
Compact domain-specific co-processor for
accelerating module lattice-based KEM

Jose Maria Bermudo Mera∗, Furkan Turan∗, Angshuman Karmakar∗, Sujoy Sinha Roy†, Ingrid Verbauwhede∗
∗imec-COSIC, KU Leuven, Belgium †University of Birmingham, United Kingdom

∗{Jose.Bermudo,Furkan.Turan,Anghusman.Karmakar,Ingrid.Verbauwhede}@esat.kuleuven.be †s.sinharoy@cs.bham.ac.uk

Abstract—We present a domain-specific co-processor to speed
up Saber, a post-quantum key encapsulation mechanism compet-
ing on the NIST Post-Quantum Cryptography standardization
process. Contrary to most lattice-based schemes, Saber doesn’t
use NTT-based polynomial multiplication. We follow a hardware-
software co-design approach: the execution is performed on
an ARM core and only the most computationally expensive
operation, i.e., polynomial multiplication, is offloaded to the co-
processor to obtain a compact design. We exploit the idea of
distributed computing at micro-architectural level together with
novel algorithmic optimizations to achieve approximately a 6
times speedup with respect to optimized software at a small area
cost.

Index Terms—Domain-specific co-processor, post-quantum
cryptography, lattice-based cryptography, Saber

I. INTRODUCTION

Currently deployed public key cryptography is based on
number theoretic problems that can be easily solved by a quan-
tum computer using Shor’s algorithm [15] thus putting our
privacy at risk. Fortunately, there are computational problems
that will remain hard to solve even by a quantum computer
and, therefore, they can be used to construct secure post-
quantum cryptography (PQC). In order to anticipate the threat
of a quantum computer powerful enough to break the existing
protocols, the National Institute of Standards and Technology
(NIST) has launched a standardization process for quantum-
resistant public-key cryptography. Among the submissions that
have advanced to the second round of the standardization
process [1], cryptosystems based on lattice problems are a
popular solution for KEMs.
State of the art: Over the last decade, the theory of lattice-
based cryptography has shown significant developments [12].
In addition to the theoretical developments, significant effort
has been devoted for efficient implementations [11]. In the
most recent literature we can find hardware implementations
of FrodoKEM [6], NewHope [8] and Kyber [3]. All of them
are KEMs in the second round of the standardization contest
run by NIST. However, we can observe a certain bias towards
implementing schemes that can perform the polynomial mul-
tiplication using the Number Theoretic Transform (NTT) due
to its efficiency. To the best of our knowledge, there are no
hardware implementations of module Learning With Rounding
(module-LWR) KEM Saber.
Our contributions in this paper can be summarized as fol-
lows:

• We provide the first hardware implementation of a poly-
nomial multiplier using Toom-Cook algorithm. In the ex-
isting literature, only NTT-based multipliers and systolic
array implementations are considered.

• We provide the first hardware implementation of Saber,
which is a lattice-based KEM that could become the
most widespread public key protocol if NIST chooses
it for their standards. Benchmarking Saber on hardware
platforms contributes to the standardization effort.

• We show that polynomial multipliers based on generic al-
gorithms can be competitive with NTT-based polynomial
multiplication when implemented on hardware platforms.
This can impact the design considerations of lattice-based
schemes.

II. PRELIMINARIES

In this section, we provide the necessary background for
understanding the rest of the paper.

A. From LWE to module-LWR
The LWE problem [14] states that, given a randomly

selected a ∈ Znq , it is hard to distinguish between n uniformly
random samples drawn from Znq ×Zq and the same number of
samples drawn as b = 〈a, s〉 + e, where s ∈ Znq is the secret
and e ∈ Zq is a freshly generated error term. Notwithstanding
distinct parameter choices, the most complex operation of
LWE schemes remains the matrix vector multiplication. In
its algebraic version, ring-LWE [9], the samples are drawn
as polynomials in the ring Rq = Zq[x]/(xn + 1) with the
form t = a ∗ s+ e. Thus, the core operation is a convolution,
which can be implemented efficiently utilizing the NTT [13],
a variant of the Fast Fourier Transform (FFT) that requires
exclusively integer arithmetic. However, ring-LWE raises some
security concerns when compared to LWE.

To benefit from the increased efficiency of ring-LWE while
providing a higher confidence in the security level, module-
LWE [4] drafts a small matrix of dimension l× l composed by
ring polynomials. These polynomials have a lower degree than
in the ring-LWE setting and, additionally, the convolutions can
be parallelized. Lastly, the error term can be introduced by a
rounding operation instead of drawing it from a random distri-
bution. This variant is called Learning With Rounding [2]. The
samples for LWR problem are generated as in (1). Modulo-
LWR combines this technique with the module matrices.(

a, b =
⌊p
q
〈a, s〉

⌉
p

)
∈ Znq × Zp (1)



Algorithm 1: Saber.KeyGen()

1 seedA ← U({0, 1}256)
2 A← gen(seedA) ∈ Rl×lq

3 s← βµ(R
l×1
q )

4 b = bits(As+ h, εq, εp) ∈ Rl×1p

5 return (pk := (b, seedA), sk := s)

B. Parameter choices

Regardless the underlying problem, system parameters can
be grouped into two classes. (1) NTT-friendly parameters.
Straightforward polynomial multiplication algorithm has a
complexity O(n2) while the complexity of NTT is O(n log n).
(2) Parameters that do not allow the use of the NTT for
the polynomial multiplication. The main reason to select
parameters belonging to this set is to avoid the expensive
reduction modulo a prime by choosing the modulus q as a
power of 2 instead. Modular reduction by 2k is equivalent to
keep only the k least significant bits.

Software implementations [7] have proven that NTT can
be outperformed by theoretically costlier multiplication algo-
rithms due to the penalization suffered by non-uniform mem-
ory accesses and non-trivial modular reduction. However, these
performance penalties can be overcome with custom memory
accesses and dedicated circuitry, so it is an open problem if
schemes that pick parameters from this set can be competitive
with NTT-friendly schemes on hardware platforms.

C. Saber

Saber is an IND-CCA KEM with three operations: key
generation, encapsulation and decapsulation [5]. During key
generation, summarized in Alg. 1, the public matrix A is
constructed from a 256-bit seed using the extendable output
function SHAKE-128. The seed is publicly known but it must
be randomly sampled from an uniform distribution to preserve
the security. The secret vector s is sampled from a centered
binomial distribution βµ with parameter µ = 8. Matrix-vector
multiplication A · s is followed by the rounding operation to
generate the vector b. The seed used to generate A and the
vector b constitute the public key, while s is the secret key.

Encapsulation is described in Alg. 2. G and H are two
secure hash functions implemented using Keccak. First, G
is used to generate the session key from a random seed.
Then, similarly to key generation, A is regenerated from the
public seed, another secret vector s′ is sampled and the vector
b′ is calculated using AT · s′. Subsequently, a vector-vector
multiplication is performed between bT and s′. The ciphertext
consists of b′,reconciliation information cm [5] and the hash
of the session key and the ciphertext.

Decapsulation is described in Alg. 3. Vector-vector multi-
plication is followed by the bit selection function named bits

to recover the message. Then, this message is encrypted again.
If the resulting ciphertext is the same as the received one, the
key will be established correctly. Otherwise, a random value
is output without disclosing information about the failure.

Algorithm 2: Saber.Encaps(pk = (b, seedA))

1 m← U({0, 1}256); (K̂, r) = G(pk,m)
2 A← gen(seedA) ∈ Rl×lq

3 s′ ← βµ(R
l×1
q )

4 b′ = bits(AT s′ + h, εq, εp) ∈ Rl×1p

5 v′ = bT bits(s′, εp, εp) + h1 ∈ Rp
6 cm = bits(v′ + 2εp−1m, εp, εt + 1) ∈ R2t

7 return (c := (cm, b
′),K := H(K̂, c))

Algorithm 3: Saber.Decaps(sk = s, c,K, pk)

1 v = b′T bits(s, εp, εp) + h1 ∈ Rp
2 m′ = bits(v − 2εp−εt−1cm + h2, εp, 1) ∈ R2

3 (K̂ ′, r′) = G(pk,m′)
4 c′ = Saber.Enc(pk,m′; r′)
5 if c = c′ then
6 return K := H(K̂ ′, c) else K := H(z, c)

In Saber, the ring dimension n = 256 and the two moduli
p = 210 and q = 213 are fixed. The size of the matrices and
vectors, l, is used to tune the security level. The specifications
define l = 2 for lightweight cryptography, l = 3 as the stan-
dard security level and l = 4 for long-term high security. Our
co-processor supports all security levels, but for concretion we
refer to the case l = 3 in the rest of the paper. The number of
polynomial multiplications is l2 for key generation, l2 + l for
encapsulation and l2 + 2l for decapsulation.

III. ALGORITHMIC OPTIMIZATIONS

In this section, we describe the rationale behind the par-
tition between software and hardware in our system as well
as the selected polynomial multiplication algorithm and the
optimizations to achieve our goal.

A. HW/SW boundaries

The domain-specific accelerator is designed following a
hardware-software co-design approach in order to: (1) take
advantage of the custom logic that can be implemented in
an FPGA to accelerate the scheme, (2) maintain the flexibility
offered by a micro-controller for controlling the execution flow
and (3) keep the resource utilization low by offloading to hard-
ware only the most computationally expensive operations. As
explained in Section II-C, the most expensive operation is the
multiplication of polynomials with 256 coefficients, which has
to be executed l2 times during matrix-vector multiplication,
so its computation is offloaded to hardware. Polynomials are
generated from a seed using a hash function, which could
also be accelerated in hardware. However, Keccak is costly in
terms of area. Instead, we exploit parallelism at system level by
generating the polynomials needed for the next multiplication
in software while the hardware performs the arithmetic on
the previous operands. This approach pipelines the generation
of the polynomials with the arithmetic operations, improving
the performance as well as the utilization of the available
resources.



Algorithm 4: Evaluation for Toom-Cook-4 with verti-
cal scanning [7]
Input: a(x) with n = 256 coefficients
Output: {aw1, ..., aw7} with 64 coefficients each

1 for i = 0 to 63 do
2 r0 = a0[i]; r1 = a1[i]; r2 = a2[i]; r3 = a3[i];
3 r4 = r0 + r2; r5 = r1 + r3;
4 r6 = r4 + r5; r7 = r4 − r5;
5 aw3[i] = r6; aw4[i] = r7;
6 r4 = 2 ∗ (r0 ∗ 4 + r2); r5 = r1 ∗ 4 + r3;
7 r6 = r4 + r5; r7 = r4 − r5;
8 aw5[i] = r6; aw6[i] = r7;
9 r4 = 8 ∗ r3 + 4 ∗ r2 + 2 ∗ r1 + r0;

10 aw2[i] = r4; aw7[j] = r0; aw1[i] = r3;

B. Polynomial multiplication

The polynomial arithmetic in Saber is performed in the ring
Rq = Zq[x]/(xn + 1) where n = 256 and q = 213. This
choice does not allow the use of the NTT to perform poly-
nomial multiplication which makes accelerating this operation
a challenging task. Instead, we apply Toom-Cook 4-way to
divide a multiplication of polynomials with 256 coefficients
into seven multiplications of polynomials with 64 coefficients.
These seven multiplications are independent and, hence, can be
run in parallel by small multipliers in a distributed computing
fashion.

Toom-Cook k-way is a generalization of Karatsuba where a
polynomial a(x) with n coefficients is split into k polynomials
a1 · · · ak−1 each with n/k coefficients such that a(y) =
a0 + a1y+ ...+ ak−1y

k−1 where y = xn/k. It works in three
steps: evaluation, multiplication and interpolation. First, these
k polynomials are used to generate the so-called weighted
polynomials, which represent the evaluation of the original
polynomial in 2k−1 different points. Then, point-wise multi-
plication is computed as the product between the weighted
polynomials. Lastly, interpolation is opposite of evaluation
step which combines the results from these multiplications to
get the final result. During evaluation and interpolation steps,
a number of additions and subtractions are required creating
a trade-off between the reduction obtained in the number
of multiplications that must be performed and the overhead
introduced by these operations.

Polynomials are evaluated on
{
0, 1,−1, 12 ,−

1
2 , 2,∞

}
. This

choice will simplify the hardware for the evaluation since
scaling a coefficient by a power of 2 with positive or negative
exponent means shifting the bits to the left or to the right that
many positions, respectively. To improve the memory access
pattern of the evaluation, we use a vertical coefficient scanning
to generate all weighted polynomials in-place as shown in
Alg. 4.

Both evaluation and interpolation are linear transformations
that are inverse of each other. Hence, they are additively homo-
morphic. Let’s assume we want to compute s = s1+s2 where
s1 = a1 ∗ b1 and s2 = a2 ∗ b2 and ai,bi are polynomials of a

certain degree. Denoting evaluation as TC and interpolation
TC−1, we can write si = TC−1(TC(ai)∗TC(bi)). Using the
additive homomorphic property of linear transformations we
can also write s as s = TC−1((TC(a1)∗TC(b1))+(TC(a2)∗
TC(b2))). In Saber, due to module structure, we need to add
results of multiple polynomial multiplications during matrix-
vector and vector-vector multiplication. Hence, we can apply
the lazy interpolation that has been shown in [10] to reduce the
number of interpolations. The matrix equation for interpolation
is shown in (2). Every division by an odd number is equivalent
to a multiplication by the inverse modulo q = 213. However,
divisions by powers of 2 become shift operations that could
cause a loss of precision that leads to a wrong result. Since
the highest division is by 8 = 23, three extra bits of precision
are required and, therefore, the data width of the co-processor
must be of at least 16 bits.

c0
c1
c2
c3
c4
c5
c6


=



1 0 0 0 0 0 0
−2 2

45 −
2
3 −

2
9

1
36

1
60 −2

− 5
4 0 2

3
2
3 − 1

24 −
1
24 4

5
2 −

1
18

3
2 −

7
18 −

1
18 0 5

2
1
4 0 − 1

6 −
1
6

1
24

1
24 −5

− 1
2

1
90 −

1
3

1
9

1
36 −

1
60 −

1
2

0 0 0 0 0 0 1





c(∞)
c(2)
c(1)
c(−1)
c( 12 )
c(−12 )
c(0)


(2)

IV. HARDWARE ARCHITECTURE

In this section, we describe the hardware architecture fol-
lowing a bottom-up approach.

A. 64-coefficient polynomial multiplier

This unit is responsible for computing the 64-coefficients
polynomial multiplications during Toom-Cook point-wise
product. It will be instantiated seven times in parallel, so it is
necessary to keep it simple to lower the area requirements of
the overall design. For this reason, we choose straightforward
schoolbook polynomial multiplication. We exploit parallelism
once again and propose the generic architecture depicted in
Fig. 1. First, there is a loading stage where nm = 4 coefficients
from b are loaded into the rightmost inputs of the multipliers,
implemented with fabric DSPs. Then, all 64 coefficients in a
are loaded consecutively into the other register. During this
phase, one coefficient of the result is produced each clock
cycle in the leftmost output register, while the rest of the
accumulated intermediate values shift to the left. After this,
nm additional coefficients are produced while the datapath is
flushed. Then, the next nm coefficients in b are loaded and the
process repeats until the full multiplication has been computed.
The pipeline strategy is not trivial due to data dependencies
between the accumulation and the previous result generated in
the immediate right MAC. The critical path is shown in Fig. 1
with a red dashed line. To break it down without altering the
dataflow, pipeline registers are included only in the multiplier.
These pipeline registers are represented as green lines.

Since fabric LUTs have a depth of 64 bits, which matches
the length of the polynomials, the distributed memory is
implemented as LUT-based memory. Operand a is accessed



ai bj bj+1 bj+2 bj+3

+

resk

+

resk+1

+

resk+2

+

resk+3

ci+j+1

0

Fig. 1. Architecture for the 64 × 64 polynomial multiplier utilizing 4 DSP
units, including the critical path and the pipeline registers that break it down

sequentially, so a single port RAM is enough to store it. To
halve the latency of the loading stage, operand b is stored
in a dual port RAM. To allow simultaneous read and write
operations, the result is stored in a dual port RAM. The data
width is 16 bits as explained in Sec. III-B.

To conclude the design-space exploration of this module, we
show the impact of changing the number of DSPs, nm. In our
design, nm affects the latency as in (3). The four terms in the
equation correspond to (1) loading the nm coefficients from
b, (2) filling up the datapath, (3) performing the computation
and (4) flushing the datapath between iterations. For a compact
design we have chosen nm = 4, i.e., 1168 clock cycles. It is
the smallest option that allows our multiplier to be competitive
with NTT, e.g., 1289 clock cycles [3]. For a high-performance
implementation nm = 8, 16 can be considered.

d =
64

nm

(nm
2

+ 4 + 64 + (nm − 1)
)
=

4288

nm
+ 96 (3)

B. Toom-Cook multiplier

The three steps of Toom-Cook are implemented on different
datapaths with independent control. The memory requirements
of this module depend exclusively on how evaluation and inter-
polation are implemented. In particular, the reading throughput
of the system memory imposes a performance limitation
on the evaluation hardware while the interpolation hardware
must accommodate to the writing pattern. Sec. IV-C details
the memory requirements, the access pattern, the address
generation and the memory layout. In the following we focus
on the evaluation and interpolation circuits.

1) Evaluation hardware: The evaluation datapath is derived
directly from Alg. 4 as shown in Fig. 2. The same datapath
is used to perform the evaluation for both operands, a and b,
one immediately after the other. The weighted polynomials are
directly stored in the distributed memory of the seven small
polynomial multipliers. The delay introduced by two 16-bit
adders is not big enough to require pipeline. The latency of the
entire evaluation step is 128 clock cycles, which corresponds
to reading the two 256-coefficient multiplicands in chunks of
four coefficients per clock cycle.

2) Interpolation hardware: Building the hardware to ex-
ecute the interpolation step is a challenging task because a
direct mapping of (2) as for evaluation would result in a
very asymmetric datapath with a long critical path. Instead,
we identify certain symmetries in the interpolation matrix

a0 a1 a2 a3

+ + + + + +

+ + +- -

aw7 aw6 aw5 aw4 aw3 aw2 aw1

4
2

8

4

42

Fig. 2. Datapath for the evaluation step

together with a trial and error approach to derive the circuit
in Fig. 3. The critical path, indicated with a red dashed
line, is broken down with pipeline registers, represented as
horizontal green lines to allow a higher clock frequency. The
interpolation hardware can read seven coefficients in parallel
coming from the seven small polynomial multipliers but write
operations can only be done at the clock rate due to the
irregular memory accesses. Thus, memory operations become
the bottleneck for interpolation. Irregular memory accesses
are caused by the polynomial indexing. Interpolation outputs
seven coefficients that must be written with offsets equal to
{0, 64, 128, 192, 256, 320, 384}. The six least significant bits
of the iteration counter can be used to generate the base
address of the corresponding iteration while the offsets set
the most significant bits of the writing address. However, the
127 iterations will end up mismatching the offsets and making
inefficient a possible memory alignment to increase the writing
throughput.

w7w6w5w4w3w2w1

+ + + - - - -

+ + + +- - ++

+ +

+- -

+-

+

-

w7w6w5w4w3w2w1

w7

inv15

   inv3

5w0 w0

inv5

inv3

inv3

inv3

w0

Fig. 3. Datapath for the interpolation step including the critical path and the
pipeline registers that break it down

C. On-chip memory

System memory is implemented using dedicated block
RAM primitives called BRAM36K which can store up to
1024 words of 36 bits. For 64-bit words required required
by the evaluation stage, 2 BRAMs are needed. The memory
is configured as dual port to allow simultaneous read and write



operations, and with asymmetric read and write operations for
the same port since read operations are performed on 64-bit
words while write operations are performed on 16-bit words.
One of the ports is also multiplexed between the HW/SW
interfacing and the accelerator. Regarding the memory layout,
the four coefficients that evaluation reads every clock cycle
are not consecutive but offset with 0, 64, 128 and 192. Then,
coefficients must be aligned as in Fig. 4. Besides the coefficient
alignment, polynomials are also aligned to 64 words, which is
the natural alignment for 256-coefficient polynomials but not
for 512-coefficient polynomials as shown in the same figure.

This memory layout can be created with almost no overhead
when realizing the data transfer from software as it just
requires a fixed offset on the indexing of the array. Since
the memory is accessed asymmetrically for read and write
operations, address translation is needed for computing the
real writing address. When addressing the memory as a 16-
bit word RAM, the least significant word of figure’s address
0 corresponds to address 0, the next 16-bit word of figure’s
address 0 corresponds to address 1, etc. until the least signifi-
cant 16-bit of figure’s address 1, which corresponds to address
4 and so on. Since the memory is aligned to 256-coefficient
polynomials, only the eight least significant bits of address
need to be translated. Rewiring the two most significant bits
from the coefficient index, which has a length of eight bits,
to the two least significant bits of the address and shifting
the other six two positions to the left gives the corresponding
writing address for the coefficient.

a0 a64 a128 a192

a1 a65 a129 a193

a2 a66 a130 a194

b0 b64 b128 b192

b1 b65 b129 b193

c0 c64 c128 c192

c1 c65 c129 c193

c319 c383 c447 c511

address 0

address 1

address 2

address 64

address 65

address 128

address 129

address 255

Fig. 4. Coefficient alignment used in the system memory

D. HW/SW Interfacing

Fig. 5 shows an overview of the system architecture. We
implemented our hardware co-processor on a Xilinx Zynq
device which integrates FPGA to ARM processors. Zynq
devices support an AXI based communication interface for the
interaction of ARM cores and any hardware module in FPGA.
Additionally, Xilinx DMA offers the highest performance for
bulky data transfers between memory and the modules. Hence,
we tailored our interfacing mechanism for proficient use of
them. We kept the data word size 64-bit for handling the co-
efficients both in the ARM side software and in the BRAM. As
a result, the software stores the polynomials as array of 64-bit
data words. The BRAM uses also the same data word length,
hence we configured the DMA for transferring polynomial

Arm

SW domain HW domain

BRAM
 

data
mem.

schb64
1

schb64
2

schb64
7

Evaluation
datapath

Interpolation
datapath

Toom-Cook-4

cmd

Wrapper

DDR
Mem.

status

DMA

Fig. 5. High-level architecture and interfacing of hardware and software.

arrays from memory to BRAM directly. When performing
these transfers, the DMA accesses the array with its memory
address, and delivers it over (or receives from) the wrapper as
a stream, i.e., one data word at each clock cycle. This stream
is free from address information, hence our wrapper associates
data words with an address in the BRAM. For associating the
right address, the wrapper is informed with the transfer’s base
address by a command prior to the transfer’s start. A register
unit is used to support the interfacing with command and status
registers. This approach makes the software side the master
of our architecture, responsible of sending commands to the
co-processor, observing its execution status and handling data
transfers. Currently, commands for data transfers, evaluation,
multiplication, MAC and interpolation are supported. The
instruction-set architecture (ISA) is quite flexible leaving room
for the inclusion of new commands or even the integration of
more modules to accelerate other operations utilizing the same
co-processor.

V. RESULTS

We have implemented our domain-specific co-processor
in the Xilinx ZedBoard Zynq-7000 ARM/FPGA SoC De-
velopment Board. Software has been adapted from [7] by
substituting their custom assembly optimizations by C code
compiled with the GCC version available in the Xilinx SDK
development tool. Hardware has been synthesized, placed and
routed using Vivado 2018.1. Although different synthesis and
implementation strategies can be explored for a fine-grained
optimized design, all results reported correspond to default
configurations where the hardware co-processor runs at 125
MHz and the ARM processor runs at 666 MHz.

A. Performance results

Table I presents the performance of key generation, encapsu-
lation, decapsulation and polynomial multiplication measured
from software. Columns show the execution time when us-
ing only software and the full co-processor. Saber becomes
between 5.4 and 7 times faster while polynomial multipli-
cation is almost 27 times faster. The execution time of the
multiplication includes the overhead due to data transfers. In
practice, many of these transfers are not necessary because
we are performing matrix-vector multiplication instead of a
standalone polynomial multiplication. Arithmetic operations
only take 11835 clock cycles, which is 91 times faster than



TABLE I
EXECUTION TIME (MEASURED IN MILLION CPU CYCLES)

only SW SW/HW Improvement

Key Generation 11.761 2.180 5.4
Encapsulation 14.944 2.762 5.4
Decapsulation 17.983 2.560 7.0
Polynomial Mult. 1.097 0.041 26.7

software even though the hardware is clocked more than five
times slower than the software.

The overhead introduced by the commands sent from soft-
ware to hardware is negligible due to the parallel transfer.
However, this is not the case for the data transfers to the
BRAM. Sending a polynomial, i.e., 512 bytes, from ARM to
the co-processor takes 1816 clock cycles. Sending two poly-
nomials, i.e., 1024 bytes, takes 2908 clock cycles. Larger data
transfers are not of interest in our use case since polynomials
are generated just-in-time on the CPU while the hardware runs
the multiplication with the previous operands. Transfers in the
other direction have almost the same execution times.

B. Resource utilization and comparisons with other works

The utilization of a single 64-coefficient polynomial mul-
tiplier including the LUT-based memory is of 342 LUTs,
155 FFs and 4 DSPs. This module is instantiated seven
times and constitutes the core of arithmetic operations. The
full hardware co-processor, including Toom-Cook multiplier,
system memory and command decoding is implemented using
2927 LUTs, 1279 FFs, 2 BRAMs and 38 DSPs, which is quite
a compact design.

Table II shows a comparison of our co-processor with
other hardware implementations of NIST PQC second round
candidates. For our work, we report the utilization of the
full system including the processing system and the HW/SW
interfacing. We can observ that module-LWR offers a trade-
off between LWE, e.g., Frodo, and ring-LWE, e.g., NewHope.
Comparison to an ASIC implementation is less fair but Kyber
is a more similar scheme to Saber.

TABLE II
COMPARISON WITH STATE-OF-THE-ART.

Scheme Platform
Time [µs]

KeyGen/Encaps/
Decaps

Freq
[MHz]

BRAM/
DSP

FF/
LUT

Kyber [3] ASIC 1548/2465/
1646 72 - -

Frodo [6] FPGA 45454/45454/
47619 167 24 / 1 3559/

7773

NewHope [8]† FPGA 51.9/78.6/
21.1 133 14 / 8 9975/

20826

Saber [This] FPGA 3273/4147/
3844 125 2 / 28 7331/

7400
†Implements only CPA secure NewHope

VI. CONCLUSIONS

Domain-specific accelerators and hardware-software co-
design approaches are becoming more important nowadays. In

this paper, we have presented a compact domain-specific accel-
erator for Saber. Moreover, efficiency on hardware platforms
is a crucial evaluation criteria for NIST PQC standardization.
NTT-friendly lattice-based cryptography has been studied well
in the past, but there exists less research on alternative polyno-
mial multiplication algorithms for hardware acceleration. We
believe our design will rekindle interest in such designs.

ACKNOWLEDGMENT

This work was partly supported by the Research Council
KU Leuven: C16/15/058, and also by the European Com-
mission through the Horizon 2020 research and innovation
programme under agreement Cathedral ERC Advanced Grant
695305 and by EU H2020 project FENTEC Grant 780108.

REFERENCES

[1] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, Y.-K.
Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, and
D. Smith-Tone. (2019, jan) Nistir 8240 - status report on the first
round of the nist post-quantum cryptography standardization process.
[Online]. Available: https://doi.org/10.6028/NIST.IR.8240

[2] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs, “Learning with
rounding, revisited: New reduction, properties and applications,” IACR
Cryptology ePrint Archive, vol. 2013, p. 98, 2013. [Online]. Available:
http://eprint.iacr.org/2013/098

[3] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols,”
IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2019, no. 4, pp. 17–61,
2019.

[4] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, and D. Stehlé, “CRYSTALS - kyber: a cca-secure
module-lattice-based KEM,” IACR Cryptology ePrint Archive, vol.
2017, p. 634, 2017. [Online]. Available: http://eprint.iacr.org/2017/634

[5] J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber:
Module-lwr based key exchange, cpa-secure encryption and cca-secure
KEM,” IACR Cryptology ePrint Archive, vol. 2018, p. 230, 2018.
[Online]. Available: http://eprint.iacr.org/2018/230

[6] J. Howe, T. Oder, M. Krausz, and T. Güneysu, “Standard lattice-based
key encapsulation on embedded devices,” IACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2018, no. 3, pp. 372–393, 2018.

[7] A. Karmakar, J. M. B. Mera, S. S. Roy, and I. Verbauwhede, “Saber
on ARM cca-secure module lattice-based key encapsulation on ARM,”
IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2018, no. 3, pp. 243–
266, 2018.

[8] P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-M.
Cheng, and B.-Y. Yang, “High performance post-quantum key ex-
change on fpgas,” Cryptology ePrint Archive, Report 2017/690, 2017,
https://eprint.iacr.org/2017/690.

[9] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” J. ACM, vol. 60, no. 6, pp. 43:1–43:35,
2013.

[10] J. M. B. Mera, A. Karmakar, and I. Verbauwhede, “Time-memory
trade-off in toom-cook multiplication: an application to module-lattice
based cryptography,” Cryptology ePrint Archive, Report 2020/268, 2020,
https://eprint.iacr.org/2020/268.

[11] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and R. Cam-
marota, “Post-quantum lattice-based cryptography implementations: A
survey,” ACM Comput. Surv., vol. 51, no. 6, pp. 129:1–129:41, 2019.

[12] C. Peikert, “A decade of lattice cryptography,” Foundations and Trends
in Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2016.

[13] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware,” in Progress in
Cryptology – LATINCRYPT 2012, 2012, pp. 139–158.

[14] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” in Proceedings of the Thirty-seventh Annual ACM
Symposium on Theory of Computing, ser. STOC ’05, 2005, pp. 84–93.

[15] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26,
no. 5, pp. 1484–1509, 1997.


