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Abstract—Myocardial deformation imaging is a well-
established echocardiographic technique for the assessment of
myocardial function. Although some solutions make use of
speckle tracking of the reconstructed B-mode images, others
apply block matching on the underlying radio-frequency (RF)
data in order to increase sensitivity to small inter-frame motion
and deformation. However, for both approaches, lateral motion
estimation remains a challenge due to the relatively poor lateral
resolution of the ultrasound image in combination with the
lack of phase information in this direction. Hereto, non-rigid
image registration (NRIR) of B-mode images has previously
been proposed as an attractive solution. However, hereby, the
advantages of RF-based tracking were lost. The aim of this study
was therefore to develop an NRIR motion estimator adopted
to RF data sets. The accuracy of this estimator was quantified
using synthetic data and was contrasted against a state of the art
block matching solution. The results show that RF-based NRIR
outperforms BM in terms of tracking accuracy particularly,
as hypothesized, in the lateral direction. Finally, this RF-based
NRIR algorithm was applied clinically, illustrating its ability to
estimate both in-plane velocity components in-vivo.

Index Terms—RF image, non-rigid registration, strain, cardiac,
block matching

I. INTRODUCTION

Myocardial deformation imaging has become an established

echocardiographic technique for the assessment of global and

regional myocardial function [1] and has shown its clinical

value in a variety of clinical settings, e.g., in the detection of

patients with acute heart failure [2], myocardial ischemia [3],

quantification of dyssynchrony and prediction of response to

CRT [4], [5].

From a technical perspective, different approaches towards

ultrasound deformation imaging have been proposed which

can be classified into three major categories: speckle track-

ing, phase sensitive methods and non-rigid image registration

(NRIR). Speckle tracking assumes that speckle patterns are

preserved between subsequent images and can therefore be

used as acoustic markers to track the motion of the underlying

tissue. Two popular speckle tracking approaches are block

matching (BM) [6] and optical flow [7], [8]. In phase sensitive

methods, motion is rather retrieved from the change in local

phase between image pairs [9]. It can be considered as a

generalization to multiple dimensions of the typical Doppler-

based motion estimator [10]. Finally, NRIR is a popular

method in the image processing community, where motion

is estimated iteratively by minimizing a cost function that

imposes boundary conditions on the motion field during the

motion estimation process while this is typically done a

posteriori for the other approaches.

In principle, any of these motion estimation methods can be

applied to either the high frequency raw radio-frequency (RF)

images, their corresponding low frequency envelope images

(amplitude demodulated RF signals) or the scan-converted B-

mode images (after interpolation and subsampling). While all

of the above mentioned methods have been applied on the

reconstructed B-mode images (e.g., block matching [4], [11]–

[13], phase sensitive [14] and NRIR [15]), the main advantage

of the latter approach seems to be a more robust estimation

of the lateral motion component [16]. Indeed, lateral motion

estimation is particularly challenging given the relatively poor

lateral image resolution in combination with the lack of phase

information in this direction in a conventional ultrasound

recording and therefore benefits particularly from imposing

boundary conditions on the motion field during the estimation

process.

It is well known that motion estimation on the underlying

RF data results in more accurate estimates for small inter-

frame motions [17], [18]. In addition, it has been shown that

the estimated elastographic signal-to-noise ratio (eSNR) of

cardiac strain estimated on the RF signals are higher than

the ones estimated from the corresponding envelope signals

[19]. Theoretically, these improved estimates in RF images

can only be attributed to the phase information available in

the axial direction compared to its corresponding envelope

signal. Since, a 2D motion estimator typically couples the axial

and lateral estimates; a precise axial estimate likely positively

impacts the accuracy of the lateral estimate. As such, it is

not surprising to see that both block matching [20]–[24] and

phase sensitive [25] approaches have been applied on RF data

as well. However, despite the promising findings of NRIR in

terms of lateral motion estimation, to date, NRIR has only been

applied on intravascular (IV) RF data [26]. Nevertheless, the

vascular tissue experiences a relatively smaller (0.1%-10%)

and simpler deformation, in contrast to cardiac tissue and

therefore the theoretical advantages of processing RF data for

cardiac deformation imaging still needs to be explored.

Therefore, the main goal of this work was to develop an

RF-based NRIR motion estimator for cardiac applications,

which brings along specific challenges. Firstly, a typical B-

mode image is much smaller (e.g., 512× 512 pixels) compared

to a typical RF frame (e.g., 8,000 samples × 200 lines),
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Fig. 1. Schematic overview of the computation of the bending energy (BE) in an example shaded region (Ω) consisting of nine pixels and the four associated
third-order B-splines in each direction (blue) supported by the sixteen control grid points (red). The BE contribution of this shaded Ω is a function of the
B-spline pieces and the inter-grid spacing σ. To numerically compute (left) this BE, the BE for all nine pixels has to be computed individually and summed.
On the other hand, for the analytic computation (right), the BE value of Ω (shaded) can be precomputed once and stored in form of three matrices, making
the calculation of BE computationally efficient.

which leads to a significant increase in computational burden.

Hereto, an analytic expression for the regularization term in

the cost function of the registration framework is proposed

to replace its numeric analogue. Secondly, in contrast to

the pixels being isotropic for B-mode images, RF pixels

are very anisotropic with direct consequences for the opti-

mal mathematical representation of the motion field in the

registration framework. Using synthetic data sets mimicking

physiologic cardiac motion and deformation conditions, the

accuracy of the proposed solution is demonstrated. In addition,

the same synthetic data are used to contrast the proposed RF-

based NRIR with a state of the art RF-based block matching

algorithm. Finally, the proposed RF-based NRIR algorithm

was applied clinically, illustrating its ability to estimate both

in-plane velocity components in-vivo. Preliminary results on

pilot studies of applying NRIR to RF data were previously

reported by our group in [27] and [28]. However, these studies

used limited motion modes and did not systematically test the

impact of the inter-frame motion/deformation magnitude on

the accuracy of the resulting motion/deformation estimates.

Moreover, our previous reports did not go through a rigorous

optimization process of the optimal NRIR settings. In addition,

in previous reports, no comparison against block matching

was performed and finally, the proposed approach was not

previously tested in-vivo. All of these are novel contributions

of the current manuscript.

II. METHOD

A. NRIR

During non-rigid image registration, a moving image IM
is deformed to spatially align with a fixed image IF. The

inter-frame myocardial displacement field Tξ = (Tx,Ty) is

computed at every pixel r = [x, y] and is modeled as a tensor

product of 2D cubic B-splines β3
ξ (ξ ∈ (x, y)) [29]:

Tξ(r) =
∑

i∈Ni

∑

j∈Nj

µijβ
3
x

(

x− κij
x

σx

)

β3
y

(

y − κij
y

σy

)

(1)

where Nξ denotes a set of control grid points within the

compact support of the B-splines (β3
ξ ) and having an inter-

grid spacing of σξ.

Tξ(r) is parametrized by B-spline coefficients µij, associ-

ated to every control point node. This set of coefficients is

updated to optimum values, during an iterative optimization

process by minimizing a cost function. In order to ensure a

convergence to a global minimum in the optimization space,

the images are registered in a multi-resolution framework [29],

[30]. More specifically, a coarse-to-fine strategy is adopted

where firstly, the transformation complexity is gradually in-

creased in a transformation pyramid by decreasing the inter-

grid spacings, σξ between control points in subsequent lev-

els. Secondly, in order to initially align the coarsest global

structures and slowly introduce more detailed image features,

the data complexity is gradually increased by building an

image pyramid. This is done by convolving the image with

a Gaussian scale space, where the size of the smoothing

kernel is reduced at each scale of the image pyramid, and by

simultaneously registering the RF image at the finest (topmost)

and envelope images at the coarsest (bottommost) levels of the

pyramid.

To efficiently optimize this large number of coefficients

µij, a limited memory Broyden-Fletcher-Goldfarb-Shanno

(LBFGSB) optimization routine with simple bounds is used.

This optimizer is generally used for optimization of a large

set of parameters [31].
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Fig. 2. Schematic illustration of the three different motion modes in the
simulated tissue model in the Cartesian space: a) axial and b) lateral bulk
motion with bulk displacement d and c) lateral compression with strain ε.

A general expression of the cost function used for optimiza-

tion can be given as:

C = S + ωR (2)

where S is a similarity measure and R is a regularization

term, weighted by a factor ω to adjust the strength of R.

In our framework, the sum of squared differences (SSD) is

used as a similarity measure S. SSD has been the choice

of the similarity measure because of its good performance

in monomodal registration and simplicity of its computation.

Additionally, in order to penalize high curvature solutions of

the displacement field (Tξ), a squared second order derivative

of R associated with Tξ is chosen as the bending energy (BE)

penalty term [29].

The conventional numeric representation of (R) is denoted

here by RN. This can be obtained by computation of the

second order derivatives of the underlying transformation field

at every pixel location, r in the image comprising of P pixels

[29]:

RN =
1

P

∑

r

∑

ξ∈(x,y)

(

∂2Tξ

∂x2

)2

+

(

∂2Tξ

∂y2

)2

+ 2

(

∂2Tξ

∂x∂y

)2

(3)

where the second order derivatives are obtained by a numeric

central differencing scheme. It can be noted from the above

expression that the overall computational complexity of RN is

proportional to the total number of pixels (P) present in the

image and these computations are performed on the fly for

each iteration of the optimizer.

B. Fast NRIR for application on RF data

An RF image has typically a much larger number of

pixels than a typical B-mode image, making the evaluation of

RN computationally more demanding. As an alternative, the

computation of R can be sped up by using a closed analytic

solution, RA. In our previous work [32], we have demonstrated

the application of RA in in-silico cardiac data. This regularizer

is inspired by previous developments proposed in [33]. Here,

the computation of RA is directly proportional to the number

of regions Ω, that sum up to represent the whole transformation

field as follows:

RA =
1

P

∑

Ω

RΩ (4)

where RA is sum of individual contributions of the bending

energy for each region RΩ, which can be represented as:

RΩ =
∑

(δx,δy)

(

µi
TV(δx,δy)µi + µj

TV(δx,δy)µj

)

for (δx + δy = 2) (5)

where µi and µj are vectors containing all the B-spline

coefficients associated to the relevant control points for Ω in x

and y directions respectively. Additionally, V(δx,δy) represent

the matrices which can be precomputed on the basis of the

inter-grid spacings σξ . Since the contribution of the derivative

of the BE penalty at every control point µij depends on the

physical spacings σξ and these spacings remain constant at

one particular pyramid level, the contribution of the BE of the

whole Ω can be precomputed and stored in memory; only to

be reused for computing the BE of the whole image. In case

of 2D images, three of these matrices were precomputed and

stored in memory for each grid resolution. For further details

the reader is referred to [32].

The difference in computational burden between RN and

RA is illustrated by an example in Fig. 1. At the top, the

contribution of the BE between the control grid points (red)

within the compact support of B-splines (blue) is shown by

the shaded region, Ω (gray). For computation of RN (bottom

left) within Ω, Eq. (3) has to be evaluated at every pixel

located within Ω, i.e., nine times in this example. In contrast,

for computation of RA (bottom right) within Ω, the matrices

(V(δx,δy)) in Eq. (5) need to be precomputed and stored only

once and therefore can be reused to compute the contribution

of the other non-shaded grid regions of the image.

III. RF-BASED NRIR EXPERIMENTS

A. In-silico data generation

To optimize and test the accuracy of the proposed RF-

based NRIR motion estimator, synthetic data sets mimicking

physiologic inter-frame motion/deformation magnitudes were

generated. Hereto, a simple geometric model of the left

ventricular septum in an apical echocardiographic view was

constructed as a 2D, rectangular, homogeneous region of 100

mm × 20 mm in the axial and lateral directions respectively.

This septal model was filled with 3 million scattering sites at

random positions having a random scattering cross section in

order to fulfill the requirements for fully developed speckle

(i.e., at least 10 scattering sites per resolution cell) [34]. RF

images sampled at 50 MHz were simulated using COLE [35],

assuming a sector scan with an opening angle of 70◦ and using

a phased array transducer with a center frequency of 3.4 MHz

which resulted in RF images of 7,793 samples × 190 lines.

Three different motion modes were generated as schemat-

ically illustrated in Fig. 2: i) axial bulk motion (panel a), ii)

lateral bulk motion (panel b) and iii) lateral deformation (panel

c). The imposed inter-frame motion for the respective modes

was chosen based on typical physiologic motions encountered

in the heart, i.e., 15-150 mm/s [36]. Assuming a frame rate of

100 Hz, this results in an inter-frame displacement ranging

from 0.15 mm to 1.5 mm; out of which 10 equidistant
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values were tested. Similarly, inter-frame deformation was

realistically estimated to be in the range of 1.17% to 1.97%;

out of which 10 equidistant values were tested. Hereto, the

systolic duration was estimated to last for about 300 ms for a

normal heart beating at 80 bpm [37] during which the muscle

thickens in the lateral direction within the range of 35% to

59% [38].

To account for the stochastic nature of the RF data, 10

independent speckle realizations were simulated for each of

the displacement and deformation set-ups.

B. Accuracy of the RF-based NRIR

To quantitatively assess the performance of this algorithm,

a region of interest (ROI) was chosen by excluding 5% of the

model at the borders in order to avoid border effects. N points

with a size of 300 × 200 (axial × lateral) were distributed

within this ROI and deformation estimates at these points were

interpolated from the transformation field containing motion

estimates at each pixel of the RF image. Subsequently, the

norm percentage error, ∆di for each point i was calculated

for both the axial and the lateral bulk motion modes as:

∆di =
||Ki

M − K̂
i
M||2

||Ki
F −Ki

M||2
for i ∈ 1 . . .N (6)

with Ki and K̂i being the ideal and the estimated positions

in Cartesian space respectively and the suffix F and M
representing the locations of the points in the fixed and moving

frames respectively. The mean and standard deviation of ∆di
were computed over the entire model and for all the modes

with bulk displacements.

In case of lateral deformation, the estimated strain (ε̂j) at a

given depth j was computed from these N points as:

ε̂j =
L̂j
M − LF

j

LF
j

(7)

with LF
j and L̂j

M being the distances between the outermost

points in the lateral direction at a given depth j in the

initial (i.e., IF) and deformed (i.e., ÎM) images respectively.

Subsequently, the relative strain errors at given depth were

computed:

∆εj =
ε̂j − εj

εj
(8)

where εj is the applied reference strain.

Again, mean and standard deviation of the estimated ∆εj

were computed over the entire model and for all the modes

with lateral deformation.

C. Parameter optimization

In order to optimize the parameter settings for the RF-

based NRIR, two experiments were conducted using 6 of the

synthetic data sets (i.e., 2 per motion mode at the extremities

of the tested motion/deformation ranges):

Registration grid anisotropy: As pixels in the RF domain

are anisotropic, an isotropic registration grid - as typically

used for B-mode image registration [39] might sub optimally

represent the true motion field. Indeed, the bending energy

used as a regularizer would physically impose an anisotropic

smoothness in the axial and lateral direction for an isotropic

B-spline grid in the RF domain. In order to address this

problem, several grid aspect ratios were tested ranging from

1:1 (axial:lateral) to 4:1 either by increasing σx (case A) or

by reducing σy (case B).

Bending energy weight: Obviously, an important parameter

in the registration framework is ω which defines the bal-

ance between the image information and the prior boundary

conditions. Hereto, different settings for ω were tested, i.e.,

1 × 106, 5 × 106 and 5 × 108. This range was chosen based

on a rough initial visual inspection of the tracking results.

In addition, a hybrid setting was tested in which the value

of ω was gradually increased at the different levels of the

multi-resolution pyramid, i.e., from the coarse to fine scales,

in order to account for the fact that the likelihood of folding

of the displacement field increases at the finest (final) level of

the image pyramid with a larger number of control points.

To choose an optimum value of the above parameters, ∆d%
was computed for different test values of that parameter while

the other parameters were kept fixed. The test value that

yielded the lowest error for the majority of the six images

was used as the optimal setting for the RF-based NRIR and

systematically applied to all data sets used for testing the

accuracy of the method (cf. section III-B above).

D. Statistical analysis

To account for the non-Gaussian distribution of the tracking

errors, non-parametric Friedman two-way analysis of variance

(ANOVA) was used to assess whether the following differ-

ences in tracking errors were statistically significant:

a) Differences in errors while modifying grid aspect ra-

tios/bending energy of the NRIR, where the two cofactors

were i) solutions with different test values of grid aspect

ratios/bending energy and ii) different bulk displacement mag-

nitudes.

b) Differences in errors between RF-based NRIR and B-mode

NRIR, where the cofactors were i) solutions prior to and after

registration of the RF level and ii) different bulk displacement

magnitudes.

c) Differences in displacement and strain errors between BM

and NRIR where the two cofactors were i) motion estimation

methods and ii) different motion/deformation magnitudes.

A value of p < 0.05 was considered to be statistically

significant and used as a threshold to run a post-hoc analysis

by Tukey’s honest significant difference (HSD) test in order to

look for significant differences on changing the first cofactor

for each of the above cases.

E. Implementation details

The multi-resolution pyramid was constructed with 9 levels.

The transformation level complexity was implemented by

changing the number of B-spline control grid points µij (axial

× lateral) from 11 × 4 at the coarsest level to 133 × 22 at the

finest level. The corresponding inter-grid spacing σx×σy (axial

samples × lateral lines) ranged from 1000 × 250 (coarsest)
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Fig. 3. Comparison of displacement errors ∆d (%) on changing the aspect ratio (σx : σy) from 1:1 to 4:1 (final) for axial (left) and lateral (right) bulk
displacements. Case A: increasing σx to reach an aspect ratio of 4:1. Case B: reducing σy to reach an aspect ratio of 4:1. *, + and o denote p<0.05, indicating
significant difference of computed ∆d (%) between each of the cases and 4:1 respectively.

to 60 × 10 (finest). To reduce the image level complexity, a

2D Gaussian kernel with a standard deviation of 30 samples

× 4 lines was used at the coarsest level while no smoothing

was used at the final level. The maximum size of the kernel

at the coarsest level was chosen on the basis of the maximum

motion present in the bulk motion modes. On the first 8 levels

of the multi-resolution pyramid, envelope images were pre-

aligned while the underlying RF samples were aligned on the

finest level. The SSD and the BE energy were computed only

inside the mask where the tissue was present.

F. Advantage of RF-based NRIR over B-mode NRIR

In order to demonstrate that also in an NRIR framework,

RF data adds value to the accuracy of the motion estimates,

the tracking error was determined at the final two scales of the

multi-resolution approach: just prior to and after registration at

the RF level, i.e., at the finest level of the envelope registration

and the subsequent final (topmost) RF level.

G. Comparison of RF-based NRIR with block matching

In order to test the performance of the proposed RF-based

NRIR against the state of the art, the same data sets were

processed with a well-documented RF-based block matching

(BM) approach as described in [24].

In brief, in this methodology, the 2D displacement field is

computed between the fixed image, IF and the moving image,

IM in two consecutive stages using the normalized cross-

correlation (NCC) as a similarity metric [40] with subsequent

cosine interpolation in both axial and lateral directions [41]

in order to obtain sub-sample motion estimates. In the first

stage, the axial displacement is estimated only using a 1D

correlation kernel (295 samples; 20 samples window overlap).

To reduce the decorrelation noise, a recorrelation method is

used [23]. Subsequently, in a second stage, a 2D correlation

kernel (295 axial samples × 15 lines; 20 samples window

overlap) is used to estimate the residual axial and lateral

displacements. The final displacements are then obtained as

the sum of the displacement estimates from both stages. On

both stages, a 2D search region of size ±(103 samples ×
12 lines) is used. Finally, both displacement components are

filtered using a 2D median filter (10 displacement samples ×
7 lines) and interpolated linearly to obtain the dimension of

the RF data. The reader is kindly referred to [41] for a more

detailed description of this BM methodology.

The same set of 6 synthetic images (as used in NRIR) were

used to tune the parameters of the BM algorithm and these

parameter settings were subsequently fixed in order to process

the rest of the synthetic images.

Finally, time required for inter-frame motion tracking was

recorded for both approaches. The main framework for both

algorithms was written in C++. Although the RF-based NRIR

computations were done on an Intel (R) Xeon E5, 2.5 GHz,

32 GB (RAM), 8 core machine, the BM computations were

done on an Intel i7 (4770), 3.40 GHz, 4 core machine with

16 GB (RAM).

H. In-vivo application
The in-vivo feasibility of the proposed RF-based NRIR was

tested using a dataset collected from a healthy volunteer using
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lateral transformation fields in polar space for a lateral bulk displacement of
d = 1.5 mm.

a 4 multi-transmit sequence implemented on the ULA-OP

system [42], [43] in order to achieve a frame rate of 52 Hz

over a 90 degree sector angle. The system was equipped with

a 2 MHz phased array probe and the heart was scanned in a

standard apical 4-chamber view. The RF data was sampled at

50 MHz resulting in RF frames of 8,994 samples × 176 lines.

After RF-based NRIR, a region of interest (ROI) with a size of

10 mm × 10 mm was manually defined in the interventricular

septum on the reconstructed B-mode images in order to extract

both axial and lateral velocity profiles over the cardiac cycle as

the average velocity value with this ROI. The resulting traces

were temporally smoothed by a median filter with a length of

3 frames.

IV. RESULTS

A. RF-based NRIR parameter optimization

The tracking errors for bulk axial and lateral inter-frame

displacements estimated during the parameter optimization

process on the anisotropy of the B-spline registration grid and

the weighting of the regularization term are shown in Fig. 3
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Fig. 6. Impact on ∆d percentage on RF tracking post envelope tracking
within the multi-resolution pyramid for both (a) axial and (b) lateral bulk
displacements. * indicates p< 0.05.

and 4 respectively. An anisotropic aspect ratio of the B-spline

grid was shown to reduce the registration error particularly for

the estimates of the lateral component (Fig. 3, right column).

Indeed for changing the grid aspect ratio from 1:1 to 4:1

(regardless of case A and B) for all axial displacements the

mean error reduced by 1.6±1.2% and 0.1±0.77%; even more

for the lateral displacements by 5.49±3.5% and 23.76±17.2%.

Therefore, an anisotropic control grid with an aspect ratio of

4:1 was chosen as an optimal setting. For both bulk motion

modes, a Friedman ANOVA analysis on ∆d% obtained with

different grid aspect ratios (case A and case B) and for all the

motion magnitudes showed significant differences (p< 0.05).

Again for both bulk motion modes, a post-hoc Tukey’s HSD

test showed errors obtained with an aspect ratio of 4:1 were

significantly different (p< 0.05) (for case A and case B) than

the rest of the grid aspect ratios.

For any value of the constant BE weight, the accuracy consis-

tently increased with an increase in axial displacements (Fig.

4). In contrast, as ω reached 5× 108, the error for the lateral

inter-frame bulk displacements of 0.75 and 0.9 mm went up

to 32% and 46% respectively. Overall, an ω with a value of

1× 106, 5× 106 and 5× 108 for pyramid levels 1-3, 4-6 and

7-9 respectively seemed optimal. For both bulk motion modes,

Friedman ANOVA analysis showed significant variation ( p<

0.05) among ∆d% estimated with different BE weights and

over all motion magnitudes. A post-hoc Tukey’s HSD test

showed errors obtained with the hybrid setting of ω were

significantly different than the rest of the three settings of ω.

B. Accuracy of RF-based NRIR

To visually assess the performance of the RF-based NRIR,

an example of the axial and lateral transformation fields in
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Fig. 7. Example of transformation fields in polar space for the minimum and maximum of the simulated inter-frame values for a) axial bulk motion, b) lateral
bulk motion, and c) lateral compression. GT = ground truth, NRIR = non-rigid image registration, BM = block matching.

polar space for a lateral inter-frame bulk displacement of 1.5

mm is shown in Fig. 5.

In case of axial and lateral bulk displacements, the estimated

displacement errors with respect to the ground truth were

7.25±8.01% and 15.06 ±12.62% respectively. In case of

lateral deformation, the strain errors were 21.3±21.2%.

C. Advantage of RF-based NRIR over NRIR

Fig. 6 shows the increase in tracking accuracy of the

NRIR methodology when moving from the finest scale of

envelope registration to the RF registration. Overall, the final

RF refinement in the motion estimate reduced the error by

about 5.8±4.9% and 14.6±12.2% for the axial and lateral bulk

motions respectively (p < 0.05). Again a post-hoc, Tukey’s

HSD test showed that the errors obtained from RF-based NRIR

were significantly lower (p<0.05) than the ones estimated with

NRIR registration.

D. Comparison of RF-NRIR with BM

To qualitatively compare the estimated motions obtained by

both methods, examples of the displacement fields obtained

in polar space for a single speckle realization are shown in

Fig. 7. The top (a), middle (b) and the bottom (c) blocks

represent three motion modes and each row represents the

lowest and the highest simulated values from each mode.

Each row contains the axial (first three columns) and lateral

transformation fields (last three columns) for the ground truth

and the two motion estimation methods. For axial displace-

ments, the axial component of both the tracking algorithms

were very competitive but the lateral component estimated by

BM was noisy (top row, left column of Fig. 7). On the other

hand, for lateral motion and lateral deformation modes, RF-

based NRIR resulted in less noisy displacement fields for both

axial and lateral components(right, middle and bottom rows

respectively).

More quantitatively, these findings are summarized in Fig.

8. For all axial and lateral motion amplitudes, RF-based

NRIR showed smaller estimation errors than BM. For both

approaches, the estimation error decreased for increasing inter-

frame displacement in the axial direction while there was an

optimal inter-frame displacement range for estimates of the

lateral component. The estimation error for BM was higher

than NRIR by 24.9% and 68.8% for the motion mode at the
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Fig. 9. Mean and standard deviation of the relative strain errors for the
simulated range ε for both NRIR and BM. * indicates p< 0.05.

extremities of the tested lateral motion range. It can be seen

that for the estimated lateral motion the optimum range was

more pronounced for the BM approach.

Fig. 9 shows a comparison of the mean and the standard de-

viation of the relative strain errors for both motion estimators.

Although the average strain estimates were very competitive

between both approaches, the variance of the estimation error

obtained with BM was 66.37% higher than that of RF-based

NRIR.

For all three motion modes, a Friedman ANOVA yielded

statistically significant difference in estimation errors i.e.,p <

0.05, between both the methods and for all displacement mag-

nitudes. A post-hoc analysis with Tukey’s HSD test showed

the errors estimated by NRIR differed significantly (p<0.05)

than BM for all three motion modes.

The average inter-frame registration time for RF-based

NRIR and BM were 2.3 mins and 0.23 min respectively.

E. In-vivo application of RF-based NRIR

Fig. 10 shows a non-scan converted frame of the normal

volunteer at end-systole (ES). The estimated axial and the

lateral cumulative displacement fields at ES, corresponding

to the myocardium are shown below. Subsequently, Fig. 11

shows a B-mode frame at end-diastole, with the ROI (red)

in which the tracking was evaluated. The extracted axial and

lateral velocity traces are also shown. Both profiles showed a

clear systolic (S′), early diastolic (E′) and late diastolic (A′)

waves.
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Fig. 10. Top: (A) Non-scan converted image at end-systole. Bottom: (B) axial
and (C) lateral cumulative displacement fields at end-systolic (ES), shown only
at the myocardium.
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septum. Bottom: Mean axial (blue) and lateral (red) velocity traces computed
at the ROI (10 mm × 10 mm) using the RF-based NRIR. The respective
standard deviation of the velocity estimates within the ROI are denoted with
the black lines.

V. DISCUSSION AND CONCLUSION

This study demonstrated the performance of an RF-based

NRIR and contrasted it against a state of the art BM solution

using synthetic data sets. The main advantage of the NRIR
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approach showed to be a more robust estimate of the lateral

motion and deformation modes while both approaches were

very competitive to estimate motion in the axial direction.

The gain in accuracy showed to be most pronounced for

relatively large inter-frame lateral displacements (cf. Fig. 8)

where BM had more difficulties in obtaining correct estimates

likely due to the lack of intrinsic regularization during the

estimation process in combination with peak hopping errors

that are more likely to occur when large motions are involved.

The findings are in line with our previous findings comparing

NRIR with BM on B-mode images [16]. NRIR improved the

lateral estimates significantly with respect to BM but still the

lateral strain errors were higher than the clinically acceptable

limits. As such, despite this improvement, the lateral estimates

are not optimum yet to be used in a clinical context.

The main incentive of this study to process RF data was to

increase tracking accuracy as reported by others using speckle

tracking approaches (e.g., [17], [18], [44]). In this study,

we could indeed demonstrate that RF-based NRIR increases

accuracy with respect to NRIR on the envelope data alone

for both motion components. Not surprisingly, the gain of

RF-based NRIR was particularly pronounced for small axial

inter-frame displacements (cf. Fig. 6).

Applying NRIR on RF data in contrast to scan-converted

data implied motion estimation on images in beam space

where the tissue motion is higher in the near field compared to

the far field. Secondly, the difference in absolute intensities of

the RF images affects the intensity based similarity measure

used in our NRIR framework and therefore the convergence

tolerance factor of the optimizer needs to be adapted accord-

ingly.

Two challenges met when applying the NRIR framework

on RF data were the computational burden of the method,

particularly when applied to large images such RF frames, and

the anisotropic nature of the registration problem. These prob-

lems were dealt with in the proposed RF-based NRIR solution

by making use of an analytical version of the regularizer (as

previously presented in [32]) and making use of an anisotropic

registration grid with an aspect ratio of 4:1 respectively. A final

modification required to be made to the NRIR framework was

that the weighting parameter determining the balance between

image and prior information was made variable depending

on the level in the coarse-to-fine processing. Although to our

knowledge, such a dynamic weighting has not been described

before, it has been shown to be important in order to get

accurate RF-based NRIR estimates. The underlying reason for

this is likely that to capture larger displacements, a lower ω on

coarser levels imposed less boundary conditions and indeed a

higher omega in these levels imposed additional constraints

leading to optimization failure. However, at the finer grid

resolution the chance of the folding of the transformation

field increased and a lower ω increased the error. As such,

the combination of a low and high ω at the coarsest and the

finest scales respectively led to an optimal solution.

Finally, to prove that the developed RF-based NRIR motion

estimator can also be used on real RF data set recorded in-vivo,

an initial feasibility test was performed. This test showed that

both axial and lateral velocity traces of the septal wall could be

extracted and both showed a normal physiologic pattern. An

extensive evaluation of the proposed motion estimator in-vivo

is the topic of ongoing work.

One of the limitations of the study was that the in-silico

images were simulated under ideal consideration, i.e., noise

and non-linearity were not considered. Nevertheless, the in-

vivo feasibilty showed clinically promising results. Addition-

ally, despite the fact that the RF-based NRIR made use of

an analytic expression of the computation of the bending

energy in order to increase the speed, it remains significantly

slower than BM. Although the computational load cannot be

compared directly as both algorithms were run on distinct

computers (i.e., in the respective labs involved in this study),

it seems clear that the proposed NRIR motion estimator is

slower than BM as it solves the motion estimation problem

iteratively rather than in a single iteration. Nevertheless, if

calculation time was considered a practical bottleneck then

the computations can still be extended to GPU.

In conclusion, an RF-based NRIR motion estimator was

proposed and shown to outperform BM in terms of accuracy

for lateral motion and deformation estimates in synthetic

data sets. Moreover, this estimator was proven to outperform

its B-mode correlate. An initial application of the proposed

estimator in clinical data, demonstrated its feasibility in-vivo.
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