
k⊥∇⊥n̄, CD = 23.9, (7)

gT Γ̄E,t = Csink
√
σcsn̄k⊥, Csink = 0.561, (8)

In these equations, Γ̄E,t is the time-averaged particle flux due to ExB
fluctuations. In the considered 1D case, the contribution from mean-flow
phenomena to the total particle flux is negligible since the radial mean-
flow ExB velocity V̄E is zero while Dn is chosen to be small. Expres-
sion 7 for the turbulent particle flux follows from a regression analysis on
TOKAM2D reference simulations, while equation 8 is obtained by assum-
ing a local balance between the interchange source and sheath loss sink
in equation 4 and filling out an analytical relation for the interchange
source and a regression model for the sheath loss sink. The expression
for the interchange source, gT Γ̄E,t, is analytically exact, while the sheath
sink follows again from regression analysis. This one-equation k⊥ model
performs rather well over a range of TOKAM2D parameters. However, it
is unable to capture trends for varying TOKAM2D viscosity ν. This is
not surprising as the viscous source in the k⊥ equation has been crudely
aggregated in the single sink term which predominantly models the sheath
loss of k⊥. Dimensionalising the diffusion coefficient in equation 7 yields
D ∼ ρref

√
k⊥. The global reference quantity ρref seems unnatural in

this expression, as a k(−ε) model implies that turbulent transport can be
described by local turbulent characteristics and does not depend on global
reference quantities such as ρref .

3 Enstrophy equation and enstrophy bal-
ance

From hydrodynamic turbulence, it is known that viscous dissipation of
kinetic energy is closely related to the enstrophy. Moreover, in hydrody-
namic, inviscid, 2D turbulence, both the kinetic energy and the enstrophy
are conserved. While the kinetic energy follows an inverse cascade, trans-
ferring energy from smaller to larger scales, the enstrophy follows a direct
cascade [2, 15, 16]. Similar characteristics are expected for ExB drift
turbulence [2, 17]. Also, Tran et al.[18] have already shown that the en-
strophy is related to zonal flow formation in ExB drift turbulence. Hence,
it is expected that the turbulent enstrophy will provide valuable additional
information not contained in the turbulent kinetic energy. Therefore, we
define the total, mean flow and turbulent enstrophy as

n̄ζtot =
nω2

2
, n̄ζmean =

n̄ω̃2

2
, n̄ζ⊥ =

nω′′2

2
. (9)

From the turbulent kinetic energy and the turbulent enstrophy, a charac-
teristic time and length scale can be constructed. Using such dimensional
combinations, the turbulent diffusion coefficient is expected to scale as
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Figure 1: Scatter plot of diffusive relations.

D ∼ k⊥/
√
ζ⊥. Note that the one-equation k⊥ model could only construct

a velocity scale for the turbulence as only the turbulent kinetic energy
was available. As a result, no dimensionally correct scaling for the diffu-
sion coefficient could be constructed with turbulent characteristics only
(as shown in equation 7).

Figure 1 shows a scatter plot comparing both diffusive relations. Each
data point in the figure represents a TOKAM2D simulation for a cer-
tain set of parameters of which the data are averaged in time and in the
diamagnetic and radial directions. Results of 18 simulations are used in
which g, σ and ν are respectively varied by a factor 0.5-1.5, 0.3-1.5 and
0.4-4 compared to the values used in Ref. 12, while Ti is varied between
0.3 and 4 (see appendix for exact simulation parameters). The horizontal
axis shows the diffusion coefficient calculated from the TOKAM2D data
directly, while the vertical axis shows an estimates for the diffusion coeffi-
cient obtained using the new model proposed here and the k⊥ only model
from equation 7. Both diffusive models are evaluated using the exact
TOKAM2D values for k⊥ and ζ⊥. While some scatter around the perfect
fit line still remains, it is clear that the k⊥-ζ⊥ estimate for the diffusion
coefficient performs significantly better than the k⊥ only estimate. In par-
ticular, the new model manages to capture trends with varying viscosity
much better, confirming the hypothesis that the enstrophy is related to
the viscous dissipation.

Since the previous has clearly shown the turbulent enstrophy to be
an interesting quantity for modeling the average particle flux, which is
ultimately the term that needs to be closed, it is worthwhile to derive an
equation for the turbulent enstrophy. We follow a procedure similar to the
work of Tran et al.[18], but allow independent density fluctuations, and we
split the resulting equation into mean flow and turbulent contributions.
Equations for the enstrophy can be derived analytically starting from
TOKAM2D vorticity equation 2. Multiplying this vorticity equation by
ω yields an equation for the time rate of change of ω2. By multiplying
with the density and using continuity equation 1, an equation for nω2 is
found. Finally, averaging this equation over time yields an equation for
the total enstrophy. Using similar techniques, an equation for the mean
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flow enstrophy is obtained by multiplying the vorticity equation with n,
averaging over time, and multiplying the resulting equation with ω̃. The
difference between the total and the mean flow enstrophy equations then
yields the turbulent enstrophy equation:

∂n̄ζ⊥
∂t

+∇ · (n̄ζ⊥ṼE +
nω′′2V ′′E

2
) + σcs

nω′′2

2
exp(Λ∗ − φ

Te
)

= ω′′[p, gx]︸ ︷︷ ︸
interchange

+σcsnω′′(1− exp(Λ− φ

Te
))︸ ︷︷ ︸

sheath loss

+ νnω′′∇2
⊥ω︸ ︷︷ ︸

viscosity

−nω′′V ′′E · ∇ω̃ +
ω′′2Sn

2
+Dn

ω′′2∇2
⊥n

2
. (10)

As this equation has been derived analytically for the TOKAM2D model,
it can be evaluated exactly using TOKAM2D data. A balance of the dif-
ferent terms in this equation is shown in figure 2, together with a balance
of the k⊥ equation 4. This figure clearly shows that the source of tur-
bulent enstrophy, like that of turbulent kinetic energy, is dominated by
the interchange term. However, sheath losses, viscosity and the subgrid
dissipation seem to contribute almost equally to enstrophy losses, while
the sink of the turbulent kinetic energy is dominated by the sheath losses
only. Thus, these balances show that, as expected, k⊥ and ζ⊥ have dif-
ferent characteristics. The subgrid scale term is a numerical imbalance in
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Figure 2: Balance of k⊥ (left) and ζ⊥ (right) .

the evaluation of the different terms in the corresponding equations, and
is caused by numerical dissipation as a result of the second order WENO
schemes [19, 20] that are used in TOKAM2D [8]. This was confirmed by
a grid refinement study: relative errors on both the k⊥ and ζ⊥ equations
decrease as the grid and the time step are refined. Simultaneously, k⊥
and ζ⊥ increase, as their respective sinks decrease in magnitude. The
larger error on the ζ⊥ equation compared to the one on the k⊥ equation
is most likely a result of the enstrophy being concentrated on the smaller
scales which suffer more from the discretization, while the kinetic energy
is more strongly present on larger scales. This difference in length scale
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is probably the reason why viscous dissipation is much more important
for the ζ⊥ than it is for k⊥. These explanations are in accordance with
the understanding of hydrodynamic 2D turbulence and its dual cascade
picture [2, 15, 16].

4 New two-equation k⊥ − ζ⊥ model

This section proposes a model for the enstrophy equation derived in the
previous section and integrates it in the mean-field transport model, to-
gether with the improved diffusive relation found in the previous section.
The resulting two-equation k⊥-ζ⊥ transport model proposed in this con-
tribution is then

∂n̄
∂t

+∇ · (n̄V̄E + Γ̄E,t −Dn∇⊥n̄) = −σcsn̄, , (11)

Γ̄E,t = −CD k⊥√
ζ⊥
∇⊥n̄, (12)

gT Γ̄E,t =
Cσ,kσcs
T0.75
e

n̄k2⊥
ζ⊥

+ Cν,kνnζ⊥, (13)

Cinter,ζgT Γ̄E,t
ζ⊥
k⊥

=
Cσ,ζσcs
Te

n̄k⊥ + Cν,ζνn̄
ζ2⊥
k⊥
, (14)

CD = 7.71, Cσ,k = 4.43, Cν,k = 1.85,

Cinter,ζ = 0.974, Cσ,ζ = 2.02, Cν,ζ = 5.51. (15)

The continuity equation 11 is the same as equation 6 from the one-
equation k⊥ model. The particle flux 12 is based on the diffusion co-
efficient proposed in section 3. Equation 13 for k⊥ retains the analytically
exact relation for the interchange source from the the one-equation k⊥
model i.e. gT Γ̄E,t, while the sinks on the right hand side are now split
into a sheath loss and a viscous contribution. Equation 14 for ζ⊥ features
terms representing the same three effects: the interchange source, sheath
losses and viscous dissipation. Other terms (including transport) have
been neglected in the k⊥ and ζ⊥ equations at present as they appear to
be small. All the model constants shown in 15 have been determined by
means of term-by-term nonlinear least-squares regression using as refer-
ence data the results from the TOKAM2D simulations in appendix that
are averaged in time and in the diamagnetic direction.

Algebraic expansion of the viscous dissipation term for the total ki-
netic energy shows that it scales as −2νn̄ζtot

1, which is in line with the
findings of hydrodynamic 2D turbulence [2, 15, 16]. Hence, it seems rea-
sonable to model the viscous dissipation of the turbulent kinetic energy
based on a similar relation, but using the turbulent enstrophy instead of
the total enstrophy. This also explains that Cν,k is approximately but
not exactly equal to two. A similar expansion, again in agreement with
hydrodynamic 2D turbulence [2, 15, 16], shows that the viscous dissipa-

tion of total enstrophy scales as −2νn̄P , where n̄P = n(∇2
⊥ω)2/2 is the

palinstrophy. The viscous dissipation of turbulent enstrophy is therefore
modeled using a dimensionally correct combination for the (turbulent)

1In this scaling and the next ones in this paragraph some additional terms have been
neglected, since TOKAM2D evaluation showed them to be negligible.
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palinstrophy P ∼ ζ2
⊥/k⊥. A series expansion in φ′′ shows that the sheath

loss of the turbulent enstrophy is proportional to −2σcsn̄k⊥. Thus, four
of the six terms in the k⊥-ζ⊥ system are modeled based on physical and
mathematical insights. The remaining terms, the sheath loss of k⊥ and
interchange source of ζ⊥, have been modeled purely based on regression
analysis of TOKAM2D data. While the models for both terms manage
to fit the data sufficiently well, it is not clear if they really capture the
underlying physics. In particular, the model for the interchange source of
ζ⊥ requires further investigation, as it is a dominant term in the equation.
Hence, improvements in the model for this term and the sheath loss term
for k⊥ are expected to further enhance the performance of the transport
model presented in this paper.

We remark that both the one-equation and two-equation models imply
the same turbulence saturation mechanism, similar in nature to gradient
removal assumptions [21]. The turbulent ExB particle flux (and hence
density (pressure) gradient) appears directly in the source terms of the
equations for k⊥ and ζ⊥. Too steep gradients will lead to an increase in the
turbulence intensity and resulting turbulent transport, tending to flatten
out the gradients until a balance between particle flux and turbulence
intensity is found.

An interesting feature of the equation set above is that k⊥ and ζ⊥
equations 13 and 14 differ only by a factor ζ⊥/k⊥ and a number of con-
stants. This allows both equations to be written and solved together as a
linear matrix system:[

gT Γ̄E,t
Cinter,ζgT Γ̄E,t

]
=

[
Cσ,kσcs
T0.75
e

Cν,kν
Cσ,ζσcs
Te

Cν,ζν

][
n̄
k2⊥
ζ

n̄ζ

]
. (16)

It can be noted that the two-equation k⊥-ζ⊥ approach to modeling
turbulence bears a lot of similarity to k-ε models that are commonly used
to model hydrodynamic turbulence in a Reynolds-Averaged Navier-Stokes
(RANS) approach [7, 13]. There as well, the combination of both quan-
tities allows to construct a length and a time scale for the turbulence
and sources and sinks of k and ε differ by a factor ε/k. However, in the
model presented here, both equations represent the evolution of a turbu-
lent quantity and all of the terms in both equations have a clear physical
meaning, while in RANS modelling of hydrodynamic turbulence ε is typi-
cally an ad-hoc quantity used to represent dissipation on the small scales.

5 Performance of the two-equation k⊥-ζ⊥
model

The left and middle figures of figure 3 show scatter plots of the observed
TOKAM2D values for k⊥ and ζ⊥ versus the estimate for these quantities
obtained with the two-equation k⊥-ζ⊥ model and the one-equation k⊥
model. The former estimate is obtained by solving system 16 for k⊥ and
ζ⊥ with all other quantities filled out using exact TOKAM2D data. Ad-
ditionally, the TOKAM2D results for the subgrid model have been added
to the left hand side of system 16 to cope with the large error on the
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enstrophy equation especially. The k⊥ estimate for the one-equation k⊥
model is likewise obtained from equation 8. However, no correction for
the subgrid model is made in this case as this error is relatively small for
the k⊥ equation and because this subgrid dissipation is implicitly present
in the sink constant of equation 8. Hence, figure 3 shows that the newly
developed model manages to capture the trends in the TOKAM2D pa-
rameter space very well, both for k⊥ and ζ⊥. While some scatter around
the perfect fit line does remain, this error is significantly smaller than that
for the one equation k⊥ model.
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Figure 3: Scatter plot of k⊥ (left), ζ⊥ (middle) and D (right) estimates for the
k⊥-ζ⊥ model and the k⊥ model .

The right figure in figure 3 shows a similar scatter plot for the diffusion
coefficient. The points indicated by circles are obtained by filling out
the model values for k⊥ and ζ⊥ in particle transport relations 12 and 7
respectively. The points indicated by asterisks are obtained by evaluating
these diffusion coefficients using exact TOKAM2D values for k⊥ and ζ⊥
(thus, same data points as shown in figure 1). The right figure in figure
3 shows that the estimate of the diffusion coefficient of the two-equation
k⊥-ζ⊥ model is not unequivocally superior to that of the one-equation
k⊥ model. While the former seems to better capture the trend of the
high D simulations, it is still far from perfect. For the simulations at
intermediate levels of D, the new model seems to perform slightly worse
than the original one-equation model. This is rather surprising as it has
clearly been shown that the diffusion relation is more reliable, that the
estimate for k⊥ is more accurate, and that the estimate for ζ⊥ looks very
reasonable. It seems that the remaining errors on k⊥ and ζ⊥ reinforce each
other in the diffusive relation and cause the overall behavior to become
less accurate. Further research is needed to determine how the accuracy
depends on the value of the model constants and on the possibly lacking
models for the interchange source of ζ⊥ and sheath loss sink of k⊥.

Figure 4 shows the radial profiles of k⊥, ζ⊥ and D for the TOKAM2D
simulation with the default parameter setting (see appendix for exact
parameters). The figure shows that both models manage to capture the
trends in the radial profiles rather well.

6 Conclusion

In this contribution, a two-equation k⊥-ζ⊥ model has been presented to
approximately model the mean-field transport due to ExB drift turbu-
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Figure 4: Radial profile of k⊥ (left), ζ⊥ (middle) and D (right) estimates for
the k⊥-ζ⊥ model and the k⊥ model .

lence in the SOL. The model extends the one-equation k⊥ model pre-
sented by Coosemans et al.[8]. The turbulent enstrophy, a new quantity
further characterizing the intensity of the turbulence has been added to
the equation set and has been modeled rather satisfactorily. Combining
the turbulent kinetic energy and enstrophy allows to construct time and
length scales for the turbulence, which has yielded an improved model for
the turbulent diffusion coefficient. In particular, the new model is able to
capture more accurately the scaling of the diffusion coefficient with the
viscosity.

This work can form the basis for improved transport descriptions in
2D mean-field modeling. A first version of such improved transport model
has been implemented in SOLPS-ITER by Carli et al.[22].

It is expected that future research on the sheath loss term for k⊥ and
interchange term for ζ⊥, which are now modeled empirically, will further
improve the model presented here. Extension of the present model to non-
isothermal plasmas is also envisaged in the future, as well as modeling the
edge plasma inside the last closed flux surface.
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TOKAM2D Simulation parameters

In all simulations the parameters were chosen such that Dn = ν, σN =
σW , Λ = 2.8388 and Te0 = 1. All reported simulations were run for
the isothermal version of the code with a non-periodic x-direction and
using the strong Boussinesq assumption. The default settings for the
simulations are shown in table 1.
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Table 1: Default parameters used in TOKAM2D simulations and their post-
processing.

Lx Ly tstart tend dx dy dt g T i0 σ ν
256 256 2e5 8e5 1 1 1 6e-4 1 1e-4 5e-3

Table 2 shows the parameters of the simulations used for the regression
analysis. Only the parameters that differ from the default simulation (for
which the parameters are listed in table 1) are shown, except for the third
simulation which is the default simulation.

Table 2: TOKAM2D and post-processing parameters of the simulations used in
the regression analysis.

Nr. g T i0 σ ν Nr. g T i0 σ ν
1 4e-4 10 9e-4 5e-5 2e-2
2 4.5e-4 11 8e-5
3 6e-4 1 1e-4 5e-3 12 4.5e-4 1.5e-4
4 7.5e-4 13 0.5
5 9e-4 14 2
6 2e-3 15 3e-4 4 7e-3
7 1e-2 16 7e-4 0.7 3e-5
8 1.5e-2 17 0.3 1.5e-4 8e-3
9 5e-5 2e-2 18 4e-4 0.4 6e-5
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