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The effect of cortical elasticity and active tension on cell adhesion
mechanics
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Abstract

We consider a cell as an elastic, contractile shell surrounding a liquid incompressible cytoplasm and with non-specific adhe-
sion. We perform numerical simulations of this model in order to study the mechanics of cell-cell separation. By variation of
parameters, we are able to recover well-known limits of JKR, DMT, adhesive vesicles with surface tension (BWdG) and thin
elastic shells. We further locate biological cells on this parameter space by comparing to existing experiments on S180 cells.
Using this model, we show that mechanical parameters can be obtained that are consistent with both Dual Pipette Aspiration
(DPA) and Micropipette Aspiration (MA), a problem not successfully tackled so far. We estimate a cortex elastic modulus of
Ec ≈ 15 kPa, an effective cortex thickness of tc ≈ 0.3 µm and an active tension of γ ≈ 0.4 nN/µm. With these parameters,
a JKR-like scaling of the separation force is recovered. Finally, the change of contact radius with applied force in a pull-off
experiment was investigated. For small forces, a scaling similar to both BWdG and DMT is found.
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Introduction

The mechanical response of a cell to deformation arises from the properties of the underlying cytoskeleton. The intricate
dynamic structure and active nature of the acto-myosin cortex produce complex time-dependent behavior, including a power-
law creep response (1) and nonlinear soft glassy rheology (2). This complicates mechanical measurements on cells, as the
parameterization of experimental results is often not invariant with respect to the conditions of the experiment. Still, simplified
mechanical models may be adopted in the relevant spatio-temporal limits (3). For example, at long timescales, cells behave as
Newtonian liquid drops under surface tension – ‘cortical shell-liquid core’ model (4, 5) – while at short timescales and small
deformations, the cell is elastic – ‘solid elastic sphere’ model – with a characteristic Hertzian force upon indentation (6).

When applying these limits to Micropipette Aspiration (MA) experiments, the cell’s resistance to deformation is ex-
pressed either as a cortex tension or as a solid cell Young’s modulus Ecell. Extending on this, Chu et al. (2005) used Dual
Pipette Aspiration (DPA) experiments in controlled adhesion conditions to demonstrate how cell-cell pull-off forces compare
to various limiting continuum theories, thereby indirectly probing the mechanical properties of suspension cells (7). For the
cortical shell-liquid core model, the pull-off force required to separate two droplets with net adhesion energy w was derived
by Brochard-Wyart and de Gennes (BWdG) as Fs = πR̂w (8), with R̂ = R1R2/(R1 + R2). For solid elastic spheres,
Johnson-Kendall-Roberts (JKR) theory predicts the pull-off force in the limit of short range of adhesive interaction and soft
spheres as Fs = 3

2πR̂w (9). In the opposite limit of stiff spheres with a large adhesive range, the model of Derjaguin-Muller-
Toporov (DMT) predicts a pull-off force Fs = 2πR̂w (10, 24). For S180 cells, it was found that the pull-off force scales as
Fs ∼ 3

2πR̂w, consistent with the JKR model for adhesion between solid elastic asperities, but not with the BWdG expression
for adhesive droplets with surface tension (7). This suggests that a solid elastic model is an appropriate description of the cell
in these conditions (suspension, short timescale). Yet, there is an apparent mismatch between the elastic modulus estimated
from such a pull-off experiment using JKR theory, and the Young’s modulus obtained from a simple single cell aspiration
experiment (12). For example, on S180 murine sarcoma cells, a Young’s modulus1 Ecell > 1 kPa is obtained from applying

1Only the composed modulus Êcell = Ecell/[2(1− ν2cell)] can be estimated this way.
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JKR theory to a DPA experiment (7), while single-cell aspiration tests (MA) on the same cell line yield a much lower modu-
lus of Ecell ≈ 100 Pa (12)2, even though both experiments are performed in similar conditions and at comparable timescales
(seconds).

One obvious explanation is that the mechanical rigidity of a suspension cell is mostly concentrated in an elastic cortical
shell rather than uniformly distributed throughout the cell. Thin elastic shell models have been frequently applied to cells, e.g.
for analyzing the shape of blebbing (13), bulging (5) or dividing cells (14). For adhering curved elastic shells, an expression
for the pull-off force as a function of Young’s modulus Ec, Poisson number νc and thickness tc has been derived in (15):(

Fs
P∗

)3

=
w4R̂4(1− ν2c )

Ect2c
. (1)

P ∗ is a dimensionless scaling factor that depends on the load conditions – for fixed load, P ∗ ≈ 13.2 (15). When applying
this equation to cells, Ec refers to the Young’s modulus of the thin actin cortex that surrounds the cytosolic interior. A typical
cell’s acto-myosin cortex has a thickness of roughly 200 nm and a Young’s modulus in the order of 10 kPa (16). Within this
range of properties, and for a characteristic adhesion energy of w ≈ 1 nN/µm and a cell size of R̂ ≈ 5 µm, it can be verified
using Eq. (1) that for a shell, the pull-off force Fs � 2πR̂w, i.e. much greater than what was measured in (7). In other words,
while the cell’s cytoskeletal structure resembles a thin shell, it behaves more like a solid elastic asperity during pull-off.

This discrepancy could be attributed to the highly non-linear and anisotropic behavior of the cortical acto-myosin and
microtubule network (17, 18). As such, its “effective” mechanical thickness would be significantly higher than the thick-
ness measured using optical methods (16, 19, 20). This explanation is in line with observations of cortical rheology at long
timescales, where a considerably elevated effective thickness is required to recover the rate of cell spreading using a simple
Newtonian liquid model (21).

A second possible explanation lies in the active nature of the cortex: contractility induced by myosin II motors generates
an active tension (γ), which counterbalances adhesion and thereby assists in the separation of two cells. For mature intercel-
lular junctions, it has been shown that even the local regulation of contractility at the cell-cell interface rather than adhesion
itself controls the extent of contact expansion. Then, the role of adhesion molecules is restricted to the mechanical anchoring
of the cortex (5). While this local regulation of cortical tension is unlikely to affect adhesive behavior in controlled adhesion
experiments at very short timescales (seconds), the total (uniform) cortical tension is likely to play a major role in a pull-off
experiment. It should be noted here that this active tension is not the same as the surface tension often reported from mechan-
ical tests (4, 12, 16), where a liquid model is used which assumes that no elastic stresses are present. This assumption can be
valid at long timescales, when remodeling of the cortex effectively relaxes all elastic stresses. In absence of this relaxation,
these two quantities would only coincide in the limit a of soft/thin cortex (see further).

Here, we propose a numerical model that tries to reconcile the aforementioned observations, describing adhesive contact
between cells as a function of the elastic properties of the cell’s acto-myosin cortex and its active contractility. Cells are rep-
resented as spherical elastic shells that maintain internal volume and for which adhesive/repulsive contact is described using
a Dugdale approach (23). Active contractility is explicitly introduced through a contractile tension, and acts similar to an
additional surface tension (see Fig. 1). Using this model, we show how different scaling laws for a pull-off experiments can be
recovered, by changing the stiffness Ec, effective thickness tc and the active tension γ of the cortex. Next, in a case study on
S180 suspension cells, we demonstrate how JKR-like behavior can be recovered during pull-off while remaining consistent to
single-cell MA experiments. Doing so allows us to estimate the (instantaneous) mechanical properties of the S180 cell cortex.

Methods

Computational Model We introduce a dynamical model that represents the cells as a triangulated spherical shell. This shell
represents the cortex-membrane complex, wherein the actin cortex accounts for the majority of its mechanical rigidity (13).
Overdamped equations of motion Λ · ẋ = F are solved to obtain the positions x, representing the nodes from a triangulated
shell. Viscous (velocity-dependent) forces are represented in the resistance matrix Λ, whereas all other forces are assembled
on the right-hand side in F . A shell model for linear visco-elasticity (Young’s modulus Ec, Poisson number νc, thickness tc
and viscosity ηc) is implemented in a spring-damper network (see SI-??), where for simplicity we have assumed that νc = 1/3
3. To introduce active tension γ and conservation of volume with bulk modulus K, a local outward pressure is computed as:

p(x) = 2γ

(
1

R
− 1

rc(x)

)
−KV − V ∗

V ∗
, (2)

2A value of Ecell ≈ 100Pa is obtained when applying the analysis for elastic spheres (4) to the critical pressure that corresponds to the net tension of
0.9nN/µm that was reported in (12). Note that only the order-of-magnitude of Ecell suffices for the argument provided.

3The Poisson’s ratio of a 2D isotropic system is 1/3 if the constituents (nodes) interact with central forces that depend on distance alone (22).
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for a cell with radius R, volume V , and initial volume V ∗. rc(x) is the local mean radius of curvature on the cell surface
at position x. We assume cell volume changes are negligible at the relevant timescale (13), and set K = 30 kPa, a value
sufficiently high to prevent significant changes of cell volume during MA and DPA simulations – see SI Fig. ??. The cell’s
surface is decorated with non-specific stickers, which are assumed to be fixed and uniformly distributed on the cell, and equal
for both cells, leading to a work of interaction w = w1 + w2.

We aim to describe adhesive behavior in a wide range of cortical thickness. For larger tc and low Ec, the normal (radial)
elastic deformation of the cortex cannot be neglected anymore. Therefore, we use a modified Maugis-Dugdale contact model
(23) that formulates a Hertzian repulsive pressure based on the contact stiffness, and an adhesive traction based on the adhe-
sion energy w, and an effective range of interaction h0. For solid elastic spheres, the latter parameter captures the transition
between the JKR (low h0) and the (DMT) limit (high h0) – for an in-depth review, see (24). For cells, the effective adhesive
range is typically small and well in the JKR zone, and we set h0 = 50 nm (25). Since the Hertzian repulsive model is valid
for a ‘solid’ elastic asperity, a requirement of this contact model is that the normal elastic compression of the cortex is small
compared to its thickness. A discussion on the limitations of this model is provided in the ‘conclusion’ section, and a detailed
description of the full computational methodology is presented in the SI-??-??.

Simulation setup Setups are created for numerical simulation of two mechanical tests: MA and DPA. For MA, we include
an idealized pipette with a tip of toroidal shape of inner radius Rp = 3.5 µm (12) – see Fig. 2(a) and SI. Within the pipette,
an aspiration pressure Pa is applied normal to the cell surface. For DPA, we first let two cells freely adhere until their contact
area reaches a steady value – Fig. 2(b). Next, a pulling force is distributed – see SI – to the nodes of both cells (−Fp and
Fp). We record the contact radius Rc while the pulling force is gradually increased until the cells suddenly lose contact – Fig.
2(c). The force at which this occurs is registered as the separation force Fs. Further details and numerical considerations of
the simulation setup are provided in the SI.

Results

Pull-off force in cell model First, we show in general how the separation force depends on the mechanical properties of the

cell’s cortex. For this, we define a dimensionless thickness as κ :=

√
Ê/(R̂w) tc. This chosen normalization is a ‘rigidity’

measure that ensures that a unique normalized separation force F s := Fs/πR̂w is found for the limits of BWdG (F s = 1),
JKR (F s = 3/2), DMT (F s = 2) and shells – Eq. (1) – upon change of κ. Here, we are mainly interested in the role of the
effective cortical thickness tc and active tension γ.

Fig. 3 shows F s as a function of κ by varying tc for a simulated DPA experiment. Traversing from high κ (right) to low κ
(left), four regions of distinct behavior can be recognized in these curves: (I) At high κ, or for contact radius Rc � tc, adhe-
sion is dominated by localized elastic deformation normal to the contact plane. Here, solid-sphere Maugis-Dugdale adhesion
is recovered, and F s will range from the JKR to the DMT limit. (II) for lower κ, or tc � Rc � R̂, the contribution of bending
resistance is dominant (bending rigidity kb ∼ t3c). This resistance to curvature change is similar to surface tension: the BWdG
limit F s = 1 is approached. (III) as κ decreases, a sharp increase in F s is observed, similar to shell theory. The adhesion
energy is balanced by in-plane elastic energy distributed over the complete cortex. (IV) At very low κ, the complete cortex
is under high strain, and shell theory breaks down. A maximal contact radius Rc in the order of R̂ is reached and volume
conservation (bulk modulus K) limits further deformation. A plateau is observed at large values of F s. It should be noted that
the proposed computational description becomes invalid at both extremes of κ. At very large κ, the thin-shell assumption of
cortex elasticity breaks down. At low κ, indentations will become large compared to thickness, and the assumptions of our
adhesion model break down. While this can be safely mitigated by replacing the normal contact stiffness with a sufficiently
stiff constraint, the system becomes prone to buckling instabilities in the absence of active tension. Unsurprisingly, the role
of active tension γ is mainly significant at small values of κ, where it reduces F s towards the JKR-DMT zone. Given what
we know about typical mammalian cells (see introduction), we expect κ to be small, even if an ‘effective’ thickness would be
much greater than the optical thickness. In this case, a significant cortical tension is required for a pull-off force to be in the
JKR-DMT zone, 3

2 ≤ F s ≤ 2.

Case study on S180 cells We try to locate cells in this general framework by considering S180 cells, a mechanically very
well investigated cell line. In Chu et al. (2005) (7), pull-off forces were measured using DPA in controlled adhesion experi-
ments. We have replotted these results in Fig. 4(a). A scaling of F s in the region of the JKR and DMT limits can be observed,
with an average F s ≈ 1.75 in the sampled region of w. In our model, such a scaling could be obtained for many possible
combinations of Ec, tc and γ. To restrict the parameter space to realistic cell properties we first compare to separate MA
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experiments on the same cell line. In Engl et al. (2014) (12), a (liquid model) mean cortical tension of 0.9 nN/µm was found4

from MA on S180 cells, which corresponds to a critical pressure Pc ≈ 250 Pa. We sampled combinations of Ec, tc, and γ
in a full factorial 15×15×15 grid and performed MA simulations to compute the critical pressure (see SI-??). From this, an
iso-surface was extracted that represents all parameter combinations yielding a critical pressure of 250 Pa – Fig. 4(b). Subse-
quently, we re-sampled points in a regular distribution on this iso-surface. Each of these points represents a combination of
Ec, tc, and γ that resembles the mechanical behavior of an (average) S180 cell in a MA experiment.

Finally, we performed simulations of DPA on these new samples at an intermediate w = 0.5 nN/µm, and registered F s.
The result of this can be seen in Fig. 4(b). The lower values of 1.5 ≤ F s ≤ 2 observed in (7) occur only at lower Ec, when
additional resistance to deformation is offered by either bending rigidity (at higher tc) or active tension γ. This confirms our
hypothesis that either the presence of active tension, or a larger ‘effective thickness’ is required to explain the adhesive be-
havior of cells. Moreover, it can be observed that a many-fold increase of tc is required to have the same effect as a moderate
active tension. Under the assumption that the apparent increase in tc is moderate, tc = 0.3 µm, we estimate for S180 cells that
γ ≈ 0.4 nN/µm and Ec ≈ 15 kPa. The full parameter set of estimated properties is listed in Table 1. It should be stressed
that the goal of this work is not to determine the mechanical properties of S180 cells, but rather to demonstrate a quantitative
relationship obtained between Ec, tc and γ, and provide an estimate for the range of possible parameters.

Table 1: Table of numerically estimated mechanical properties of S180 cells that is consistent with MA and DPA experiments.
Parameter Symbol Value Unit Derived from

Young’s modulus cortex Ec 15 kPa MA + DPA simulations of (7, 12)
Poisson’s ratio cortex νc 1/3 - Assumed
Thickness cortex tc 0.3 µm (16, 19–21), Fig. 4
Active cortical tension γ 0.4 nN/µm MA + DPA simulations of (7, 12)
Bulk modulus cell K 30 kPa Assumed, see SI Fig. S7
Cell radius R 6 µm (7, 27, 28)
Effective adhesive range h0 50 nm (25)

We performed simulations of DPA with the parameters from Table 1 for varying adhesion energy and overlay the resulting
F s with experimental values from (7) – see Fig. 4(a). A reasonable agreement is found between simulation and experiment,
and in both cases, a small decrease of F s with w is observed, with F s ≈ 2 for small w and F s ≈ 3

2 for larger w. This
trend is similar to the transition observed for solid elastic spheres: w affects the Tabor parameter µ = R̂1/3 w2/3 Ê−2/3 z−10

(with effective range of interaction h0 ≈ 0.97 z0) (24) that describes the transition between JKR-like and DMT-like adhesion.
While we were not able to formulate a similar universal transition parameter for our more complex modeled system, the un-
derlying mechanisms can be similar: At low w, h0 is large compared to the contact radius, and the region of adhesive traction
is affected little by elastic deformation (DMT-assumption). At large w, the elastic deformation is much greater than h0, and
fully determines the adhesive region (JKR-assumption).

To further verify the obtained estimates of the mechanical properties of S180 cells, we compare to a third, separate exper-
imental method. Al-Kilani et al. (28) studied the stiffness of cell-bead contacts for spread S180 cells on adhesive patches of
various size using an optical trap. For small patch sizes (< 2R), the spread cell remains reasonably rounded and the conditions
are comparable to the suspension setting of the MA and DPA experiments. An adhesive bead of diameter 3.6 µm, maintained
in an optical trap, was laterally attached to the spread cell. Next, a force Fapp was applied to the bead by moving the stage in
the optical trap. An apparent Young’s modulus of the cell was computed as

Eapp =
3

4

Fapp

2ac xc
, (3)

with ac the cell-bead contact radius and xc the observed bead displacement. For mature adhesion between cell and bead
(adhesion time more than 15 minutes) they obtained Eapp ≈ 600 ± 140 Pa. Using the estimated mechanical properties of
S180 cells (Table 1), we replicated this setup in our model for the smallest patch size L = 10 µm — Fig. 5(a). The cell-bead
adhesion energy was tuned wcb = 0.517 nN/µm to match the experimentally observed contact radius ac ≈ 1.59 µm — see
Fig. 5(b), inset. We then measured the ratio ∆Fapp/∆xc for small pulling forces, and obtainedEapp ≈ 688.4 Pa using Eq. (3)
— Fig. 5(b). This value is in line with the experimental value for mature adhesions. For immature adhesions, lower values of
Eapp were reported in (28). In their study, this was attributed to the lowered rigidity of the still immature adhesion complexes

4This value of 0.9nN/µm already gives an upper limit for estimates of the active tension γ which should be approached in the limit of a soft and thin
elastic shell.
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themselves, which unravel upon application of tensile force. Since we considered the contacts nearly rigid (Ec � Eapp), our
estimated apparent stiffness could be considered an upper limit, of the combined cytoskeleton - adhesion complex system.

Contact radius For the parameters in Table 1 and w = 0.6 nN/µm (hence, κ ≈ 0.87), we investigate in detail the change
of contact radius Rc with increase of the applied pulling force F in a DPA experiment. For solid elastic spheres, the contact
radius depends on the elastic modulus Êcell. For DMT and JKR, the cube of the contact radius are given by:

R3
c,DMT =

3R̂

4Êcell

(
2πR̂w − F

)
, (4)

R3
c,JKR =

3R̂

4Êcell

(
3πR̂w +

√
−6πR̂wF + (3πR̂w)2 − F

)
. (5)

Further, we will define the relative contact radius ψ := Rc/R. For the BWdG model for adhesive vesicles with surface ten-
sion, the relationship between applied pull force and contact radius is non-trivial and is expressed in function of the deformed
apex radius Ra (8). With ψ′ := Rc/Ra:

F =
πRaψ

′

1− ψ′2
(√

w(4γ − w)− 2γψ′
)
. (6)

Fig. 6 shows ψ and ψ′ as a function of F for a simulated cell, compared to the theoretical predictions of DMT, JKR and
BWdG. For DMT and JKR, we expect the change of apical radius to be small so approximate Ra ≈ R hence ψ′ ≈ ψ. From
this comparison, we list the following observations:

I Pull-off force is close to the JKR limit. The maximal contact radius at F = 0 corresponds to an apparent elastic modulus
– obtained from Eq. (5) – Êcell ≈ 600 Pa. However, the change of contact radius with force does not follow JKR theory.
The dependency of the effective Êcell on γ is further shown in SI Fig. ??.

II Rupture occurs at much higher tensile loading than for ideal adhesive vesicles with surface tension (BWdG) due to the
presence of bending resistance that ensures the maintenance of low contact angles. The maximal contact radius at F = 0
corresponds to an adhesive vesicle with a surface tension of ≈ 0.8 nN/µm, which is in close agreement with the value of
0.9 nN/µm obtained from the analysis of MA experiment, assuming that the cell is a liquid droplet with surface tension
(12). This correspondence of cell contact radius to the BWdG model in (self- or externally) compressed conditions but
not during tensile loading and pull-out has been observed experimentally on HeLa cells in (26).

III At low F (large contacts) the change of ψ with F is DMT-like, i.e. dψF ≈ −32 Êcell R̂
2 ψ2, with an apparent Êcell ≈

200 Pa when using Eq. (4). This indicates that the force-indentation F (δ) response of adherent cells with surface tension
is remarkably Hertzian. This observation was confirmed in a simulated compression test on a spread out cell: Around
F = 0, the contact force follows F ∼ δ3/2 (see SI Fig. ??). This contrasts with the force-deformation response of a
liquid-filled shell with no adhesion or active tension, which showcases cubic behavior F ∼ δ3 (29).

Discussion

In this work, we have quantified the adhesion behavior of filled elastic shells with active tension, which were used as a model
for biological cells. Numerical simulations with this model were carried out in order to investigate the role of cortical stiffness,
thickness and active tension. These simulations showed that a combination of these properties can simultaneously explain the
mechanics of cell deformation during aspiration and of cell-cell separation during a pull-off experiment. We estimate that
cells exist in small to moderate ranges of a dimensionless thickness κ. In these conditions, the active tension plays a crucial
role, and is required to explain the observed scaling of separation force.

Cortex mechanics By comparing to existing experiments on S180 cells, we give tentative estimates of mechanical proper-
ties of their actin cortex that agree with characterizations in literature (7, 12, 16, 28). In contrast to a solid elastic model, a
model of adhesive tensed elastic shells can provide consistent estimates of mechanical properties across different mechanical
experiments. We estimated an active tension of 0.4 nN/µm, in good agreement with other measurements of active tension,
e.g. 0.41 nN/µm on L929 fibroblasts (13), 0.3 nN/µm on chick embryo fibroblasts (30) and 0.2 nN/µm on HeLa cells (31).
Measurements of cortical stiffness in literature vary greatly, ranging from 1 kPa (5) to 40 kPa (16, 32), encompassing our
estimate of 15 kPa. Of note is the over six-fold lower value of 2.4 kPa obtained on L929 cells, even though it was derived
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using a similar mechanical description of the cell (13). Aside from obvious differences in cell type, this discrepancy could
be attributed to various explanations. First, they also include elastic deformation of the cytosol, where we have lumped any
such effect in an ‘effective’ increase of cortex thickness. Secondly, any loss of contractility near the bleb induced by laser
ablation might have significantly reduced the apparent stiffness of the actin cortex that exhibits stress stiffening properties
(33). An active tension of 0.4 nN/µm corresponds to a contractile stress of > 1 kPa. For such a stress, the apparent stiffness
of a cross-linked actin network is >1000 times higher than the stiffness in stress-free conditions (18). For simplicity we have
set Poisson’s ratio of the cortex to νc = 1/3. In (13), a value of 1/2 was assumed. In biomimetic actin networks, Poisson’s
ratio was estimated at νc = 0.1 (34). Since its main contribution is through a factor of (1 − ν2c ) in the bending rigidity (see
SI), we expect νc to be of relatively minor importance.

Force-deformation behavior We show that JKR-like pull-off forces can exist for a wide range of adhesion energies. Fur-
thermore, the scaling of contact radius with force at low loading force (or, conversely, large adhesive deformation) follows
BWdG predictions, but is also consistent with DMT theory, implying that force-deformation behavior is Hertz-like at suffi-
cient deformation. This suggests that in an indentation experiment, for example Atomic Force Microscopy (AFM), this model
would be almost indistinguishable from a solid elastic material. Since Hertz theory is ubiquitously used in AFM experiments
to parameterize cells with an apparent Young’s modulus, this begs the question of where its application is appropriate and
where not. It can be argued that for strongly spread out cells, where dense cytoskeletal material spans the full height of the
cell, this parameterization is apt. Our results indicate that for cells that are more rounded in shape, e.g. suspension cells (7),
weakly adhering cells (16, 28), or cells in dense packings (5), the description of a cell as a tensed shell is more consistent
across experimental methods and conditions.

Limitations We have presented a minimalistic mechanical model that disregards most of the complexities that accompany
cell-cell adhesion in real biological settings. Some of these complications can well be expected to affect the results presented
here in a non-trivial manner, and they will be briefly discussed.

Firstly, we considered the cell’s cytosol as liquid-like (i.e. bearing hydrostatic stresses, and this through an effective bulk
modulus K). The physical properties of the cell’s internal structures are complex, and models that capture its mechanical
behavior are often dependent on the timescale of interest. At fast timescales (� 10 s), indented cells show a viscoelastic creep
response, which might be attributed to Maxwell fluid behavior of the cell’s internal structures (35). The contribution of the
cytosol’s elasticity was shown to be important for controlling the (fast) growth of blebs (13). The assumption in our analyses
was that experiments were at least slow enough to relax any deviatoric stresses in the cytosol.

Secondly, our shell model consists of linearly elastic material, while the cell cortex has been shown to exhibit non-linear
behavior at large deformations, including both strain stiffening and strain softening (17). Typical strains in our simulated
experiments are very low (< 5%), but can locally reach up to 20% e.g. near rupture at the contact site in a pull-off experiment.
Here, non-linearities in stretch response could have non-negligible effect on the separation force.

Finally, we model adhesion based on the assumption of fixed and non-specific stickers (or, with a mobility timescale
that is much slower than the timescale of bond rupture). This assumption is valid for the experiment we compared against,
where depletion-induced adhesion was studied. In naturally adhering cells, adhesive ligands have been shown to diffuse in the
plasma membrane and cluster at the site of cell-cell junctions (36). All these phenomena are expected to affect adhesion and
debonding mechanics, both dynamically and at steady-state (37). While not the focus of this study, these properties need to
be taken into account to model cell-cell adhesion in realistic biological settings.
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Figure 1: Schematic representation of a doublet of adhering cells: The cell’s cortex with thickness tc has passive elastic prop-
erties (Young’s modulus Ec, Poisson ratio νc and viscosity ηc) and an active contractile tension γ. Volume is maintained
through a bulk modulus K and adhesion energy w drives the formation of initial cell-cell contacts.

Figure 2: Visualization of simulation setups for MA and DPA experiments. (a): Simulation of MA experiment. An underpres-
sure ∆P is applied within a micropipette of radius Rp (top). The pressure is gradually increased (bottom) until the aspirated
length ∆L = Rp. At this point, the pressure is registered as the critical pressure Pc. (b): Simulation of cell-cell adhesion.
Two cells are brought in close proximity (top) and allowed to naturally adhere (bottom). (c): Simulation of DPA experiment,
starting from a doublet of adhering cells. A pulling force Fp is applied on the cells (top) and gradually increased until rapid
separation occurs (bottom). At this point, the pulling force is registered as the separation force Fs.

Figure 3: Normalized pull-off force Fs/πR̂w as a function of dimensionless thickness κ for varying active tension γ. The
simulations were obtained by varying thickness tc, while R̂ = 5 µm, E = 25 kPa and w = 0.25 nN/µm. For reference, the
pull-off force from JKR, DMT, BWdG and shell theory are shown for these parameters.

Figure 4: (a) Normalized DPA pull-off force Fs/πR̂w as a function of dextran depletion-induced adhesion w between S180
cells, replotted from Fig. 2 in Chu et al. (2005) (7) (red diamonds), together with simulated DPA experiment at Ec = 15 kPa,
tc = 0.3 µm, and γ = 0.4 nN/µm, as consistent with MA data (blue circles). Guide-lines with BWdG, JKR and DMT limits
are provided as indication. We have assumedR = 6 µm (b) Parameter space ofEc, tc and γ, with an iso-surface obtained from
simulations of MA on S180 cells, which delimits all parameter combinations for which the experimentally observed critical
pressure Pc = 250 Pa (12) is attained. Colored dots represent new samples in this surface for which simulations of DPA were
performed. The color scale indicates the value of F s = Fs/πR̂w obtained for an adhesion energy of w = 0.5 nN/µm. The
overlaid rectangular lattice depicts the grid in which MA simulations were performed.

Figure 5: Simulation of optical tweezers experiment. (a): Visualization of simulation of optical trap experiment based on (28).
A cell is allowed to adhere on a square adhesive pattern (green) to obtain a controlled spread size. Then, a spherical adhesive
bead adheres to the cell until contact radius ac is attained (top). Next, an external force Fapp is applied to the bead and its
displacement xc is recorded (bottom). (b): Apparent Young’s modulus computed as Eapp = 3Fapp/(8ac xc) in function of
the cell radius for a cell with the estimated mechanical properties of an S180-cell (Table 1). Error bars indicate the standard
deviation across independent rotations of the cell. Inset: calibration of cell-bead adhesion energy wcb = 0.517 nN/µm using
the contact radius ac. The dotted line indicates the experimentally observed contact radius. The shaded region indicates the
standard deviation across independent rotations of the cell.

Figure 6: Normalized contact radii ψ and ψ′ as a function of normalized applied force F/πR̂w of a simulated S180 DPA
pull-off experiment (parameters in Table 1) and for w = 0.6 nN/µm, compared to (a) DMT, (b) JKR and (c) BWdG limits.
For solid elastic spheres (JKR and DMT), we assume that Ra ≈ R. Dashed lines indicate where contact is not stable, and
rupture of the cell doublet will occur. Different guide lines are shown (from top to bottom at F = 0) for DMT: Êcell (Pa) ∈
{100, 200, 300, 400, 500}, for JKR: Êcell (Pa) ∈ {400, 600, 800, 1000, 1200} and for BWdG: γ (nN/µm) ∈ {0.6, 0.8, 1.0,
1.2, 1.4}.
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