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Abstract

Control of biotechnological processes is currently recipe-based with
insufficient ability to handle possible uncertainties, which results in sub-
optimal production processes. To address this problem, model-based op-
timization and control approaches can be implemented to derive optimal
control strategies. However, for reliable performance of model-based con-
trol, it is crucial to use flexible and adaptive control strategies which ad-
dress biological variability while compensating for uncertainties. In this
work, we present an approach for adaptive control of a bioprocess based
on dynamic flux balance models. A previously developed bilevel approach
for bioprocess optimization is implemented inside a model predictive con-
trol (MPC) routine. To account for model uncertainties, a moving horizon
estimation algorithm is combined with the MPC in order to estimate un-
certain parameters of the underlying model online for different metabolic
modes. We apply this method to maximize the productivity of a tar-
get metabolite under microaerobic conditions by adapting the degree of
oxygen-limitation online.

Keywords: Productivity, Constraint-based models, Model predictive
control, Moving horizon estimation.
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1 Introduction

Model-based optimization and control of bioprocesses is classically done us-
ing unstructured models based on a very simplistic representation of cellular
metabolism. Unstructured models generally involve lumped descriptions of in-
tracellular metabolism in terms of a specific growth rate and constant yield
coefficients [1]. While this kind of models are of low complexity, they have
limited capability to predict the wide range of cellular behaviour in response
to changing environmental conditions. Compared to unstructured models, flux
balance analysis (FBA)-based models [2, 3] provide a more detailed description
of intracellular metabolism by considering a metabolic network which consists of
metabolites and metabolic fluxes connecting the metabolites. These models are
defined based on the stoichiometry of the metabolic network and give an optimal
metabolic flux distribution by maximizing a relevant biological objective.

FBA models have shown successful applications in biotechnology and biopro-
cess optimization [4]. They allow to explore potential production capabilities of
metabolic networks and can be applied efficiently to identify targets of genetic
interventions as well as the optimal time for interventions and/or determining
the optimal process condition (such as feeding and aeration level) for improved
bioprocess yield and productivity [5, 6]. However, the application of FBA-based
models is not yet well studied in bioreactor operation and control.

In our previous work [7], we have implemented the dynamic enzyme-cost
FBA (deFBA) model [8] within a bilevel framework. The deFBA-based bilevel
approach improves bioprocess productivity by finding optimal strategies for dy-
namic manipulation of cellular metabolism in both genetic and process levels.
However, as parameter variations may lead to changes in the dynamics, it is
crucial to have advanced strategies which guarantee the performance of model-
based control in the presence of disturbances and plant-model mismatch. In this
direction, it was shown that introducing measurement feedback into the open-
loop FBA-based optimization allows for improved performance of the bioreactor
control [9, 10]. In [10], we have considered a closed-loop implementation of the
deFBA-based bilevel optimization method. Repeating the bilevel optimization
updated by online measurements resulted in improved controller performance in
achieving higher process productivity by compensating plant-model mismatches.

However, a remaining bottleneck of the model-based control is that the un-
derlying model is often only valid for a limited operational range. In fact,
models may be restricted to narrow growth modes of the bioprocess and may
not cover all transient modes of the organism during the process operation. If
the biological variability is neglected, the performance of model-based control
strategies may be limited. To address this aspect, in this work we consider a
closed-loop implementation of an adaptive deFBA-based control. For that, we
implement the deFBA-based bilevel problem within a model predictive control
(MPC) [11] which allows for feedback corrections. Instead of using the nominal
value of model parameters, we account for uncertain and time-variable param-
eters within the control scheme. To do so, MPC is combined with a moving
horizon estimation (MHE) algorithm to estimate uncertain modelling param-
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eters for different growth modes of the organism online. The approach allows
to adapt the model for each transient mode, using the data obtained during
the process. Moreover, to update the initial condition of the deFBA model in
each MPC iteration, the controller includes a resource balance analysis (RBA)
algorithm which predicts the optimal steady state composition of the measured
biomass, which is used as an estimate of the biomass components.

As an application, we consider oxygen-limited (microaerobic) batch growth
of Escherichia coli for ethanol production using a small-scale metabolic-genetic
network. Depending on the degree of oxygen limitation in the microaerobic
growth, the cells transition to different metabolic modes which lead to changes
in dynamics of the system. Through a simulation-based study, we demonstrate
that the proposed MPC with the adaptive deFBA model can be a suitable
approach to control such a process.

The paper is structured as follows. In Section 2, the deFBA model is re-
viewed, together with the open-loop optimization problem for maximal produc-
tivity. In Section 3, the adaptive MPC algorithm with detailed descriptions of
its components is presented. The case study and the implementation of the
proposed algorithm on that are discussed in Sections 4 and 5.

2 Methods

2.1 Review of the deFBA model for metabolic network
optimization

In this section, we give a short introduction of the deFBA model [8, 12]. It is
formulated as a dynamic optimization problem that includes a stoichiometric
part which captures the mass balances of the metabolic-genetic network, and
a constraint based part which describes the biophysical constraints such as the
metabolic capacity based on cellular resource allocation.

To model the network, different classes of biochemical species are considered:
extracellular nutrients and products with the molar amount vector z ∈ Rn1

≥0,
intracellular metabolites with the molar amount vector m ∈ Rn2

≥0, and macro-
molecules such as gene products with the molar amount vector p ∈ Rn3

≥0. The

total biomass B (dry weight in g) is obtained by the scalar product bT p, where
the vector b = (b1, ..., bn3) contains the molecular weights (in g/mol) of the
macromolecules represented in the vector p. The network reactions are grouped
accordingly into three classes:

• Exchange reactions between the inside and the outside of the cell (sub-
strate uptake and product secretion), with reaction flux vector Vz ∈ Rr1 .

• Metabolic reactions, converting metabolites into each other, with reaction
flux vector Vm ∈ Rr2 .

• Biomass production reactions, converting metabolites into macromolecules,
with reaction flux vector Vp ∈ Rr3 .
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We write shortly V = (Vz, Vm, Vp) ∈ Rr1+r2+r3 , with a unit of molar amount
per time. Through the deFBA model, there is no explicit flux for the biomass
growth, and instead there are reactions for producing individual biomass com-
ponents. It was shown previously that with typical reaction stoichiometries and
kinetics, the intracellular metabolites m can be considered to be in quasi-steady
state for this system [8]. This yields the algebraic equation

ṁ = SmV (t) = 0, (1)

with the stoichiometric matrix Sm which includes the stoichiometric coefficients
of the metabolic species represented in the vector m in the reaction flux vector
V . Collecting other species in vector x, as x = (z, p) ∈ Rn1+n3 , the mass
balances are given by the differential equation

ẋ(t) = SV (t), (2)

where S is the stoichiometric matrix with the stoichiometric coefficients of the
species in z and p for reaction fluxes in the vector V .

The deFBA model also includes several biophysical constraints:

• Enzyme capacity constraints, in which the reaction fluxes are limited by
the maximum enzymatic capacity defined by the amount and catalytic
constant (kcat) of associated enzymes. The capacity constraint for a single
enzyme pi is given by∑

j∈cat(i)

|Vj/kcat,j | ≤ pi, i ∈ E (3)

where cat(i) indexes the set of reactions catalysed by the enzyme pi, i ∈ E
in which E is the set of enzymes.

• Enzyme-independent flux bounds, which for example can be used to ex-
press the irreversibility of reactions:

Vmin ≤ V ≤ Vmax. (4)

• Biomass composition constraints: the macromolecules p also include non-
catalytic proteins and other molecules which do not contribute directly
to cellular metabolism and growth, but they are required by the cell to
keep it working. These are denoted as ”quota compounds” [12], and the
constraints are expressed by enforcing a minimal fraction ϕQ ∈ [0, 1] of
the total dry weight bT p of the cell to be made of a quota compound pQ

ϕQb
T p ≤ pQ, Q ∈ Q (5)

where Q is the set of quota compounds.
Considering the biomass integral over the considered time span as an objec-

tive function for the cellular dynamics [8], the deFBA model is described by the
following dynamic optimization problem:
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maximize
V (·)

tf∫
t0

bT p(t)dt (6a)

subject to ẋ(t) = (ż(t), ṗ(t)) = SV (t), (6b)

x(t0) = x0 = (z0, p0), x(t) ≥ 0 (6c)

SmV (t) = 0, (6d)

Vmin(t) ≤ V (t) ≤ Vmax(t), (6e)

ϕQb
T p(t) ≤ pQ(t), Q ∈ Q (6f)∑

j∈cat(i)

|Vj(t)/kcat,j | ≤ pi(t), i ∈ E (6g)

where fluxes V are the dynamic optimization variables. Through the model,
cellular metabolic-genetic fluxes V are assigned to maximize the biomass pro-
duction subject to the given biophysical constraints. In contrast to kinetic
models, where regulatory interactions from metabolites on enzyme synthesis are
commonly used [13], the deFBA model uses only an optimization principle and
no regulatory constraints. However, since the catalytic efficiency of enzymes as
well as their biosynthesis costs are accounted for in the optimization, the model
can produce behaviours that will typically be realized by regulatory interactions
in the actual cells, such as catabolite repression or overflow metabolism [8].

2.2 Control problem formulation for maximal productiv-
ity

Constraint-based models are based on the hypothesis that the cells are max-
imizing a reasonable biological objective such as biomass. From a bioprocess
point of view, there is often a trade-off between production of biomass and that
of a certain target metabolite as a product. To describe the bioprocess opti-
mization which is constrained by a cellular model that includes an optimization
problem itself, a bilevel optimization problem is formulated. Thereby, in the
outer optimization problem, the process objective is maximized, while the inner
problem represents the cellular model where the cellular objective is maximized.
Such a problem structure also occurs for example in strain design algorithms in
metabolic engineering [14].

Metabolic engineering strategies are often based on static gene deletions to
increase the product yield of the process [5, 15]. Such deletions may however
decrease productivity by slowing down the biomass growth which is detrimental
to the overall processing speed. To regain the bacterial growth but maintain a
high yield, dynamic regulation of metabolism in a two-phase process has been
proposed [16]. To this end, in [7], we have employed the deFBA model within
a bilevel optimization to obtain the optimal temporal manipulation of the cel-
lular metabolism for improved bioprocess productivity. This is implemened by
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dynamic manipulation of one or several reaction fluxes such that an optimal
balance between biomass growth and product formation is achieved.

Here, we are looking for a time course of the manipulated flux which leads
to an increased productivity. The formulated dynamic bilevel problem for open-
loop optimal control of the productivity is as follows:

maximize
tf ,u(·)

xt(tf )/tf

s.t. maximize
V (·)

tf∫
t0

bT p(t)dt

s.t. (6b) to (6g),

Vreg(t) = u(t).

(7)

In the outer optimization, the optimal batch time tf and the optimal profile
of the manipulated flux u, are determined to get the maximum productivity
xt(tf )/tf for the target metabolite xt. The outer optimization is subject to an
inner optimization (the deFBA model) which addresses maximizing the biomass.
In the inner problem, Vreg is the manipulated flux, which is set to the control
profile u determined in the outer optimization through dynamic metabolic con-
trol. The inner problem forces the unregulated fluxes to be distributed such
that the biomass formation is maximized. For a specific application, dynamic
manipulation of any pathway (either gene expression pathways or metabolic
fluxes) can be considered through the defined problem.

3 MPC based on adapted metabolic-genetic model

The proposed control approach is composed of MPC and an estimation part
including MHE and RBA. The MHE is used to estimate uncertain parameters
of the underlying model (deFBA) and RBA to estimate the state of biomass
components p. Estimated states and parameters are then used to initialize
and correct the deFBA model employed within MPC. The control scheme is
visualized in Figure 1 and explained in detail in the following sections.

3.1 Model predictive control

Model predictive control is an optimization-based control approach which uses
a model to predict the future behaviour of a dynamic system. MPC computes a
trajectory of control inputs by solving an optimization problem at each sampling
time [11]. In this work, we consider a closed-loop control of the bioprocess by
introducing feedback to the open-loop problem (7), based on the MPC. The
optimal trajectory of the control inputs is determined by repeating the bilevel
optimization (7) while updating the state x0 based on online measurements.
For the MPC optimization, the batch time is fixed equal to the optimal batch
time tf obtained from the open-loop optimization. As the batch runs for a finite
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Figure 1: Adaptive MPC control scheme.

time, a shrinking horizon of length tf − T , where T is the current time, is used
for the time the optimization is performed over. A step size h is defined to
discretize the batch time:

h = tf/n, T = ih, i = 0, ..., n− 1.

The MPC problem has a general form of

maximize
{uk(·)}

tf
T

F({uk(·)}tfT , {xk(·)}tfT ), (8)

where {uk(·)}tfT and {xk(·)}tfT stand for the sequences of control input vector
and state vector (z, p), respectively, from the current time T to the final time
tf at the k-th iteration of the MPC scheme. F is the objective function.

In our case, each individual optimization problem for k = 1 to n over the
shrinking batch time [T, tf ] is defined as:

maximize
{uk(·)}

tf
T

xt(tf )

s.t. maximize
V (·)

tf∫
T

bT pk(t)dt

s.t. (6b) to (6g),

Vreg(t) = uk(t).

(9)
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As the batch time tf is taken from the open-loop optimization, MPC maximizes
the final concentration of the target metabolite xt in order to have maximal
productivity. Based on the problem (9), the feedback is applied by resetting
the controller initial conditions using measured and estimated state variables
(substrate, products and biomass components concentrations) at each iteration.

Generally, the standard MPC scheme uses nominal values of the parameters,
while an adaptive MPC scheme allows to adjust the model online to compensate
for time-varying process characteristics [17]. Due to the very dynamic nature
of biological systems, adaptive MPC can be a suitable approach for a flexible
bioprocess control. In this work we consider an adaptive MPC scheme which
addresses uncertain parameters of the metabolic-genetic model within the con-
trol scheme to take biological variabilities into account; besides updating the
state based on the online data, the uncertain parameters are also estimated
and updated in each iteration of the MPC scheme. However, as the underlying
model is relatively complex with many parameters inside, the prerequisite of
the model adaptation is to identify which parameters should be considered as
inputs for adjusting network dynamics. Such a parameter can be selected by sen-
sitivity/observability analyses for any particular application and growth mode.
Later, we show how the proposed adaptive MPC is capable to identify target
parameters for model adjustment in each metabolic mode of the bioprocess.

For the parameter estimation, a moving horizon estimation algorithm is
applied as explained in the next section.

3.2 Moving horizon estimation

In order to estimate unknown or uncertain parameters of the model based on
the information obtained through online measurements, we implement moving
horizon estimation [18, 19]. MHE minimizes the mismatch between the model
outputs and the measurements over an estimation window and can therefore
give an estimate of initial conditions or unknown parameters.

Uncertain parameters of the deFBA model are usually due to variations in
the catalytic constants kcat of metabolic or gene expression reactions, but could
also be the stoichiometry of an elementary reaction or other model elements.
To represent changing biological conditions, we assume that the parameters are
slowly time-varying. Thus, while in each MHE problem constant parameter
values are estimated for the considered horizon, the MHE problems at different
iterations may result in different parameter estimates.

Here, we implement MHE to estimate the uncertain parameters of the deFBA
model denoted by lk during each MPC iteration k. From k = 1 to n, each indi-
vidual MHE problem can be given by the following bilevel problem:
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minimize
lk

Nmhe∑
i=0

(Bk(T − ih)− B̃k(T − ih))2 + (zk(T − ih)− z̃k(T − ih))2

s.t. lmink ≤ lk ≤ lmaxk ,

maximize
V (·)

T∫
T−Nmheh

bT pk(t)dt

s.t. (6b) to (6g),

Vreg(t) = ũk(t).
(10)

In the estimation problem (10), available measurements on biomass B̃, con-
centrations z̃ of extracellular metabolites, and the manipulated flux ũ are used
to estimate uncertain deFBA parameters l. In principle the measured control
input ũk should be the same as the input uk determined in the MPC problem,
but to account the possibility of input disturbances which can be measured we
use a more general formulation here. Note that in (10), the constraints (6b)–
(6g) within the inner problem are depending on the estimated parameter lk,
which is an optimization variable in the outer problem. Thereby, at each MPC
iteration k, lk is determined from the outer optimization by minimizing the
difference between the concentration of total biomass Bk = bT pk and/or ex-
tracellular species (substrates and products) zk predicted by the deFBA model
(the inner problem) and the ones obtained via measurements (B̃k, z̃k), over pre-
vious sampling times T − ih, i = 0, ..., Nmhe, where Nmhe presents the number
of time steps within the estimation horizon of the MHE. Note that the number
of time steps Nmhe considered in MHE’s prediction horizon is limited by the
number of time points with available measurements. So, as the MPC iterations
proceed one can increase Nmhe if it is needed for improved estimation. Upper
and lower bounds lmink and lmaxk can be used to ensure biological plausibility of
the estimated model parameters.

3.3 State estimation by resource balance analysis

During the MPC iterations, the states are updated by the current process mea-
surements. To update the states, we need to have information on the concen-
tration of biomass components p (enzymes, quota compounds and other macro-
molecules) individually, as an initial condition for the deFBA model. How-
ever, in practice it is only possible to measure the total biomass concentration
B = bT p. Therefore, an algorithm is needed to estimate the state of biomass
components. While a rigorous state estimation for deFBA models can be con-
ducted in principle through a mixed integer optimization [20], the required com-
putational effort will preclude the application of that method online within an
MPC scheme.

Instead of a full state estimation, we compute the optimal biomass compo-

9



sition by the resource balance analysis (RBA) [21] and use that as an estimate.
Through the RBA problem it is assumed that the cell is at an optimal quasi
steady state where for each given value of biomass, the metabolic fluxes and
cellular components are allocated to maximize the cellular growth rate µ. Note
that this is consistent with the cellular objective optimization of the deFBA
model in the inner problem, since maximization of the growth rate is often
equivalent to the maximization of the biomass integral as in (6a).

The estimation algorithm is defined as:

maximize
µ,V,p

µ

subject to SpVp − µp = 0,

bT p = B̃,

SmV = 0,

Vmin(z̃) ≤ V ≤ Vmax(z̃),

ϕQb
T p ≤ pQ, Q ∈ Q∑

j∈cat(i)

|Vj/kcat,j | ≤ pi, i ∈ E

Vreg = ũ.

(11)

which is a nonlinear optimization problem (due to the presence of the term µp in
the mass balance equations of cellular components). For the measured value of
the biomass B̃ at each sampling time with corresponding measured value for the
manipulated flux ũ, this problem gives an estimate for biomass components, p
which is used to initialize the controller states in each iteration. Measurements
on extracellular species (z̃) are used to constrain fluxes by adjusting Vmin and
Vmax; as an example if a metabolite zi is not present, the corresponding upper
flux bound Vmax,i(z̃) is set to zero.

3.4 Adaptive MPC algorithm

The overall control algorithm is summarized as Algorithm 1 (in accordance to
Figure 1). It should be noted that the first MPC iteration starts with the
nominal value of uncertain parameters. Moreover, before the iterations of the
MPC algorithm, the RBA algorithm is used to estimate the composition of the
initial biomass p(0), before applying any control, i.e., without the constraint on
Vreg in (11).

3.5 Numerical solution

To solve the MPC and MHE optimization problems, we implement collocation
methods to approximate the inner problem (the deFBA model) by discretiza-
tion of dynamic variables in the time domain [22]. For the collocation, the time
interval [0, tf ] is divided into n equally sized intervals, each containing K collo-
cation points. The collocation points are determined by zeros of the Legendre
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Algorithm 1
Estimate p(T ) with RBA for T = 0
For k = 1 to n
1. Given initial states x̃k(T ) = (z̃k(T ), pk(T )) and parameters
lk, solve the dynamic optimization problem (9) over [T , tf ],

which yields the optimal control sequence {uk(·)}tfT .

2. Apply the first move of control input {uk(·)}T+h
T to the plant during

the time [T , T + h].
3. T = T + h

4. Obtain new measurements: metabolites z̃k+1(T ), total biomass B̃k+1(T ),
and control input ũk+1(T ).
5. Solve the MHE problem (10) with inputs {(ũ(·), x̃(·)}TT−Nmheh

which
yields the estimated parameters lk+1.
6. Solve the state estimation problem (11) with inputs ũk+1(T ), lk+1

and measured total biomass B̃k+1(T ), which gives estimated biomass
components pk+1(T )
7. k = k + 1, iterate.

polynomials. The flux variable V (t) and the derivative of state variable ẋ(t) are
discretized with a Lagrange interpolation scheme. The state variable x is dis-
cretized at the boundaries of the n time intervals and thus can be reset at each
sampling step. By discretization of variables, the continuous optimization prob-
lem in (6) is approximated by a linear problem (LP). The detailed procedure
for the discretization of variables can be found in [8].

The overall bilevel optimization problems are then solved in MATLAB. The
outer optimization is performed using fmincon, and the inner LP optimization
is solved using linprog . For the open-loop optimization, several initial condi-
tions have been evaluated for the outer optimization to avoid obtaining a local
minimum only. Also, for an efficient performance within the MPC, the optimal
control inputs obtained from open-loop optimization are used as an initial guess
for the first iteration of the closed-loop optimization. As the MPC proceeds,
the optimal control values obtained from each iteration are used as the initial
guess for the next iteration. This approach helps to avoid local optima during
the MPC iterations.

4 Case study

As the case study, we consider batch growth of E. coli for converting glycerol
into ethanol under microaerobic conditions [23]. This is a specifically interest-
ing growth condition as the structure of the model changes in correspondence
to the degree of oxygen limitation. In this case study, the proposed MPC algo-
rithm regulates the metabolic modes in order to maximize ethanol production
by adjusting the oxygen supply to the culture.
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4.1 Network description

We constructed a reduced metabolic-genetic network model of E. coli includ-
ing the core processes relating carbon uptake and growth. This is developed
from the in silico model of the central E. coli metabolism [24]. The network
includes glycerol dissimilation pathways and reactions for glycolysis, pentose
phosphate pathway, anaerobic fermentation, and respiration together with ap-
propriate production reactions for biomass components including catalytic en-
zymes, ribosomes and structural macromolecules. The main steps for generating
such a reduced metabolic-genetic network are similar to what was presented in
our other works [7, 12]. All reactions with corresponding enzymes and their
catalytic constants are given in Tables 1 and 2, and for simplicity, gene IDs are
used for the naming of enzymes.

The biomass components collected in the vector p and their weight vector b
are listed in Table 2. The weight vector is calculated based on the stoichiometric
coefficients of the respective subcomponents and their molar mass. The initial
biomass composition is computed by the RBA algorithm to yield the maximum
aerobic growth rate on glycerol. All biomass elements which are not catalysing
reactions in this model are combined in a single quota compound Q. From the
available data for E. coli [25], it is estimated that this quota makes up at least
55% of total biomass, which is formulated in the biomass composition constraint

0.55bT p ≤ Q. (12)

The nominal values for the catalytic constants of enzymes are extracted from
the enzyme database BRENDA [26] for E.coli, while the catalytic constants
of the biomass reactions are based on the translation elongation rate of 12
amino acids/s in E.coli [27]. The complete deFBA model is then specified by
the reactions in Tables 1 and 2 in combination with the biomass composition
constraint (12). Initial nutrient conditions are summarized in Table 3.

4.2 Simulation cases for adaptive MPC

The proposed metabolic-genetic model is used to maximize the ethanol pro-
ductivity by the MPC algorithm. A metabolic regulation is considered by ma-
nipulating the oxygen uptake rate OUR (V22 according to the numbering of
metabolic pathways in Table 1).

We first describe the parameter variation that is used to generate artificial
process data. To match the cellular growth rates to available experimental data,
a scaling factor f on the catalytic constants of the enzymes is introduced as an
adjustable parameter (Table 1). It has been experimentally shown that with E.
coli growing microaerobically on glucose, decreases in the oxygen availability re-
sult in a decreased catabolic efficiency of the cell [28]. Our experimental studies
indicate such a pattern for microaerobic E. coli growth on glycerol as well (data
unpublished), suggesting lower metabolic activity of E.coli in oxygen limitation
conditions compared to a fully aerobic growth. Due to this fact and through
validating the metabolic-genetic network with the available experimental data,
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Table 1: Metabolic part of the deFBA model: Metabolic reactions with associ-
ated enzymes and rate constants kcat, scaled by the scaling factor f .

No. Reaction Gene/Enzyme kcat/min
−1

1 GLY + ATP + q → T3P + ADP + qH2 glpK-D 1998 · f
2 GLY + PEP + NAD+ → T3P + NADH + PYR dhaK 1447 · f
3 2T3P → G6P fba 630 · f
4 G6P + 2NAD+ → RU5P + 2NADH + CO2 gnd 1326 · f
5 RU5P → X5P rpe 78000 · f
6 RU5P → R5P rpi 3000 · f
7 X5P + R5P → S7P + T3P tkt 3402 · f
8 S7P + T3P → E4P + G6P tal 780 · f
9 E4P + X5P → T3P + G6P tkt 3402 · f
10 T3P + ADP + NAD+ → PEP +NADH + ATP eno 3162 · f
11 PEP + ADP → PYR + ATP pyk 3960 · f
12 PYR + CoA → AcCoA + FOR pfl 768 · f
13 PYR + CoA + NAD+ → AcCoA + NADH + CO2 pdh 29160 · f
14 FOR → CO2 fhl 169980 · f
15 PEP + CO2 → OAA ppc 32400 · f
16 OAA + AcCoA + NAD+ → AKG + CoA + NADH + CO2 acn 318 · f
17 AKG + ADP + 3NAD+ → OAA + 3NADH + ATP + CO2 sucCD 2684 · f
18 AcCoA + ADP → ATP + CoA + ACT ackA 800 · f
19 AcCoA + 2NADH → ETH + CoA + 2NAD+ adhE 942 · f
20 ATP → ADP
21 AKG + ATP + NADH → AA + ADP + NAD+ gln 360 · f
22 O2 + 2qH2 → 2q + 8H+ cyo 18000 · f
23 NADH + q → qH2 + 4H+ + NAD+ nuo 2220 · f
24 4H+ + ADP → ATP atpH 3300 · f
25 ACT + ATP + CoA → ADP + AcCoA acs 3996 · f
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Table 2: Genetic part of the deFBA model: Biomass reactions with values of
weights, catalytic constants (kcat) and initial conditions for biomass components
p(0). All biomass reactions are catalyzed by ribosome R.

No. Biomass production b/ kcat/ p(0)/

reactions (gmol−1) (min−1) (mM)
26 1657AA + 6628ATP → glpK-D + 6628ADP 180610 0.43 0.000044
27 3657AA + 14628ATP → dhaK + 14628ADP 398610 0.2 0
28 1696AA + 6784ATP → fba + 6784ADP 184860 0.42 0.0000061
29 1275AA + 5100ATP → gnd + 5100ADP 138980 0.56 0.0000032
30 225AA + 900ATP → rpe + 900ADP 24520 3.2 0.000000008
31 438AA + 1752ATP → rpi + 1752ADP 47740 1.64 0.00000091
32 1326AA + 5304ATP → tkt + 5304ADP 144530 0.54 0.00000041
33 634AA + 2536ATP → tal + 2536ADP 69110 1.14 0.0000018
34 1923AA + 7692ATP → eno + 7692ADP 209610 0.37 0.000025
35 1880AA + 7520ATP → pyk + 7520ADP 204920 0.38 0.000014
36 1766AA + 7064ATP → pfl + 7064ADP 192490 0.41 0
37 42096AA + 168384ATP → pdh + 168384ADP 4588460 0.02 0.0000015
38 2837AA + 11348ATP → fhl + 11348ADP 309230 0.25 0
39 3532AA + 14128ATP → ppc + 14128ADP 384990 0.2 0.0000006
40 1943AA + 7772ATP → acn + 7772ADP 211790 0.37 0.000108
41 4565AA + 18260ATP → sucCD + 18260ADP 497580 0.16 0.0000082
42 4291AA + 17164ATP → ackA + 17164ADP 467720 0.17 0
43 35640AA + 142560ATP → adhE + 142560ADP 3884760 0.02 0
44 5675AA + 22700ATP → gln + 22700ADP 618580 0.13 0.000034
45 1291AA + 5164ATP → cyo + 5164ADP 140720 0.56 0.0000071
46 4282AA + 17128ATP → nuo + 17128ADP 466740 0.17 0.000076
47 4895AA + 19580ATP → atpH + 19580ADP 533550 0.15 0.000116
48 652AA + 2608ATP → acs + 2608ADP 68130 1.1 0
49 7459AA + 9132R5P + 29836ATP → R + 29836ADP 2292420 0.1 0.000015
50 25AA + 27G6P + 10R5P + 36E4P + 12T3P + 100PEP 65000 28.8 0.0059

+ 283PYR + 274AcCoA + 178OAA + 3110ATP
+ 1361NADH → Q + 274CoA + 3110ADP + 1361NAD+
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different scaling factors have been obtained for aerobic and oxygen-limited con-
ditions. Therefore, we use variations in the scaling factor f (which addresses
different rates of metabolism during the process) as a source for plant-model
mismatch in our case study. We use a scaling factor of 0.9 for aerobic growth
and 0.6 for all oxygen-limited growth modes to simulate the real process, while
these values are not known in the control and estimation algorithms. Instead,
the controller uses the metabolic-genetic model with a nominal value for the
scaling factor as f = 1, assuming that there is no need to scale current kcat
values obtained from databases.

To implement the adaptive MPC and evaluate its performance, we consider
different levels of mismatches and uncertainties by defining several cases which
differ in parameters of plant-model mismatch as well as parameters considered
for model adaptation. To do so, we consider three cases summarized in Table
4. Details of implementing each case are presented in following sections.
4.2.1 Case 1

In the first case, we implement the adaptive MPC with adjusting the same
parameter as is used to generate variations in the artificial process data. To
do so, the scaling factor f is considered as the mismatch parameter which is
estimated through the MHE in each MPC iteration and used to adapt the
underlying model for the next MPC iteration. We call this the ideal case, as
the MPC adjusts the exact parameter of the plant-model mismatch.

4.2.2 Case 2

For the second case, we consider a different parameter set for the adaptation
in the control scheme than what is used in the process simulations. There-
fore, we leave the value of the scaling factor as its nominal value f = 1 in the
model used within the control scheme and instead try to adjust the individual
catalytic constants kcat directly in the MHE. In order to catch different rates
of metabolism during the microaerobic process (resulted from different scaling
factor for aerobic and oxygen-limited growth in the real plant simulation), one
needs to adjust enzymatic constants of all metabolic pathways. To limit the
computational complexity with respect to the number of parameters to be es-
timated by MHE, we follow a parameter selection procedure which identifies
the most influential metabolic reactions in each microaerobic stage and then
estimates enzymatic constants for these instead of adjusting the constants of all
reactions. For the parameter selection, we perform a local sensitivity analysis in
each MPC iteration which identifies pathways for which a manipulation of the
catalytic constants has the highest impact on the cellular growth rate. To do so,

Table 3: Initial nutrient and initial biomass bT p(0).
Glycerol bT p(0)
255 mM 0.59 gl−1
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Table 4: Mismatch and adaptation parameters in each simulation case.
Simulation case Case 1 Case 2 Case 3
Parameter of plant-model mismatch f f f and kcat’s
Parameter for model adjustment in MHE f kcat’s f or kcat’s

we perturb the value of each catalytic constant individually by kcat,new = kcat/A
and kcat,new = kcatA, with a prespecified value of A > 0, and evaluate the effect
of each perturbation on the growth rate. Parameters with higher sensitivity
are then selected for model adjustment and their values are estimated through
MHE. Such a sensitivity analysis is done over the whole parameter set in each
MPC iteration based on the current state (measured concentrations and OUR)
of the process.

For the parameter estimation through MHE, we implement a sequential op-
timization in which the catalytic constants are estimated based on their priority
(resulting from the sensitivity analysis). To do so, a stopping criterion is defined
by placing a tolerance on the objective function of the MHE (10) which deter-
mines a satisfactory level for matching model predictions to the measurements.
Considering l as the vector containing ordered parameters, the procedure can
be summarized as in Figure 2. The first sequence starts with the estimation
of the first identified parameter l(1). If the termination criterion is not met
through the first optimization, the algorithm proceeds to the next sequence in
which the first two identified parameters are estimated l(1 : 2). In this way
with an increased number of parameters in each sequence, MHE estimates as
many parameters as needed to reach the termination criterion on the model-data
difference, or until the list of parameters used for adapation is exhausted.

Therefore, in each MPC iteration a different set of catalytic constants kcat
is estimated by sequential MHE problems depending on their importance in
each microaerobic stage. By the implemented sequential scheme, we are able
to track the minimum number of parameters which are required to address
process dynamics at each stage. However, one can also consider a simultaneous
scheme for MHE in which a larger set of identified constants are estimated
simultaneously through a single problem.

4.2.3 Case 3

In this case, we consider a different parameter set for the adaptation in the
control scheme than what is used in the plant simulations (such as Case 2),
but with considering higher levels of uncertainties and modeling errors. To do
so, we consider plant-model mismatch not only in f but also in all catalytic
constants kcat. This means different scaling factor f and catalytic constants
kcat for metabolic pathways are used for the real process simulation compared to
those used in the control model (nominal values). Then the model is adapted by
adjusting some selected catalytic constants (identified by the sensitivity analysis
and estimated through the sequential MHE optimizations as explained in Case
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Figure 2: Rate constants selection and estimation procedure.

2), or only by adjusting one general parameter f .

5 Results and discussions

To have maximal ethanol productivity through the introduced E. coli model,
the open-loop optimization problem (7) is firstly applied to obtain the optimal
batch time tf and oxygen uptake rate OUR(t). By implementing the open-loop
problem (7) on the model discussed in Section 4, the final batch time is obtained
as 14.9 hr for maximal ethanol productivity. The optimization results are shown
in Figure 3. The bilevel optimization results in a decreasing OUR pattern in
control of the microaerobic ethanol production. It suggests an initial aerobic
phase of the process with gradual movement to the oxygen-limited conditions
for improved process productivity, which in fact shows balancing between the
aerobic condition favoring the cell growth and the anaerobic condition favoring
ethanol formation.

The final batch time from the open-loop optimization (14.9 hr) is then used
within the shrinking horizon MPC problem (9), but the OUR is adjusted online
to yield the maximum final ethanol concentration while compensating for the
plant-model mismatch. This is implemented on three defined cases in Section
4.2.
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Figure 3: Optimal OUR pattern and concentration profiles of biomass, glycerol
and ethanol, resulted from the open-loop optimization.

5.1 Case 1

For this case, we implement the MPC approach where the model is adapted
online by adjusting the uncertain time-variable parameter f . Note that for the
first iteration of the MPC, we use a nominal value for the scaling factor as
f = 1. Figures 4 to 6 show the overall performance of the adaptive MPC (as in
Algorithm 1) over the MPC without model adaptation in which f is considered
constant all the time and equal to the nominal value of the parameter (f = 1).
Figure 4 shows the parameter estimation results; as the microaerobic growth
proceeds, f decreases from 1 to around 0.6 as its value in the plant model. In
order to compensate for the decreased f during the microaerobic growth (and
therefore lower overall growth rate), the adaptive MPC proposes higher values
of OUR during the process compared to the non-adaptive one. That means it
allows a sufficient amount of biomass to be produced by keeping higher levels
of aeration. Therefore, it predicts better consumption of the substrate, and as
the result a higher amount of ethanol is produced (49 mM) compared to the
non-adaptive controller (40.3 mM).

5.2 Case 2

Through the second case, we aim to improve the flexibility of the adaptive ap-
proach in addressing different growth modes and handling existing uncertainties.
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Figure 4: Scaling factor values estimated in adaptive MPC/Case 1 (solid line)
and used in non-adaptive MPC (dashed line). The real system values are shown
in red.
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Figure 5: OUR pattern from adaptive MPC/Case 1 (solid line) and non-
adaptive MPC (dashed line).
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Figure 6: Biomass, glycerol and ethanol concentration profiles resulted from
adaptive MPC/Case 1 (solid line) and non-adaptive MPC (dashed line).

To address different rates of metabolism in the microaerobic growth, in this case
we do not specify a priori which parameters are the exact source of the uncer-
tainty and mismatch, and instead go for adjusting only important parameters.
To do so, we adjust only the catalytic constants selected by a sensitivity anal-
ysis through the sequential MHE optimizations (as explained in Section 4.2.2)
in each MPC iteration.

Here, we implement the MPC approach where the scaling factor f is the
parameter of plant-model mismatch (as in Case 1) but the model is adapted
by adjusting individual catalytic constants. To identify target parameters to
be estimated through sequential MHE problems in each iteration the sensitivity
analysis is performed; the values of all catalytic constants are individually per-
turbed to ki,new = ki/5 and ki,new = 5ki, iterating over all metabolic reactions
in order to evaluate the effect of each perturbation on the growth rate at the
current state. Parameters with higher sensitivity are then estimated and used
to adapt the model.

We evaluate the performance of the adaptive MPC in this case over Case 1
and also MPC without model adaptation (in which nominal values of catalytic
constants are used), shown in Figures 7 and 8. As can be seen in Figure 7, the
OUR values predicted by Case 2 are mostly slightly lower than those from Case
1 but still high enough for better consumption of glycerol and higher production
of ethanol compared to the non-adaptive MPC.

Table 5 shows the final concentration of ethanol from adaptive MPC (Case
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Figure 7: OUR pattern from adaptive MPC/Case 2 (dotted line), adaptive
MPC/Case 1 (solid line) and non-adaptive MPC (dashed line).
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Figure 8: Biomass, glycerol and ethanol concentration profiles resulted from
adaptive MPC/Case 2 (dotted line), adaptive MPC/Case 1 (solid line) and
non-adaptive MPC (dashed line).
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1 and Case 2) and non-adaptive MPC. We see the ethanol concentration from
Case 2 is lower compared to Case 1 (as the ideal case which directly adjusts the
scaling factor, that is the source of plant-model mismatch), but the value is still
high compared to the non-adaptive one.

Figure 9 shows per MPC iteration the enzymes for which the catalytic con-
stants were identified as sensitive parameters and were adjusted in the adapta-
tion step. Each column is labelled by the corresponding aeration level (at each
MPC iteration) and includes identified enzymes (by the sensitivity analysis),
of which the catalytic constants are estimated through MHE and are used to
adapt the deFBA model in the following iteration of MPC. Moreover, in each
column enzymes are ordered from the bottom to the top according to the order
of their selection from the sensitivity analysis (bottom with the most sensitive
kcat towards the top with less sensitive ones). As shown, in each iteration only
few parameters need to be estimated and used for model adjustment and there
is no need to adapt the catalytic constants of all metabolic pathways. Moreover,
one can notice that as the oxygen-limited growth proceeds, there is a gradual
movement from aerobically active enzymes to anaerobically active ones. Con-
stants of enzymes nuo and atpH (responsible for respiration) are adjusted in the
initial aerobic phase and earlier oxygen limited phases. The catalytic constant of
enzyme glpK-D (responsible for glycerol utilization in aerobic condition) is rel-
evant during initial stage of the oxygen-limited condition, while the constant of
enzyme dhaK (responsible for glycerol utilization in anaerobic condition) is ad-
justed in later stages. Moreover, the constants of enzymes pfl (used for AcCoA
production in anaerobic condition), ackA (responsible for acetate production),
and adhE (responsible for ethanol production) are adjusted when a higher level
of oxygen limitation is applied.

In fact switches between pathways in different metabolic modes show the
importance of the parameter identification. For a better interpretation, we pro-
vide aerobic and anaerobic glycerol utilization fluxes during the process (resulted
from the open-loop optimization) in Figure 10. While the process transitions
to the microaerobic growth the contribution of the glpK-D-catalyzed pathway
is decreased while the pathway catalyzed by dhaK contributes as the major
pathway for glycerol utilization (compatible with experimental studies on mi-
croaerobic growth of E.coli on glycerol, [23], regarding the transition between
respiratory and oxygen-limited utilization of glycerol). That is why the cat-
alytic constant of enzyme glpK-D is the relevant parameter in the earlier stage
of the process while the constant of enzyme dhaK is relevant in later stages.

Table 5: Final ethanol concentration resulted from different MPC schemes
MPC scheme Ethanol concentration (mM)
Adaptive, Case 1 49
Adaptive, Case 2 46.1
Non-adaptive 40.3
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Figure 9: Enzymes with estimated constants at different OUR levels of the
process corresponding to the MPC iteration (k = 1, ..., n−1): glpK-D (reaction
1), dhaK (reaction 2), pfl (reaction 12), acn (reaction 16), ackA (reaction 18),
adhE (reaction 19), gln (reaction 21), nuo (reaction 23), atpH (reaction 24).
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Figure 10: Aerobic and anaerobic glycerol utilization fluxes during the consid-
ered microaerobic process (resulted from the open-loop optimization).

So, the most sensitive parameters in each growth mode are identified in order
to represent the process dynamics correctly.

The results obtained from Case 2 show the flexibility of the proposed adap-
tive approach to address different metabolic modes by adjusting a minimum
number of relevant parameters.

5.3 Case 3

For further evaluation of the performance of adaptive MPC in handling
existing uncertainties, in Case 3 higher levels of modeling error in rate-relevant
parameters are considered than Cases 1 and 2. To do so, we perturb all catalytic
constant by adding 20% uniform white noise to each kcat value in the plant
simulation. This means we use variations in f and each individual kcat to
simulate the real process while nominal values of these parameters are used in
the controller.

For the model adaptation in this case with modeling errors in all rate-relevant
parameters, we do not adjust all those uncertain parameters and instead go
for adjusting only important parameters. To do so, we attempt to adapt the
underlying model by (A) adjustment of influential catalytic constants (as done
in Case 2 based the procedure explained in Section 4.2.2), and (B) adjustment
of f as an overall rate-relevant parameter.

We evaluate the performance of the adaptive MPC over the non-adaptive
one by implementation of several random noise sets on kcat values. Through
Case 3(A) with adjustment of the influential catalytic constants, as shown in
Figure 11 A, we see the adaptive MPC mostly results in higher production of
ethanol compared to the non-adaptive MPC. Among those we also notice cases
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in which there is negligible improvement in final ethanol concentration from the
adaptive MPC, but with higher product yield compared to the non-adaptive
one (as can be seen in Noise set 3). This observation is most likely because
in some cases implementing perturbations in enzymatic constants result in a
limited capacity for ethanol production of the cell, such that by implementing
the MPC with the model adaptation the final ethanol concentration can not
be improved compared to the non-adaptive one. Although, we see that the
adaptive MPC adjusts the OUR level for higher yield by avoiding unnecessary
biomass production, such an improvement in the yield by the adaptive MPC
can not be guaranteed, as within our control problem improving product yield
is not directly considered as an objective.

For the next step, again we apply several random noise sets on kcat values,
but now the adaptive MPC scheme estimates only the overall scaling factor f
through Case 3(B). As shown in Figure 11 B, we see that the adaptive MPC
does not necessarily improve the ethanol production, as for some of the noise
sets it results in a lower value of the final ethanol concentration compared to the
non-adaptive MPC. Such an observation is not surprising, as with such a highly
uncertain system and adaptation of only one model parameter, the controller can
not capture the process dynamics correctly. Therefore, one should not expect
the adaptive MPC to improve the overall control performance while proper
parameters are not chosen for model adjustment.

Based on the results from the higher levels of plant-model mismatch consid-
ered in this case, we argue that even with a very uncertain system the adaptive
MPC allows for improved performance, however it still depends on a good se-
lection of the uncertain parameters to be adjusted.

The average computation time necessary for each iteration of the adaptive
MPC in the cases of one general parameter adjustment (e.g. Case 1 with adap-
tation of f) is 74 s on a standard desktop computer, while this time increases
to 561 s for the case of selected kcat adjustment (e.g. Case 2). The more com-
putation time in Case 2 is mainly due to the larger number of parameters to be
estimated through the sequential MHE problems in each iteration compared to
Case 1 in which one parameter is estimated through a single MHE problem. In
this work n = 8 iterations are considered for the MPC optimization. Increasing
the number of MPC iterations (decreased sampling time) would result in im-
proved performance as it speeds up the parameter correction procedure, but it
results in higher computational time.

5.4 MPC with and without biomass state estimation

Next, the effect of using the RBA method as an approximate steady state esti-
mation is evaluated. To this end, we compare the performance of the adaptive
MPC for the case of estimating the state of biomass components against the
case where full state information would be available. In previous sections, the
MPC used the RBA algorithm through the problem (11) in order to estimate
the biomass composition. Here, we compare the control performance with state
estimation to an ideal situation where measurements for all biomass components
would be available for Case 1 with adjustment of f . As it is shown in Figure 12,
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(A) (B)

Figure 11: Ethanol, biomass and glycerol concentration terminal values result-
ing from adaptive MPC (blue bars) and non-adaptive MPC (orange bars) for
different noise sets applied on kcat values with the adjustment of (A) influential
kcat values and (B) the scaling factor f value.
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there are some differences in the estimated f , predicted OUR and concentration
trajectories of species. However, it can be seen that despite these differences
the control actions in both cases yield a very similar final value of produced
ethanol.

To track the biomass composition during the growth in adaptive MPC (Case
1) with feedbacks obtained from direct measurement of biomass components
and from the RBA estimation, Figure 13 represents the percentage of some
individual key enzymes. As can be seen, while there are some quantitative
mismatches, the patterns of estimated enzyme levels are qualitatively follow-
ing the true model values; the percentage of enzymes nuo and atpH (used for
aerobic respiration) is high at the initial aerobic phase of the growth and then
starts to decrease in following microaerobic phases. On the other hand, as
microaerobic growth proceeds the percentage of enzyme adhE is increased in
order to promote producing ethanol. While the process switches from aerobic
to microaerobic growth, the percentage of enzyme glpK-D (aerobic utilization
of glycerol) decreases while the percentage of enzyme dhaK (anaerobic glycerol
utilization) increases (as observed in Section 5.2 as well). Similarly, there is
a down-regulation of pdh (resposible for aerobic AcCoA production) and up-
regulation of pfl (used for anaerobic AcCoA production) when transfering from
aerobic to oxygen-limited conditions. It should be noted that these patterns
for contribution of cellular components in different stages of the growth are di-
rectly related to both metabolic and genetic part of the deFBA model including
enzyme production costs and their constants.

Despite the qualitative similarities, the RBA method does not provide a
quantitatively reliable estimation of the biomass components in this case. Nev-
ertheless, this estimation error has only a negligible effect on the controller
performance in this study: in fact, the optimal control action and the controller
predictions of the objective value (final ethanol concentration) are consistent
between the two cases. We conclude that, although RBA gives only a qualita-
tive estimation of the enzyme levels in each microaerobic stage (as it is a steady
state approach), it could still be used as an estimator of biomass components
within the proposed control scheme.

6 Conclusions

Constraint-based approaches are useful for bioprocess optimization and control
as they address the full metabolic versatility compared to unstructured models.
However, despite the additional metabolic details integrated in these models,
there remains a high level of model uncertainties which limits their application
in bioreactor control. Moreover, biological variability additionally limits the
validity range of these models. In this work, we implement a combination of
model predictive control and moving horizon estimation for an adaptive and
flexible control of the bioprocess, based on dynamic resource allocation models.
In particular, improving bioprocess productivity in microaerobic growth regimes
is considered. By considering several simulation cases, we demonstrate the use-
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Figure 12: Performance of adaptive MPC/Case 1 with state estimation (solid
line) and with full state information (dashed line).
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Figure 13: Biomass composition in adaptive MPC/Case 1 measured from the
plant model (top) and estimated by the RBA (bottom).
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fulness of the proposed adaptive control approach to address different biological
states during the process and to handle associated uncertainties. Moreover, the
proposed approach could capture the process dynamics by adjusting a few pa-
rameters through integrating a parameter identifiability analysis. Based on the
results, the adaptive MPC adjusts the control inputs to appropriately balance
between the biomass growth and the target product formation for an optimal
product formation compared to a non-adaptive approach.

The results of our simulation study show that adaptive MPC with a selection
of relevant parameters, as in the simulation cases 2 and 3(A), is a promising ap-
proach in bioprocess control. As a comparison, we have seen in Case 3(B) that
adjusting a single parameter will not be sufficient to ensure performance in the
case of plant-model mismatches for a complex bioprocesses. Here, constraint-
based models are useful because they offer a high flexibility and sufficient degrees
of freedom to represent a wide range of biological behaviours, in contrast to for
example unstructured models which generally use much fewer parameters. How-
ever, due to the initially large number of parameters, and not all of them being
relevant for the process dynamics, a selection of important parameters to be
used in the adaptation needs to be done. Here, we have implemented a sensitiv-
ity analysis which is done over the whole parameter set in each MPC iteration
to identify sensible parameters at that specific microaerobic level. However, it
should be noted that for larger networks with high-dimensional parameter sets
it can not be computationally efficient to do the sensitivity analysis over the
whole parameter set in each iteration and instead one should consider perform-
ing the parameter selection offline in order to identify a set of most important
parameters. In that case, even more precise parameter selection methods (e.g.
the global sensitivity analysis approach proposed in [29]) for the pre-selection
of parameters under various conditions and inputs can be implemented. This
subset of parameters then can be considered for estimation and model adjust-
ment during MPC optimizations, resulting in a reduced total computation cost
of the MPC.

Overall, we argue that the proposed deFBA-based control scheme is a suit-
able approach to control not only microaerobic but any bioprocesses with switches
in the dynamics of the system. Desired engineering objectives can be addressed
by the proposed deFBA-based bilevel approach through temporal manipulations
of the metabolism while process uncertainties can be handled efficiently using
the adaptive nature of the implemented control scheme. Further work includes
the experimental implementation of the proposed approach for control of the
microaerobic growth of E. coli in a lab-scale bioreactor.

Funding: This work was supported by the EU-Programme ERDF (European
Regional Development Fund) within the Research Center of Dynamic Systems
(CDS).
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