
Efficient Keyword Spotting through
Hardware-Aware Conditional Execution of Deep

Neural Networks
J.S.P Giraldo ∗, Chris O’Connor †, Marian Verhelst ∗
∗ ESAT-MICAS KU Leuven † Skyworks Inc.

Abstract—Keyword spotting is a task that requires ultra-low
power due to its always-on operation. State-of-the-art approaches
achieve this by drastically pruning model size, yet often at the
expense of accuracy. This work tackles this fundamental conflict
between operating efficiency and accuracy in three ways: 1.) Ex-
ploiting dynamic neural network cascades for keyword spotting
using an end-to-end hardware-aware training; 2.) Deriving the
optimal number of stages and stage dimensions in function of the
input class distributions; 3.) Using the low-latency response of the
first stage for speculative execution of the later stages, training
the dynamic cascade through a hardware-aware cost function.
Results show the framework can generate cascade models op-
timized in function of the class distribution (background noise,
target keywords and other-speech), reducing computational cost
by 87% for always-on operation while maintaining the baseline
accuracy of the most complex model of the cascade. On top
of this, the hardware-aware speculative execution provides an
additional 2x energy savings over the non-speculative case.

Index Terms—Keyword Spotting, Deep Learning, Hardware-
efficient Inference.

I. INTRODUCTION

Over the last years, the field of machine learning has
been revolutionized due to the development of deep learning
algorithms such as Convolutional Neural Networks (CNNs)
and Long Short-Term Memory (LSTM) networks. They have
been applied successfully to different AI tasks including image
recognition, speech processing, natural language processing,
etc. achieving close to human level accuracy. Due to the big
amount of computations and large memory bandwidth that is
associated with these kernels, their execution, however, has
mainly been restricted to cloud servers. The rise of mobile
devices has recently encouraged the use of embedded deep
learning for improving human-machine interfaces [1]. One
of the examples of such technologies is keyword spotting or
voice command recognition, which allows a total hands-free
experience for the user by controlling several device functions
through speech. For instance, commercial applications such as
Siri, Amazon Echo or Cortana are usually controlled by one
or a few ’wake-up’ words, activating a complex speech pro-
cessing environment. Since voice command recognition often
acts as an always-on front-end layer, its power consumption
is a crucial parameter.

Several deep learning algorithms have been applied for
keyword spotting, such as Deep Neural Networks (DNNs)
[2], CNNs [3] or Convolutional Recurrent Neural Networks

(CRNNs) [4]. In general, higher accuracy for such models is
correlated with a higher number of computations, imposing a
trade-off when selecting a classifier for an embedded device.
For example, working on the same dataset and keyword
spotting task, advanced algorithms like CRNNs and Depth-
wise Convolutional Neural Networks (DS-CNNs) achieve 11%
better accuracy in comparison with conventional DNNs but at
an expense of about 30x more computations [5]. The problem
is augmented due to the diminishing returns from increasing
model size, which means achieving accuracy improvements is
increasingly more costly in terms of computations [6].

To overcome this bottleneck, this work proposes a cas-
caded dynamic classifier for keyword spotting trained end-to-
end, providing state-of-the-art accuracy while minimizing the
average number of computations per inference. The cost of
computation as well as the input class distribution (percentage
of background noise, keywords and other-speech) are incor-
porated in the optimization and training of the cascade. Cheap
and efficient first stages process most part of the input speech
whereas the most complex stages are executed conditionally
depending on the output of the front-end models. Furthermore,
speculative execution of the most complex stage is proposed,
in order to start its computation in advance. This allows to
relax the latency constraints, and as such reduce the operating
frequency and consequently power consumption in embedded
devices.

Although previous approaches have already explored the
use of cascaded execution towards improved energy efficiency
for keyword spotting [7] [8], this work is the first one to
incorporate a complete hardware-aware and data-distribution
aware end-to-end training for such structure. Therefore, the
main contributions of this work can be summarized as follows:

• An end-to-end training framework of a cascade classifier
for keyword spotting that incorporates both the model’s
hardware cost and the input class distribution knowledge
for model optimization.

• An exhaustive hyperparameter search towards Pareto-
optimal models (in terms of accuracy and computational
cost) adapted for different input class statistics.

• The introduction of speculative execution for the last
cascade stage, again optimized through an end-to-end
hardware-aware training for further energy reduction.

The paper is structured as follows: Section II introduces

some background knowledge on the application of deep learn-
ing for keyword spotting. Section III introduces the envisioned
cascade classifiers for keyword spotting, with their improved
training. Section IV augments the proposed architecture with
speculative execution. Results from training the hardware-
aware cascades, as well as from the speculatively executed
networks, are shown in Section V. Finally, Section VI con-
cludes this work.

II. RELATED WORK

A. Neural Networks for Keyword Spotting

Keyword Spotting is traditionally carried out through a
pipeline composed of a feature extraction module, followed by
a machine learning classifier. Mel Frequency Cepstral Coeffi-
cients (MFCCs) are commonly used as features. These values
are extracted from windows of audio samples, typically 25-
32 ms windows with a 10-16 ms overlap between subsequent
windows [9]. After feature extraction, either a feed-forward
or a Recurrent Neural Network (RNN) model is deployed.
The advantage of RNNs rely on their ability to work with
only one feature vector per time step, reducing the amount
of information to save between inferences [10]. Feedforward
models, on the other hand, show opportunities for increased
accuracy, yet they need to be provided with all the feature
vectors of a given time window (e.g. 1 second of context
information) [2]. This typically results in more computation-
ally complex models, as well as larger memory requirements.
Due to restrictions in terms of energy budget, the networks
that can be deployed on commercial embedded systems are
however severely constrained in terms of complexity, limiting
the achievable application accuracy.

State-of-the-art deep learning models have been successfully
applied to embedded keyword spotting in recent years. One
of the first breakthroughs [2] demonstrated significant per-
formance improvements compared to Hidden Markov Models
(HMM) by using DNNs. Working on these foundations, [3]
leveraged a CNN to further improve accuracy. The use of
hybrid neural networks such as CRNNs for keyword spot-
ting has subsequently shown impressive results in terms of
model efficiency and accuracy [4]. CRNNs take advantage
of the spatial pattern recognition from feed-forward networks
and sequential learning from RNNs, obtaining state-of-the-art
accuracy for voice command recognition [5].

B. Cascade Classifiers

The traditional use of single stage keyword spotting, where
one static deep learning model is applied to every incoming
time window, presents some drawbacks that limit its energy ef-
ficiency. First of all, since the graph that defines such networks
is fixed after training, easy-to-classify signals (like segments of
background noise) are handled in the same way as potentially
difficult keyword segments. This wastes resources for easy-to-
classify inputs, which could also be served by a simple and
cheaper network. Secondly, for many user scenarios, the input
class distribution is clearly unbalanced. For instance, in the
case of always-on operation, the amount of background noise

segments could exceed the duration of actual speech with one
or more orders of magnitude. Likewise, the frequency of the
target commands compared to other natural speech could be
significantly lower. These two observations make it obvious
that the average number of computations can be considerably
decreased if the system would operate in a data-driven way, in
which the most common and simple inputs would be handled
by models with reduced complexity, whereas the most difficult
cases are still processed by a more complex model.

Some approaches have explored the use of such cascade
execution of neural networks for different AI tasks, mainly
focused on image recognition. [11] shows a feed-forward
network for image classification capable of generating output
predictions in early layers without having to execute the whole
model. Likewise, [12] presents a methodology for training con-
trol edges and inference nodes jointly through a Reinforcement
Learning (RL) framework. Despite the recent work developed
in this area, the topic has been scarcely explored for voice
command recognition. While some keyword spotting systems
use voice activity detection as a wake-up stage [13], these
two stages are trained separately, losing opportunities for joint
co-optimization. Alternatively, [7] implemented a keyword
spotting system using a cascade composed of a DNN and a
SVM working on hand-crafted features. [8] shows the imple-
mentation of a cascade classifier using a small and a big DNN
whose activation is regulated by tuning the output threshold of
the first stage. Yet, all these approaches rely on the ensemble of
individually pre-trained models, which demands a high amount
of engineering to empirically tune the activation thresholds
between stages. This work will overcome this through a jointly
trained end-to-end classification pipeline for keyword spotting,
taking both hardware- and data-dependencies into account.

III. HARDWARE AND INPUT-AWARE CASCADE
CLASSIFICATION FOR KEYWORD SPOTTING

A. High-level operation

This section presents a cascade classifier for keyword spot-
ting, optimized for computational efficiency and accuracy.
The functional objective of this system is to detect a set
of keywords discriminating them from background noise and
other natural speech. In a cascade (Figure 1), each classifier
stage carries out two basic operations: classify the current

Fig. 1. Two and three stage embedded keyword spotting system

speech segment as one of the possible labels, or pass-on the
instance to be processed by the next stage in the cascade.
The passing-on of examples allows to rely on further stages
for the inference of more difficult input samples, avoiding
possible mistakes. As depicted in figure 1, two frameworks
are explored: two stage and three stage cascade networks.
In the first case, a first stage classifying background noise is
coupled with an additional classifier in charge of classifying
all the target keywords, other-speech, or previously missed
background noise samples. As remarked before, stage 1 can
output a background noise label for the input or it can pass-on
the example to the next stage for further processing. For the
second framework, the first stage, again in charge of detecting
noise or passing-on, is stacked with an intermediate model
that classifies other-speech and noise, before going to the final,
most complex, stage. The final stage, as in the first framework,
targets all the possible labels.

B. Training
The optimization objective for the cascaded classifier is

to find the neural network topology and its weights that
maximize accuracy as well as minimize the average number
of computations per inference. As can be deduced from the
structures depicted in figure 1, these kind of networks are
not directly differentiable through standard back-propagation,
due to the varying execution paths that any of the examples
can take. More specifically, the inputs that are handled by the
second or third models are a subgroup of the ones received
by the first stage. To overcome the difficulties from non-
differentiable paths during training, a reinforcement learning
approach, inspired by [12], is deployed when training the full
model end-to-end.

As shown in figure 2, the first stages (Stage 1 for the 2-
stage network and Stages 1 and 2 for the 3-stage network) are
handled as RL agents. They can carry out two possible actions:
classify the current speech segment as one of the n−1 possible
labels of that stage, or pass the input features to the next
stage for further processing. For this purpose, a neural network
generates n Q-values that represent the predicted reward of
taking a specific action (e.g, classify instance as class 0, pass-
on, etc). The network that generates the Q-values is trained
based on a reward given by the learning process, as will be
explained later. In the forward pass, the action with the highest
Q-value is selected. If the decision is to classify the instance as
one of the possible labels, the inference is finished. Otherwise,
the next stage is activated.

During training, a reward is given to each one of the
decisions of a stage. This reward reflects the dual goal of
obtaining accurate inferences, while minimizing the number
of computations. For this purpose, the reward r given for any
decision a at stage i over the current speech segment s (i.e
the group of feature vectors that compose a segment) can be
described as:

r(s, a) =

{
(λ)(P (s, a)) + (1− λ)(1

βC(s,a)), if P (s, a) = 1

0, if P (s, a) = 0

Here, the value P (s, a) is the expected accuracy which is a
binary value for the current speech segment s (0 if it is an in-
correct inference and 1 otherwise), C(s, a) accounts for the ex-
pected total number of MAC (multiply-accumulate) operations
carried out for the inference pass, β is a scaling factor for each
class reflecting the unbalanced input data distribution of the
real-life scenario (see further), whereas λ is a hyper-parameter,
which allows to steer the accuracy/computation trade-off. As
can be observed, if λ increases, the reward encourages accurate
predictions; inversely it penalizes computationally expensive
decisions.

In the referred reward function, the number of expected
MAC operations for the given speech segment s is used as a
metric for estimating the cost of an inference. For instance,
if one speech segment is passed through three stages, the
total cost associated with this inference would be the total
number of MAC operations carried out by all 3 stages. On
the other hand, if a segment is classified by the first stage,
the computational cost is equal to the inference cost of just
the model of the first stage. To incorporate the expected class
distribution of the target real-life scenario into the reward
function (while still obtaining a balanced accuracy across all
classes) the number of samples per class is equally distributed
in the training set; yet, for each inference of a segment s, the
term C(s, a) is scaled with the factor β, which reflects the
expected statistical presence of the class in the targeted input
data. For instance, if for an specific application the distribu-
tion between target keywords, other-speech and background
noise is expected to be 1:5:10 respectively, the factor β for
background noise segments would be 10 and for keyword
segments would be 1. In contrast, the variable P (s, a) is not
scaled according to the input data distribution in order to
maintain high accuracy for every possible class irrespective
of the distribution (otherwise under-represented classes could
suffer from much worse accuracy in comparison with the most
common classes).

As such, the input- and hardware-aware training of a stage
is reduced to a regression task, whose objective is to minimize
the difference between the Q-function obtained when running
the sample through the network, and the reward actually
obtained for every possible action, resulting in the following
loss function L(s, a):

L(s, a) = (Q(s, a)− r(s, a))
2

(2)

Fig. 2. Implementation of a cascade stage as a reinforcement learning agent

With s being the current speech segment and a the action.
As can be observed, for each decision stage a neural network
acts as a regression model generating Q-values that aim to fit
the empirical reward r given by the training environment.

Since the last stage of the cascades only carries out classifi-
cations, standard back-propagation with cross-entropy loss is
used. In summary, all the cascaded stages are jointly trained
minimizing the correspondent loss for each model, taking
hardware-cost and input-distribution aspects into account. Af-
ter training, an optimal policy is found for every new input
processed, by selecting the action in each stage that maximizes
the expected reward. The results of the proposed approach are
presented in section V.

IV. SPECULATIVE EXECUTION

A. Motivation

The last stages of a cascade classifier are typically only
activated at the end of an evaluation window, when the first
stage has been executed on the complete buffer of feature vec-
tors (Fig. 3.a). While such scheme is computationally efficient,
this has serious latency implications. Assume, for instance, the
length of each speech evaluation window is 1 second, and the
system has a 100 ms latency constraint. This would imply only
100 ms is available to execute the most complex models of the
latter stages. In contrast, a speculative execution could already
start earlier, i.e. activating the most complex stages after a
speculative assumption of the presence of the keyword/key-
phrase (Figure 3.b). In the example presented in figure 3,
where the voice command is ”turn on TV”, the presence of
”turn” in the middle of the phrase could be an indication to
activate the most complex stages in advance. While this would
come at a computational cost due to false wake-ups, this would
at the same time bring a benefit of a relaxed latency constraint.
In our example, the computation time of the latter stages
would be extended to 600 ms (500 ms + 100 ms). This would
allow to drastically reduce the minimal operating frequency of
the final processing stages, and consequently lower the power
consumption through frequency/voltage scaling.

Since the presence of false positives are prone to jeopardy
the potential energy savings (i.e activating the later stages too
often) speculative execution of latter stages must be carefully
tuned dependent on the incoming speech segment as well as
the input class distribution. This again calls for a hardware
and data-aware end-to-end training strategy.

Fig. 3. Activation of the cascaded stages in function of time for (a) Standard
cascade execution and (b) Speculative execution

Fig. 4. Network Graph for speculative execution

B. Cascade classifier using speculation

Having in mind the presented benefits of speculation, a
modified cascade network that allows to speculatively turn
on the most complex stage is proposed (Figure 4). The 3-
stage cascade network depicted in Figure 1 is enhanced with
a speculative path that can directly activate the third stage.
This decision is carried out in the middle of the execution of
Stage 1. After half of the segment has been processed in real-
time by Stage 1 (Stage 1 PRE-SPEC), two possible actions
are evaluated: speculate or do not speculate. In case the Q-
value for the speculate action is higher than the one for ’no
speculation’, this path is taken. In this case, the most complex
stage starts computing the buffered half of the utterance,
followed by executing in real-time the rest of the incoming
feature vectors with a relaxed latency constraint (Stage 3
SPEC). Otherwise, in case the Q-value for ’no speculation’
is higher, the non-speculative path is taken, completing the
execution of the first stage (Stage 1 NO-SPEC) for the total
duration of the utterance. After this, the Q-values for the
actions background noise and pass-on of stage 1 are compared.
In case the pass-on decision is chosen, the next models (Stage
2 NO-SPEC and potentially Stage 3 NO-SPEC) are executed
with now a hard latency constraint, similar to the standard
cascade execution.

C. Training

In order to take the speculation concept into account dur-
ing training, the additional execution path and its associated
reward were included. Following the framework developed
in section III.b the Q-values of the two new actions for
Stage 1 (PRE-SPEC) are added (speculate and no speculate).
Additionally, since the relaxed latency constraint reduces the
energy cost of computation in the speculative path compared
to the non-speculative one, a computational cost factor α
is introduced in the reward function: The cost of 1 MAC
operation using the non-speculative path is weighted as the
cost of α MAC operations for the speculative path. This factor
α is an empirical value, dependent on the hardware platform
as well as the frequency/voltage operating point.

Using the modified reward function, the whole classifier
can be jointly trained through reinforcement learning, as pre-
sented in section III. Here, the speculative decision is jointly
optimized for the current input class distribution, differential
cost of speculation and accuracy/computation trade-off point.

V. RESULTS

A. Dataset and experimental settings

The Google Speech Command Dataset (GSCD) [14] was
used for the analysis of the proposed innovations. This
database is composed of 65,000 examples of 1 second long
audio using 16 ksamples/sec. Each one of the audio files cor-
responds to one of 30 possible commands. Likewise, samples
from real-life environments, such as outdoor noise and silence
are used as background noise instances. A 12-class problem
was selected as benchmark, in line with keyword spotting
state-of-the-art, such as [5] [9]. The objective is to classify
10 keywords: yes,no,up,down,left,right,on,off,stop,go plus the
other-speech label (containing voice commands from the rest
of the dataset) and the background noise label (containing
environmental noise). The data is split into training, validation
and testing using a distribution 80:10:10 respectively.

The model topology used for the first stages (Stage 1 in
the case of the 2-stage network and Stage 1 and 2 for the
3-stage case) is one layer of LSTM units with a varying
number of units and a layer of output neurons (one for
each possible action). This decision is determined by the
competitive accuracy and reduced model size of LSTMs
for voice command recognition [5]. Furthermore, the frame-
wise response from the LSTM stages will be exploited for
implementing speculative execution.

For the last stage, a CRNN with architecture based on [5]
was used. This is composed of one CNN layer with 100 filters
of size 10x4, one bidirectional GRU layer with 200 units in
total, one Fully Connected (FC) layer of 188 neurons and
finally 12 output neurons for each class. The size of this
model is 500 kB and 14 MOPs per inference. By training
this architecture as a stand-alone classifier, it achieves 94.6%
average accuracy on the 12-classes problem. Due to its bi-
directional operation, this model is not suitable for speculative
execution. For the experiments implementing speculation, a
CRNN with unidirectional GRUs was used instead (2-layer
GRU with 140 units in each layer, with for the rest an identical
CRNN topology). The model-size and number of operations
hence remains the same as the bidirectional case. Using this
architecture as a stand-alone classifier, a test accuracy of
94.4% is obtained, or a marginal reduction from the CRNN
using bidirectional RNNs.

The Keras framework was used as development tool, apply-
ing mean squared error for the regression models and cross-
entropy for the CRNNs. An adaptive learning rate was applied
with a batch-size of 128 samples, starting with a learning rate
of 0.001. For feature extraction, 10 MFCCs are extracted per
frame following the results obtained from [9], with a 32ms
frame length and 16ms of stride. This accounts for 600 (60x10)
values for 1 second of audio.

B. Standard cascade classifier

A first set of experiments will assess the benefits of the cas-
caded classifiers, trained using hardware- and data-awareness.

This is done for a wide variety of networks through a hyper-
parameter search in order to find the optimal settings for the
cascade network. The targeted parameters include:

• Number of cascade stages (Between 2 and 3)
• Number of LSTM nodes in stage 1 (8,16,32,64 or 128)
• Number of LSTM nodes in the intermediate stage

(8,16,32,64 or 128)
• The factor λ tuning the accuracy/computation trade-off

(swept between 0 and 1 with intervals of 0.1)
To demonstrate the impact of data-awareness, three rep-

resentative input class distributions were analyzed: always-
on-sensor, voice-assistant and push-to-talk. The first setting
corresponds to an always-on scenario where the system must
handle long intervals of background noise. In the second
distribution, corresponding to a system guarded by a voice-
activity detector, the presence of background noise intervals
is reduced. Finally, the push-to-talk distribution refers to an
application where the user manually pushes a button when he
want to say something to the device. As such, keywords are
much more common and the silence intervals are reduced. The
following values indicate the used proportions of classes for
each one of the distributions:

• Always-on-sensor: Background noise 90%, other-speech
9%, Target keywords 1%.

• Voice-assistant: Background noise 50%, other-speech
45%, Target keywords 5%.

• Push-to-talk: Background noise 33.3%, other-speech
33.3%, Target keywords 33.33%.

Considering the targeted hyper-parameters and the distribu-
tions presented, the number of possible exploration combina-
tions is 225. Each of these possibilities was trained with the
hardware-aware training framework for a total of 40 epochs,
which was the average number of iterations for convergence.
The results for each one of the data distributions are shown
in figures 5, 6 and 7. In these graphs, the average accuracy
and normalized number of MAC operations (ratio of the
average number of computations per inference to the total
number of computations in the last stage CRNN model) are
shown for every trained model. Since the addressed problem
is unbalanced in terms of classes, the average accuracy across
classes is used instead of the overall accuracy. Each point of
the graphs corresponds to a different combination of hyper-
parameters.

In figure 5, showing the results for the distribution always-
on-sensor, it is observed that 87% of the total number of
MAC operations can be saved, while maintaining the baseline
CRNN accuracy of 94.6%. Specifically for this distribution,
the two and three stage networks obtain similar results. The
explanation for these findings can be found in the big amount
of background noise examples (90% of the total time), which
increases the importance of the first stage. As noted by the
dashed line, a group of optimal models can be obtained
according to Pareto optimality. Changing the trade-off between
accuracy and computation through λ, it is possible to obtain
the different optimal models along this Pareto curve. Figure 8

Fig. 5. Accuracy vs Normalized number of computations for cascade classifier
applied to distribution always-on-sensor (90% noise, 9% other-speech, 1%
keywords.)

Fig. 6. Accuracy vs Normalized number of computations for cascade classifier
applied to distribution voice-assistant (50% noise, 45% other-speech, 5%
keywords.)

Fig. 7. Accuracy vs Normalized number of computations for cascade classifier
applied to distribution push-to-talk (33% noise, 33% other-speech, 33%
keywords.)

shows some of the Pareto-optimal models for this distribution,
along with their hyper-parameters and rate of activation for the
last stage. In general, it is possible to observe how increasing
the activation rate for the CRNN improves accuracy but at a
cost in computation overhead.

The distributions voice-assistant and push-to-talk (Figure 6
and 7, respectively) exhibit a much larger difference between
the results obtained for the two and three stage networks. Due

Fig. 8. Pareto optimal models for distribution always-on-sensor (90% noise,
9% other-speech, 1% keywords)

TABLE I
TPR, FPR AND PASS-ON RATE FOR CASCADE CLASSIFIER USING

DISTRIBUTION VOICE-ASSISTANT

Stage 1 Stage 2 Stage 3 Total
TPR noise 93.75% 18.75% 100% 100%
FNR noise 0% 0% 0% 0%
POR noise 6.25% 81.25%

TPR other-speech 28.9% 92.3% 94.5%
FNR other-speech 0% 0% 7.7% 5.5%
POR other-speech 100% 71.1%

TPR keywords 94.25% 94.2%
FNR keywords 0.16% 0.32% 5.75% 5.8%
POR keywords 99.84% 99.68%

to the increasing amount of other-speech and target keywords,
the topology of the second stage becomes more important.
For these distributions it is possible to obtain 70% and 55%
computational savings while attaining a competitive accuracy.
For the push-to-talk distribution, the complexity reduction
is less, given the large amount of target keywords, which
demands the execution of the last stage more frequently.

In order to illustrate the dynamic execution of the proposed
approach, one of the Pareto-optimal classifiers trained for the
distribution voice-assistant was analyzed (marked with a star
symbol in figure 6). This model is composed of 16 and 32
LSTM neurons for the first and second stage respectively,
attaining an accuracy of 94.6% correspondent to the baseline
CRNN accuracy. Yet, it uses only 40% of the computations
needed by a stand-alone CRNN. The model size of 500 kB
for the CRNN is moreover increased by only 7kB due to the
additional LSTM stages. The values of pass-on rate (POR),
true positive rate (TPR) and false negative rate (FNR) for
each class and stage are presented in Table I according to
the following definitions:

TPR = TP
P (3) FNR = FN

P (4) POR = PO
P (5)

Where P refers to the total number of class instances that
enter a stage, TP the number of class instances classified
correctly, FN the number of class instances incorrectly clas-
sified and PO the number of class instances that are passed-
on to the next stage. Of course, the sum of TPR, FNR and

POR must be equal to 100% for each stage and class. For
the target keywords the TPR, FNR and POR for the 10
commands are averaged. As shown, the first stage is able to
classifies 93.75% of noise examples correctly, whereas only
6.25% are passed to the next stage. As wanted, the first stage
pass-on-rate of other-speech and keyword classes are close
to 100%. The second stage is able to classify 18% of the
total noise examples passed to it, whereas the rest is sent
to the third stage. For the other-speech class, TPR of 28.9%
is obtained in the second stage. The relatively low TPR for
this stage is explained by the complexity of classifying speech
not contained in the keywords set, which makes the classifier
passing a significant portion of speech examples to the last
stage to avoid false positives. The FNR for stages 1 and 2
is remarkably low (<0.5%) which helps for attaining high
recall up to the last stage. The FNR for stage 3 is higher
due to the high number of possible targets (12 targets) that
this model possess. Finally, the total TPR and FNR for the
whole classifier are shown. Overall, it is observed how the first
and second stage effectively reduce the activation of the most
complex stage given the unbalanced input data distribution,
while maintaining high accuracy for each one of the classes.

C. Speculative Execution

Assuming a maximum application latency of 100 ms, and
given the duration of the audio segments in the GSCD (around
1 second), speculative execution was allowed to be initiated
in the middle of the utterance, allowing to relax the timing
constraints to about 600 ms. This 6x relaxation of the latency
constraint is translated in a 6x reduction in operating frequency
for the speculative path. Taking into account information from
previous heterogeneous processors [15], the factor α (referred
in section IV) was set to 4 which means the energy cost
of a MAC operation carried out through the non-speculative
path is weighted as 4x the energy cost of a MAC using the
speculative-path (Figure 4).

To evaluate the effectiveness of the technique, a cascade
classifier was trained supporting speculative execution for
different accuracy/computation trade-offs. One of the opti-
mal networks obtained previously for data distribution voice-
assistant (shown with a star in figure 6) was used as a starting
point. The model contains 16 and 32 LSTM units in the first
and second stage respecivelly as well as an unidirectional
CRNN. Figure 9 shows the accuracy vs. normalized energy per
inference (normalized to the energy cost of the CRNN stand-
alone) for speculative and non-speculative execution using this
topology. The factor λ was swept in order to find different
Pareto trade-off points. As depicted in the graph, it is possible
to again achieve 94.5% accuracy, with an additional 2x energy
savings compared to a cascade classifier without speculation.

One of the Pareto-optimal models found through this pa-
rameter search was selected for further analysis (marked with
a star symbol in figure 9). This model achieves an average
accuracy of 94.5%, using only 17% of the expected energy
associated with the CRNN used. The pass-on rates for its
speculative and non-speculative paths are shown in table II.

Fig. 9. Accuracy vs Normalized number of computations for Speculative
Execution using a network composed of (16 LSTM units - 32 LSTM units -
CRNN) for distribution voice-assistant.

TABLE II
SPECULATIVE (SPEC) AND NO SPECULATIVE

(NO-SPEC) PASS-ON-RATE (POR)

SPEC POR NO-SPEC POR
Noise 8.98 % 91.02%

Keywords 92.80% 7.2%
Other-speech 92.18% 7.82%

For each class the table shows the percentage of examples
that take the speculative path and the no-speculative path.
As shown, the speculative path is actively used by the target
keywords and other-speech, reaching a POR of 92.8% and
92.18% respectively. This is explained by the relatively cheap
cost of the MAC operations following the speculative path,
which makes the optimizer scheduling more examples to the
most complex classifier. Only 8.98% of the noise examples are
sent to the speculative path. Also this is expected and optimal,
as these samples are very unlikely to propagate to stage 2 or
3, and hence have a lower cost in the non-speculative path
than in the speculative path. The TPR, FNR and POR for the
stages after the speculation decision are shown in table III
using the nomenclature of figure 4. The referred metrics are
shown also for Stage 3 (for the speculative and non-speculative
path together) and for the total network. Stage 1 through the
non-speculative path has a POR of 6% for background noise,
classifying 94% of the noise examples in this phase. Stage 2
through the non-speculative path is able to discriminate around
14.28% of the other-speech examples. As observed, the real-
time detection of speech in the first part of the utterance, allows
to spot in advance potential keyword segments, which in turn
relaxes the latency constraint and consequently the average
energy per inference.

D. Comparison with state of the art

A comparison of the proposed cascade networks with other
state-of-the-art deep learning models for keyword spotting in
terms of accuracy and computational complexity is presented
in figure 10. Taking into consideration the optimized models
found in [5] for the Google Speech Command Dataset, the
average accuracies obtained for CNN, LSTM, GRU, CRNN
and DS-CNN on the 12-classes problem are shown. In the

TABLE III
TPR, FPR AND PASS-ON RATE USING SPECULATIVE EXECUTION FOR

DISTRIBUTION VOICE-ASSISTANT

Stage 1
(NO-SPEC)

Stage 2
(NO-SPEC)

Stage 3
(NO-SPEC
+ SPEC)

Total

TPR noise 94% 0% 97.29% 99.6%
FNR noise 0% 0% 2.71% 0.4%
POR noise 6% 100%

TPR other-speech 14.28% 89.76% 91.79%
FNR other-speech 0.54% 0% 10.24% 8.21%
POR other-speech 99.46% 85.72%

TPR keywords 94.55% 94.37%
FNR keywords 2% 0% 5.45% 5.63%
POR keywords 98% 100%

Fig. 10. Accuracy vs Number of operations per second under real-time
operation for no-cascade and cascade classifiers using distributions: (1)
Balanced (2) push-to-talk (3) voice-assistant (4) always-on-sensor

referred work [5], through a complete hyperparameter search,
some efficient and accurate networks are obtained for each
one of the algorithms mentioned. Since these standard deep
learning models are not adaptable to the unbalanced distri-
butions, the number of operations per inference is constant.
Some of the Pareto-optimal cascade models found in this work
for the three targeted distributions are also depicted. All the
networks present in the graph have a similar average model
size of 500kB using 8-bits weights. The comparison shows that
the proposed hardware-aware cascade networks attain average
accuracy close to CRNN because of the use of this model
as its last stage. Yet, the proposed framework achieves this
accuracy requiring only 2 MOPs for real-time operation under
the most skewed distribution, compared to the 14 MOPs for
the stand-alone SotA CRNN. Hence, using a cascade network,
the average number of operations per inference automatically
adapts to the input data statistics, decreasing significantly
the computational overhead, while maintaining state-of-the-art
accuracy.

VI. CONCLUSIONS

In this paper, a framework for hardware-aware and data
distribution aware cascaded classification using hybrid neural
networks is developed and applied to multi-keyword spotting.
A hyper-parameter search combined with hardware-aware
training using RL allows to find the optimal cascaded models

for specific input data distributions, showing the computational
savings that can be obtained with such structures. For an
always-on scenario, the cascade classifier is able to save up to
87% of MAC operations through selective execution of neural
networks, while maintaining the baseline accuracy of the most
complex model used. Furthermore, speculative conditional
execution is proposed as a way to exploit the low latency
response from the RNN stages, allowing to execute later stages
speculatively with a low operating voltage/frequency without
sacrificing overall classification latency. This allows up to 2x
additional energy savings. The presented framework brings
always-on keyword spotting closer to the limits of embedded
execution on resource constrained devices.

REFERENCES

[1] N. D. Lane and P. Georgiev, “Can deep learning revolutionize mobile
sensing?” in Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications. ACM, 2015, pp. 117–122.

[2] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword spotting
using deep neural networks,” in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014, pp.
4087–4091.

[3] T. Sainath and C. Parada, “Convolutional neural networks for small-
footprint keyword spotting,” 2015.

[4] S. O. Arik, M. Kliegl, R. Child, J. Hestness, A. Gibiansky, C. Fougner,
R. Prenger, and A. Coates, “Convolutional recurrent neural networks
for small-footprint keyword spotting,” arXiv preprint arXiv:1703.05390,
2017.

[5] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword
spotting on microcontrollers,” arXiv preprint arXiv:1711.07128, 2017.

[6] A. L. Maas, A. Y. Hannun, C. T. Lengerich, P. Qi, D. Jurafsky,
and A. Y. Ng, “Increasing deep neural network acoustic model size
for large vocabulary continuous speech recognition,” arXiv preprint
arXiv:1406.7806, 2014.

[7] M. Sun, V. Nagaraja, B. Hoffmeister, and S. Vitaladevuni, “Model
shrinking for embedded keyword spotting,” in 2015 IEEE 14th Inter-
national Conference on Machine Learning and Applications (ICMLA).
IEEE, 2015, pp. 369–374.

[8] S. Team, “Hey siri: An on-device dnn-powered voice trigger for apples
personal assistant,” Apple Machine Learning Journal, vol. 1, no. 6, 2017.

[9] M. Shahnawaz, E. Plebani, I. Guaneri, D. Pau, and M. Marcon, “Study-
ing the effects of feature extraction settings on the accuracy and memory
requirements of neural networks for keyword spotting,” in 2018 IEEE
8th International Conference on Consumer Electronics-Berlin (ICCE-
Berlin). IEEE, 2018, pp. 1–6.

[10] M. Sun, A. Raju, G. Tucker, S. Panchapagesan, G. Fu, A. Mandal,
S. Matsoukas, N. Strom, and S. Vitaladevuni, “Max-pooling loss train-
ing of long short-term memory networks for small-footprint keyword
spotting,” in 2016 IEEE Spoken Language Technology Workshop (SLT).
IEEE, 2016, pp. 474–480.

[11] S. Teerapittayanon, B. McDanel, and H. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). IEEE, 2016,
pp. 2464–2469.

[12] L. Liu and J. Deng, “Dynamic deep neural networks: Optimizing
accuracy-efficiency trade-offs by selective execution,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[13] G. Chen, C. Parada, and T. N. Sainath, “Query-by-example keyword
spotting using long short-term memory networks,” in 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2015, pp. 5236–5240.

[14] P. Warden, “Speech commands: A public dataset for single-word
speech recognition,” Dataset available from http://download. tensorflow.
org/data/speech commands v0, vol. 1, 2017.

[15] H. T. Mair, G. Gammie, A. Wang, R. Lagerquist, C. Chung, S. Gu-
rurajarao, P. Kao, A. Rajagopalan, A. Saha, A. Jain et al., “4.3 a
20nm 2.5 ghz ultra-low-power tri-cluster cpu subsystem with adaptive
power allocation for optimal mobile soc performance,” in 2016 IEEE
International Solid-State Circuits Conference (ISSCC). IEEE, 2016,
pp. 76–77.

