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Abstract

Vibration-based force identification of cables has been studied for several decades. Most of this work relies on
the natural frequencies of the cable for an estimation of the cable force. However, these natural frequencies
are also affected by bending stiffness, sag effect and boundary conditions. In the present work, a two-
step methodology is developed that allows taking into consideration these effects in the force identification.
First, a segment of the cable is considered which is sufficiently short for the sag effect to be negligible. The
axial force in this segment is estimated by fitting the measured response to the analytical solution for the
transverse motion of the cable in the frequency domain. In this procedure, the bending stiffness is updated
exploiting the fact that the estimated axial force should not depend on the frequency, while the boundary
conditions do not need to be known. Next, an analytical solution of the static state of the entire cable is
derived, taking into account the sag effect, bending stiffness and boundary conditions. The parameters of
the entire cable model can then be updated, using the estimated value of the axis force at the location of the
segment. Finally, the updated analytical model of the entire cable allows evaluating internal forces such as
the cable force and bending moment, as required for estimating the stresses in the cable considering bending
deformation. The feasibility of the proposed methodology is verified by means of numerical simulations
considering measurement noise and an inaccurate initial guess of the bending stiffness, proving its potential
for the health monitoring of cable structures.
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1. Introduction1

Cables are critical load transferring components in many flexible structures [1]. For the structural health2

monitoring (SHM) of in-service cable structures, it is important to identify the changes of cable forces3

which affect the behavior of main structure [2, 3]. During the past decades, vibration-based methods [4, 5]4

have been extensively studied, as these can be used in operational conditions [6], avoiding, for example,5

interruption of traffic on bridges [7]. Among the first techniques proposed for cable force identification are6

those based on the well-known taut string equation [8], considering neither the bending stiffness nor the sag7

effect. When taking into account the bending stiffness, the dynamic characteristics of the cable become more8

complicated, however, in particular when accounting for the unknown stiffness of the anchors at the cable9

ends. Only for the case of hinged-hinged boundary conditions, the cable force can be expressed in closed10

form as a function of natural frequency [9]. Due to the effect of bending stiffness, the natural frequencies are11

no longer linearly proportional to the mode order. This effect can be exploited for estimating the bending12

stiffness when multiple natural frequencies are measured [10]. For the ease of practical application, Ren [11]13

proposed two empirical equations for estimating the cable force, which respectively consider the sag effect14

and the bending stiffness, based on fixed-fixed boundary conditions. However, for most real cables acting15
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as load-carrying members in structures, the boundary conditions are neither hinged-hinged nor fixed-fixed,16

and the effective length of the cable is usually difficult to determine for the actual anchors at both ends. In17

addition, the cable force is not constant along the cable, but depending on the position, especially for long18

cables exhibiting sag. For these reasons, errors are inevitable when applying the above classical methods for19

identifying the cable force. In order to avoid the difficulties resulting from the boundary conditions and the20

sag effect, a new method was proposed which considers a cable segment located between the modal nodes21

of the cable where the transverse displacements are zero [12]. The boundary conditions of such segment22

can be represented by perfect hinge supports supplemented by rotational springs, while the sag effect can23

be disregarded as long as the cable segment is sufficiently short. Based on this, the relation between the24

cable force and natural frequencies was derived, allowing the estimation of the cable force without requiring25

accurate knowledge of the anchoring stiffness at the cable ends. However, the accurate locations of the26

modal nodes are difficult to identify without a dense measurement grid, and the stiffnesses of the virtual27

rotational springs appear as additional unknowns.28

As is well known, the transverse motion of the cable is governed by a partial differential equation, and29

its frequency-domain solution can be expressed as the superposition of a limited number of exponential30

terms, with coefficients determined by the boundary conditions [13]. Note that these coefficients can as31

well be determined by fitting this solution to the cable response provided it is measured at a sufficient32

number of points. The physical parameters can be determined next by searching the minimum of the fitting33

residual. This concept was originally proposed for estimating the dispersion relation of waves propagating34

in an Euler-Bernoulli beam [14], and was further applied for estimating the loss factor of beam material [15]35

as well as the axial force of Timoshenko beam members [16]. The physical boundary conditions do not36

have to be modelled explicitly as their influence is accounted for in the estimated coefficients. However,37

this approach operates in the frequency domain and yields an estimate of the physical parameter for each38

frequency. Modelling errors and measurement noise can cause large fluctuation of the estimated values,39

requiring a proper interpretation prior to obtaining the final result. Moreover, the sag effect can no longer40

be disregarded when applying this method to long cables.41

In order to tackle the above issues, a two-step methodology is proposed in the present work. In the first42

step, a segment of the cable, which is short enough to disregard the sag effect, is considered as a straight43

beam member modeled according to the Timoshenko beam theory. The axial force of this segment is then44

identified from the transverse responses, measured at a few locations of this segment. In the second step, the45

static state of the entire cable is considered, described by an analytical solution that gives the displacement,46

cable force and bending moment along the cable. The axial force in the segment, that was identified in the47

first step, is used as a reference, and the entire cable model is then updated. From this updated analytical48

model, the internal forces, including the axial force and bending moment, can be obtained at any location49

of the cable, providing more comprehensive information for the monitoring of the cable.50

This paper consists of four parts: first, the dispersion relations of waves, governing the transverse motion51

of the cable, are studied, considering the influence of axial force and bending stiffness. Next, the numerical52

stability of the algorithm for estimating axial force is studied, and an iterative approach is developed to53

update the bending stiffness of the cable cross section. Afterwards, the analytical solution of the static state54

of cable is derived considering bending stiffness, sag effect as well as boundary conditions, and the method55

for updating the analytical model is proposed. Finally, numerical simulations, considering an inaccurate56

initial guess of the bending stiffness as well as measurement noise, are performed, proving the feasibility and57

potential of the proposed two-step methodology for the health monitoring of cable structures.58
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2. Step 1: estimation of the axial force of a cable segment59

Figure 1: Transverse motion of a cable segment, measured by sensors spaced by ∆x

In this part, a segment of cable (Fig. 1) is considered which is short enough for the sag effect to be60

negligible. The length of the segment should also not be too short, however, as it is the aim to identify, in61

the frequency range of interest, the wave components that constitute the cable response from measurements62

at a limited number of sensors [17]. The spacing between the sensors should therefore not be too small63

compared to the prevailing wavelengths. For this reason, a trade-off has to be made when choosing a proper64

value of Ls, and this will be discussed in detail later. In the following, the slip between cable wires is65

disregarded assuming that the wavelength is much larger than the dimension of the cross section [18]. In66

addition, the segment is assumed to be excited by an imposed motion at its boundaries, corresponding to67

the general case where a load (which does not need to be known) is applied at any location not on the68

segment. Taking into account shear deformation and rotational inertia, the equations of motion governing69

the transverse motion of the cable segment are written as: [13]:70

κGA(v′′d − θ′) +Nxv
′′
d − ρAv̈d = 0 (1)

EIθ′′ + κGA(v′d − θ′)− ρIθ̈ = 0 (2)

with the boundary conditions:71

vd|x=0(t) = vA(t) (3)

θ|x=0(t) = θA(t) (4)

vd|x=Ls
(t) = vB(t) (5)

θ|x=Ls
(t) = θB(t) (6)

where vd(t) (m) and θ(t) (rad) are the transverse displacement and the rotation of cross section, respectively.72

The derivative of variables with respect to the spatial coordinate x and time t is denoted by a prime and73

a dot, respectively. The elastic and shear modulus of the cable are E (Pa) and G (Pa), respectively. The74

density of the cable material is ρ (kg/m3). The area, the moment of inertia and the shear constant of the75

cross section are A (m2), I (m4) and κ (-), respectively. The axial force of the segment is Nx (N). The76

frequency-domain solution to Eqs. (1) and (2) takes the form of [13]:77

V̂ (x, ω) = C̃1 exp(k1x) + C̃2 exp[k2(x− Ls)] + C̃3 exp(k3x) + C̃4 exp(k4x) (7)

where C̃j (j = 1, 2, 3, 4) depend on the boundary conditions (Eqs. (3), (5), (4) and (6)), and k1 up to k4 are78

frequency dependent constants, satisfying the following dispersion relations:79

3



k1 = −

√
−β +

√
β2 − 4αγ

2α
(8)

k2 =

√
−β +

√
β2 − 4αγ

2α
(9)

k3 = −

√
−β −

√
β2 − 4αγ

2α
(10)

k4 =

√
−β −

√
β2 − 4αγ

2α
(11)

where the coefficients α, β, γ are derived as follow:80

α = EI · (κGA+Nx) (12)

β = −κGANx − s2EIρA− s2κGAρI − s2ρINx (13)

γ = s2ρA · (κGA+ s2ρI) (14)

where s = σ + iω (i =
√
−1) is the complex frequency. The circular frequency is denoted by ω (Hz),81

and σ (-) can be taken zero for frequency-domain analysis, or a positive value in order to suppress the82

spectral leakage when time-domain response is involved [19]. For frequencies below the cut-off frequency83

(ω ≤ ωc =
√

(κGA)/(ρI)), k3 and k4 are imaginary, corresponding to propagating wave components [17].84

The phase velocities of these components are derived as:85

cp(ω) = ±ω
√

2EI(Nx + κGA)√
Λ2 + 4ω2EIρA(κGA+Nx)(κGA− ω2ρI) + Λ

(15)

where
Λ = ω2(EIρA+ κGAρI +NxρI)− κGANx (16)

The dispersion relations given by Eq. (15) are illustrated for a model of a cable consisting of 91 wires with86

a diameter of 7 mm. The material parameters are as follows: the elastic modulus E = 200 GPa, the density87

ρ = 7800 kg/m
3

and the Poisson ratio µ = 0.3. The wires are assumed not to slip as mentioned before, so88

the geometric parameters are calculated for a solid cross section. Because of the irregular shape of the cross89

section, the geometric parameters are calculated using numerical integration, based on a discretization of the90

cross section, resulting in: the cross-section area A = 0.0035 m2, the moment of inertia I = 1.09× 10−6 m4
91

and the shear constant κ = 0.458 [13]. The axial force is Nx = 0.0035 m2× 100 MPa = 350 kN, and the sag92

effect is disregarded. It is noted here that in a practical case, the axial force may change due to the external93

loads [20], and the bending stiffness may be different since the cross section may not be perfectly rigid as94

assumed for its estimation [18]. In order to investigate the effects of the cable force and the bending stiffness95

on the response of the cable, the axial force and the bending stiffness vary from 1.0Nx to 5.0Nx and from96

0.5EI to 1.0EI, respectively. The constants kj (j = 1, 2, 3, 4) are then calculated by Eqs. (8), (9), (10) and97

(11), shown in Fig. 2.98
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Figure 2: Dispersion relation of the cable model with arrows denoting increasing values of the parameters: a) the axial force
varies from 1.0Nx to 5.0Nx; b) the bending stiffness varies from 0.5EI to 1.0EI

By substituting the model parameters into Eq. (15), the phase velocities, which characterize the behavior99

of the propagating wave components, are calculated (Fig. 3). It is clear that the increase of either axial100

force or bending stiffness results in a higher phase velocity due to the increase in transverse stiffness. More101

importantly, the increase of the axial force results in a significant increase of the phase velocity in the lower102

frequency range (below 50 Hz in Fig. 3(a)), while the increase of the bending stiffness results in a significant103

increase of the phase velocity in the higher frequency range (above 400 Hz in Fig. 3(b)).104
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Figure 3: Phase velocity of the cable model with arrows denoting increasing values of the parameters: a) the axial force varies
from 1.0Nx to 5.0Nx; b) the bending stiffness varies from 0.5EI to 1.0EI

As shown in Fig. 1, m sensors, which are uniformly distributed with a spacing of ∆x, are applied to105

measure the transverse response of the cable segment. Assuming that the measured responses provide exact106

samples of the analytical solution (Eq. (7)), the following matrix equation is obtained as:107

H · C̃ = V̂ (17)

where108
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H =


1 exp(−k2Ls) 1 1

exp(k1∆x) exp[k2(∆x− Ls)] exp(k3∆x) exp(k4∆x)
exp(2k1∆x) exp[k2(2∆x− Ls)] exp(2k3∆x) exp(2k4∆x)

...
...

...
...

exp[(m− 1)k1∆x] 1 exp[(m− 1)k3∆x] exp[(m− 1)k4∆x]

 ∈ Cm×4 (18)

is the characteristic matrix, representing the dynamic behavior of the cable segment.109

C̃ =
{
C̃1 C̃2 C̃3 C̃4

}T

∈ C4×1 (19)

is the coefficient vector, which depends on the response at the boundaries of the cable segment.110

V̂ =
{
V̂1 V̂2 V̂3 · · · V̂m

}T

∈ Cm×1 (20)

is the vector containing the numerical Laplace transform [13] of the measured response. Since the matrix H111

can be calculated from the known parameters and V̂ can be obtained from the measurements, the remaining112

vector C̃ can then be estimated by solving a linear least-squares problem:113

C̃
(es)

= (HTH)−1HTV̂ (21)

resulting in a fitting residual:114

ε = [H(HTH)−1HT − I] · V̂ (22)

when m ≥ 5 [16]. For an arbitrary value assigned to the unknown axial force Nx, the fitting residual ε can115

be obtained from Eq. (22). The modulus of the fitting residual ‖ε‖ will be minimized when the value of Nx116

approximates the actual force in the cable segment:117

N (es)
x = arg min

Nx

‖ε‖2

‖H(HTH)−1HTV̂‖ · ‖V̂‖
(23)

When estimating the coefficient vector by Eq. (21), it is important to evaluate the numerical stability of118

the least-squares solution [21]. Assuming the measurements to be perturbed by δV̂, Eq. (17) becomes:119

H · (C̃ + δC̃) = V̂ + δV̂ (24)

The error of the estimated coefficient vector C̃ is derived as:120

δC̃ = (HTH)−1HT · δV̂ (25)

From the Cauchy–Schwarz inequality [22], we have:121

‖C̃‖ ≥ ‖H · C̃‖
‖H‖

(26)

Also, the following inequality122

‖δC̃‖ ≤ ‖(HTH)−1HT‖ · ‖δV̂‖ (27)

is obtained from Eq. (25). By dividing Eq. (27) by Eq. (26), the effect of the perturbation δV̂ on the123

estimated coefficient vector C̃
(es)

is expressed as:124

‖δC̃‖
‖C̃‖

≤

[
‖(HTH)−1HT‖ · ‖H‖ · ‖V̂‖

‖H · C̃‖

]
· ‖δV̂‖
‖V̂‖

≈ cond(H) · ‖δV̂‖
‖V̂‖

(28)

Similarly, considering another perturbation of the matrix H in Eq. 18, i.e. δH, for model imperfections such125

as the assumed constant axial force and the disregarded sag effect in the short segment when calculating126

the matrix H by Eq. (18). The resulting error of the estimated coefficient vector C̃
(es)

is derived as:127
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‖δC̃‖
‖C̃‖

≤ cond(H) · ‖δH‖
‖H‖

(29)

Both Eq. (28) and Eq. (29) imply that C̃
(es)

may be significantly affected by model imperfections as well128

as measurement noise when the condition number of the matrix H is rather large, thus resulting in an129

inaccurate estimation of the axial force. Again, taking the model of the 91Φ7 cable as an example, the130

matrix H is evaluated by Eq. (18) in the frequency range (0, 500] Hz and for a sensor spacing in the range131

(0, 5] m. The resulting condition number of the matrix H is shown in Fig. 4.132

Figure 4: Logarithm of the condition number of the matrix H as a function of ∆x and ω, i.e. log10 |cond(H)|(∆x, ω)

As indicated before, the estimation of the axial force by Eq. (23) becomes inaccurate when the condition133

number of the matrix H is high. Fig. 5 illustrates the two cases in which the chosen sensor spacing results134

in a poor conditioning of the matrix H.135

Figure 5: The sensor distribution leading to poor numerical stability (◦: ∆x(1) � λ. ×: ∆x(2) ≈ nλ/2, n = 1, 2, 3, · · ·)

The red area at the bottom of Fig. 4 corresponds to the case where the sensors are distributed with a136

spacing ∆x(1) that is small compared to the dominant wavelength governing the transverse cable response,137

while the light blue curves in Fig. 4 correspond to another case where the spacing ∆x(2) corresponds to half138

a wavelength. For both cases, the measured responses are close to linearly dependent as they are either the139

same or have opposite signs, and this results in an inaccurate solution of Eq. (21). When determining the140

sensor distribution, the spacing ∆x should be chosen carefully, considering the frequency range of excitation141

as well as the structural response, in order to avoid a poor conditioning of the estimation problem. In the142

process of data interpretation, the accuracy of the estimation can be verified by evaluating the condition143

number of the matrix H.144

When calculating the matrix H by Eq. (18), the bending stiffness of cable is usually difficult to quantify145

precisely because of the composite nature of the cross section [18]. For this reason, a joint estimation of the146

bending stiffness and the axial force is proposed next. Note that the vectors C̃, V̂ and the matrix H are all147

frequency dependent, meaning that the axial force of the segment can be estimated independently at each148
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frequency. Since the value of the axial force should be the same for each frequency, the linear term in the149

following fit to the estimated values should be zero:150

N (fit)
x (ω) = a0 + a1ω (30)

i.e., the factor a1 of Eq. (30) should be zero. As indicated by Fig. 3, the influence of the axial force on151

the frequency response of the cable is more pronounced at lower frequencies, while the influence of the152

bending stiffness becomes more important at higher frequencies. From this, it can be deduced that an153

overestimation of the bending stiffness results in an underestimated axial force, and more importantly, this154

deviation increases with frequency, i.e. dN
(fit)
x /dω = a1 < 0, vice versa.155

Taking a1 = 0 as an objective, the bending stiffness can be updated by the Newton-Raphson’s method156

until ‖a1| is sufficiently small, as shown in Fig. 6. Finally, the updated value EI(es) = ηEI is obtained, and157

the mean value of N
(fit)
x (ωj) (j = 1, 2, · · · , N) is calculated for a final value of the estimated axial force, that158

allows minimizing the influence from measurement noise (δV̂) and model imperfections (δH). During this159

procedure, the values estimated at frequencies where the condition number of the matrix H is large should160

be considered as inaccurate and be rejected prior to the evaluation of Eq. (30).161

Figure 6: The flow chart for estimating the axial force Nx involving the determination of the updated bending stiffness ηEI

3. Step 2: updating of the static model of entire cable162

In the second step, an analytical model describing the static state of the cable is used, taking into account163

the bending stiffness, the sag effect and the imposed rotations at the cable ends. This static model will be164

updated further by using the axial force at the location of the segment, that was identified in the first step.165
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Figure 7: The static state of the entire cable model (by convention, a counter-clockwise direction is taken as positive for all
angles in this study, such as ϕA, ϕB and ϕ.)

As shown in Fig. 7, a cable with an inclination ϕ (rad) is modelled in the global coordinate system xoy,166

where the gravity is along the y axis. Furthermore, the anchors may be either inclined or aligned with167

respect to the chord ox̄. The angles ϕA and ϕB can be measured by means of an inclinator, providing the168

boundary conditions of the static model. For this model, the following assumptions are made:169

• The length of the cable is much larger than the dimension of the cross section, so the shear deformation170

can be disregarded.171

• The sag-span ratio is less than 1/8, therefore ds ≈ dx̄.172

• The axial stiffness of the cable is much larger than its transverse stiffness, so the displacement com-173

ponent along the x̄ axis can be disregarded.174

For the differential segment ds of the cable, the equilibrium equations in the local coordinate system are175

formulated as follows:176 (
Ns +

∂Ns

∂s
ds

)
dx̄

ds
−Ns

dx̄

ds
−mg sinϕds = 0 (31)(

Q+
∂Q

∂s
ds

)
−Q+

∂

∂s

(
Ns

dvs

ds

)
ds−mg cosϕds = 0 (32)

where Ns (N) and Q (N) are the axial force of the cable and the shear force of the cross section, respectively,177

which are both function of the location s. m (kg/m) is the mass of the cable per unit length, and g (N/kg)178

is the gravitational acceleration (normally g = 9.8 N/kg). The chordwise component (along the x̄ direction)179

of the cable force is given as:180

Nx = Ns
dx̄

ds
(33)

which is function of x̄. By substituting Eq. (33) into Eq. (31), assuming ds ≈ dx̄, the chordwise component181

of the cable force is then expressed as:182

dNx

dx̄
−mg sinϕ = 0 (34)

The integration of Eq. (34) along coordinate x̄ yields:183

Nx(x̄) = Nx0 + x̄mg sinϕ (35)
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where the integration constant Nx0 represents Nx at the location x̄ = 0. The relation between the shear184

force and the transverse displacement is [23]:185

Q = −EI d3vs

dx̄3
(36)

By substituting Eq. (33), Eq. (35) and Eq. (36) into Eq. (32), the equilibrium equation in terms of the186

transverse displacement is formulated in the local coordinate system as follows:187

−EI d4vs

dx̄4
+ (Nx0 + x̄mg sinϕ)

d2vs

dx̄2
+mg sinϕ

dvs

dx̄
−mg cosϕ = 0 (37)

Eq. (37) is rewritten in non-dimensional form as:188

−β̄v̄(IV)
s + (1 + ε̄ξ̄ sinϕ)v̄(II)

s + ε̄ sinϕv̄(I)
s − cosϕ = 0 (38)

where a bracketed Roman number in superscript denotes the derivative to the non-dimensional spatial189

coordinate ξ̄, and the non-dimensional parameters are defined as:190

β̄ = (EI)/(Nx0L
2) (39)

ε̄ = mgL/Nx0 (40)

ξ̄ = x̄/L (41)

v̄s = vsNx0/(mgL
2) (42)

Eq. (38) is an ordinary differential equation of the fourth order with a variable coefficient for the term191

corresponding to v̄
(II)
s , which cannot be solved analytically. In most cases, however, the cable force is much192

larger than the own weight of the cable, i.e., Nx0 � mgL, yielding ε̄ ≈ 0. Eq. (38) is therefore simplified to:193

−β̄v̄(IV)
s + v̄(II)

s − cosϕ = 0 (43)

with the non-dimensional boundary conditions:194

v̄s(0) = 0 (44)

v̄s(1) = 0 (45)

v̄(I)
s (0) = ϕ̄A = ϕANx0/(mgL) (46)

v̄(I)
s (1) = ϕ̄B = ϕBNx0/(mgL) (47)

The complete solution to Eq. (43) is:195

v̄s = C1 + C2ξ̄ + C3ξ̄
2 + C4 exp

(
−
√

1/β̄ξ̄

)
+ C5 exp

[√
1/β̄(ξ̄ − 1)

]
(48)

where C3 = cosϕ/2, and C3ξ̄
2 is therefore the particular solution. By substituting Eqs. (44), (45), (46) and196

(47) into Eq. (48), a matrix equation is obtained:197 
1 0 1 exp (−γ̄)
1 1 exp (−γ̄) 1
0 1 −γ̄ γ̄ exp (−γ̄)
0 1 −γ̄ exp (−γ̄) γ̄




C1

C2

C4

C5

 =


0

− cosϕ/2
ϕ̄A

ϕ̄B − cosϕ

 (49)

where198

γ̄ =
√

1/β̄ (50)

From Eq. (49), the constants C1, C2, C4, C5 are obtained, and the static shape can be evaluated by Eq. (48).199

By substituting Eqs. (39), (40), (41) and (42) into Eq. (48), the rotation of the cross section is found:200

dvs

dx̄
=

mg

Nx0

{
C2L+ x̄ cosϕ− C4γ̄L exp

(
− γ̄x̄
L

)
+ C5γ̄L exp

[
γ̄
( x̄
L
− 1
)]}

(51)
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Similarly, the curvature is found as the second derivative of the transverse displacement:201

d2vs

dx̄2
=

mg

Nx0

{
cosϕ+ C4γ̄

2 exp
(
− γ̄x̄
L

)
+ C5γ̄

2 exp
[
γ̄
( x̄
L
− 1
)]}

(52)

Therefore, the axial force and the moment of the cable, which are function of x̄, are evaluated by:202

Ns(x̄) = Nx ·
ds

dx̄
= (Nx0 + x̄mg sinϕ) ·

√
1 +

(
dvs

dx̄

)2

(53)

M(x̄) = −EI · d2vs

dx̄2
(54)

From the first step, the axial force at the location of the segment as well as the bending stiffness of the203

cross section have been obtained. The angles of the boundaries ϕA and ϕB can be obtained by measuring204

the inclinations of the anchors as mentioned before. Based on the above, only the parameter Nx0 remains205

unknown for Eq. (53) and Eq. (54). Note that there is a one-to-one correspondence between Nx0 and the206

axial force at the location of the segment Nx(x̄s), and such relation is continuous and smooth. Nx0 can207

therefore be updated by the bi-section method, ensuring that Nx(xs) approximates the value N̂
(es)
x identified208

in the first step. Afterwards, the internal force at arbitrary location of the cable is found from the updated209

static model of the entire cable (Eq. (48), Eq. (53) and Eq. (54)).210

4. Feasibility study - numerical simulation211

In the case of a slack cable which has a relatively small cable force, the application of existing methods,212

such as the widely used taut string theory [8], leads to inaccurate estimations of the cable force, due to213

the inappropriate simplifications (e.g. disregarding the sag effect and bending stiffness, perfect boundary214

conditions). This may be the case during construction or when damage in the cable resulting in a loss of215

prestress. In order to demonstrate the applicability of the two-step methodology in such a case, a cable with216

a small initial strain is considered in this section. All the numerical simulations are performed using the217

two-step FEM-SEM approach proposed in [13].218

Figure 8: Cable model considered in the numerical simulation of the test
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For the cable model shown in Fig. 8, the material and geometric parameters have been given in Section 2.219

In this example, the moment of inertia is reduced by 80% as Izz = 0.80× 1.09× 10−6 m4 = 0.87× 10−6 m4,220

and the initial strain of the cable is given a value ε0 = 5× 10−4. Additionally, at both ends of the cable, the221

anchor zones are simulated by segments with a bending stiffness which is 10 times larger than the one of the222

cable. A concentrated mass of 30 g is considered at the location of each measurement point, representing223

the mass of the sensor. From the finite element analysis, the static configuration of the cable is obtained,224

including the static displacements and internal forces. Note that the rotational angles of both anchors are225

close to zero (ϕA = −0.0016 rad, ϕB = 0.0016 rad) due to the large bending stiffness of the anchor zones.226

Therefore, ϕA = ϕB = 0 rad will be considered as known parameters in the analysis following next.227

The segment where x̄ ∈ [6, 10] m is defined for the estimation of axial force in the first step, as shown228

in Fig. 8. The excitation is modelled as a linear impact at the location x̄ = 5 m, which is not on the229

segment. The cable is assumed to be very lightly damped, and the damping force is proportional to the230

velocity of transverse motion with the damping coefficient ct = 0.226 N · s/m. The time-domain signal and231

the frequency spectrum of the impact are shown in Fig. 9.232
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Figure 9: Hammer impact: a) time-domain signal b) frequency spectrum

Based on the static state, the dynamic response of the model is simulated by means of the spectral233

element method, yielding the acceleration responses at the sensor locations x̄ = {6 7 8 9 10}T (Fig. 10).234
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Figure 10: Acceleration response of the cable: a) x̄ = 6 m b) x̄ = 7 m c) x̄ = 8 m d) x̄ = 9 m e) x̄ = 10 m

As an initial guess in the analysis, a value of EI = η · EI0 = 1.00 × 1.09 × 10−6 m4 is taken for the235

bending stiffness. By substituting the Laplace transform of the measured responses (as shown in Fig. 10)236

into Eq. (22), fitting residuals are evaluated for values of the axial force between -1500 kN and 1500 kN,237

considering a step size of 1 kN. At each frequency ωj , an axial force N
(es)
x (ωj) is estimated by searching the238

minimum of the fitting residual (Eq. (23)) over the span of axial forces, shown in Fig. 11.239
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(a)

(b)

(c)

Figure 11: Identification of the axial force where η = 1.00 for the initial guess (The blue dots and red dots denote the

frequency points where the estimated axial forces are accurate and inaccurate, respectively): a) estimated axial force N
(es)
x (ωj)

b) condition number of the matrix H c) indicator of sensitivity SN(ωj)

In Fig. 11(a), it is clear that the data points N es
x (ωj) (j = 1, 2, · · · , N) follow a downward linear trend240

as a function of frequency. It can be seen that the estimated axial force even becomes negative when241

the fitting residual ‖ε‖ (Eq. (22)) is minimized, and this trend implies that the bending stiffness is largely242

overestimated. Moreover, note that small deviations from this trend can be observed in the frequency ranges243

f ∈ (0, 10) ∪ (130, 170) ∪ (460, 500) Hz, which is caused by the following model imperfections:244

• The masses of the sensors are considered in the numerical simulations of the experiment, but disre-245

garded in the estimation of the axial force, as Eq. 7 is the response of cable with a uniformly distributed246

mass.247

• In the numerical simulation of the experiment, the cable is assumed to be lightly damped, while248

damping is disregarded when estimating the axial force by Eq. (23).249

• Due to the inclination and the sag of the segment, the axial force Nx should in principle depend on x,250

but this dependency is disregarded for the short segment considered when applying Eq. (1).251

Although these effects are quite small, they are significantly amplified in the estimation of the axial force252

when the condition number of the matrix H (Fig. 11(b)) is high, leading to the fluctuations observed in253

Fig. 11(a). In order to further improve the robustness of the estimation of the axial force, an additional254

criterion is defined as:255
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SN(ωj) = log10

∣∣∣∣∣ ε(N
(es)
x ;ωj)

1
M

∑M
n=1 ε(Nx(n);ωj)

∣∣∣∣∣ (j = 1, 2, · · · , N) (55)

which represents the sensitivity of the fitting residual (ε of Eq. (23)) to the axial force Nx at the frequency256

ωj , shown in Fig. 11(c). The numerator in Eq. (55) is the minimized fitting residual for the selected axial257

force, while the denominator in Eq. (55) is the average value of the fitting residuals over the whole span of258

the axial forces Nx(n) (n = 1, 2, · · · ,M). Therefore, small values of SN correspond to an accurate estimation259

of N
(es)
x , as the fitting residuals are sensitive to the axial force. In order to reject inaccurate estimations260

of the axial force, in this procedure, a threshold is set on the condition number of the matrix H as well as261

on the indicator of sensitivity SN. This entails a trade-off between the accuracy and the volume of selected262

data. In this case, a threshold of {N (es)
x (ωj)

∣∣ log10 |cond(H)(ωj)| < 0.75||SN(ωj) < −2.5} has been used to263

select the values of the axial forces which are considered accurate. Next, a linear trend is fitted (Fig. 11(a))264

to the selected data points which are considered as accurate. The factor of the bending stiffness η is then265

updated iteratively following the process in Fig. 6 until ‖a1‖ → 0.266

1 2 3 4 5 6 7 8 9 10
Iteration step

0.7

0.8

0.9

1

1.1

 (
-)

Figure 12: The updating of the bending stiffness factor η (starting from η = 1.00)

After a few iterations, the bending stiffness factor η converges to a value of 0.80, which equals the correct267

value, as shown in Fig. 12. The estimated data points of N
(es)
x (ωj) are distributed along a straight horizontal268

line (Fig. 13(a)), showing that the estimated axial force is now independent of frequency.269
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(a)

(b)
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Figure 13: Identification of the axial force where η = 0.80 for the convergency (The blue dots and red dots denote the

frequency points where the estimated axial forces are accurate and inaccurate, respectively): a) estimated axial force N
(es)
x (ωj)

b) condition number of the matrix H c) indicator of sensitivity SN(ωj)

By calculating the average value of the selected data in Fig. 13(a), the slight fluctuations are eliminated,270

and the axial force is finally identified as 366.64 kN, which is quite close to the reference value of the FE271

model (366.69 kN). By comparing Fig. 13(b) with Fig. 11(b), it can be concluded that the condition number272

of the matrix H is not too sensitive to the bending stiffness. For rather small changes in bending stiffness,273

it may not be necessary to update the condition number of the matrix H, allowing for a reduction of the274

computational cost. As a reference, the cable force is also estimated from the first natural frequency of the275

cable (1.27 Hz), using conventional methods including the taut string theory [8] and the improved empirical276

equation [11]. The results are shown in Tab. 1.277

Table 1: Comparison of the cable forces identified by the existing methods and the proposed method

Method Formula Effective length Bending stiffness Axial force Error

Taut string [8] N̂x = 4mL2f2
n/n

2 48 m – 406.03 kN 10.73%

Empirical [11] N̂x = m
(

2Lf − 2.363
L

√
EI
ρA

)2
48 m η = 0.80 (known) 380.25 kN 3.70%

This paper N̂x =
∑N
j=1N

(es)
x (ωj)/N – η = 1.00 (guess) 366.64 kN -0.01%

The cable force identified by the taut string theory is much larger than the true value, because both the278

bending stiffness and the sag effect are disregarded, and, moreover, the effective cable length is difficult to279
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determine for the anchor zones which extend over a length of 1 m at both ends. For the empirical equation280

proposed in [11], the accuracy of the estimation is significantly improved by taking into consideration the281

effect of bending stiffness. However, an error 3.70% remains present, caused by the unclear definition of282

the effective cable length when considering the anchor zones. For the method proposed in this paper, the283

bending stiffness is taken into account, and the boundary conditions implicitly involved in the coefficient284

vector C (Eq. (19)) have no effect on the estimation of the axial force. The effects of model imperfections,285

such as the disregarded sag effect and the damping in the cable, will lead to a perturbation δH of Eq. 29,286

but an amplification of these errors is avoided by adopting the threshold for the condition number of the287

matrix H. This leads to a significant improvement of the accuracy of the axial force estimation.288

In order to study the effect of measurement noise on the estimated axial force, the acceleration responses289

are further polluted by white noise, and multiple signal noise ratios (SNR) are considered by changing the290

amplitude of the noise. For each case, the axial force is identified similarly as above. After data rejection,291

the ratio (RN) of the number of remaining data points and the total number of data points, is calculated,292

giving an indication of the volume of useful information involved in the measured response.293
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Figure 14: Identification of the axial force with increasing measurement noise: a) update of the bending stiffness factor b)
identification of the axial force c) relative error d) volume of the useful information

Figs. 14(a), 14(b) and 14(c) show that both the bending stiffness and the axial force can be identified294

correctly, with the relative error of the identified axial force not exceeding 3%, as long as the SNR is higher295

than 60 dB. The data significantly affected by noise are rejected, as evidenced by Fig. 14(d). When the296

SNR is lower than 60 dB, the ratio of useful information is less than 10%, which is insufficient to obtain a297

reliable result. In the present case, the proposed methodology leads to a reliable identification of the axial298

force when SNR is higher than 60 dB.299

Based on the identified axial force of the segment, the parameter Nx0, involved in the analytical static300

solution in Eqs. (48), (53) and (54), is updated by means of the bi-section method, giving a value of the301

updated parameter Nx0 = 365.39 kN. From this updated static model, the static shape, the distributed302

axial force and the bending moment of the cable can now be evaluated. The above results are compared303

with those directly obtained from the finite element model for a validation, shown in Fig. 15.304

17



0 5 10 15 20 25 30 35 40 45 50
x (m)

-0.2

-0.1

0

0.1

D
is

pl
ac

em
en

t (
m

)

Updated static model FE model

(a)

0 5 10 15 20 25 30 35 40 45 50

x (m)

360

365

370

375

380

A
x
ia

l 
fo

rc
e

 (
k
N

)

Updated static model FE model

(b)

0 5 10 15 20 25 30 35 40 45 50

x (m)

0

1

2

3

M
om

en
t (

kN
m

)

Updated static model FE model

(c)

Figure 15: Comparison between the updated analytical model and the FE model of the cable: a) displacement b) cable force
c) bending moment

The comparison shows that the static displacement, the cable force and bending moment, evaluated from305

the updated static model of the entire cable, all agree well with those of the actual cable (i.e. the FE model306

in Fig. 15). These results also allow for an estimation of the maximum stress, appearing at the top anchor307

of the cable, given as:308

σ = σNx + σM =
Nx

A
+
M

Izz
· D

2
=

372.98 kN

0.0035 m2
+

3.045 kN ·m
0.8× 1.09× 10−6 m4

· 0.077 m

2
= 241.01 MPa (56)

where σM = 134.44 MPa is the bending stress of the cable. Note that it is difficult in practice, in particular309

for existing structures, to estimate the bending stress of cables, although it is important for the evaluation310

of fatigue life.311

5. Conclusion312

In the present work, a two-step methodology is proposed for the identification of cable force. First, the313

axial force of a cable segment with limited length is identified considering the updating of bending stiffness.314

During this step, the physical boundaries of cable do not need to be known, while the sag effect is disregarded315

for this short segment. By considering the identified axial force as a known parameter, the static model of316

the entire cable is updated next, allowing the evaluation of the cable force and bending moment along the317

cable. Compared to the existing techniques, the proposed methodology has the following advantages:318
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• The boundary conditions of the segment are implicitly involved in the coefficients to be estimated,319

and do not have to be modelled based on physical grounds. The identification of axial force is hardly320

affected by the sag effect as the segment is taken sufficiently short.321

• The bending stiffness of the cable can be updated during the identification of axial force, so an322

appropriate value can be obtained even for an inaccurate initial guess on the bending stiffness.323

• The numerical stability of the estimation procedure is evaluated by means of an indicator which is324

based on the condition number of the characteristic matrix. The proposed data rejection improves325

the robustness against model imperfections (such as the damping, sag effect and inclination of the326

segment) as well as measurement noise.327

• The updated static model can be used to compute the axial force and bending moment along the328

cable, allowing for an evaluation of the stresses, especially for the additional stress resulting from the329

bending deformation.330
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