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Abstract: Purpose Whereas non-invasive prenatal testing for aneuploidies (NIPT-A) is widely
implemented, there is an increasing need for universal approaches for noninvasive
prenatal testing for monogenic diseases (NIPT-M). Here, we present a cost-effective,
generic cell-free fetal DNA (cffDNA) haplotyping approach to scan the fetal genome for
the presence of inherited monogenic diseases. Methods Families participating in the
preimplantation genetic testing for monogenic disorders (PGT-M) program were
recruited for this study. 250000 SNPs captured from maternal plasma DNA along with
genomic DNAs from family members were massively parallel sequenced. Parental
genotypes were phased via an available genotype from a close relative, and the fetal
genome-wide haplotype and copy number were determined using cffDNA haplotyping
analysis based on estimation and segmentation of fetal allele presence in the maternal
plasma. Results In all families tested, mutational profiles from cffDNA haplotyping are
consistent with embryo biopsy profiles. Genome-wide fetal haplotypes are on average
97% concordant with the newborn haplotypes and embryo haplotypes. Conclusion We
demonstrate that genome-wide targeted capture and sequencing of polymorphic SNPs
from maternal plasma cell free (cfDNA) allows haplotyping and copy number profiling
of the fetal genome during pregnancy. The method enables the accurate
reconstruction of the fetal haplotypes and can be easily implemented in clinical
practice.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Cover Letter

To Dr Robert D Steiner
Editor-in-Chief
Genetics in Medicine

Ref: GIM-D-19-00723
Dear Dr. Steiner,

Thank you for your email regarding revision of the manuscript "Non-invasive
prenatal diagnosis by genome-wide haplotyping of cell-free plasma DNA". We have
carefully read the comments and revised the manuscript accordingly.

We would like to thank the reviewer for thoughtful reading the manuscript and for
their constructive suggestions. Our responses are in blue given in a point-by-point
manner (the reviewers’ comments are in italics).

Sincerely,

Joris R. Vermeesch, Ph.D.
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Response to Reviewers' comments

Response to the reviewers

Reviewer #1: The potential application of NIPD to follow up the results of PGT is
exciting, as increasing number of PGT couples are reluctant to follow the current
recommendations for invasive prenatal diagnosis; thus this manuscript presents a
clinical scenario and experimental details of such a practical application. The work is
well written, and will be of interest to a wide audience.

e Perhaps the authors could expand in a more detail the accuracy of a calculation
of fetal fraction, and a lower fetal fraction limit for the conclusion.

We added discussion of lower fetal fraction limit on page 18 line 369-374.

e It will be also useful if authors could discuss any additional factors that may
impact the accuracy of NIPD. One of such factors that creates a concern is a
genetic instability in preimplantation development that may affect the accuracy of
testing. However, these are minor suggestions to consider for discussion.

Regarding genetic instability of preimplantation embryos, we have recently
demonstrated that the impact of embryonic aneuploidy seems to diminish during
prenatal development (Zamani-Esteki et al., 2019 Nature Med), further
minimizing the concern that embryo genetic instability can be a confounding
factor for cfDNA haplarithmisis. We commented it on page 19 line 377-385.

Reviewer #2: Huiwen Che and colleagues describe a method they devised for
genome-wide haplotyping on cell-free DNA, to allow concurrent diagnosis of
aneuploidies with inheritance of known familial pathogenic variants in recessive,
dominant and X-linked disorders. They use as underlying principle for their approach
a method which they named "haplarithmisis" and that was original developed for
PGT on in vitro-fertilized preimplantation embryos.

This is primarily a proof of concept paper with initial technical validation, but the
sample size is fairly small (9 families and one "artificially mixed" aneuploidy sample.
Overall the paper is well written and clear, supporting tables and figures (including
in supplemental data) are appropriate and informative, with some details that need to
be addressed (see below).

It is not the first demonstration that this type of data can be obtained from cffDNA,
and the approach labeled "haplarithmisis™ and determination of Fetal Allele Ratio
(FAR) is essentially based on RHDO of multiple SNPs at once, with some refinements
to optimize analysis by optimizing which SNPs are used in the analysis (addition of
informative type 4 SNPs) and pairing with circular binary segmentation that allows
them to overcome noise and an have estimate of recombination sites in the



haplotypes.

The conceptual innovation in this paper results from the combined aneuploidy and
monogenic disease testing possibilities on a more genome-wide basis using a less
costly and faster method than those previously published that also avoids the
requirement for disease-specific work-up.

Although the numbers are small, the validation for the haplotyping on pregnancies
conceived after PGT-M, wherein both embryo and newborn haplotypes are available
for comparison is elegant. I am less impressed with the fairly limited approach to the
validation of the aneuploidy detection, which is entirely based on one mixing
experiment with spike-in samples, since they always have the limitations that
fragmentation is not identical to that of naturally occurring cfDNA. The study would
have more value if a few cases where analysis is done on cffDNA from aneuploid
pregnancies with comparison of data from newborn genomic DNA/karyotype (or from
products of conception results). The ability to determine parental origin of the
aneuploidy if validated is an advantage of this method.

We thank the Reviewer for an extensive evaluation and agree that mixing experiment
with spike-ins is a limitation, when it comes to validation of aneuploidy detection.
Unfortunately, we were not able to perform direct comparison of aneuploidy detection
in cfiDNA and affected newborn or product of conception, as in the framework of this
project we did not have an aneuploidy clinical case. However, we are keeping running
the clinical study to collect samples to further validate the method. We foresee that we
can have access to aneuploidy cases to overcome the limitations of ‘artificial’ sample.

I have the following additional detailed comments and suggestions:

e The abstract is clear and reflects the data and conclusions of the manuscript
accurately. I like the introduction of NIPT-A and NIPT-M, as terms that nicely
parallel PGT-A and PGT-M. Maybe authors could consider including NIPT-SR
(or NIPT-CN or “copy number”’?) in their terminology as well and elaborate on
this suggested terminology in the discussion some more?

We address the point in the discussion on page 16 line 319-322.

e Introduction: on P 3, first paragraph: NIPT-A indeed resulted in a significant
drop on invasive procedures, however the word "unnecessary”, which is an
interpretation, should be removed from this sentence. Concern has been raised
that while procedures for aneuploidy testing have gone down, the side effect is
that there is also a decline in procedures for diagnoses that are not found by
NIPT-A and that would have been detected by a diagnostic procedure.



We removed “unnecessary” from the sentence on page 3 line 53.

Introduction: P4, last line (and also in methods): can authors define the word
"haplarithmisis™. | realize the method has been previously published and is briefly
described, but it will help readers to understand what the basis for this unusual
terminology is.

We added explanations for haplarithmisis on page 5 line 83-85.

| suggest that for all relevant figures you consider different color combinations to
designate the different parental SNP subcategories and haplotype blocks besides

red and blue. Sometimes red blue differentiates two different paternal haplotypes

of the same parent and sometimes it differentiates maternal versus paternal in the
fetal DNA.

We clarified the color pattern in the figure legend.

Figure 3: Figure 3a is a little hard to follow. Consider more clarification in
legend or revision of this panel. Figures 3c and 3d are too small. | had to
significantly enlarge these on the computer monitor to actually see the two blue
and two red tracks for each chromosome. It is impossible to see this on the printed
version. This should be corrected (same applies for similar figures in
supplemental data).

We moved Figure 3a and 3b to Supplementary Figure S5a and S5b and added
supplementary figure legend for S5a. We rearranged Figure 3 and Supplementary
Figure S6 to present figures properly.

| would like to see more clearly described if the actual variant (wild-type versus
carrier) was detected accurately in addition to correct haplotype establishment.
The authors must have some data on this.

The variants of the clinical samples are not in the target design and thus
unfortunately we do not have the information of the allele counts on the specific
variant locus. We expect that if actual variants happen to be within the capture
design, we can obtain locus-specific information to support haplotyping results.

There should be some comment in the discussion how the 97% concordance with
embryo and newborn haplotypes would affect clinical utility if introduced for
clinical application.

We commented the clinical utility of the method in the discussion on page 18 line
361-365.



In the discussion, the authors state that their method is better than working up
individual cases and doing targeted cfDNA analysis for familial variants. That
statement should be supported by a discussion that considers comparison of cost,
time estimates to results, accuracy, and the limitations of their new method. In
particular, bespoke testing has been shown to be diagnostic (not screening) in
certain studies while their assay seems less accurate for maternally inherited
variants and has problems if there is meiotic recombination near a pathogenic
variant.

We expanded detailed discussion regarding the advantage and limitations of the
method on page 16 line 324-344 and page 17 line 346-385. The maternally
inherited variants show lower accuracy compared with paternally inherited
variants due to the maternal background DNA in plasma samples. The
haplotyping of maternal inheritance is also largely affected by fetal fraction. If the
variant lies in meiotic recombination region, the method cannot reach a conclusive
result and invasive test is required.

Considering they also suggest this as a potential non-invasive follow-up assay for
PGT-M confirmation, an accurate test to confirm would be desired. I would be
concerned that for an individual case, a specific error or limitation in a PGT-M
assay done by haplarithmisis may well be carried through if haplarithmisis is also
used as the basis for the NIPT-M test. Can they comment on this? maybe bespoke
non-invasive testing is the way to go.

Computational workflow behind haplarithmisis for PGT-M has been extensively
validated during the developmental stage and has been successfully implemented
into the routine clinical practice since 2015 (Dimitriadou et al., 2017, Hum
Reprod). Although haplotyping-based NIPT-M is based on haplarithmisis, the
computation of NIPT-M relies on fetal proportion of cfDNA is independent of
single-cell B-allele frequency in PGT-M. The major limiting factor that might
prohibit the use of this technology both in PGT-M and NIPT-M is the proximity
of the locus of interest to homologous recombination site.

The other limitation, the inability to detect de novo variants is touched on very
briefly but is significant. Have the authors explored their data for the ability to
detect de novo variants on the paternal allele? There should be some data as they
are in essence similar to type 1 variants.

Although the test allows detection of paternal de novo mutations, the design did
not focus on de novo mutations. As suggested by the reviewer, important disease-
causing genes can be included into the capture design in the future and screening
for de novo mutations can be incorporated with inherited variants identification.
This is commented on page 17 line 354-365.



In the discussion, the comment on the 1% risk for procedure related pregnancy
loss for an invasive procedure is an overestimate. Recent data suggest that it is in
fact much lower than 1%, with several papers indicating there is no significant
difference between amniocentesis and CVS. This statement must be revised.
Please note that there is a more recent meta-analysis by the same authors of
reference 37, which itself is incorrectly referenced as it does not say that the risk
is 1%.

We removed the incorrect number. The text was rephrased on page 19 line 394,
and the reference was updated to Salomon et al., 2019 Ultrasound Obstet
Gynecol.

The authors have a case with maternal CMT1A and comment that it does not
interfere with the analysis, but what the resolution of this method would be to
detect such CN changes in cfDNA is not addressed. Can they comment on this?
Can they model it?

We added maternal copy number profile of this case to the Supplementary Figure
12 and we comment further on this case in the discussion on page 19 line 377-
380.

The comments on carrier screening should qualify that the most desirable
approach would be preconception carrier screening followed by PGT-M rather
than carrier testing during pregnancy followed by diagnostic testing or NIPT-M

This item was addressed on page 20 line 413-414.

It would be nice if the discussion could end with a comment about wider clinical
validation to determine clinical utility.

We revised the discussion to address the item on page 21 line 420-422,
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ABSTRACT

Purpose

Whereas non-invasive prenatal testing for aneuploidies (NIPT-A) is widely implemented,
there is an increasing need for universal approaches for noninvasive prenatal testing for
monogenic diseases (NIPT-M). Here, we present a cost-effective, generic cell-free fetal DNA
(cffDNA) haplotyping approach to scan the fetal genome for the presence of inherited
monogenic diseases.

Methods

Families participating in the preimplantation genetic testing for monogenic disorders (PGT-
M) program were recruited for this study. 250000 SNPs captured from maternal plasma DNA
along with genomic DNAs from family members were massively parallel sequenced.

Parental genotypes were phased via an available genotype from a close relative, and the fetal
genome-wide haplotype and copy number were determined using cffDNA haplotyping

analysis based on estimation and segmentation of fetal allele presence in the maternal plasma.

Results
In all families tested, mutational profiles from cffDNA haplotyping are consistent with
embryo biopsy profiles. Genome-wide fetal haplotypes are on average 97% concordant with

the newborn haplotypes and embryo haplotypes.

Conclusion
We demonstrate that genome-wide targeted capture and sequencing of polymorphic SNPs

from maternal plasma cell free (cfDNA) allows haplotyping and copy number profiling of the
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fetal genome during pregnancy. The method enables the accurate reconstruction of the fetal

haplotypes and can be easily implemented in clinical practice.

INTRODUCTION

The discovery of cffDNA in the maternal plasmat has spurred the development of non-
invasive prenatal genetic testing (NIPT). The advent of massively parallel sequencing
technologies enabled non-invasive screening for the most common fetal aneuploidies
(trisomy 21, 18 and 13) with high accuracy, which leverage rapid worldwide implementation
of NIPT-A in routine prenatal care®3. NIPT-A became popular because it can be applied from
10 weeks of pregnancy, reduces the risk of procedure-related miscarriage and technical
challenges associated with invasive prenatal testing. The accuracy largely outperforms the
traditional first and second trimester risk assessment tests. Its implementation resulted in a

significant drop of unnecessary invasive procedures*®.

In addition to aneuploidy detection, monogenic diseases can be identified by cffDNA
analysis®2. Although the incidence of single-gene disorders is estimated to be about 1% of all
life births® and over 7000 monogenic diseases are known°, non-invasive prenatal testing for
monogenic disorders has only been performed on a limited number of pregnancies for a small
panel of genes. Different methods have been developed™°, but currently none has been
widely adopted in clinical practice. While the detection of paternally inherited alleles is

straightforward'®, analysis of the maternally inherited allele has been hampered by the excess

3
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of maternal DNA in cfDNA. Analytical approaches that allow non-invasive diagnosis of
maternally inherited dominant or autosomal recessive monogenic diseases focus on the
determination of which allele the fetus has inherited. The relative mutation dosage (RMD) by
digital PCR measures the relative proportions of the mutant and wild-type alleles in the
maternal plasma®!. However, a major disadvantage is that allele-specific probes are required
and, as a consequence, are only suitable for the detection of one single targeted variant per
test'’18, Haplotype-based methods deduce the fetal genotype by measuring the relative counts
of alleles on haplotype blocks linked with the mutant allele and wild-type allele in the
maternal plasma®®. Lo et al.®® and Kitzman et al.1* demonstrated that whole-genome
sequencing of maternal plasma DNA to 65-fold and 78-fold coverage allows the deduction of
a genome-wide genetic and mutational profile of the fetus, opening opportunities to detect
virtually all inherited monogenic diseases using one single platform. However, the high cost
and the intensive computational analyses required for whole genome examinations currently
prevent wide-scale clinical implementation. Target-based haplotyping methods are limited to
tailored genes; a series of probes for the targeted capture of SNPs flanking a particular locus
needs to be selected a priori and require 200- to 1000-fold depth of cfDNA sequencing®292,
Hence, this approach requires disease specific work-up and cannot be universally applied for

the generic diagnosis of monogenic disorders.

We previously developed a genome-wide single-cell haplotyping method, coined

haplarithmisis, which enables concurrent haplotype and copy number determination?,
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Haplarithmisis is a generic method that use informative loci from parental haplotypes across
all chromosomes and assign embryo B-allele frequencies to localize meiotic recombination
sites and to measure the copy of inherited parental haplotype. This method has been clinically
implemented for comprehensive embryo pre-implantation genetic testing (PGT) for both
monogenic disorders and aneuploidy?. Here, we tailor the approach for non-invasive prenatal
haplotyping, and validated the method on families that underwent PGT-M where embryo
haplotypes and newborn haplotypes of the uterine transferred embryos are available. We
demonstrate the feasibility of cffDNA based haplotyping as a generic method for non-

invasive prenatal detection of inherited monogenic diseases and aneuploidy detection.

MATERIALS AND METHODS

Study design

In total, nine families at risk for dominant or recessive disorders following PGT-M were
included in this study (Table 1). The haplotype and mutational status of embryos were
determined during routine PGT-M workflow at UZ Leuven hospital, and a healthy embryo
was transferred. Genomic DNAs from the family members, including mother, father, and a
close relative (either an affected offspring or parents of the couple) were collected. Maternal
plasma cfDNA was later obtained from the pregnant woman following PGT-M and embryo
transfer (Supplementary Materials and Methods). In three families, approval to sample the
neonate was provided and DNA was obtained. In addition, one family with a trisomy 21 child

was included to create spike-in DNA samples, simulating the fetal fraction observed in
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maternal plasma, and evaluate the performance of the method to detect aneuploidy. The

workflow of this study is illustrated in Supplementary Figure S1.

This study was approved by the local Ethical Committees of the University Hospital Leuven
(S59324). Women with a successful pregnancy following PGT-M were recruited at the UZ

Leuven Hospital, with informed consent.

DNA library preparation and targeted sequencing

DNA libraries were prepared using the SureSelect*™ Target Enrichment System for
Illumina Paired-End Sequencing (Agilent Technologies, California, USA). Genomic DNAs
were processed according to manufacturer’s recommendations. In the case of cfDNA
samples, between 5-20 ng were used for input, and the number of cycles for pre-hybridization
PCR was optimized to 11 to generate 500-1000 ng of DNA libraries. Unique molecular
identifiers (UMI) were added to DNA fragments before PCR amplification. End repair and A-
tailing, ligation and sample purification steps were performed following manufacturer’s
instructions. DNA libraries were hybridized to a 45 Mb custom capture library, which targets
250,000 SNPs that includes ~250 disease regions, subtelomeric and pericentromeric regions,
and sex chromosomes. The capture library was designed based on the HumanCytoSNP-12
BeadChip (Illumina, California, USA) using the Agilent SureSelect DNA Advanced Design
Wizard (https://earray.chem.agilent.com/suredesign/) with 2x tiling density, most stringent

masking, and max performance boosting. Following hybridization and successful
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amplification, post-capture libraries were evaluated on Agilent 4200 Tapestation system
(Agilent Technologies) using High Sensitivity D1000 SCreeTape. Concentrations were also

measured by Qubit HS dsDNA Assay kit (ThermoFisher, Massachusetts, USA) before

pooling. Pools were clustered using an Illumina cBot and sequenced with paired-end 150
reads on an Illumina NextSeq500 in high output mode. Three newborns DNA were

sequenced on an Illumina HiSeg4000 machine without UMI barcode.

Sequencing alignment and variant calling

Quality of the pair-end sequencing data was checked by FastQC v0.10.124. Sequencing reads
were aligned to GRCh37 with decoy sequences included (hs37d5) by BWA-MEM v0.7.172°
and UMI barcodes were transferred to bam file as RX tag. Duplicates were marked using
Picard MarkDuplicates (the Broad Institute) with the awareness of UMI barcodes. Read pairs
that mapped to the same genomic location and with identical molecular barcodes were
grouped and ranked by base quality. Read pairs with the highest score from each molecular
barcode families were kept, and PCR duplicates were removed. Low quality mapping reads
(< 20) and secondary alignment were filtered for downstream analyses. We used Genome
Analysis Toolkit?® (GATK) software suite to perform variant calling. HaplotypeCaller was
used to call variants from family gDNA samples jointly and parental genotypes were phased
by PhaseByTransmission. Maternal plasma samples were handled separately, and allele
counts were collected using ASEReadCounter by counting pair-end fragments requiring the

overlapping bases to be identical, minimal mapping quality greater than 20, and base quality
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greater than 2. Only sites with more than 30 total alleles count in maternal plasma were used

for analysis.

cffDNA haplarithmisis

The principles of cffDNA haplotyping are presented in Figure 1. Briefly, by targeted
sequencing genomic regions genome-wide for family members and maternal plasma cfDNA,
genotypes and allele counts are determined for captured SNPs. Parental genotypes are phased
via an available genotype derived from a close relative, either an affected child or parents of
the couple as previously described??. The parental genotypes are divided into 5 groups based
on paternal and maternal allele combinations (Supplementary Materials and Methods). A
SNP locus is defined informative when the genotype of one parent is heterozygous and the
other is homozygous for this SNP. The informative SNPs are categorized as paternal or
maternal. An informative SNP is defined ‘paternal’” when the father’s genotype is
heterozygous, and the mother’s genotype is homozygous. Similarly, an informative SNP is
defined ‘‘maternal’” when the mother’s SNP genotype is heterozygous and the father’s SNP
genotype is homozygous. These paternal and maternal informative SNP loci are then
subcategorized (P1, P2 or M1, M2) according to the informative phased parental SNP

genotypes (Figure 1a).

To deduce the fetal haplotype from cfDNA, we infer the alleles that originate from the fetus.

For the paternal SNP category, we can easily infer the paternally inherited alleles in the fetus

8
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that differ from the maternal background alleles present in the cfDNA (Figrue 1b). For the
maternal SNP category, we cannot straightforwardly distinguish the maternally inherited
allele of the fetus from cfDNA as both maternal alleles are present. Nevertheless, the
maternal allele inherited by the fetus will be overrepresented in maternal plasma comparing
to the untransmitted allele. Thus, we based the haplotyping of the fetal genome on the
determination of the fetal allele ratio (FAR) that measures the proportion of fetal allele in
cfDNA. First, the fetal fraction (FF) is calculated by dividing the number of reads that exhibit
a paternal specific allele by the total number of reads using Type 1 SNPs (Supplementary
Materials and Methods). Then the FAR values are measured for SNPs where either parent
has a heterozygous SNP genotype. The FAR from consecutive informative SNPs is
segmented for each SNP subcategory (P1, P2 or M1, M2) separately and then jointly
interpreted, defining the haplotype blocks inherited from paternal H1 and H2 or maternal H1
and H2, and pinpointing homologous recombination sites between the parental H1 and H2
(Figure 1b). FF is used as a standard for segmented FAR value to determine homolog

inheritance and to quantify copy number (Supplementary Materials and Methods).

cffDNA haplotyping validation and performance

To validate cffDNA haplotyping, we matched the cfDNA derive haplotypes to neonatal
haplotypes and array-based single cell embryo haplotypes. Both mutational status and
genome-wide haplotype concordance were compared and measured. To assess the

performance of the cffDNA haplotyping under effects of different factors, downsampling and
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simulation analyses were performed. Details are described in Supplementary Materials and

Methods.

Aneuploidy detection

Synthetic spike-in samples were made to simultaneously infer fetal haplotype and detect
aneuploidy. Mixed samples were created by combining 20% and 10% of DNA from the
affected proband with the respective pairs 80% and 90% of DNA from the mother.
Chromosomal abnormalities result in FAR value deviation from the expected FF. Statistical t-
test was performed to measure shifting patterns. The haplotyping result and non-homologous
disjunction from cfDNA were confirmed with the proband DNA (Supplementary Materials

and Methods).

RESULTS

Non-invasive prenatal testing for monogenic disorders

Three families have an affected offspring, and six have parents of the couple available to
phase the parental genotypes (either paternal or maternal, depending who the carrier of
variant is). It is possible to infer both the paternal and maternal haplotype inheritance with an
affected offspring for phasing. Phasing with parents of either father or mother determines the
origin of the mutant allele in either the father or the mother (Supplementary Figure S2) and
only inheritance of the paternal or maternal haplotype is deduced. As a general observation

from raw FAR values of informative SNPs (Supplementary Figure S3), the maternal
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inheritance of homologous chromosome segments is more difficult to deduce visually due to
the overwhelming maternal DNA background. However, we enable haplotyping of the

maternally inherited genome of the fetus by FAR segmentation.

We verified the mutational profile derived from cffDNA haplotyping against the newborn
profile in the first instance. In three families (Family 1_181, 4 158 and 6_150), we
determined neonatal haplotypes following targeted sequencing. Family 1 181 presents an
autosomal recessive disorder, in which unaffected parents are heterozygous carriers for a
variant in the same gene (Table 1). Haplotyping of the cffDNA identifies the paternal and
maternal haplotype blocks linked with the wild-type allele at the locus of the PPT1 gene,
indicating that the fetus is not at risk for the disease. The haplotype obtained from bulk DNA
of the newborn child using conventional familial analysis, confirmed accurate haplotyping-
based NIPT-M and concordant positioning of homologous recombination sites (Figure 2a
and Supplementary Materials and Methods). For the other two families (Family 4_158 and
6_150), the disease is autosomal dominant, and the father carries the variant. Paternal parents
were used for phasing. The presence of a paternal haplotype block linked with the wild type
allele confirmed the transfer of unaffected embryo and is concordant with the newborn child

haplotype (Supplementary Figure S4a and b).

For all nine families, we validated the mutational profile determined from cfDNA to the

embryo biopsy haplotyping results from PGT SNP array-based haplarithmisis analyses. In all
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cases the results were concordant (Figure 2a-c and Supplementary Figure S4a-f). Note that
for Family 2_186, two autosomal recessive diseases were investigated in a single PGT. Using
cffDNA haplotyping, we ascertained the absence of paternal and maternal haplotype linked
with the mutant alleles for type 1 Gaucher disease. The cell-free fetal haplotype revealed the
same haplotype from embryo as being carrier of maternal variant for mitochondrial DNA
depletion syndrome 6 indication (Figure 2b). Family 3_085 presents with an X-linked
dominant disorder. Since the mother is the carrier of the variant in the family and the fetus is

male, only the maternal haplotype inheritance is displayed in Figure 2c.

Genome-wide cffDNA haplotyping accuracy

To evaluate the overall performance of the method, we determined the accuracy of genome-
wide cffDNA haplotyping by comparing the results to conventional haplotypes derived from
DNA analysis of neonatal blood when available and to single-cell haplotypes of the
transferred embryo, following PGT-M. The haplotype blocks derived from born children or
single-cells were considered as references and haplotype blocks derived from maternal
plasma DNA were matched to the reference (Supplementary Figure S5a). Comparing to
neonatal genotypes, paternal and maternal informative SNPs could be deduced with 95.17%
and 65.84% accuracy respectively for a 9.5% FF sample, when the prediction is only based
on locus specific raw allele counts. With the use of haplotypes, the paternal and maternal
genotype inference accuracy increases to 99.7% and 95.64%, respectively. Haplotyping

accuracy is reduced near homologous recombination sites (Supplementary Figure S5b-c).
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The comparison of cffDNA haplotypes to newborn haplotypes (Figure 3a and
Supplementary Figure S6a), and to embryo haplotypes (Figure 3b and Supplementary
Figure S6b) both showed an average of 99% paternal and 95% maternal haplotype

concordance (Supplementary Table S1).

Above 98% accuracy was achieved for paternal haplotyping regardless of FF and sequencing
depth in all cases, while maternal haplotyping accuracy varied from 90% to 97% and is FF
and sequence depth dependent. Reduced haplotype resolution could be observed near the
recombination sites where the maternal haplotypes accuracy drops below 95% in a region of
about 400Kb, whereas the paternal region of lower accuracy near crossovers ranges between
100 and 350Kb (Supplementary Table S1). Overall, haplotype accuracy and crossover
resolution are impacted by FF, density of informative SNPs and sequencing depth
(Supplementary Figure S5a). By simulating different fetal DNA fractions shown in cfDNA
and maintaining the median coverage at a fixed 85-fold, the effect of FF on haplotyping
accuracy and crossover was mapped. Paternal haplotypes were almost invariant to FF. In
contrast, the accuracy of the maternally inherited haplotype as well as the resolution near
crossovers were both greatly affected by FF. While with 20% FF, the maternal haplotypes
were more than 98% accurate when compared with the reference haplotype at a homologous
recombination resolution of 200kb, the concordance decreased to less than 80% and a

resolution of 1Mb with an FF of 5.5% (Figure 3c).
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However, it was possible to further improve the results when an affected offspring was used
for phasing. In such families, SNPs that are the heterozygous SNPs in both father and mother
(Type 4 SNPs) were applied to improve maternally inherited haplotypes. We converted such
ambiguous type 4 SNPs to unambiguous phased maternal SNPs after resolving paternal
haplotypes. By adding these extra SNPs to the inference of the maternally inherited haplotype
improved the accuracy when FF is low (Supplementary Figure S7). Though we anticipated
more accurate estimation of FARs and thus improved haplotyping accuracy by raising
sequencing depth especially when FF is low, we showed that even at low sequencing depth
robust fetal haplotypes could be obtained. To further investigate the effect of sequencing
depth on haplotyping, we downsampled two cfDNA-sequencing samples having 16.5% FF
and 9.5% FF. Although the range of sequencing depth was 50-fold to 96-fold in our samples
(Supplementary Table S1), downsampling simulations showed that cfDNA haplotyping
performance was stably maintained at 40-fold sequencing depth for 16.5% FF and was only
reduced to below 95% concordance at 30-fold sequencing depth (Figure 3d). With FF at
9.5%, haplotyping accuracy also only dropped greatly when sequencing depth reduced to

below 30% of original depth (Supplementary Figure S8).

Aneuploidy detection using cffDNA haplotyping
In addition to inherited monogenic disease detection (NIPT-M), we explored the capability of
the methodology to detect simultaneously aneuploidy (NIPT-A) using synthetic spike-in

samples. As illustrated in Supplementary Figure S9, a trisomy would lead to a deviation of
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the segmented FAR value from the expected FF. In a maternally inherited trisomy, the
segmented FAR value of the paternal SNPs shifts only marginally; however, maternal FAR
values will shift systematically away from the FF value of the diploid autosomes. For
instance, assuming 10% FF and 100-fold coverage, we would expect that maternal FAR value
to shift to 4.76% or 14.29% rather than 0% or 10%. While for a paternally inherited trisomy,
both paternal and maternal FAR values deviate from the expected FF (Supplementary
Figure S9a and b). Accordingly, our data revealed that the paternal FAR values on
chromosome 21 presented close to the expected normal FF levels, while the maternal FAR
values for both M1 and M2 subcategories shifted away from the expected FF, being near to
the theoretical trisomy FAR values. Using t-test, maternal (M1 and M2) mean FAR values of
chromosome 21 showed significant difference from their corresponding subcategorical mean
FAR values of other chromosomes (Supplementary Figure S10). As a result, a maternally
inherited trisomy 21 was determined (Figure 4a). The predicted haplotypes have both
maternal haplotypes present, indicating that the trisomy is the consequence of a maternal
meiotic nondisjunction. Sequencing data from the proband also confirmed this and showed a
concordant phasing between the spike-in samples and the child DNA (Figure 4b). Despite
trisomy 21, the genome-wide haplotyping demonstrated 99.9% and 99% accuracy for
paternal and maternal inheritance for 20% FF spike-in sample, and 99.8% and 97% for 10%

FF spike-in sample.

DISCUSSION
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We demonstrate that genome-wide targeted capture and sequencing of polymorphic SNPs
from maternal cfDNA along with parental, additional family member’s DNA, allows
haplotyping and copy number profiling of the fetal genome during pregnancy. cffDNA
haplarithmisis analysis enables the accurate reconstruction of the fetal haplotypes without the
need for deep sequencing nor whole genome sequencing analyses. A wide spectrum of
monogenic disorders and aneuploidy are readily detectable via this approach. This opens the
venue for concurrent NIPT-M and NIPT-A. With uptake of the testing and technology
refinement, detection of sub-chromosomal aneuploidy and copy number detection will

become feasible as well.

We envision cffDNA haplarithmisis to be a universal NIPT that avoids the necessity to design
specific panels defining particular loci to be analyzed. Cost is one of the major factors that
limits the scalability of NIPT-M. The capture design and targeted sequencing used in this
method can make NIPT-M more affordable in the long term. In contrast to the RHDO method
where more than 200-fold coverage of the target loci is required, the method leverages

segmentation of fetal allele ratio over multiple informative SNPs that allows a significant

reduction of the required sequencing depth. Samples can be multiplexed to further reduce
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ime- To enhance

the haplotype inference accuracy, unique molecular identifiers were incorporated to reduce
amplification artifacts and technical biases were removed by using multiple filtering criteria,
monitoring sequencing errors and applying dynamic bias corrections. We set standard
classification rules based on FF to assure sufficient evidences supporting the homolog
assignment (Supplementary Materials and Methods). A range of conditions, including
dominant, recessive and X-linked monogenic diseases can be assessed in this generic non-
invasive prenatal diagnosis test. Multiple variants can be identified in one test without
variant-specific designs, as shown in the case of Family 2. In case of aneuploidies, the

parental origin and the segregation error (meiotic or mitotic) can be deduced.

Parental haplotypes are deduced from the genotypes of other family members.

Sometimes, those relatives are not available. Direct parental haplotyping through long-read?
or linked-read®?’ technology can offer a solution to haplotype inference of the family without
additional family members. In the longer haul, the availability of population haplotypes will
allow inference of the disease allele, especially for the most common recessive disorders?®2°,
Those haplotypes could be imputed to reduce the need for parental and grandparental
haplotyping. Also, although the method was designed to be generically applicable to
monogenic diseases detection, it is not suitable for de novo variant detection. Fe-evercome-

this-amplicon-sequencing-of-specificloci-has-been-explored. Zhang et al.®® demonstrated a

capture design of the most frequent dominant disorders for the detection of de novo and
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paternally inherited disease-causing variants. It might become possible to add capture probes
to the current design. However, the approach should be compensating for the high sequencing
depth required for de novo mutation detection as compared to the relative lower sequencing

depth required here. A-m

carrier-of-variant-er-not: We reached an overall 97% concordance with embryo and neonatal

haplotypes and the discordance arises mainly from the homologous recombination regions.
As a general limitation, meiotic homologous recombinations occurring near the mutant gene
would not allow inference of whether the fetus is a carrier of variant or not. In such case, an
invasive test can be recommended. The accuracy of the homologous recombination and
haplotype construction are determined by the interplay of the fetal fraction, the density of
informative SNPs and the sequencing depth around the genomic region. Low fetal fraction
leads to reduced accuracy particular for the inference of the maternally inherited haplotype,
but this may be remedied by higher density of informative SNPs. Though we yielded
conclusive results for all clinical cases presented in the study, from simulation we estimated
that to get an overall accuracy in maternally inheritance haplotyping above 90% requires
7.8% fetal fraction with moderate sequencing depth. Paternally inherited haplotypes can
readily be detected even when the fetal fraction is 3% at about 85-fold coverage
(Supplementary Figure S11). Of note, we have one case where the mother is a carrier of
~1.5 Mb duplication causing Charcot-Marie-Tooth disease type 1 syndrome. Though

maternal copy number variations may interfere the FAR estimations, the method showed
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tolerance for the excessive maternal allele background for relatively small duplication. As we
can already detect the maternal copy number in this case (Supplementary FigureS12a-b),
parental copy number of larger sizes are very likely be detected, and the region can be taken
into consideration for proper interpretation of results. Placental chromosomal mosaicism
might be another factor affecting the analysis. From PGT-A of blastocysts it is becoming
clear that many blastocysts carry aneuploidies in a fraction of the cells. Although we
demonstrated that the impact of embryonic aneuploidy seems to be marginal during prenatal
development®?, placental mosaic aneuploidies have been reported in NIPT2%, It remains to

be determined whether mosaic aneuploidies would interfere with this approach.

Generic methods to haplotype and profile aneuploidies in embryos have transformed
preimplantation genetic testing for monogenic diseases (PGT-M) and are becoming an
integral aspect of in vitro fertilization procedures®* 3. Because of the risk for a spontaneous
pregnancy during the PGT procedure and possible laboratory procedure errors®, a prenatal
diagnostic test (chorionic villus sampling or amniocentesis) is currently highly recommended
to confirm the transfer of an unaffected embryo. Since fetal genetic testing for monogenic
disorders currently requires an invasive procedure which is-estimated-to-have-a1% risk-for-
procedure-induced-misearriage; may have miscarriage risk®’, most families renounce from
undergoing the test. cFffDNA haplarithmisis represents a safer alternative for these families.
As proof-of-concept, we actually performed targeted sequencing on families that underwent

PGT-M by genome-wide haplotyping and do demonstrate a very high concordance of the
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embryo single-cell and cfDNA derived haplotypes. In families that undergo PGT-M by
haplotyping, NIPT-M can be streamlined as one workflow where phasing of parental
genotypes has already been performed in the PGT-M process. Hence, non-invasive prenatal

fetal haplotyping would require only analysis of the targeted cfDNA.

Genetic carrier screening has been offered to individuals and couples based on family history
or ethnic background. Screening of cystic fibrosis and thalassemia have been recommended
and is rolled out for general preconception and prenatal populations®. Moreover, technology
advances in next generation sequencing and better understanding of disease causing variants
continuously drive expansion of screening panels®. As an increasing number of genetic
disorders recognized to be practical for screening, the raising awareness that each individual
can be a carrier of variants that may cause recessive disorders and the increasing uptake of
carrier screening in the general population®, new approaches to reduce the transmission of
disease alleles that leads to severe morbidity and mortality are desirable. In such scenario, our
method could be applied in combination with carrier screening program to help couples at-
high-risk-ferinherited-diseases who are at high risk for inherited diseases but cannot, or do
not want to or do not have access to preimplantation genetic testing to make autonomous

reproductive decisions.

In summary, haplarithmisis makes non-invasive genome-wide fetal haplotyping and

aneuploidy detection with targeted sequencing accessible to all. This universal cffDNA
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haplotyping approach could easily be adopted by genetic testing laboratories and would
provide comfort to both the couples and the care-takers involved. Following this proof-of-
concept study, we expect expanded clinical studies to further validate the method more

precisely.

Data availability
All sequencing data from 9 families underwent PGT and 1 family with trisomy 21 proband

have been submitted to the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/)

under accession numbers EGAS00001003634.

Code availability

Code is available in GitHub at https://github.com/vermeeschlab/cfDNAhaplotyping
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FIGURE LEGENDS

Figure 1. Principles of cffDNA haplotyping. a, Example of a family with an autosomal
dominant disorder. DNA from the parents and the affected offspring is first genotyped and
on the basis of the affected child's genotype, parental SNPs can be phased to determine the
transmission of paternal and maternal homologues, including the mutant allele. Paternal
informative SNPs, defined as heterozygous in the father and homozygous in the mother,
are identified as a step 1 phasing rule. The paternal homologue that is transmitted to the
affected child must contain the causative variant and is denoted homologue 1 (H1),
whereas paternal H2 carries the normal allele. Subsequently (step 2), informative SNPs are
categorized to define parental SNPs subcategories — P1 and P2 for paternal SNPs, and M1
and M2 for maternal SNPs. b, Determination of fetal haplotype inheritance was based on
fetal allele ratio (FAR) metric. Red and blue indicate paternal P1 and P2 SNPs
subcategories, and the same color code is also applied to distinguish M1 and M2 SNPs
subcategories. Segmentation on FAR values (step 3) was performed to define the haplotype
blocks derived from paternal H1 and H2 or maternal H1 and H2, thus indicating homologous

recombination sites between the parental H1 and H2.

Figure 2. cffDNA haplotyping analysis for monogenic disorders. Disease locus associated
chromosome cffDNA haplotyping result. For each sub figure, family pedigree information is
displayed in together with haplotyping. The reference haplotypes from either the born child

and/or from the embryo blastomere and cffDNA haplotyping results are shown. Color blue in
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haplotype plots indicates paternal haplotype inheritance and color red indicates maternal
haplotype inheritance. For cffDNA haplotyping results, both segmented FAR values and
derived haplotype blocks are shown. In segmented FAR values track, the red dotted line
represents segmented P1 or M1 FAR and blue for segmented P2 or M2 FAR, and the distance
between P1 and P2 or M1 and M2 segmentation in the same genomic region indicates fetal
fraction. We flipped FAR values of P1 subcategory around 0 and FAR values of M1 were
subjected to less than or equal to 0 in visualization for clear separation between informative
SNPs subcategories. Disease loci are indicated with a yellow vertical line. a, cffDNA
haplotype compared to neonate haplotype and embryo haplotype. The paternal homologue
carrying the variant is represented in dark blue and maternal homologue carrying the variant
is represented in dark red. The disease locus resided in light color block of both paternal and
maternal haplotypes, indicating wild-type alleles were transmitted. b-c, cffDNA haplotyping
results compared to the embryo haplotype. b, Two disease indications of the family are

shown. ¢, Inheritance of an X-linked disorder is shown.

Figure 3. Genome-wide cffDNA haplotyping accuracy. a—Hlustration-of density-of SNPs-

the-rightand-to-the-leftside-of breakpeints: a, Genome-wide comparison of cffDNA
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haplotyping results to the neonate haplotype from Family 1_181. For each chromosome, dark
and light blue represents paternal haplotyping and dark and light red represents maternal
haplotyping; the upper haplotype track refers to born child haplotype and lower track
represents cfDNA-based fetal halplotype. b, Genome-wide comparison of cffDNA
haplotypes to the embryo blastomere haplotype from Family 3_085. The upper track shows
the single-cell haplotype and lower track represents cfDNA derived haplotype. c, Simulation
of the impact of fetal fraction (FF) on haplotyping accuracy and resolution. d, Effect of

sequencing depth on the performance of cffDNA haplotyping for 16.5% FF.

Figure 4. Aneuploidy detection using spike-in samples. a, Maternally inherited trisomy 21
detected in spike-in DNA samples with 20% and 10% fetal fraction, respectively. In 20%
spike-in sample, maternal FAR values dropped around 10% and -10%, indicating an extra
copy from the ‘fetus’ on chromosome 21. Similarly, in the 10% FF, maternal FAR values
were around 5% and -5%. b, Validation of maternally inherited trisomy case using
sequencing data from the proband. The copy number plot (log2 ratio) indicated chromosomal
copy number on chromosome 21, with black dot as log2 ratio of each target and red line as
segmented value. The paternal and maternal reference allele ratio from chromosome 21 also
deviates from standard reference allele ratio of 0.5 and the homologous recombinations are

consistent with spike-in samples derived result.
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Supplementary Figure S9
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Supplementary Figure S11
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Supplementary Figure S12
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Main Table

Table 1. Clinical information of all families that followed pre-implantation genetic testing (PGT)

Family  Disease Gene Cytogenetic ~ Genomic Ml Mutation Phasing Fetal ~ Gestation
Location coordinates sex age
(weeks)
Mother Father Other family member Fetus
1181 Ceroid lipofuscinosis, PPT1 1p34.2 chrl: 40,538,381 - AR Heterozygous c.451C>T Heterozygous ¢.566C>T Sibling combined Non Affected F 12
neuronal, 1 (#256730) (NM_000310.3) 40,563,141 (p.Argl51*) (p.Pro189Leu) heterozygous (c.451c>T and  carrier offspring
€.556C>T)
2186  Gaucher disease, type1  GBA 122 chrl:155,204,238- AR Heterozygous ¢.1448T>C Heterozygous ¢.1448T>C Shling homozygous Non Affected F 12
(#230800) (NM_000157.3) 155,214,652 (p.Leu483Pro) (p.Leu483Pro) €.1448T>C (p.Leu483Pro) carrier offspring
Mitochondrial DNA MPV17 2p23.3 chr2:27,532,359- AR Heterozygous ¢.293C>T Heterozygous ¢.293C>T Sibling homozygous Carrier of
depletion syndrome 6 (NM_002437.4) 27,545,968 €.293C>T and ¢.293C>T maternal
(hepatocerebral type) mutation
(#256810)
3_085  Chondrodysplasia EBP Xp11.23 chrX:48,379,546- XLD  Heterozygous c.116C>G Non carrier Sibling heterozygous Non Affected M 12
punctata, X-linked (NM_006579.2) 48,387,104 (p-Thr39Arg) ¢.116C>G (p.Thr39Arg) carrier offspring
dominant (#302960)
4158  Breast-ovarian cancer, BRCA2 13g13.1 chr13:32,889,616-  AD Non carrier Heterozygous ¢.5645C>A  Paternal grandmother Non Paternal F 12
familial, 2 (#612555) (NM_000059.3) 32,973,808 (p.Ser1882%) heterozygous ¢.5645C>A carrier parents
(p-Ser1882%)
5_149 Breast-ovarian cancer, BRCA2 13g13.1 chr13:32,889,616- AD Non carrier Heterozygous Paternal grandmother Non Paternal M 12
familial, 2 (#612555) (NM_000059.3) 32,973,808 €.6275_6276delTT(p.Leu2  heterozygous carrier parents
092Profs*7) €.6275_6276delTT
(p-Leu2092Profs*7)
6_150 Neurofibromatosis, NF1 17q11.2 chrl7:29,421,944- AD Non carrier Heterozygous Paternal grandmother Non Paternal M 13
type 1 (#162200) (NM_000267.3) 29,704,694 €.7096_7101delAACTTT heterozygous carrier parents
€.7096_7101delAACTTT
7_054 Pachyonychia KRT16 17g21.2 chr17:39,766,030- AD Non carrier Heterozygous ¢.374A>G Paternal grandfather Non Paternal M 12
Congenita (#167200) (NM_005557.3) 39,772,151 (p.Asn125Ser) heterozygous ¢.374A>G carrier parents
(p-Asn125Ser)
8 078 Exostoses multiple EXT1 8g24.11 chr8:118,806,729- AD Heterozygous Non carrier Maternal grandmother Non Maternal M 12
type 1 (#133700) (NM_000127) 119,124,092 €.2133_2151del heterozygous ¢.2133_2151del  carrier parents
9 074 Charcot-Marie-Tooth CMT1A 17p12-p11 chrl7:14,097,915- AD Carrier of the common Non carrier Maternal grandmother carrier Non Maternal M 12
disease type 1 syndrome region 15,470,903 ~1.5Mb duplication of the common ~1.5Mb carrier parents

(#118220)

including PMP22

duplication

(# Mendelian Inheritance in Men); MI= mode of inheritance; AR = autosomal recessive; AD = autosomal dominant; XLD = X-linked dominant; M= male; F= female.
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transcript_description HGVS_transcript_variant HGVS_predicted_protein_conse
Homo sapiens palmitoyl-protein thi NM_000310.3:c.451C>T NP_000301.1(LRG_690p1):p.(A
Homo sapiens palmitoyl-protein thii NM_000310.3:c.566C>T NP_000301.1(LRG_690p1):p.(Pt
Homo sapiens glucosylceramidase k NM_000157.3:¢c.1448T>C NP_000148.2:p.(Leud483Pro)
Homo sapiens mitochondrial inner t NM_002437.4:c.293C>T NP_002428.1:p.(Pro98Leu)
Homo sapiens EBP, cholestenol delt NM_006579.2:¢c.116C>G NP_006570.1:p.(Thr39Arg)
Homo sapiens BRCA2 DNA repair as NM_000059.3:¢c.5645C>A NP_000050.2(LRG_293p1):p.(Se
Homo sapiens BRCA2 DNA repair as NM_000059.3:¢c.6275_6276dNP_000050.2(LRG_293p1):p.(Le
Homo sapiens neurofibromin 1 (NF:NM_000267.3:c.7096_7101d/NP_000258.1(LRG_214p1):p.(A:
Homo sapiens keratin 16 (KRT16), n NM_005557.3:¢c.374A>G NP_005548.2:p.(Asn125Ser)
Homo sapiens exostosin glycosyltraiNM_000127.2:¢c.2133_2151d/NP_000118.2(LRG_493p1):p.(Tr



HGVS_predicted_protein_ctHGVS_Genon GRCh37_CHR GRCh37_POS GRCh37_ID

NP_000301.1:p.(R151*)  NC_000001.1 1 40555167 .
NP_000301.1:p.(P189L)  NC_000001.1 1 40546130 .
NP_000148.2:p.(L483P)  NC_000001.1 1 155205043 .
NP_002428.1:p.(P98L) NC_000002.1 2 27535443 .
NP_006570.1:p.(T39R) NC_000023.1X 48382275 .
NP_000050.2:p.(51882*)  NC_000013.1 13 32914137 .
NP_000050.2:p.(L2092Pfs*; NC_000013.1 13 32914766 .
NP_000258.1:p.(N2366_F2:NC_000017.1 17 29670115 .
NP_005548.2:p.(N125S)  NC_000017.1 17 39768567 .

NP_000118.2:p.(W711*)  NC_000008.1 8 118812040 .



GRCh37_REF GRCh37_ALT
G A
G A
A G
G A
C G
C A
CTT C
CTAACTT C
T C
TCAGCGGCATGTAGC(T

HGVS_Genomic_Description_GRCh38
NC_000001.11:2.40089495G>A
NC_000001.11:2.40080458G>A
NC_000001.11:8.155235252A>G
NC_000002.12:8.27312576G>A
NC_000023.11:8.48523887C>G
NC_000013.11:8.32340000C>A
NC_000013.11:8.32340630_32340631del
NC_000017.11:2.31343105_31343110del
NC _000017.11:g.41612315T>C
NC_000008.11:g.117799806_117799824del



GRCh38_CHR GRCh38_POS GRCh38_ID GRCh38_REF GRCh38_ALT

1 40089495 . G A

1 40080458 . G A

1 155235252 . A G

2 27312576 . G A

X 48523887 . C G
13 32340000 . C A

13 32340629 . CTT C

17 31343097 . CTAACTT C

17 41612315 . T C

8 117799801 . TCAGCGGCAIT



RefSeqGene_genome_con HGVS_ LRG_v.HGVS LRG_ttHGVS_ RefSecalt_genomic_loci

LRG_690:g.1: LRG_690t1:c.
LRG_690:g.2: LRG_690t1:c.

LRG_293:g.2¢LRG_293t1:c.
LRG_293:g.3( LRG_293t1:c.
LRG_214:g.2t LRG_214t1:c.

LRG_493:g.31LRG_493t1:c.

NG_009192.1:g.12976C>T
NG_009192.1:g.22013C>T
NW_003315906.1:g.40275
NG_008075.1:g.14989C>T
NG_007452.1NW_004070880.2:g.7633 1
NG_012772.3:8.29521C>A
NG_012772.3:g.30151_30152del
NG_009018.1:g.253129_253134del
NG_008301.1:8.5513A>G
NG_007455.2:.317000_317018del



A>G;grch37;HSCHR1 2 CTG31-40275-A-G|NW_003315906.1:6.40275A>G;grch38;HSCHR1 2 _CT

5C>G;grch37;HG1436_HG1432_PATCH-763316-C-G



G31-40275-A-G



Supplementary (Appendix, online only material, etc.)

Supplementary Materials and Methods

Sample collection and processing

Genomic DNAs from family members were extracted from blood following standard
procedures. Briefly, 8 mL of maternal peripheral blood was collected in cell-free DNA BCT

tubes (Streck, Omaha, NE, USA) or cell-free DNA collection tubes (Roche Diagnostics,

Risch-Rotkreuz, Switzerland) from 10 weeks of gestation onwards. Blood was centrifuged at
1600g for 10 min at 4°C, and the plasma portion was carefully removed and centrifuged
again at 16,000g for 10 min. The plasma (4 ml) and buffy coat were stored separately. DNA
from the buffy coat was extracted following the “Blood and Body fluid” protocol of the
QIAamp DSP DNA Blood Mini Kit (Qiagen, Hilden, Germany). cfDNA was extracted from
4 mL plasma automatically, using the Maxwell HT ¢fDNA kit (Promega, Wisconsin, USA)

on the Hamilton Liquid Handler according to the manufacturer's recommendations.

Parental data phasing

The biallelic SNP sites from parental genotypes were extracted with lower coverage
threshold of 10-fold and upper threshold of 500-fold. The parental genotypes are divided into
5 groups according to paternal and maternal allele combinations. For illustration, the biallelic

sites are shown as carrying “A” or “B” allele.

Groups Paternal genotype Maternal genotype
Type 1 AJA B/B
Type 2 (Paternal) A/B A/A
A/B B/B
Type 3 (Maternal) A/A A/B
B/B A/B
Type 4 A/B A/B
Type 5 B/B B/B

Fetal fraction estimation and error estimation


https://www.google.be/search?q=Risch-Rotkreuz+Switzerland&stick=H4sIAAAAAAAAAOPgE-LUz9U3MI83zbJUAjPTynMKC7S0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQCcivuGRAAAAA&sa=X&ved=2ahUKEwibhoHKrcncAhWKzaQKHYGCBRsQmxMoATAXegQIChAb

At each Type 1 SNP site, where maternal alleles are different from paternal alleles, the
paternal specific allele can be identified in maternal plasma unambiguously. By counting
reads that contain paternal specific alleles (f) and total number of reads (N) in such SNP sites,

we estimated the fetal fraction (FF) percentage as:

Technical and biological factors contribute to inconsistent estimation of FF from site to site.
Considering the variability and potential copy number changes, all paternal specific alleles
were sum and divided by total reads across all Type 1 SNP loci to give FF estimation; median
of FF estimation on all Type 1 SNP sites was also calculated to ensure justified estimation of

FF.

Sequencing and alignment errors in maternal plasma were estimated by Type 5 SNPs. When
both parents have the same genotypes (alternative alleles), the fetus is supposed to have the
same genotypes, unless a de novo mutation happens, which is of low probability. We counted
the number of reference alleles and total alleles present on Type 5 SNP sites. The ratio of
reference allele numbers to total numbers were used to approximate errors (Supplementary

Table S2).

Fetal haplotype inference based on fetal allele ratio (FAR)

The presence of fetal allele in maternal plasma was measured using the following metric —

fetal allele ratio (FAR)

N;
MH1, — MH2,
\MHT, + MAZ,’

2xf; L
, SNP siteiis Type2 SNP
FAR; =

SNP siteiis Type 3 SNP

FAR calculations combined with subcategory classifications estimate fetal genome-wide



haplotype. FAR value changes in subcategory indicate the homolog changes in inheritance,
and thus perform phasing of recombinant haplotypes. In paternal transmission, we flipped the
FAR value of P1 category by using 0-FAR for visualization purpose. Assuming 100-fold
coverage and 10% FF, when paternal homolog H1 is inherited, FAR of P1 SNPs will be 0
and FAR of P2 will be 10%, as shown in the example Figure 1b, and when paternal homolog
H2 is inherited, FAR of P1 SNPs will be -10% and FAR of P2 will be 0. In maternal
transmission, FAR of M1 SNPs will be 10% and FAR of M2 will be 0 when maternal
homolog H1 is inherited, and FAR of M1 SNPs will be 0 and FAR of M2 will be -10% when
maternal homolog H2 is inherited. FAR values of subcategories (P1 and P2 or M1 and M1)

hence infer haplotype results reciprocally.

While FAR provides information on the allele dosage of the fetus and site-by-site genotype of
informative SNPs could be predicted, there is high variability in practical estimation due to
technical bias, biological features of plasma DNA, and dominant maternal DNA in maternal
plasma. To overcome the noises in site-by-site FAR estimations, we employed circular binary
segmentation' (CBS) to estimate fetal allele ratio in contiguous regions and to identify likely
recombination sites. Briefly, FAR;, ..., FAR; raw values were calculated for Type 2 or Type 3
sub-categorical SNPs, and the data was smoothed by adjusting outlier values, resulting in
FAR,, ..., FAR,. The likelihood ratio test was then performed on smoothed data to test the
null hypothesis of no change-point in the data. If the test statistic exceeds threshold and reject
the null hypothesis, the change points were identified. By detecting these change points in
fetal allele ratio values, which correspond to homolog inheritance changes, we deduce the
possible genomic locations of switchovers. The haplotype blocks derived from two
subcategories were screened after the segmentation to avoid long regions that contains no

informative SNPs. Within one block, if the genomic distance between two adjacent



informative SNPs were greater than 3Mb, the block was divided into two blocks with the two
end positions (end of block 1 and start of block 2) corresponding to the two SNPs genomic
positions. The segmental mean FAR estimates from subcategory P1 and P2 or M1 and M2
were examined to check whether both subcategories segmentation reach the same conclusion.
We concluded that paternal H1 was inherited only when FARp, was in the range (—0.25 *
FF,0.25 = FF) and FARp, was in the range (0.75 * FF,1.25 = FF), and paternal H2 was
inherited when when FARp, was within (—1.25 = FF,—0.75 * FF) and FARp, was within
(—0.25 = FF,0.25 = FF). The same FAR value thresholds applied to maternal H1 and H2
inheritance. Fetal allele ratio value that fell out of threshold range was defined as

inconclusive result.

Newborn haplotype

The newborn child’s sequencing data was analyzed in conjunction with the parental
genotypes of the family. Genotypes of the family trio were called together with
HaplotypeCaller. We matched the child genotypes with phased parental genomes that were
resolved using affected offspring or parents of the couple. Then parental homologous that
defined by phasing with relatives were assigned to matched child genotypes site by site.
SNPs with unambiguously assigned homolog 1 or homolog 2 were used to infer child
haplotype. In cases where parental haplotypes were defined by the affected offspring, there
might be small recombinations shown on child haplotype due to the crossovers from the

sibling and the child happen in close genomic locations.

Accuracy compared with born child haplotypes were measured in haplotype block length and
informative SNPs inference. Haplotype accuracy was calculated as the percentage of matched

haplotype blocks length divided by the total length of haplotypes obtained in born child



haplotypes. Informative SNPs inference accuracy was measured by matching correctly

assigned SNP genotypes in cfDNA using haplotypes information to born child genotypes.

Reference bias correction

We observed bias towards reference allele at heterozygous sites in cfDNA samples.
Supplementary Figure S11 showed the reference allele frequency of heterozygous sites in
multiple cfDNA samples, where both maternal and fetal SNPs were assumed to be
heterozygous with haplotype information available. For M1 subcategory, when the fetus
inherits maternal H2 from mother, the fetus genotypes are heterozygous in the SNP sites
within the haplotype block. For M2 subcategory, the fetus genotypes are heterozygous when
maternal H1 is inherited from the mother. By computing reference allele frequency of
corresponding heterozygous sites for M1 and M2 separately, the allele counts displayed bias
towards reference allele. Though there might be less bias towards reference allele at SNPs
where the genotype of the mother is heterozygous and the fetus is homozygous, the dominant
maternal alleles skews the allele ratio. Maternal haplotyping inference can be distorted due to
such bias. We performed bias correction by imposing a correction factor to reference and
alternative alleles count in plasma samples to reduce bias. We used an arbitrary correction
factor of 0.525 to estimate putative haplotype inheritance. Additionally, from estimated
haplotype we sampled SNPs to approximate true reference allele bias per chromosome and
per subcategory using maximum likelihood estimation. The computed correction factors were

applied to the reference and alternative allele counts to adjust value of FAR for each SNP.

Fetal fraction simulation and cfDNA downsampling

We mixed different proportions of reads computationally from the trisomy family where the

mother and the child genomic DNA sequencing were available. Samtools v1.3.1> were used



to randomly subsample reads from bam files and in total about 70 million reads (~85x on
target coverage) were sampled from the mother and the child. By mixing all reads from
mother and 4% of reads from the child, FF of 5.5% was simulated. To evaluate lower FF
limit for paternal inheritance haplotyping, all reads from mother and less than 4% of reads
from the child were mixed, though the total number of reads decreased slightly in this case.
FF were estimated using mixture proportions. For each sampling proportion pairs, we
repeated for 10 times with different sampling seeds. The child haplotype was phased directly
from family trio analysis using GATK PhaseByTransmission. Haplotyping results from in
silico simulation samples were compared to the reference child haplotype to measure
genome-wide accuracy and crossover gaps. Chromosome 21 were excluded from accuracy

benchmarking.

We downsampled the cfDNA sample to different proportions using samtools. Each
subsampling proportion was repeated for 10 times using different seeds. Downsampling was
conducted until only 11 million reads were left. We again measured the accuracies against

PGT embryo haplotying result and crossover resolutions for all subsampling levels.

Integration of Type 4 SNPs in cfDNA haplotyping analysis

In cases where offspring (sibling of the born child) genotype data were available, we used
Type 4 SNPs to improve haplotyping accuracy. Type 4 SNPs are defined as heterozygous
SNPs for both parents and these SNPs can be phased (i.e. the genotype of sibling on these
SNPs sites are homozygous). We first inferred paternal haplotyping with Type 2 SNPs. Using
paternal haplotype information, we could deduce the allele that fetus inherited from a Type 4
SNP when the site was within resolved haplotype block, and thus the site became

unambiguous. We then regarded the Type 4 site as a homozygous site and turned the site into



a Type 3 SNP site, as the paternal genotype was viewed as homozygous and maternal
genotype is heterozygous. We further integrated unambiguous Type 4 SNPs into Type 3 SNPs

and performed same analysis as when we only use Type 3 SNPs.

Aneuploidy detection

Genomic DNA from all the family members (father, mother, unaffected sibling, and affected
proband) was extracted following standard procedures. Parental genotype phasing was done
using an unaffected offspring from the family, and haplotype inheritance was deduced from
the spike-in DNA samples. Chromosomal abnormalities result in FAR value deviation from

the expected FF. The shifting pattern is associated with FF. In maternal meiotic trisomy, the

overrepresented allele leads maternal FAR value to + % FF/(1+ %F F), while in mitotic

trisomy, M1 FAR drifis to +2 FF /(1 + > FF) and M2 FAR to +>FF /(1 + - FF). Paternal

FAR value deviates from normal FF by + FF?/(2 + FF), which is of very low amount to be

distinguished from normal disomy cases.

Aneuploidy confirmation in the trisomy child and maternal copy number

As the trisomy child is a male, we used fifteen normal male gDNA samples from our clinical
dataset to build a reference set. The normalized coverage per target was calculated by total
coverage within the target divided by the target region size. We calculated GC content of each
target and used Loess regression to correct GC bias. A further step of normalization was
carried out by dividing the GC corrected median target coverage count. The reference set
summarized the average normalized count and standard deviation across the 15 samples.
Log? ratio per target was computed using normalized count from the trisomy child gDNA

sample against the corresponding normalized count in the reference set. We used CBS



segmentation on log2 ratios to detect copy number change as previously described. To infer
homologous recombination sites and origin of aneuploidy on chromosome 21, we analyzed
the family data using the child reference allele frequency count. Maternal copy number
detection of family 9 074 used same approach as the aneuploidy detection, except that for

cfDNA maternal copy number, a reference was created by 8 cfDNA from other families.

Supplementary References
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Supplementary Figure Legends

Supplementary Figure S1. Study workflow.

Supplementary Figure S2. Scheme of parental genotype phasing via parents of the
couple. a, Paternal haplotype derived from paternal parents with the mutation inherited from
grandmother. b, Maternal haplotype derived from maternal parents with the mutation

inherited from grandmother.

Supplementary Figure S3. cffDNA haplotyping profiles with different phasing options.
Chromosome-specific cffDNA haplotyping plots are depicted for three phasing options. In a,
a family with an affected child were used to deduce paternal (upper panel) and maternal
haplotype (lower panel) inheritance. The first track shows raw fetal allele ratio (FAR) values,
and each dot represents an informative SNP, with red and blue indicating paternal P1 and P2
SNPs subcategories, respectively. We flipped FAR for P1 subcategory to negative values for
better visualization. The same red and blue color pattern was also applied to distinguish
maternal M1 and M2 SNPs subcategories. The second track corresponds to FAR
segmentation, where the red dotted line represents segmented P1 or M1 FAR and blue for
segmented P2 or M2 FAR, and the distance between P1 and P2 or M1 and M2 segmentation
in the same genomic region indicates fetal. The third track is the deduced fetal haplotypes
inherited from father or mother. Dark and light blue denotes inheritance of homologue 1 (H1)
and homologue 2 (H2) from the father, respectively. In the same way, dark and light red
denotes inheritance of homologue 1 (H1) and homologue 2 (H2) from the mother,
respectively. Switch between H1 and H2 denotes homologues recombination sites, which are

also corroborated by the segmented FAR profiles. Centromere and regions with inconclusive



haplotype results are shown as white gap in the final haplotype result. b, Parents of the father
are available for phasing and only paternal haplotype inheritance is shown. c, Parents of the

mother are available for phasing and only maternal haplotype inheritance is shown.

Supplementary Figure S4. cffDNA haplotyping for monogenic disorders with phasing
from parents of the couple. a-d, Families with parents of the father available for phasing. a-
b, haplotypes inferred from cfDNA were compared to both neonatal and embryo haplotypes.
Dark blue represents the homologue inherited from the grandfather of the child and light blue
represent the homologue inherited from the grandmother. In Family 7 (d), the father inherited
the mutant allele from the grandfather and the disease locus crosses the light blue haplotype
block indicating the wild-type allele from grandmother was transmitted. e-f, Families with
parents of the mother for phasing, dark red represent the homologue inherited from the
grandfather, and light red represent the homologue inherited from the grandmother. In both

families, the mutant allele was inherited from the grandmother.

Supplementary Figure S5. Factors that impact the accuracy cffDNA haplotyping.

Measurement of accuracy for cfDNA haplotyping and illustration of density of SNPs,
sequencing depth and FF effects on haplotype accuracy and crossover resolution metrics. b,
For a 9.5%FF cfDNA samples, homologous recombination accuracy measured in 10Kb bins
that flank out from both sides of true (neonatal) crossovers, is shown. On x-axis, 0 denotes
the true crossover breakpoint sites. Positive and negative distances correspond to extension to
the right and to the left side of breakpoints. ¢, Homologous recombination accuracy measure
in terms of haplotype-based informative SNPs. Informative SNPs genotypes inferred from

cffDNA haplotyping were evaluated against neonatal genotypes from Family 1_181. x-axis
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denotes called informative SNPs in the cfDNA samples and 0 indicates neonatal crossover
breakpoint sites. Extending from crossovers, accuracy of informative SNPs to the left
(negative values) and to the right side (positive) was measured for maternal and paternal

transmissions.

Supplementary Figure S6. Genome-wide haplotyping comparison with reference
haplotype. a, cffDNA haplotyping results compared to born child haplotype. b, cffDNA
haplotyping results compared to embryo single-cell haplotype. In all sub figures, paternal
inheritance is shown in dark and light blue, and maternal inheritance is shown in dark and
light red. Upper tracks are reference (born child/embryo) haplotyping results and lower tracks

are cffDNA haplotyping results.

Supplementary Figure S7. Additional informative SNPs improve performance of
cffDNA haplarithmisis. Integrating phased type 4 SNPs into maternal informative SNPs
show higher accuracy and decreased crossover gaps in cffDNA haplotyping at varying

simulated fetal fraction levels.

Supplementary Figure S8. cffDNA haplotyping accuracy of downsampled data. Effect of

sequencing depth on the performance of cffDNA haplotyping for a 9.5% FF sample.

Supplementary Figure S9. Patterns of chromosomal anomalies. Assuming 100-fold

coverage and 10% fetal fraction, different segmentation schemes are shown in normal,
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maternal trisomy, and paternal trisomy in a and corresponding FAR values are displayed in

b.

Supplementary Figure S10. Spike-in samples FAR values deviated from normal values
significantly. In the 20% spike-in sample, a, For M1 maternal informative SNPs, analysis by
unpaired two groups t-test of FAR values of chromosome 21 and FAR values of other
chromosomes indicating inheritance of maternal H1 showed significant (p-value < 2.22e-16)
difference in mean of FAR values. b, For M2 maternal informative SNPs, t-test also showed
significant (p-value < 2.22e-16) difference between mean of chromosome 21 FAR values and
other chromosomes FAR values of maternal H1 inheritance. In the 10% spike-in sample, t-
test showed significant FAR values shifting for M1 maternal informative SNPS shown in ¢
(p-value = 1.5e-10) and for M2 maternal informative SNPs shown in d (p-value = 2.9e-15),

respectively.

Supplementary Figure S11. Simulation of lower fetal fraction effect on paternal
haplotyping accuracy. Genome-wide paternal inheritance haplotyping accuracy and

crossover resolution of lower fetal fraction.

Supplementary Figure S12. Maternal segmental duplication. a, log2 ratio profile showing
~1.5Mb duplication from maternal gDNA in family 9 _074. b, log2 ratio profile of maternal

copy number presence in cfDNA sample of case 9_074.

Supplementary Figure S13. Reference allele bias in cfDNA samples. Density plot of

reference allele frequencies at heterozygous SNPs (both maternal and fetal) for 6 cfDNA
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samples. The distribution show centered reference allele frequency to be higher than

theoretical value of 0.5.
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Supplementary Tables

Supplementary Table S1. cffDNA haplotyping accuracy

Family Plasma Fetal No. SNPs Haplotype accuracy Informative SNPs Haplotype accuracy (%)  Crossover resolution
DNA L Fraction’ (%) w.r.t. accuracy (%) w.r.t
Coverage neonatal haplotype neonatal SNPs embryo haplotype

Paternal = Maternal  Paternal Maternal  Paternal Maternal Paternal Maternal Paternal Maternal
1 181 76X 9.5% 34,043 34,362 98.94 94.53 99.70 95.64 99.31 95.69 268.93 818.25
2 1863 85x 9.8% 36,579 39,224 - - - - 99.05 93.16 149.09 570.46
3 085 77X 16.5% 38,573 40,887 - - - - 99.42 97.24 131.18 433.74
4 158 64x 8.2% 37,855 - 98.84 - 99.04 - 98.86 - 308.47 -
5 149 96x 6.8% 40,695 - - - - - 99.77 - 148.52 -
6 150 63x 6.2% 39,237 - 99.00 - 99.40 - 99.15 - 330.53 -
7 054 50x 13.4% 36,558 - - - - - 99.46 - 162.57 -
8 078 82x 11.4% - 43,401 - - - - - 92.68 - 1619.10
9 074 82x 8.4% - 40,651 - - - - - 89.41 - 1686.04

"Median on-target de-duplicated fragment coverage; *Estimated from Type 1 SNPs; *Family with consanguinity
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Supplementary Table S2. Sequencing or mapping error rate in cfDNA and Spike-in samples

Sample Error rate (%)
1 181 0.0430
2 186 0.0498
3 085 0.0498
4 158 0.0387
5 149 0.0563
6 150 0.0465
7 054 0.1025
8 078 0.1439
9 074 0.1196
Spike-in 20% 0.0437

Spike-in_10% 0.0445
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