
Milk homogenization monitoring: fat globule size estimation
from scattering spectra of milk

Annelies Postelmansa, Ben Aernoutsb, Jeroen Jordensc, Tom Van Gervenc, Wouter
Saeysa*
a KU Leuven, Department of Biosystems, MeBioS, Kasteelpark Arenberg 30, 3001 Leuven, Bel-
gium
b KU Leuven, Department of Biostystems, Biosystems Technology Cluster, Campus Geel, Klein-
hoefstraat 4, 2440 Geel, Belgium
c KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium

Abstract1

The fat globule size distribution of raw milk and milk with an increasing degree of homogenization2

was estimated based on their bulk light scattering properties in the Vis/NIR wavelength range.3

The particle size distribution (PSD) was approximated as a lognormal distribution, of which the4

parameters were estimated simultaneously with the fat concentration. This resulted in a good5

agreement between the estimated PSDs and the reference PSDs obtained by laser diffraction in6

case of raw and strongly homogenized samples. The accuracy increased if a known fat concentra-7

tion was incorporated, or when the scattering coefficient and anisotropy factor spectra were used8

simultaneously as input. For mildly homogenized samples, the lognormal distribution was unable9

to fit the bimodal PSD correctly and focused on the largest fat globules. In this case, the estimated10

PSDs provided still relatively accurate information on D90, D32 and the right distribution tail,11

which contains the largest fat globules.12

Industrial relevance: The presented estimation method demonstrates the potential of bulk13

scattering spectra for determining the PSD and concentration of scattering particles in turbid14

media. Further development of this technology can lead to new solutions for spectroscopic PSD15

determination, allowing on-line monitoring systems for a wide range of food and non-food products.16
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1 Introduction18

The composition of milk is an important characteristic with regard to food quality and further19

processing into derived products. The concentrations of the main components besides water,20

namely fat, protein and lactose, are often optically determined based on their light absorption21

characteristics in the infrared wavelength region (Fox & McSweeney, 1998; Walstra, Jenness, &22

Badings, 1984; Lynch, Barbano, Schweisthal, & Fleming, 2006). The infrared light is preferred23

because of the clear absorption bands and the lower influence of light scattering on the acquired24

spectra. In general, milk contains two types of scattering particles suspended in the milk serum:25

milk fat globules and casein micelles. The average fat content in bovine milk is about 4.0% w/w26

(range 2.5-5.5%), while casein is on average present at about 2.6% w/w (range 1.7-3.5%) (Walstra,27

Wouters, & Geurts, 2005). However, not only the concentrations play a role, but also the globule28

size determines the physical properties of milk. Fat globules in raw milk are reported to range29

from 0.1 µm to 15-20 µm diameter (Fox & McSweeney, 1998). Their size shows biological variation30
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Abbreviations
BOP bulk optical properties dmean mean diameter UT unscattered transmission
D... ...% percentile LB lower boundary VF volume fraction
D32 Sauter mean diameter par1 & par2 generalized distribution parameters µs scattering coefficient
D43 DeBrouckere mean diameter PSD particle size distribution µ′s reduced scattering coefficient
DIS double integrating sphere UB upper boundary g anisotropy factor
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with breed, age, health status of the animal etc. The fat globule size can be reduced by means of a31

homogenization process (Walstra, Geurts, Noomen, Jellema, & van Boekel, 1999), which stabilizes32

the milk against creaming and partial coalescence, and changes the viscosity (Walstra et al., 1999).33

Light scattering is wavelength dependent and influenced by the particle size. The smaller casein34

micelles, with a size ranging from 20 nm up to 400 nm (Walstra et al., 2005), particularly scatter35

light in the ultraviolet and visible wavelength range, while the larger fat globules have a scattering36

effect up to the infrared range.37

To monitor the fat globule size before and after homogenization, measurements based on light38

spectroscopy, light scattering or electronic counting can be used (Fox & McSweeney, 1998; Bylund,39

2003). These are usually bench-top instruments that report a full particle size distribution (PSD).40

However, they only provide measurements at regular time intervals, at which a sample has to41

be transferred from the production line to the lab for preparation and analysis. Most methods42

also require severe dilution of the small sample volumes, which can alter the sample as aggregates43

might break up.44

Several researchers have investigated the potential of Vis/NIR spectroscopy for particle sizing45

purposes. Bogomolov, Melenteva, and Dahm (2013) reported diffuse transmission spectra of in-46

creasingly homogenized milk in the 400-1000 nm wavelength range and used the representative47

layer theory to attribute the spectral changes to a decreasing fat globule size. The next step48

of extracting PSD information from spectra by inverse estimation was for example done by Di49

Marzo, Cree, and Barbano (2016). They estimated PSD parameters such as the mean and 90%50

quantile based on infrared spectra using partial least squares models. However, they were not able51

to predict a complete PSD and such data-based models can only be used on samples very similar52

to the ones used for training. On the other hand, Cabassi, Profaizer, Marinoni, Rizzi, and Catta-53

neo (2013) made PSD estimations based on NIR transmission spectra of raw milk by assuming a54

Weibull distribution as PSD shape. However, their validation was limited to the estimated Sauter55

mean diameters (D32).56

Instead of these (semi-)empirical approaches, the underlying physics of light scattering can be57

used to access the particle size of turbid media like milk. Mie theory provides a direct relation58

between the size and scattering by spherical particles, such as fat globules. Aernouts et al. (2015b)59

found that the bulk optical properties (BOP) of milk are strongly linked to the size distribution60

of the milk fat globules. These BOP include the bulk scattering coefficient µs, which indicates the61

probability of photon scattering per infinitesimal path length ([µm−1]), and the anisotropy factor62

g, a measure for the direction of scattering (0 = isotropic, 1 = completely forward). These two bulk63

scattering properties can be combined into the reduced scattering coefficient µ′s, according to the64

expression µ′s = µs×(1−g). Furthermore, we have shown that the PSDs of monomodal polystyrene65

suspensions can be estimated from the Vis/NIR BOP extracted from double integrating spheres66

measurements (Postelmans, Aernouts, & Saeys, 2019). This requires a robust inversion of the Mie67

scattering theory. Recently, Stocker et al. (2017) succeeded in estimating the milk fat globules68

PSD in raw and homogenized milk from the Vis/NIR scattering and reduced scattering coefficient69

spectra using an inversion of Mie theory. Nevertheless, they did not explore the potential of the70

Vis/NIR scattering anisotropy factor, as well as a combination of the different scattering properties71

to further improve the PSD estimation.72

Therefore, the objective of this study is to evaluate the potential of the scattering anisotropy73

factor and the combination of scattering properties for estimating the fat globules size distribution74

in raw milk and an extensive set of milk samples with different degrees of homogenization. To75

improve the robustness, the estimation routine includes a procedure to obtain relevant starting76

points and to prevent local minima and non-converged solutions from being accepted as final PSD77

estimate. On top of that, it is investigated if including information on the concentration of the78

scatterers (the fat content), for example based on spectroscopic absorption measurements or µa79

(Aernouts, Polshin, Lammertyn, & Saeys, 2011; Aernouts, Polshin, Saeys, & Lammertyn, 2011;80

Aernouts et al., 2015a) can improve the accuracy of the PSD estimates. This would combine the81

benefits of extracting composition information from the absorption properties and particle size82

information from the light scattering properties.83
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2 Materials and methods84

2.1 Milk samples and reference PSDs85

A raw bulk milk sample was collected from a Belgian dairy research farm (Hooibeekhoeve, Geel).86

The cooled tank (at 4◦C) contained the milk of 70 Holstein-Friesian dairy cows produced over87

two days and was regularly stirred. The fat and protein content of the milk (respectively 42.8 g/l88

and 33.7 g/l) was determined by the Milk Control Center Flanders with a MilkoScan FT+ (Foss,89

Hillerød, Denmark) according to ISO 9622:2013 (ISO, 2013). After warming up the sample to90

37 ◦C and gently stirring, seven subsamples of 20 ml were taken. The subsamples were subjected91

to ultrasonic homogenization for respectively 0 s (raw milk), 30 s, 60 s, 120 s, 240 s, 480 s and92

960 s. The sonication was performed using a Vibra-Cell VCX400 (400 W, 20 kHz) in combination93

with a CV26 converter, a 13 mm horn and a 3 mm microtip (Sonics & Materials Inc., Danbury,94

USA). The amplitude of the sonicator was set at 20% (80 W). The microtip was immersed about95

1 cm into the milk sample, which was contained in a 50 ml conical polypropylene Falcon tube. To96

prevent overheating of the milk during homogenization, the samples were placed in a water bath of97

24 ◦C for homogenization times up to 240 s, or 19 ◦C for longer homogenization times. Three-fold98

diluted samples (10 ml milk with 20 ml deionized water) were used in the optical measurements99

to ensure the independent scattering assumption was valid (Aernouts et al., 2015b).100

The PSDs of the fat globules and casein micelles were determined using laser diffraction with101

a Mastersizer 3000 instrument (Malvern, UK). The milk was added drop-wise to a beaker of102

deionized water until a red laser obscuration of 5-9% was reached, with the rotor of the Hydro103

EV dispersion unit stirring at 2400 rpm. The resulting PSDs were the average of five consecutive104

measurements of 5 s without delay. The particle refractive index was set at 1.46 + i5 × 10−5, as105

indicated in the Mastersizer software for milk fat. Particles were assumed to be spherical (Mie106

theory) and the general purpose analysis type was applied. The PSD of casein was identified as107

the first mode of the bimodal PSD of raw milk, with a clear separation from the second mode108

(milk fat). Subsequently, the PSD of casein was subtracted from all PSDs, and the resulting fat109

PSDs were converted to probability density functions.110

2.2 Experimental BOP determination111

To determine the BOP of the milk samples experimentally, the double integrating sphere (DIS) set-112

up combined with an unscattered transmission (UT) measurement path described by Aernouts113

et al. (2013) was used. A supercontinuum laser coupled to a monochromator illuminated the114

samples and allowed a sequential scan over the desired wavelength range. For more details on this115

set-up, the reader is referred to Aernouts et al. (2013), while more specific information on the milk116

measurements can be found in (Aernouts et al., 2015a, 2015b).117

The milk samples were loaded into borosilicate cuvettes with a sample thickness of 0.55 mm118

and placed between the two integrating spheres to measure the total reflectance and total trans-119

mittance. To measure the unscattered transmittance, a 0.155 mm thick cuvette was placed in the120

UT path. Replicates were obtained by reloading the cuvettes five times from the same subsample.121

Measurements were performed in the wavelength range from 550 nm to 1350 nm in steps of 10 nm.122

The acquired reflectance and transmittance spectra were passed on to the inverse adding dou-123

bling routine to calculate the BOP, as implemented by Prahl (2011). In addition to these spectra,124

the sample thickness and the sample refractive index were given as inputs. The refractive index125

of milk was calculated based on the weight fractions of the different milk components (Walstra126

et al., 1984) and the wavelength-dependent refractive index of water (Segelstein, 1981; Aernouts127

et al., 2014). Since the fat globules in raw milk are larger than 25% of the wavelength, they do128

not contribute to the refractive index (Walstra et al., 1984). For the homogenized samples, com-129

parison of inverse adding-doubling results calculated based on a sample refractive index with and130

without a contribution of fat showed that the effect of including the fat concentration is negligible.131

Therefore, the milk refractive index used for all samples was calculated without contribution of132

milk fat.133
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Scattering spectra (µs, µ
′
s and g) were smoothed by a third order Savitsky-Golay filter with a134

window width of 60 nm. Since the experimental BOP contained scattering contributions of both135

milk fat and casein micelles, the casein scattering was removed by correcting the experimental136

spectra according to Eq. (1), based on simulated casein spectra (see section 2.3). Eq. (1)b was137

obtained by substitution using the definition of g (g = 1 − µ′s/µs) and the fact that Eq. (1)a is138

also valid for µ′s.139

µs,meas,fat = µs,meas − V Fcasein × µs,sim,casein (1a)
140

gmeas,fat = [gmeas × µs,meas − V Fcasein × µs,sim,casein × gsim,casein] /µs,meas,fat (1b)

2.3 Forward simulation of BOP141

The BOP (µs, µ
′
s, g) of all measured milk fat PSDs and the casein PSD were simulated using142

the iterative tool for polydisperse systems developed by Aernouts et al. (2014). All spectra were143

calculated in the 0.55-1.35 µm wavelength range with a step of 0.01 µm. A particle volume fraction144

(VF) of 1% was adopted, as this is in agreement with the requirements for independent scattering.145

In this regime, the anisotropy factor is independent of the VF, while the scattering coefficient146

and reduced scattering coefficient are linearly proportional to the VF. Therefore, multiplying the147

simulated µs and µ′s spectra with the desired concentration performs a correct scaling.148

The scattering by casein micelles was simulated based on the measured reference PSD of149

casein. The casein content was fixed at 75% w/w of the measured crude protein fraction, in150

accordance with the average casein fraction reported for crude protein in milk (Walstra et al.,151

1999). The obtained value was divided by three to match the three-fold dilution of the samples in152

the optical measurements. The bulk scattering spectra of the raw and homogenized milk samples153

were simulated using the reference PSD of the fat globules. The real part of the milk serum154

refractive index was obtained by adding a baseline to the refractive index of water (Segelstein,155

1981), following the formula given by Walstra et al. (1999) and using the three-fold diluted average156

concentration of the milk components. The real and complex parts of the refractive indices of milk157

fat and casein were calculated based on the absorption coefficients of a mixture of milk components158

as described by Aernouts et al. (2015b).159

2.4 Estimation of PSD and VF160

Milk fat PSDs were estimated from the µs, µ
′
s and g spectra with a procedure similar to those161

described by Postelmans, Aernouts, and Saeys (2018) and Postelmans et al. (2019). The PSDs were162

approximated by a lognormal probability density function since this type performed best when163

fitting lognormal, normal and weibull distributions directly to the measured milk fat PSDs (results164

not shown). These directly fitted lognormal distributions were also used to set the parameter165

boundaries of the constrained optimization in the PSD estimation routine. Lower boundaries were166

set at 70% of the minimal fitted distribution parameter values, while upper boundaries were set167

at 130% of the maximal values. This resulted in the range -2.70 to 0.86 for lognormal distribution168

parameter µ and 0.29 to 1.89 for parameter σ. VF was limited by a minimum of zero fat content169

and a maximum of 3% v/v fat in three-fold diluted milk, given that the fat content in undiluted170

milk will rarely exceed 5.5% w/w (6.21% v/v) (Walstra et al., 1999). During optimization, all171

parameters were scaled to the range of 0.5-1.5 to reduce possible effects of differences in magnitude.172

The PSD estimation routine consists of three steps (Postelmans et al., 2019): (1) defining173

the starting points of the optimization, (2) the optimization step in which the calculated scat-174

tering spectrum of the PSD estimate is iteratively updated to match the experimental scattering175

spectrum, and (3) a selection procedure on the solutions to retrieve the final PSD estimate.176

(1) In order to determine a set of limited but relevant starting points, the cost based on nor-177

malized spectra (in Eq. (2) shown for µs) was evaluated for a grid of 75x75 points, equidistantly178

distributed in the scaled distribution parameter space. Local minima were detected using Mat-179

lab’s ‘imregionalmin’ function (Image Processing Toolbox, Matlab R2016b, The Mathworks Inc.,180
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Massachusetts, USA). In case of µs and µ′s, the ratio of the mean input spectrum and the mean181

of the spectrum calculated for the local minima is a rough estimate for VF. This value had to182

be within the VF boundaries, otherwise this combination of PSD parameters was discarded as183

starting point. For g, the ratio of spectral means had to be in the 0.75-1.25 range, since a maximal184

multiplicative baseline of ±25% was tolerated. If more than ten local minima remained, only the185

ten with the lowest cost were retained as starting points. In case of estimation on µs and µ′s, an186

initial VF value was provided by the above-mentioned ratio of spectral means.187

min log10

Nλ∑
i=1

 µs,i
mean(µs)

− µ̂s,i(par1,par2)
mean(µ̂s)

µs,i
mean(µs)

2
 (2)

(2) The PSD estimation routine used the ‘patternsearch’ algorithm, a non-gradient based188

optimizer, as implemented in the Global Optimization Toolbox of Matlab R2016b (The Mathworks189

Inc., Massachusetts, USA; Conn, Gould, & Toint, 1997). In case of µs or µ′s, the PSD and VF190

were estimated simultaneously using the cost in Eq. (3). For PSD estimates based on g, only PSD191

parameters par1 and par2 remain in Eq. (3), since g is concentration independent in the assumed192

independent scattering regime.193

min log10

[
Nλ∑
i=1

(
µs,i − µ̂s,i(par1, par2, V F )

µs,i

)2
]

(3)

(3) A selection procedure was applied to the solutions found for the different starting points.194

First, all non-converged end points were discarded, as well as solutions that reached one or more195

of the parameter boundaries. In case of g, the ratio of the mean input spectrum and the mean196

calculated spectrum had to be between 0.75-1.25, since a multiplicative baseline error of maximal197

25% on the measurements was tolerated. From the remaining end points, only those with a cost198

value within 2.5% of the lowest remaining cost were considered. If they formed one group, i.e.199

absolute difference between scaled distribution not more than 0.05, the solution with the minimal200

cost was considered as final PSD estimate. If not, the estimated PSDs were considered non-unique201

and no final estimate was selected.202

2.5 Estimation of PSD and VF on µs and g simultaneously203

PSD and VF estimates were also made using µs and g spectra simultaneously. The distribution204

parameter boundaries and the steps of the optimization routine remained identical to those de-205

scribed in section 2.4. Only the cost functions were replaced to include both µs and g, respectively206

Eq. (2) by Eq. (4) for the grid calculation based on normalized spectra, and Eq. (3) by Eq. (5) in207

the optimization. In order to attribute an equal weight to µs and g, a cost function based on the208

ratio of the sum of squared errors (SSE) to the total squared errors (SST) was preferred over one209

based on the relative difference between the spectra.210

min

[
SSEµs,norm.
SSTµs,norm.

+
SSEg,norm.
SSTg,norm.

]

= min

 ∑Nλ
i=1(

µs,i
mean(µs)

− µ̂s,i(par1,par2)
mean(µ̂s)

)2∑Nλ
i=1(

µs,i
mean(µs)

−mean( µs
mean(µs)

))2
+

∑Nλ
i=1( gi

mean(g) −
ĝi(par1,par2)
mean(ĝ) )2∑Nλ

i=1( gi
mean(g) −mean( g

mean(g) ))
2

 (4)

min

[
SSEµs
SSTµs

+
SSEg
SSTg

]
= min

[∑Nλ
i=1(µs,i − µ̂s,i(par1, par2, V F ))2∑Nλ

i=1(µs,i −mean(µs))2
+

∑Nλ
i=1(gi − ĝi(par1, par2))2∑Nλ

i=1(gi −mean(g))2

]
(5)
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2.6 PSD estimation with fixed VF211

All PSD estimations were repeated with the VF value fixed at the three-fold dilution of the fat212

content determined in the reference analysis. This way, a degree of freedom is eliminated from the213

optimization routine, leaving only the distribution parameters to be determined. For estimations214

based on µs and µ′s, the cost function used for both the starting point determination and for the215

optimization is based on non-normalized spectra, cf. Eq. (3) and Eq. (5), although VF is a fixed216

value instead of a parameter to be estimated.217

3 Results and discussion218

3.1 Reference PSDs219

The PSD of casein was identified as the first mode of the bimodal PSD of raw milk and is shown220

in Fig. 1a. The casein micelles are clearly smaller than the fat globules in raw milk, but the higher221

the degree of homogenization, the more their PSDs overlap. The measured peak for casein shows222

a high similarity with the casein PSD reported by Aernouts et al. (2015b). However, both are223

clearly underestimating the average size of casein micelles that lies around 150-200 nm according224

to literature (Walstra et al., 1999; C. de Kruif, 1998; C. G. K. de Kruif & Huppertz, 2012). Stocker225

et al. (2017) measured a mean diameter of 189 nm for casein in commercial skim milk, but it is226

unclear whether this PSD obtained by dynamic light scattering refers to an intensity or volume227

based PSD. By fitting µs and µ′s spectra based on Mie theory, they also estimated a casein PSD228

with a mean diameter of 211 nm. The discrepancy between our results and those reported by other229

researchers was most likely caused by the restriction of laser diffraction measurements to assume230

only one type of particles. More specific, only one particle refractive index could be defined, even231

if the sample is known to contain multiple particle types, as was the case here. Since milk fat232

globules were the scatterers of interest, the refractive index of milk fat was used. Because of this,233

the size of the casein micelles was calculated with a too low refractive index, resulting in a casein234

peak shifted to smaller sizes.235
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Figure 1: a) Measured PSD of raw milk compared to the casein PSD of Aernouts et al. (2015b),
Stocker et al. (2017), Walstra et al. (1999), C. de Kruif (1998) and C. G. K. de Kruif and Huppertz
(2012). b) Measured PSDs of milk fat (contribution of casein removed). LB = lower boundary,
UB = upper boundary.

The measured PSDs for the milk fat globules, the scatterers of interest, are shown in Fig. 1b.236

They were obtained by subtracting the casein PSD in Fig. 1a, from all sample PSDs before237

converting them to probability density functions. The fat globule size distribution in raw milk238

is monomodal with the peak around 3.5 µm diameter. During homogenization, a second peak of239

smaller particles around 0.2 µm in diameter appears. The longer the homogenization time, the240
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more the relative importance of this new peak increases, rather than shifting the original peak to241

smaller particle sizes.242

The PSD of fat globules in the unhomogenized raw milk sample was found to be monomodal,243

just as the example shown in the work of Cabassi et al. (2013). On the other hand, Jhanwar244

and Ward (2014) obtained a bimodal PSD for whole milk, even if casein was removed before the245

PSD measurement. Stocker et al. (2017) also noticed this in their PSD measurements, but they246

concluded that it was an artifact and assumed a monomodal PSD for the raw fat globules.247

3.2 Measured & simulated BOP248

The mean bulk scattering spectra calculated from DIS and UT measurements (after casein cor-249

rection) are shown in Fig. 2. The µs spectra were well reproducible with a low noise level, while g250

and µ′s were more susceptible to noise. This is possibly due to low total reflectance values in the251

DIS measurements and therefore a low signal-to-noise ratio. Moreover, such errors on the total re-252

flection spectra could also be the cause of the baseline mismatch between measured and simulated253

g and µ′s spectra in case of the ‘raw’, ‘30 s’ and ‘60 s’ samples. A slight underestimation in µ′s, in254

combination with a correct µs (less depending on DIS measurements), leads to an overestimated255

g through the relation g = 1 − µ′s/µs. Inaccuracies on the sample or particle refractive index can256

also contribute to such baseline effects (Postelmans et al., 2018), as an approximate formula for257

the refractive index of milk and milk serum was used.258
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Figure 2: Mean experimental spectra with casein correction ± standard deviation for a) µs, b)
g and c) µ′s. Dashed lines indicate the corresponding spectra simulated based on the reference
PSDs.

In Fig. 2, the increasing underestimation of simulated µs spectra compared to the experimental259

casein corrected spectra suggests there might be a systematic effect on top of the measurement260

errors. For samples with homogenization times ranging from 240 s to 960 s, the baseline mismatch261

clearly aggravates in both µs and g. It is therefore thought to be related to the homogenization262

process itself. In raw milk, the fat globule membrane mainly consists of phospholipids and proteins,263

and has an average thickness around 15 nm (Walstra et al., 1999). Upon homogenization, the264

total globule surface area increases due to the newly formed small fat globules. To cover the265

increased fat-milk plasma interface, the original membrane material is completed with adhering266

casein and serum proteins (Strawbridge, Ray, Hallett, Tosh, & Dalgleish, 1995). Walstra et al.267

(1999) reported an average protein load per surface area of 10 mg/m2. Casein (sub)micelles are268

preferentially adsorbed over serum proteins and make up about 93% of the proteins in the new269

surface layer, with a preference for the largest micelles (Walstra et al., 1999). Therefore, the270

concentration of free casein micelles also decreases.271
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The discrepancy between simulated and experimental scattering spectra, especially for the272

milk samples that were homogenized for a longer time, suggests that the full complexity of the273

homogenization process is not captured in the simulations. Both the casein coating and the274

decrease in free casein micelles would result in an increase of the scattering coefficient and the275

anisotropy factor, bringing the simulated and experimental profiles closer together (results not276

shown). However, as information on the exact refractive indices of casein and milk fat, the fat277

globule membrane thickness and the volume fraction of free casein is not available, it was not278

possible to take this full complexity into account.279

3.3 PSD estimation on µs280

The PSDs estimated on simulated and experimental µs spectra are plotted together in Fig. 3 (&281

Fig. S-1). The estimations on simulated spectra provide the ‘ideal’ case, since the simulations were282

noise-free and the same refractive indices were used for the forward simulation and the inverse283

estimation. In all cases shown in red, the VF was estimated simultaneously with the distribution284

parameters. The estimated VF values are discussed separately in section 3.7.285
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Figure 3: PSDs of milk fat globules estimated on simulated and experimental µs spectra, with
estimated or fixed VF. a) ‘raw’, b) ‘60 s’, c) ‘480 s’.

The PSD of the ‘raw’ milk sample (Fig. 3a) was well estimated based on µs spectra, as the286

lognormal distribution properly fits the shape of the measured PSD. A lognormal PSD was also287

used by Stocker et al. (2017), while Cabassi et al. (2013) preferred a Weibull distribution. For288

homogenized samples, the estimated PSD is mainly dominated by the larger fat globules (Fig. 3b)289

since their scattering is more pronounced than this of the smaller particles. A lower sensitivity290

to submicron particles due to the similar shape of their µs spectra was already observed when291

estimating PSDs (Postelmans et al., 2019). For the most intensively homogenized samples (‘480 s’292

and ‘960 s’), even no valid estimates were retained by the selection procedure. Stocker et al. (2017)293

reported similar difficulties: a small difference in mean particle size can have a large effect on µs,294

but the estimation algorithm may attribute it to a change in particle concentration.295

If, however, the VF was incorporated as a fixed value (1.56% v/v, three-fold dilution of the296

reference analysis) instead of being estimated, it resulted in valid PSD estimates for all samples.297

Moreover, the underestimation of the small globule fraction reduced (Fig. 3 blue lines), because298

errors in scattering level due to an incorrect particle size could no longer be compensated for299

by adapting the particle concentration. Cabassi et al. (2013) also used a fixed fat concentration300

when estimating PSDs, although their estimation routine included an additional correction factor301

besides the two distribution parameters. Stocker et al. (2017) estimated the concentration of302

milk fat simultaneously with the PSD parameters, but no reference analysis was done to confirm303
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the accuracy of their VF estimates. In practical applications, the VF of fat globules could be304

determined based on absorption spectroscopy or the bulk absorption coefficient µa.305

3.4 PSD estimation on g306

The PSDs estimated on g spectra are shown in Fig. 4 (& Fig. S-2). In case of the ‘raw’ sample,307

no valid estimate was obtained based on experimental spectra as all replicates reached the lower308

boundary for σ. The PSDs of homogenized samples are more accurate: the higher the degree of309

homogenization, the more the distribution peak shifts to smaller sizes. Furthermore, the distri-310

butions are wider and approximate the left distribution tail more accurately. Nevertheless, PSDs311

estimated on experimental spectra tend to be less wide than their respective counterpart estimated312

on simulations, although the difference decreased with increasing degree of homogenization.313
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Figure 4: PSDs of milk fat globules estimated on simulated and experimental g. a) ‘raw’, b) ‘60 s’,
c) ‘480 s’.

3.5 PSD estimation on µ′
s314

In general, there was less variation in the level of µ′s spectra compared to µs and the spectra315

showed similar noise as g. This negatively affected the PSD estimation, since only five valid PSD316

estimates were obtained when estimated simultaneously with the VF (Fig. 5 red lines, Fig. S-3).317

Similarly, problems with the distribution width estimated based on µ′s were already reported for318

polystyrene particle suspensions (Postelmans et al., 2018, 2019).319

Fixing VF drastically increased the number and quality of the valid PSD estimates, namely all320

samples ranging from 60 s to 960 s homogenization (Fig. 5b-c, blue lines). Stocker et al. (2017) also321

fixed the VF of fat while estimating a bimodal lognormal distribution on µ′s. However, the effect322

of incorporating a known VF cannot be investigated based on their data since no PSD estimates323

with VF estimation were reported by them, nor any reference PSD measurements.324
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Figure 5: PSDs of milk fat globules estimated on simulated and experimental µ′s spectra, with
estimated or fixed VF. a) ‘raw’, b) ‘60 s’, c) ‘480 s’.

3.6 PSD estimation more robust by combining µs and g in cost325

When looking at the PSDs estimated on µs, the input spectrum is fitted relatively accurate. How-326

ever, the g spectrum of these estimated PSDs often does not match well with the corresponding327

g spectrum. On the contrary, the PSDs estimated on g, have most often a well-matching normal-328

ized µs spectrum, but no VF estimation could be made. Therefore, it was investigated if PSDs329

estimated on a combination of µs and g would inherit ‘the best of both’: the PSD estimates on g330

with a VF estimate on µs.331

Using both scattering spectra as input produces a valid PSD and VF estimate for all samples332

except raw milk, as can be seen in Fig. 6 (red lines, Fig. S-4). The estimates for raw milk stranded333

at the lower boundary of distribution parameter σ in an attempt to fit both the level and shape334

of the experimental spectra, just like the estimates on solely g. The estimated PSDs are generally335

wider than those estimated on µs and resemble more those estimated from the g spectra. The336

effect of using a fixed VF in estimations on a combination of µs and g is rather small, as shown by337

the blue lines in Fig. 6. Combining µs and g provided the highest number of valid PSD estimates,338

with the smallest difference in estimated distribution parameters with or without a fixed VF value.339
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Figure 6: PSDs of milk fat globules estimated on a combination of µs and g (simulated or exper-
imental), with estimated or fixed VF. a) ‘raw’, b) ‘60 s’, c) ‘480 s’.
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Therefore, if the concentration of scatterers is known, it is beneficial for the PSD estimation to340

fix the VF value and only estimate the distribution parameters. If VF is unknown, a simultaneous341

estimation of the PSD parameters and VF based on µs and g spectra provides a good alternative.342

3.7 Estimated milk fat volume fractions343

Figure 7 provides an overview of all estimated VF values. Firstly, there is a clear trend in VF344

values estimated on simulated µs spectra (red dots in Fig. 7a). As the PSD estimate for the345

raw milk sample was accurate, the accompanying VF is also relatively correct. Since the PSD346

estimation routine focuses on the large fat globules for bimodal and asymmetric PSDs, the VF347

is underestimated to compensate for the higher scattering level of larger particles. For higher348

degrees of homogenization, PSDs become again more monomodal and the estimated PSDs are349

more accurate, while the estimation of VF stabilizes or even improves. The same general trend is350

present in case of experimental µs spectra (blue dots in Fig. 7a). Fig. 7b only presents a limited351

set of VF estimates, of which one is even close to being discarded, because the majority of the352

PSD estimates on µ′s were marked as invalid.353

The relatively good PSD estimates based on µs and g simultaneously were accompanied by354

relatively accurate VF estimates. Fig. 7c shows that the estimated VF values for the ‘30 s’, ‘60 s’355

and ‘120 s’ samples based on experimental spectra are rather constant, with a small underestima-356

tion compared to the reference. The most intensively homogenized samples (‘480 s’ and ‘960 s’)357

on the other hand, have overestimated VF values, most likely caused by underestimation of the358

left distribution tail without an accompanying overestimation of the fraction large particles.359
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Figure 7: Volume fractions (VF) of milk fat estimated based on a) µs, b) µ′s, and c) of µs and g
simultaneously.

3.8 General discussion360

The presented PSD estimates were based on µs, g and µ′s spectra, with the most accurate results361

if the concentration of the fat globules was fixed, or when µs and g were used simultaneously as362

input. From a practical point of view, µ′s would be most easy to implement as it requires solely363

DIS measurements or spatially resolved reflectance spectroscopy. Watté, Aernouts, Van Beers,364
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Postelmans, and Saeys (2016) et al. already reported the in silico optimization of a spatially365

resolved reflectance sensor design for determining the BOP of milk. However, µ′s was more noisy366

than µs in this dataset and already resulted in larger errors in the estimated distribution width367

(Postelmans et al., 2019). Nevertheless, relatively accurate PSD estimates were obtained for368

homogenized samples if VF information was included. Stocker et al. (2017) used µ′s spectra to369

estimate bimodal PSDs of milk, but no reference measurements of the samples’ PSDs are available370

to check the quality of these estimates. The PSD estimates for the ‘raw’ samples based on µs371

can be compared to those of Cabassi et al. (2013), who used corrected NIR absorption spectra372

to obtain PSD information. The D32 and span (D80-D20) of PSD estimates presented here were373

less correct if VF was estimated (RMSE of respectively 0.195 and 1.013 for our study compared374

to 0.110 and 0.47 for Cabassi et al.). However, the accuracy improved to a similar level if a fixed375

VF was used (RMSED32 of 0.131, RMSED80-D20 of 0.472).376

The consistent underestimation of the fraction small fat globules, observed for all BOP types,377

is caused by the relatively limited scattering by submicron particles compared to the scattering378

by larger particles. On top of that, it might also be related to the baseline mismatch between379

experimental and simulated spectra (Fig. 2). Identifying and reducing the cause of the mismatch380

might help to decrease this phenomenon. In case of homogenized milk, this may imply an adap-381

tive casein correction that takes into account the full complexity of the homogenization process382

and the effects of a, most likely, increased particle refractive index on the scattering properties.383

Enhancing the sensitivity to the submicron size globules can also be obtained by including shorter384

wavelengths in the spectra, since the smaller the particle, the more its scattering peak shifts to385

smaller wavelengths. Michels, Foschum, and Kienle (2008) studied the BOP of different types of386

soy bean oil emulsions, and the start of the scattering peak in µs appeared around 0.4 µm wave-387

length for the Lipovenoes 10% and the ClinOleic 20% samples (largest particle diameter around388

0.55 µm).389

Despite the issue of underestimating the left tail of the measured PSDs, the right tail is390

fitted quite well, even for the bimodal and asymmetric PSDs of homogenized samples. Therefore,391

it contains valuable information on the largest particles in the samples, even if the rest of the392

distribution is not estimated perfectly. Fig. S-5 provides an overview of the D90 and D32 of393

the estimated and reference PSDs. It shows that the estimated values for samples homogenized394

for 120 s or longer are consistent between the replicates and close to the reference values if a395

fixed VF was used. Furthermore, Table S-1 includes the mean difference between measured and396

reference values (D50, D90, D32, D43) listed per sample. The standard deviation on these values397

for milk samples homogenized for 120 s or longer are small, indicating a good reproducibility.398

Di Marzo et al. (2016) investigated if these PSD parameters could be predicted accurately to399

monitor the performance of the homogenizer inside a MIR analyser (Milkocan) and alert if it is400

not working properly (D90 > 1.7 µm) (Smith, Barbano, Lynch, & Fleming, 1995). Imposing an401

upper limit on particle size rather than specifications on the complete PSD would be applicable402

in milk homogenization since large fat globules have the largest impact on creaming properties.403

As the presented PSD estimation routine provides good results for the estimation of D90, it has404

large potential to be used for such purposes.405

Although the monomodal distributions were fitted quite well and relatively accurate D90 and406

D32 values were obtained, there is a clear issue of bimodality. For the bimodal and asymmetric407

homogenized PSDs, e.g. samples ‘30 s’ and ‘60 s’, a combination of two lognormal distributions408

would be more suitable than a single one. This ‘bimodal lognormal distribution’ was already used409

by Stocker et al. (2017) to estimate the PSD of homogenized milk samples based on µs and µ′s.410

Since the use of µs and g simultaneously as input for PSD estimation gave the most promising411

results, a next step could be to estimate such a bimodal PSD based on these two scattering spectra.412

4 Conclusion413

The potential of estimating milk fat PSDs based on wavelength dependent light scattering prop-414

erties for monitoring the homogenization process of milk was investigated. Therefore, the bulk415
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optical properties of raw milk samples with an increasing degree of ultrasonic homogenization were416

experimentally determined by means of double integrating sphere and unscattered transmission417

measurements. The bulk scattering spectra of µs, g, µ′s or µs and g simultaneously were used as418

input for the estimation of lognormal PSD parameters and the volume fraction of milk fat globules.419

Estimated PSDs were compared to reference PSDs obtained with laser diffraction.420

If the volume fraction and PSD parameters were estimated simultaneously, PSD estimates421

based on measured µs spectra focused on the largest particles, especially in the mildly homogenized422

samples (bimodal distributions). For strongly homogenized samples, no valid estimates could be423

made due to the inability of the algorithm to distinguish between a small change in particle size424

and a change in VF. Furthermore, measured µ′s spectra produced practically no valid estimates425

since the optimizer stranded on one of the distribution parameter boundaries. Overall, estimates426

based on a combination of µs and g proved to be most robust as valid estimates were produced427

for all samples except raw milk.428

A second set of PSDs was estimated with the VF fixed at the reference value instead of429

estimating the VF. Including this information in the estimation routine drastically improved the430

number and accuracy of the PSD estimates, especially in case of µ′s. PSDs estimated on µs, g431

or both still retained the tendency of underestimating the number of small particles, but not as432

severe as in case of a simultaneously estimated VF.433

Overall, the single lognormal distribution was not able to fit bimodal PSDs and focussed on the434

largest fat globules. Nevertheless, the good fits for the right distribution tail provided relatively435

accurate information on the D90 of the samples, and on the D32 for samples homogenized for436

120 s or more. Therefore, the presented estimation routine could be a useful tool for monitoring437

specifications on the largest particles. Moreover, the good PSD estimates on a combination of µs438

and g spectra invite to estimate a weighted combination of two lognormal distributions based on439

these input spectra in order to improve the accuracy for bimodal PSDs.440
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