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This paper proposes three polytomous item explanatory models with random item errors in Item
Response Theory (IRT), by extending the Linear Logistic Test Model with item error (LLTM + e) approach
to polytomous data. The proposed models, also regarded as polytomous random item effects models, can
take the uncertainty in explanation and/or the random nature of item parameters into account for poly-
tomous items. To develop the models, the concepts and types of polytomous random item effects are
investigated and then added into the existing polytomous item explanatory models. For estimation of
the proposed models with crossed random effects for polytomous data, a Bayesian inference method is
adopted for data analysis. An empirical example demonstrates practical implications and applications
of the proposed models to the Verbal Aggression data. The empirical findings show that the proposed
models with random item errors perform better than the existing models without random item errors
in terms of the goodness-of-fit and reconstructing the step difficulties and also demonstrate methodolog-
ical and practical differences of the proposed models in interpreting the item property effects in each of
the item location explanatory Many-Facet Rasch Model and the step difficulty explanatory Linear Partial
Credit Model approaches.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The primary role of educational measurement and assessment
is to provide necessary information about ways to facilitate teach-
ers’ instruction and students’ learning [6]. This in turn emphasizes
the capability and quality of informative measurement and assess-
ment. Explanatory measurement [15] provides various explanatory
inferences from the assessments so that it can strengthen the kind
of feedback that could be given to both teachers and students as
well as to test developers and educational researchers. In item
response theory (IRT), explanatory item response models (EIRM;
[15]) aim to explain the person and/or item side of the assessment
data in order to enrich inferential information and enhance the
feedback. Among person explanatory, item explanatory, and dou-
bly explanatory models of the EIRM approach, this paper will focus
on item explanatory models in which item properties are incorpo-
rated to explain and predict the item effects. In measurement and
assessment practices, item explanatory models have various
methodological advantages in extracting essential and meaningful
elementary components, testing constructs hypothesized in item
design and item generation, and predicting item difficulties of
newly developing items as well as in measuring the effect of vari-
ous testing conditions such as item presentation position, item
exposure time, and testing occasions [13,19,40,58]. This item
explanatory approach is also useful to examine the effect of item
properties such as item design variables, item response format,
content-specific learning, task characteristics, and cognitive opera-
tions in various assessment contexts [31,40]. Thus, item explana-
tory models can serve to provide useful and practical information
for enhancing item design, item generation, and test development
in educational measurement and assessment.

A typical approach to item explanatory modeling is the Linear
Logistic Test Model (LLTM; [21]), which decomposes the difficul-
ties of specific items into linear combinations of elementary com-
ponents related to item properties or features [18]. The original
LLTM approach has an underlying assumption that predictors of
the observed item properties can perfectly account for item diffi-
culties. However, ‘‘perfect” explanation is hardly possible because
substantive theories behind the measurement model may not be
flawless and/or the item difficulty parameter may be a random
variable by nature [16,35]. Considering the uncertainty in
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explanation and/or the random nature of item parameters, as in an
ordinary regression model, it is reasonable to add a random error
or residual term into the item regression component of item
explanatory models. This approach is the Linear Logistic Test
Model with item error (LLTM + e; [50,35]), which enhances predic-
tion of the item difficulty parameters of a Rasch model by allowing
for residual variation [16,31]. That is, an item error term in the
LLTM + e can compensate for the discrepancy between the freely
estimated item difficulty in the Rasch model and the item difficulty
calculated by the estimated item property effects in the LLTM.

Although item explanatory models have the methodological
advantages and diverse potential uses, most of their applications
have investigated dichotomous data (e.g., [16,17,31,34,40,58]). In
particular, the LLTM and the LLTM + e are existing and widely used
item explanatory approaches to dichotomous items. In a wide
range of educational, psychological, and sociological measurement
and assessment contexts, however, it is common to have ordered-
category responses which are regarded as polytomous data [15].
For example, an educational assessment is often developed under
a learning progression framework, which generates the sophisti-
catedly different and ordered levels of student achievement. In
measurement practices, partial credit items and rating scale items
are frequently used item types, which are typically scored as
ordered-category responses. Therefore, extensions and applica-
tions of item explanatory models to polytomous data, referred to
as polytomous item explanatory models, need to be further
investigated.

To develop polytomous item explanatory models, it is reason-
able and appealing to extend the LLTM + e approach to polytomous
data with consideration for the uncertainty in explanation and/or
the random nature of item parameters. For polytomous extensions
of the LLTM + e, two steps of item explanatory modeling are
required: (1) item explanatory extensions of polytomous item
response models using the LLTM approach—polytomous item
explanatory models, (2) conceptualizing polytomous random item
effects and adding them as item error terms to the item regression
component of polytomous item explanatory models using the
LLTM + e approach—polytomous item explanatory models with
random item effects.

For the first modeling step, polytomous item parameters in
polytomous item response models need to be reparameterized
by incorporating item properties, which is complicated. However,
a few studies have investigated polytomous extensions of the
LLTM approach. Glas and Verhelst [29] imposed linear restric-
tions on the item parameters of a polytomous item response
model, but their reparameterization necessarily requires a com-
plicated translation to interpret the estimated item parameters.
Linacre [43] decomposed the polytomous item parameters into
a linear combination of the effects of facets but the facet effects
models haven’t been used for item explanatory modeling and
continuous item predictors cannot be incorporated in the models.
Fischer and Parzer [22] and Fischer and Ponocny [23] extended
the LLTM approach to polytomous item response models by
using a normalization constant and basic parameters for item
parameterization, however, these item parameters are difficult
to interpret, and the models are complicated to incorporate item
properties. Meanwhile, Kim [39] investigated item explanatory
extensions of polytomous item response models under a general
statistical modeling framework recently, building on the previous
studies. Two polytomous item explanatory models were pro-
posed using different item explanatory approaches to polyto-
mous data, and the two models showed methodological and
practical differences in incorporating item properties and inter-
preting their effects. In this paper, these two polytomous item
explanatory models are employed for the first step of incremen-
tal extensions.
The second step is our main concern of item explanatory
modeling for polytomous data. This modeling step to add item
error terms seems straightforward, however, it is rather difficult
so that polytomous extensions of the LLTM + e approach and
their applications have hardly been investigated. The difficulty
originates from mainly two issues regarding polytomous ran-
dom item effects: a conceptual issue and an application issue.
In IRT, the LLTM + e is a type of random item effects model
in which items are treated as random and item difficulties are
regarded as random effects and hence the item difficulty
parameter is a random variable [16]. The LLTM assumes that
the item difficulties are perfectly predicted by the fixed item
property effects, whereas the LLTM + e relaxes this assumption
by allowing for random variation across items. Random item
effects models are a rather new area in educational and psycho-
logical measurement research [16]. In particular, the concepts of
random item effects involve a random error interpretation for
the uncertainty in explanation and a random sampling interpre-
tation for the random nature of item parameters [35]. Since
these two interpretations are two sides of the same coin, poly-
tomous random item effects and their distributional assump-
tions should be investigated to add item error terms into the
polytomous item explanatory models. However, random item
effects for polytomous items have been barely examined and/
or conceptualized. A few studies have discussed them (e.g.,
[36,55,56]), but they have mainly investigated item selection
techniques or item family calibration methods for polytomous
items rather than underlying distributions for polytomous ran-
dom item effects.

For applications of polytomous random item effects models in
practice, it is necessary to figure out different types of polytomous
item explanatory models with random item errors and to select a
model between them. An overarching framework that summarizes
the polytomous item explanatory models with random item errors
is helpful to facilitate the understanding and applications of them,
however, it has not yet been investigated. Furthermore, treating
both items and persons as random makes for crossed random
effects [16,35]. Estimation of random item effects models with
the crossed random effects is demanding due to the complexity
and difficulty in numerical integration [9,69]. Such demanding
estimation becomes more difficult for polytomous data practically
due to a lack of statistical software which can estimate polytomous
random item effects models.

This research aims to develop and apply polytomous item
explanatory models with random item errors by extending the
LLTM + e approach to polytomous data, considering the uncer-
tainty in explanation and/or the random nature of item parame-
ters. To specify the models, the two modeling steps of
incremental extensions will be discussed in the following sec-
tions. For the first step, we will review the existing models for
polytomous item explanatory extensions. Building up on polyto-
mous item response models, the two polytomous item explana-
tory models that Kim [39] suggested are described. For the
second step, we will examine the concepts and types of polyto-
mous random item effects in terms of a random sampling inter-
pretation, which enables to figure out the underlying
distributions of random item errors on the polytomous item
parameters. Then, we will add those random item errors to the
polytomous item explanatory models in terms of a random error
interpretation. Next, in addition to summarizing an overarching
framework of the polytomous item explanatory models with ran-
dom item errors, we will also discuss estimation methods for
those models. Lastly, we will demonstrate an empirical applica-
tion of the proposed models to the Verbal Aggression data to
show their practical implications, interpretations, and method-
ological advantages.
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2. Item explanatory extensions of polytomous item response
models (Existing models)

2.1. Polytomous item response models

This section reviews existing polytomous item response models
for the first modeling step of polytomous item explanatory exten-
sions. Given a context of ordered-category responses regarded as
polytomous data, adjacent-categories logits are employed for poly-
tomous item response models and their item explanatory exten-
sions. Since most of the ordered-category responses in
educational assessment or cognitive development contexts are
subjectively assigned scores between categories, adjacent-
categories logits are suitable for modeling those scores in ordinal
regression models [3,37]. Moreover, adjacent-categories logits are
useful when contrasting probabilities of the responses in pairs of
adjacent categories [32,49], regarded as the local comparison of
ordered categories [48].

Rasch family models for polytomous data, which are based on
the adjacent-categories logits, can make person and item parame-
ters separable and hence have sufficient statistics as well as make
possible specifically objective comparisons of persons and items
[46,48]. These are fundamental measurement properties of the
Rasch family models [47,61]. In particular, the Partial Credit Model
(PCM; [46]) is a straightforward application of the Rasch model
[59] originally for dichotomous responses to pairs of adjacent cat-
egories in a sequence in ordered-category responses [48]. Hence,
we will use the PCM as a basic polytomous item response model
to investigate random item effects in polytomous items and add
random item errors to polytomous item explanatory models.

To facilitate interpretation of polytomous item parameters,
explanatory convenience, and simplicity of model specification,
the PCM is expressed in terms of the local comparison between
adjacent categories. A comparison of the response probabilities
that person p of ability hp scores from m� 1 to m on item
i i ¼ 1;2; � � � ; Ið Þ, which is regarded as the m-th adjacent-categories
logit [68], can be written as:

ln
Pr ypi ¼ mjhp
� �

Pr ypi ¼ m� 1jhp
� � ¼ hp � dim; m ¼ 1; � � � ;Mi ð1Þ

where hp � N 0; r2
h

� �
and di0 ¼ 0. For statistical model identifica-

tion1, the mean person ability is constrained to zero. This model
constraint will be consistently used for all IRT models in this paper.
From this local comparison perspective of the PCM, the item param-
eter dim is interpreted as a ‘‘step” difficulty when shifting a category
score from m� 1 to m on item i, which is regarded as the m-th step
of switching over to the next response category. Thus, a step diffi-
culty parameter dim indicates the relative difficulty for scoring m
rather than m� 1 on item i [46,47]. Note that in this formula, the
person abilities hp are treated as random and the step difficulties
dim are treated as fixed.

In particular, the step difficulty parameter dim can be split into
two item parameters, the item location (a.k.a. overall item diffi-
culty) parameter bi and the step deviation parameter sim, as
follows:

dim ¼ bi þ sim; ð2Þ
so that

ln
Pr ypi ¼ mjhp
� �

Pr ypi ¼ m� 1jhp
� � ¼ hp � bi � sim; m ¼ 1; � � � ;Mi ð3Þ
1 For model identification, a particular item parameter or the mean of item
parameters can be constrained to zero. In this case, the mean person ability is
estimated [15].
where hp � N 0; r2
h

� �
; si0 ¼ 0, and

PMi
m¼1sim ¼ 0 so that

1
Mi

PMi
m¼1dim ¼ bi. Due to the model constraint that 1

Mi

PMi
m¼1dim ¼ bi

(a mean of step difficulties for an item), an item location parameter
bi is interpreted as the overall item difficulty for polytomous item i,
and a step deviation parameter sim is interpreted as a deviation of
the step difficulty from the overall item difficulty for the m-th step
within item i (sim ¼ dim � bi). Mi � 1 step deviation parameters are
estimated for each item because the sum of step deviations is con-

strained to zero for each item (
PMi

m¼1sim ¼ 0). This twofold item
parameterization is used in the IRT software ConQuest [1], which
is essential to identify overall item difficulties, scale thresholds,
and step difficulties in polytomous items. It is also useful in the con-
text of incorporating item properties and adding an error term in
order to explain the overall item difficulties.

In addition, the Rating Scale Model (RSM; [4]) is a special case of
the PCM [46], in which the relative difficulties of the steps between
categories do not vary across all items sim ¼ smð Þ and the number
of steps are the same for all items (Mi ¼ M). In the RSM, the item
location parameter bi and the common scale threshold parameter
sm can be formulated as:

ln
Pr ypi ¼ mjhp
� �

Pr ypi ¼ m� 1jhp
� � ¼ hp � bi � sm; m ¼ 1; � � � ;M ð4Þ

where hp � N 0; r2
h

� �
; s0 ¼ 0, and

PM
m¼1sm ¼ 0. Note that the RSM

imposes more restrictions on the step deviation parameter of the
PCM. In sum, the PCM is the most general Rasch family model for
polytomous (ordinal) data [61].

2.2. Polytomous item explanatory models

We will employ the existing models for polytomous item
explanatory extensions. The two polytomous item explanatory
models that Kim [39] suggested are reviewed in this section. The
two models are item explanatory extensions of the PCM, which
are recently investigated building on the previous studies, and
their parameters of item property effects are straightforward to
interpret. For the purpose of developing polytomous item explana-
tory models with random item errors in the second modeling step,
it is necessary to figure out the two polytomous item explanatory
approaches before adding random item errors. As discussed in the
introduction, however, reparameterizing polytomous item param-
eters by incorporating item properties into the PCM is complicated
(also see [39]). To avoid the complication of polytomous item
parameterization, it is helpful to clarify the target difficulty param-
eters in the PCM which are explained by item properties: (a) the
item location (overall item difficulty) parameters bi can be
explained by item properties, and (b) the step difficulty parameters
dim can be explained by item properties.

2.2.1. Item location explanatory Many-Facet Rasch Model (MFRM)
In the first case, by using the twofold item parameterization for

the PCM in Eq. (3), we can impose linear restrictions on the item
location parameters as was done in the LLTM, and also estimate
the step deviation parameters for each item. The restricted item
location parameters b

0
i are decomposed into weighted sums of item

property effect parameters ck as follows:

b
0
i ¼

XK
k¼0

ckxik; k ¼ 0; � � � ;K ð5Þ

so that

ln
Pr ypi ¼ mjhp
� �

Pr ypi ¼ m� 1jhp
� � ¼ hp �

XK
k¼0

ckxik � sim ð6Þ
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where hp � N 0; r2
h

� �
; si0 ¼ 0, and

PMi
m¼1sim ¼ 0. Also, where c0 is the

item intercept representing the difficulty for items with all xik = 0
for k > 0, ck is the regression weight or the effect of item property
k on the overall item difficulties, xio is the constant item predictor
in which a value of 1 for all items, xik is the predictor value of item
i on item property k, and sim is a step deviation parameter for them-
th step of item i.. Note that in general the restricted item location
parameters b

0
i in Eq. (5) will not be equal to the original parameters

bi in Eq. (3) because the explanation by the observed item proper-
ties are not perfect.

This item location explanatory extension of the PCM is a varia-
tion of Linacre [43]’s Many-Facet Rasch Model (MFRM) in that the
item location parameters are restricted by a linear combination of
the effects of item properties which are regarded as sub-facets
within the item facet [75]. Building on the MFRM, a more general
regression notation is used to include both categorical and contin-
uous explanatory predictors, and the step deviation parameters are
estimated for each item. This polytomous item explanatory model
with a decomposition of the item location parameters will be
called the ‘‘item location explanatory Many-Facet Rasch Model
(MFRM)”.

2.2.2. Step difficulty explanatory Linear Partial Credit Model (LPCM)
For the second case, we can impose linear restrictions on the

step difficulty parameters in Eq. (1) by incorporating item proper-
ties. The restricted step difficulty parameters d

0
im are decomposed

into weighted sums of step specific item property effect parame-
ters xkm as follows:

d
0
im ¼

XK
k¼0

xkmxik; k ¼ 0; � � � ;K ð7Þ

so that

ln
Pr ypi ¼ mjhp
� �

Pr ypi ¼ m� 1jhp
� � ¼ hp �

XK
k¼0

xkmxik ð8Þ

where hp � N 0; r2
h

� �
; xk0 ¼ 0, and also where x0m is the step

intercept representing the m-th step difficulty for items with all
xik = 0 for k > 0, xkm is the regression weight or the effect of item
property k on the m-th step difficulties, xio is the constant item pre-
dictor in which a value of 1 for all items, and xik is the predictor
value of item i on item property k. Note that in general the
restricted step difficulty parameters d

0
im in Eq. (7) will not equal

the original parameters dim in Eq. (1) because there is no complete
explanation via the observed item properties.

This step difficulty explanatory extension of the PCM is a varia-
tion of the Linear Partial Credit Model (LPCM; [23]) in that the step
difficulty parameters are restricted by a linear combination of item
properties, although they used complicated and less interpretable
item parameters such as a normalization constant and basic
parameters. Building on the LPCM, the step specific item property
effect parameters are used to interpret the effects of item proper-
ties on the step difficulties for each step. This polytomous item
explanatory model with a decomposition of the step difficulty
parameters will be called the ‘‘step difficulty explanatory Linear Par-
tial Credit Model (LPCM)”.
3. Polytomous item explanatory models with random item
effects (Proposed models)

3.1. Polytomous random item effects

For the second modeling step, the concepts and types of random
item effects for polytomous items should be investigated to
incorporate random item errors into the two polytomous item
explanatory models. The concepts of random item effects are
related to the random nature of item parameters in terms of a ran-
dom sampling interpretation as well as to the uncertainty in expla-
nation in terms of a random error interpretation [35]. Since
random item effects parameters are the same random variables
with the same distributional assumptions in both interpretations,
these two ways of interpreting random item effects are two sides
of the same coin. In this section, we will first examine random item
effects that account for the random nature of polytomous item
parameters in the first interpretation and then will address how
to incorporate them in the second interpretation.

The notion of random item effects becomes clearer in the con-
text of item banks, item generation (or item cloning), and auto-
matic item generation (AIG) as well as generalizability in item
response modeling (GIRM). In practice, there are some preexisting
item populations. For instance, with the advent of computer adap-
tive testing (CAT), item banks or item pools are created using IRT
models and they are used as the item population for random item
selection [16,28,30]. In CAT, items are randomly drawn from an
item bank so that a homogenous set of the items can be con-
structed. Also, item generation is seen as formally equal to drawing
from a theoretical population such as in a theory of domain-
referenced testing [16,33]. The concept of ‘‘domain”, also referred
to as ‘‘universe”, means the knowledge and skills required for the
mastery of a specific content area in educational assessment [35].
In AIG, items (or item clones) within an item family are generated
automatically based on the item generating models and are admin-
istered on a computer-based test [34,36,41]. The concept of ‘‘item
family”, based on the principal of item generation, represents a set
of items with sufficient commonalities as well as sufficient differ-
entiation from other sets of items [16,28,62]. Such an item universe
or item family is regarded as the item population from which test
items are randomly sampled or automatically generated. This
implies the items are seen as random. Moreover, the random nat-
ure of the items concerns the generalizability potential of a random
item effects model [16]. As in the GIRM approach [8,12], general-
ization to the item universe can be a matter of concern even when
the items are not randomly sampled in reality from a preexisting
item population. Thus, random item effects models are promising
and useful for the calibration of item parameters from the under-
lying item population in various measurement situations.

Despite the practical implications and the potential usefulness
in educational measurement practices, random item effects models
are a rather new approach in IRT [16]. In fact, little is known about
random item effects for polytomous items. Most relevant studies
that have investigated random item effects have used dichotomous
data (e.g., [9,16,17,28,31,34]). Although a few studies have dis-
cussed polytomous random item effects (e.g., [36,55,56]), they
have mainly investigated item selection techniques or item family
calibration methods for polytomous items in the context of CAT
and AIG rather than underlying distributional assumptions for
polytomous random item effects. It has been rare to investigate
and/or conceptualize random item effects in polytomous item
response models.

In the random item effects model setting, items are treated as
random. The randomness implies that there could, in principle,
be many items. In the item response process for polytomous (ordi-
nal) items, the scale structure is fixed by a scale type and outcome
space corresponding to constructs for item design such as a learn-
ing progression; thus, the number of response categories is fixed
and hence that of category steps is fixed. In order to come up with
polytomous random item effects in terms of the random sampling
interpretation, this paper focuses on the polytomous item param-
eters of the PCM. To allow for random item effects in the PCM, it is
helpful to examine the conceptualization of random effects on the
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item side of the polytomous responses by considering different
types of item parameters. To our knowledge, there are three types
of polytomous random item effects: (a) overall item random
effects—random variations in overall item difficulties across items,
(b) multivariate item-step random effects—random variations in
step difficulties across items and category steps and they are cor-
related between category steps, and (c) univariate item-step ran-
dom effects—random variations in step difficulties across items
and category steps and they are uncorrelated between category
steps.

For the first type of polytomous random item effects, by using
the twofold item parameterization for the PCM in Eq. (2), random
effects can be imposed on the overall item difficulties for individ-
ual items so that the item location parameters bi are a random
variable, expressed as:

dim ¼ bi þ sim and bi � N lb; r
2
b

� �
ð9Þ

where hp � N 0; r2
h

� �
; si0 ¼ 0 and

PMi
m¼1sim ¼ 0. The overall item ran-

dom effects, denoted by bi, are assumed to follow a normal distribu-
tion with a mean of lb and a variance of r2

b . Due to the model

constraint that hp � N 0; r2
h

� �
, lb represents a grand mean overall

item difficulty across items over persons. In addition, the sum of

step deviations is constrained to zero for each item (
PMi

m¼1sim ¼ 0)
to identify the overall difficulty of an item, and the step deviation
parameter sim is not random. In this approach, the explanation
and prediction of the overall item difficulties are a matter of interest
in interpretation of random item effects.

In the second type of polytomous random item effects, the
explanation and prediction of the step difficulties are important.
Given the same number of response categories and category steps
from the same scale structure in the same item population, the
step difficulties can vary within an item and between items as
the items vary. In the PCM, the step difficulties of an item do not
rely on the particulars of the other items in the sample from the
item population and there are no order restrictions between them
within an item [14,46,48]. However, within an item, the step diffi-
culties are not interpreted independently of each other [47,51].
That is, category scores have some deterministic dependence on
the relative difficulties between category steps in the same item
despite the assumption of local independence between items given
the person ability [46,52]. This implies a distribution assumption
for the ordinal item population that the step difficulties in each
step can randomly vary across items but they are correlated within
an item.

To accommodate these concerns, by using the original PCM’s
item parameterization in Eq. (1), correlated item-step random
effects between category steps can be imposed on the step difficul-
ties step-specifically for individual items so that the step difficulty
parameter vector di are a set of correlated random variables, as
follows:

di di1; di2; . . . ; dimð Þ0 � MVNm l
d
; R

� � ð10Þ
Table 1
Three types of polytomous random item effects for the PCM.

Item Parameterization Random Item Parameter Polyto

Two fold dim ¼ bi þ sim Item Location Parameter bi Overa

One fold dim Step Difficulty Parameter dim Multi
One fold dim Step Difficulty Parameter dim Univa

Note. The overall item random effectsbi follow a normal distribution with a mean of l
(di1; di2; � � � ; dim)0 follows a multivariate normal distribution with a mean vector ld (ld1;

random effects dim follow a normal distribution with a mean of ld and a variance of r2
d

where l
d
¼

ld1
ld2

..

.

ldm

2
664

3
775; R¼

r2
d1 rd1d2 � � � rd1dm

rd2d1 r2
d2 � � � rd2dm

..

. ..
. . .

. ..
.

rdmd1 rdmd2 � � � r2
dm

2
6664

3
7775; hp � N 0; r2

h

� �
;

and di0 ¼ 0. The vector of the multivariate item-step random effects
di (di1;di2; � � � ;dim)0 is assumed to follow a multivariate normal (MVN)
distribution with a mean vector l

d
(ld1;ld2; � � � ;ldm)

0 and a vari-
ance–covariance matrix R m�mð Þ. Due to the model constraint that
hp � N 0; r2

h

� �
, ldm represents a grand mean step difficulty for them-

th step across items over persons.
The third type of polytomous random item effects are univari-

ate item-step random effects that the step difficulties can ran-
domly vary across items and category steps. By using the original
PCM’s item parameterization in Eq. (1), uncorrelated item-step
random effects between category steps can be imposed on the step
difficulties for individual items so that the step difficulty parame-
ters dim are a random variable, written as:

dim � N ld; r
2
d

� � ð11Þ

where hp � N 0; r2
h

� �
and di0 ¼ 0. The univariate item-step random

effects dim is assumed to follow a normal distribution with a mean
of ld and a variance of r2

d . Due to the model constraint that
hp � N 0; r2

h

� �
, ld represents a grand mean step difficulty for all cat-

egory steps across items over persons.
In fact, this univariate item-step random effects model is a spe-

cial case of the multivariate item-step random effects model in Eq.
(10). The two models are identical with additional assumptions for
the latter that the mean and variance of the item-step random
effects are the same across every step (ld1 ¼ � � � ¼ ldm ¼ ld in l

d
;

r2
d1 ¼ � � � ¼ r2

dm ¼ r2
d in R) and the item-step random effects are

independent between category steps (zero correlation or zero
covariance; rd1d2 ¼ � � � ¼ rdmdm�1 ¼ 0 in R). The univariate item-
step random effects seem to be peculiar due to assumptions that
do not reflect the multi-categorical scale structure in the ordinal
items. Nevertheless, this type of polytomous random item effects
has been commonly used for a prior distribution of the step diffi-
culty parameters in Bayesian estimation methods (e.g.,
[2,14,24,38]). This makes sense in that a weakly or non-
informative prior for model parameters need not be strictly true
in Bayesian inference [24,65].

The three types of polytomous random item effects for the PCM
are summarized with each distribution assumption in Table 1.
Since the two interpretations of random item effects are closely
related, a distribution assumption for each polytomous random
item effects model will be retained for corresponding random item
errors in the following section. In brief, for the overall item random
effects, the item location parameter is a random variable that fol-
lows a univariate normal distribution and the explanation and pre-
diction of the overall item difficulties are a matter of interest
regardless of the ordinal scale structure. For the multivariate
item-step random effects, the set of step difficulty parameters is
mous Random Item Effects Distribution Assumption

ll Item Random Effects bi � N lb; r2
b

� �
and

PMi
m¼1sim ¼ 0

variate Item-Step Random Effects di di1; . . . ; dimð Þ0 � MVNm l; Rð Þ
riate Item-Step Random Effects dim � N ld; r2

d

� �

b and a variance of r2
b . The vector of the multivariate item-step random effects di

ld2; � � � ;ldm)
0 and a variance-covariance matrix R m�mð Þ. The univariate item-step

.
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a random vector that follows a multivariate normal distribution
and the explanation and prediction of the correlated step difficul-
ties between category steps are a matter of interest with consider-
ation for the ordinal scale structure. For the univariate item-step
random effects, the step difficulty parameter is a random variable
that follows a univariate normal distribution and the explanation
and prediction of the uncorrelated step difficulties between cate-
gory steps are a matter of interest without consideration for the
ordinal scale structure.

In addition, the multivariate item-step random effects model in
Eq. (10) hints at a random item effects version of the RSM. As in the
overall item random effects model in Eq. (9), the item location
parameters bi can be a random variable which follows a normal
distribution with a mean of lb and a variance of r2

b . Based on the
RSM assumption, the relative difficulties between category steps
are the same for all items so that the common scale threshold
parameter sm in Eq. (4) concerns only the rating scale structure.
By summing up lb and sm, one can identify a similar mean vector
with the multivariate item-step random effects model. A further
investigation for this topic is needed but we will leave it for a
future study in order to focus on extensions of the PCM in this
paper.

3.2. Polytomous item explanatory models with random item errors

This section addresses how to develop polytomous item
explanatory models with random item errors for the second step
of polytomous extensions of the LLTM + e approach. We will incor-
porate the three types of polytomous random item effects into the
two polytomous item explanatory models in a random error inter-
pretation of random item effects. The polytomous random item
effects have an underlying distribution which can be used for each
corresponding type of polytomous random item errors. As in the
LLTM + e approach, an error term can enhance prediction of the
polytomous item difficulties, the overall item difficulties and the
step difficulties, by allowing for residual variation.

Note that the two polytomous item explanatory models are
methodologically and functionally different item explanatory
approaches to polytomous items in terms of the target item
parameters of the polytomous item difficulties which are
explained by item properties and the types of item property effects
[39]. Moreover, the three types of polytomous random item errors
are conceptually different in terms of the random item parameters,
the underlying distributions, and the consideration for the ordinal
scale structure. To specify polytomous item explanatory models
with random item errors, it is necessary to clarify the target poly-
tomous item difficulty parameters which are explained by item
properties as well as the types of polytomous random item errors
which are unexplained residuals. First, in the item location
explanatory MFRM approach, the item location parameters bi can
be explained by item properties and then (a) overall item random
error can be added for unexplained residual variation in the overall
item difficulties regardless of the ordinal scale structure. Next, in
the step difficulty explanatory LPCM approach, the step difficulty
parameters dim can be explained by item properties and then (b)
multivariate item-step random error or (c) univariate item-step
random error can be added for unexplained residual variation in
the step difficulties, depending on the consideration for the ordinal
scale structure.

3.2.1. Item location explanatory Many-Facet Rasch Model with Overall
Item Random Error (MFRM + OIE)

The first model is referred to as the item location explanatory
Many-Facet Rasch Model with Overall Item Random Error
(MFRM + OIE). By using the twofold item parameterization for
the PCM, an overall item random error term �i is added to the
MFRM-based polytomous item explanatory model in Eqs. (5) and
(6), formulated as:

dim ¼
XK
k¼0

ckxik þ �i þ sim ð12Þ

where �i � N 0;r2
�

� �
, hp � N 0; r2

h

� �
; si0 ¼ 0, and

PMi

m¼1
sim ¼ 0. Also,

where �i is an error or residual term for the overall item difficulties
with a normal distribution of a zero mean and a variance of r2

� , c0 is
the item intercept representing the difficulty for items with all
xik = 0 for k > 0, ck is the regression weight or the effect of item prop-
erty k on the overall item difficulties, xio is the constant item predic-
tor in which a value of 1 for all items, xik is the value of item i on
item property k, and sim is a step deviation parameter for the m-
th step of item i. Note that this model with no item property predic-
tors (K ¼ 0) is formally equivalent to the overall item random
effects model in Eq. (9), that is, c0 ¼ lb.

3.2.2. Step difficulty explanatory Linear Partial Credit Model with
Multivariate Item-Step Random Error (LPCM + MISE)

The second model is referred to as the step difficulty explanatory
Linear Partial Credit Model with Multivariate Item-Step Random
Error (LPCM +MISE). By using the original PCM’s item parameteri-
zation, a vector of the multivariate item-step random error term
ni ni1; ni2; � � � ; nimð Þ0 is added to the LPCM-based polytomous item
explanatory model in Eqs. (7) and (8), formulated as:

dim ¼
XK
k¼0

xkmxik þ nim ð13Þ

where ni ¼
ni1
ni2
..
.

nim

2
664

3
775 � MVNm 0; Rð Þ; 0 ¼

0
0
..
.

0

2
664

3
775;

R ¼

r2
n1 rn1n2 � � � rn1nm

rn2n1 r2
n2 � � � rn2nm

..

. ..
. . .

. ..
.

rnmn1 rnmn2 � � � r2
nm

2
66664

3
77775; hp � N 0; r2

h

� �
; and xk0 ¼ 0. Also,

where ni is an error or residual term vector for the step difficulties
following a multivariate normal (MVN) distribution with a zero
mean vector 0 and a variance–covariance matrix R m�mð Þ, x0m is
the step intercept representing the m-th step difficulty for items
with all xik = 0 for k > 0, xkm is the regression weight or the effect
of item property k on the m-th step difficulties, xio is the constant
item predictor in which a value of 1 for all items, and xik is the value
of item i on item property k. Note that this model with no item
property predictors (K ¼ 0) is formally equivalent to the multivari-
ate item-step random effects model in Eq. (10), that is, x0m ¼ ldm

for every m-th step.

3.2.3. Step difficulty explanatory Linear Partial Credit Model with
Univariate Item-Step Random Error (LPCM + UISE)

The third model is referred to as the step difficulty explanatory
Linear Partial Credit Model with Univariate Item-Step Random
Error (LPCM + UISE). By using the original PCM’s item parameteri-
zation, a univariate item-step random error term eim is added to the
LPCM-based polytomous item explanatory model in Eqs. (7) and
(8), formulated as:

dim ¼
XK
k¼0

xkmxik þ eim ð14Þ
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where eim � N 0; r2
e

� �
, hp � N 0; r2

h

� �
, and xk0 ¼ 0. Also, where eim is

an error or residual term for the step difficulties with a normal dis-
tribution of a zero mean and a variance of r2

e , and other parameters
are defined as before in the second model. Note that this model
with no item property predictors (K ¼ 0) is not equivalent to the
univariate item-step random effects model in Eq. (11), that is,
x0m–ld. To be identical, values of the step intercepts should be col-
lapsed across steps into the one same value
(x01 ¼ � � � ¼ x0m ¼ x0 ¼ ld). This is because the univariate item-
step random effects do not adequately reflect the multi-
categorical scale structure in the ordinal items. Nonetheless, the
univariate item-step random effects can be used to allow for
residual variation in the step difficulties. The multivariate item-
step random effects are more general than the univariate item-
step random effects which have additional assumptions of the
same mean and variance for every step and the zero correlation
between steps. In this sense, the LPCM + MISE is a more general
LPCM-based polytomous item explanatory model than the
LPCM + UISE.

Table 2 presents an overarching framework summarizing the
polytomous item explanatory models with random item errors
that we propose with model specifications in this paper. In
sum, the three proposed models are functionally and conceptu-
ally different polytomous item explanatory models in terms of
(1) the target polytomous item difficulty parameters which are
explained by item properties, (2) the types of item property
effects, and (3) the types of polytomous random item errors
which are unexplained residuals. In applications of the proposed
models to polytomous data, these methodological differences
between the models may lead to practical differences such as
different interpretations of the estimated item property effects
and/or different considerations for the ordinal scale structure.
In order to select a specific model, considering the uncertainty
in explanation and/or the random nature of item parameters, it
is necessary and helpful to figure out the methodological and
practical differences of the proposed models as well as different
measurement contexts. For example, if one may want to explain
the overall item difficulties by item properties regardless of the
ordinal scale structure, the MFRM + OIE would be the best
model. If one may want to predict the step difficulties for each
step of new items using the item property effects, considering
the ordinal scale structure in unexplained residuals, the LPCM
+ MISE would be the most useful model. If one may want to
see the effects of item properties on the step difficulties for each
step without consideration for the ordinal scale structure in
unexplained residuals, the LPCM + UISE would be the most suit-
able model.
Table 2
Three proposed polytomous item explanatory models with random item errors.

Item
Parameterization

Target Item Difficulty Parameter Relevant Explanat
Approach

Two fold
dim ¼ bi þ sim

Item Location (Overall Item Difficulty)
Parameter bi

Many-Facet Rasch

b
0
i ¼

PK
k¼0ckxik

One fold
dim

Step Difficulty Parameter dim Linear Partial Cred

d
0
im ¼ PK

k¼0xkmxik

Note. xik is the value of item i on item property k, ck is the regression weight or the effect o
the m-th step of item i, and xkm is the regression weight or the effect of item property k
item difficulties, ni ni1; ni2; � � � ; nimð Þ0 is an error term vector for multivariate item-step resid
residual variation in the step difficulties.
3.3. Estimation of polytomous random item effects models

The proposed models, regarded as polytomous random item
effects models, essentially have crossed random effects. Given
the fact that item responses are nested in persons and also in items
but these two sides of the response data are not nested, allowing
for random effects on both item and person sides makes them
crossed [69]. However, estimation of crossed random effects in
IRT is demanding due to the complexity and difficulty in numerical
integration [9,15]. Even worse, such demanding estimation
becomes more practically difficult for the polytomous random
item effects models which use adjacent-categories logits. Com-
pared to a logit link, an adjacent-categories logit link is not com-
mon in general statistical software implementing maximum
likelihood-based estimation methods. In practice, software is rare
that can estimate crossed random effects using the adjacent-
categories logit link for polytomous data. For example, the lmer
function in the lme4 R package [17] and the xtmelogit/meglm com-
mands in Stata [67], which use the Laplace approximation [5], can
fit logistic crossed random effects models to dichotomous data but
cannot fit adjacent-categories logit-based crossed random effects
models to polytomous data. Moreover, most of the IRT software
such as PARSCALE [54] and BILOG-MG [74] cannot estimate
crossed random effects IRT models.

To estimate the polytomous random item effects models, Baye-
sian inference is the most practical and feasible estimation
method, which uses Markov chain Monte Carlo (MCMC) algorithm
[24]. This simulation-based method is a straightforward approach
to estimation of the crossed random effects because it considers
all effects as random parameters [10]. It is also flexible and useful
to estimate complicated models tailored to specific research ques-
tions [11,36]. Although Bayesian inference is not based on maxi-
mum likelihood estimation, it can yield very similar results as
other comparable methods such as the alternating imputation pos-
terior (AIP) and the Laplace approximation [9,11,16,35]. In fact,
Bayesian inference method is getting to be more commonly used
(e.g., [2,7,14,24,38,41,45]).
4. Empirical application to the Verbal Aggression data

4.1. Data

For an empirical example, we used the Verbal Aggression
data set [70], which is publicly available at the BEAR center
website page (see [15]; the data set can be downloaded from

http://bearcenter.berkeley.edu/EIRM/). The data were collected
from the first-year psychology students of a Belgian university.
ory Polytomous Random
Item Error

Model Specification

Model Overall Item Random Error �i dim ¼ PK
k¼0ckxik þ �i þ sim ;

�i � N 0;r2
�

� �
;
PMi

m¼1sim ¼ 0
it Model Multivariate Item-Step

Random Error nim
dim ¼ PK

k¼0xkmxik þ nim;
ni ni1; � � � ; nimð Þ0 � MVNm 0;Rð Þ

Univariate Item-Step
Random Error eim

dim ¼ PK
k¼0xkmxik þ eim ;

eim � N 0;r2
e

� �

f item property k on the overall item difficulties, sim is a step deviation parameter for
on the m-th step difficulties, �i is an error term for residual variation in the overall
ual variation in the step difficulties, and eim is an error term for univariate item-step

http://bearcenter.berkeley.edu/EIRM/


Table 3
The Verbal Aggression items and three item design factors.

Item Situations Behavior
Mode

Situation Type Behavior Type

Want Do Other-to-blame Self-to-blame Curse Scold Shout

1 A bus fails to stop for me. 1 0 1 0 1 0 0
2 1 0 1 0 0 1 0
3 1 0 1 0 0 0 1
4 I miss a train because the clerk gave me faulty information. 1 0 1 0 1 0 0
5 1 0 1 0 0 1 0
6 1 0 1 0 0 0 1
7 The grocery store closes just as I am about to enter. 1 0 0 1 1 0 0
8 1 0 0 1 0 1 0
9 1 0 0 1 0 0 1
10 The operator disconnects me when I used up my last 10 cents for a call. 1 0 0 1 1 0 0
11 1 0 0 1 0 1 0
12 1 0 0 1 0 0 1
13 A bus fails to stop for me. 0 1 1 0 1 0 0
14 0 1 1 0 0 1 0
15 0 1 1 0 0 0 1
16 I miss a train because the clerk gave me faulty information. 0 1 1 0 1 0 0
17 0 1 1 0 0 1 0
18 0 1 1 0 0 0 1
19 The grocery store closes just as I am about to enter. 0 1 0 1 1 0 0
20 0 1 0 1 0 1 0
21 0 1 0 1 0 0 1
22 The operator disconnects me when I used up my last 10 cents for a call. 0 1 0 1 1 0 0
23 0 1 0 1 0 1 0
24 0 1 0 1 0 0 1

2 In the pilot simulation study we conducted, as in the findings by Monnahan,
Thorson, and Branch [53], Stan outperformed WinBUGS to estimate the LPCM + MISE
which is the most complex polytomous random item effects model. It appeared that
fitting the model to simulated data could not converge using WinBUGS with 4 chains
and 7000 iterations but it could converge using Stan with 4 chains and 1000
iterations.
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They were asked to answer the behavioral questions about ver-
bally aggressive reactions to frustrating situations. In total,
7,584 observations from 316 persons responding to the 24 Ver-
bal Aggression items were included in the data set. For polyto-
mous data IRT analyses, the original three ordered-category
responses (no = 0, perhaps = 1, yes = 2) were used without a
dichotomization.

Influenced by three experimental design factors, the Verbal
Aggression items were designed to have a stem describing a
frustrating situation and a verbal aggression response part. The
first factor is the Behavior Mode which has two levels of behav-
ior modes—wanting (Want) and doing (Do). For the second
factor, the Situation Type has two types of situations—situations
in which someone else is to blame (Other-to-blame) and
situations in which oneself is to blame (Self-to-blame). The third
factor, the Behavior Type, has three kinds of verbal aggressive
behaviors—cursing (Curse), scolding (Scold), and shouting
(Shout).

For the verbal aggression response part, a total of six responses
were made by mixing the two behavior modes and the three verbal
aggressive behaviors. For the frustrating situation, two situation
cases were made within each situation type: two cases (bus stop,
missing a train) for the other-to-blame situation and two cases
(grocery store close, disconnected call by an operator) for the
self-to-blame situation. A total of 24 items were written by the
item stem which comprises one of the six aggressive responses
and one of the four frustrating situations. By the three factorial
(2 � 2 � 3) item design with two cases within each cell, the 24 Ver-
bal Aggression items are classified by the predictors of each design
factor as in Table 3.

These item design factors are regarded as categorical item prop-
erties and their predictors are functioning as weights of the ele-
mentary components gathered into a Q matrix in the LLTM
approach. To incorporate the three item properties into polyto-
mous item explanatory models, they were dummy coded; the
Want in the Behavior Mode property, the Self-to-blame in the Sit-
uation Type property, and the Shout in the Behavior Type property
served a reference for each item property.
4.2. Analysis

An empirical study was conducted to examine how the pro-
posed polytomous item explanatory models with random item
errors (the MFRM + OIE, the LPCM +MISE, and the LPCM + UISE)
perform in practice. To evaluate the relative performance of the
proposed models in comparison with the existing models, we com-
pared themwith the polytomous item explanatory models without
random item errors (the MFRM and the LPCM) as well as with the
saturated model in polytomous Rasch models (the PCM). In total,
the six models were fitted to the Verbal Aggression data by means
of a Bayesian inference method.

To implement the MCMC, the RStan R package [66], the R imple-
mentation of Stan [8], was used for data analysis. Stan is a newly
developed Bayesian program that implements a No-U-Turn sam-
pler (NUTS) based on a Hamiltonian Monte Carlo (HMC) sampling
algorithm. NUTS is more efficient and robust than Gibbs sampling
or the Metropolis-Hastings algorithm to explore the posterior
parameter space [8,45]. As model size and complexity grow, by vir-
tue of NUTS, Stan is faster and more robust than previous Bayesian
software such as the WinBUGS based on Gibbs sampling [44] for
models with complex posteriors2 [45,53]. Stan provides full Baye-
sian inference for model parameters treated as random variables.
Bayesian inference requires a set of prior distributions of the model
parameters that could reflect our beliefs or a priori knowledge about
those parameters before some evidence is taken into account [24].
The priors and hyperpriors of model parameters as well as the Stan
codes are described for the three proposed models in Appendix.

Four chains of 1000 iterations were used for MCMC estimation.
A total of 2000 draws across the four chains were used to estimate
posterior means of the parameters after discarding the first 500
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burn-in (or warm-up) iterations of each chain. Convergence of the
four chains was monitored by checking the estimated potential

scale reduction statistic bR [27]. A value of the bR statistic near 1 usu-
ally indicates model convergence. The value of 1.1 has been recom-

mended as a threshold and bR < 1:1 is desirable [27,45,65]. For
additional convergence diagnostics, we also checked the effective
sample size for a chain, which is an estimate of the number of inde-
pendent draws that would lead to the same expected precision (see
[8,65]).

The fitted models were evaluated by comparing goodness-of-
fit and also by examining agreement for the estimated and cal-
culated step difficulties. Three Bayesian goodness-of-fit indices
were computed for each model: the deviance information crite-
rion (DIC; [63,64]), the widely applicable information criterion
(WAIC; [73]), and an information criterion version of the leave-
one-out cross-validation (LOOIC; [71,72]). These Bayesian mea-
sures of model fit and adequacy are widely used to assess the
generalization utility or the predictive ability of the candidate
models [57]. In particular, WAIC and LOOIC are theoretically jus-
tified and empirically superior to traditional model selection cri-
teria such as the Akaike information criterion [45,57,64]. We
computed DIC using the log-likelihood from the Stan output,
and the loo R package [72] was used to compute WAIC and
LOOIC. It should be noted that all these methods are conditional
on the person abilities and item random effects, and it might be
preferable to use methods based on marginal likelihoods [26].
We also examined agreement for the estimated and calculated
step difficulties between the fitted models using correlation coef-
ficients and graphical comparisons (see [21,34]). The directly
estimated step difficulties in the PCM were compared to the cal-
culated step difficulties in the polytomous item explanatory
models.

In addition, to demonstrate methodological and practical differ-
ences of the three proposed models, the estimated item property
effects were reported and interpreted separately in each of the
two item explanatory approaches to polytomous items. Particu-
larly, the effects of item properties on the overall item difficulties
in the item location explanatory MFRM approach and those on
the step difficulties in the step difficulty explanatory LPCM
approach were interpreted. A concept of the coefficient of determi-
nation (R2) was also used to see an explanatory power of the item
Table 4
Goodness-of-fit of models fitted to the Verbal Aggression data.

Model q DIC LOOIC WAIC

PCM 49 12312.49 12324.91 12320.29
MFRM 30 12448.42 12456.71 12452.81
MFRM + OIE 31 12312.39 12322.23 12317.86
LPCM 11 12454.69 12464.35 12460.36
LPCM + MISE 14 12299.66 12308.67 12304.47
LPCM + UISE 12 12307.09 12315.88 12311.65

Note: q = The number of estimated parameters.

Table 5
Correlations of the estimated and calculated step difficulties between models fitted to the

Model PCM MFRM MFRM + OIE

PCM 1 0.91 0.99
MFRM 1 0.94
MFRM + OIE 1
LPCM
LPCM + MISE
LPCM + UISE
properties. In this paper, R2 was calculated as the proportion of the
total item variance that is explained by the item property effects:

R2 ¼ v2
model

v2
model þ r2error

where v2
model is the variance of the weighted sums of the item prop-

erty effects in the item explanatory model and r2error is the item error
(or residual) variance.

4.3. Results

The five polytomous item explanatory models with and without
random item errors and the PCM were fitted to the Verbal Aggres-
sion data. For convergence diagnostics, the MCMC simulations had

converged in that the largest R̂ statistic value was 1.01 and the
effective sample sizes were fairly large in all fitted models.

Table 4 shows the goodness-of-fit results of the six models. It
was revealed that the order of DIC, LOOIC, and WAIC across the
models was consistent: the LPCM + MISE, the LPCM + UISE, the
MFRM + OIE, the PCM, the MFRM, and the LPCM fit better to the
Verbal Aggression data in sequence (i.e., smaller values of the three
goodness-of-fit indices). This result agrees with the findings from a
simulation study that the three random item effects models
showed a superior goodness-of-fit to the PCM in the high informa-
tion (R2= 0.9) condition when the simulation data were generated
using the LPCM +MISE [39]. This hints that random item errors
in the three proposed models could fully account for residual vari-
ation in the polytomous item difficulties of the Verbal Aggression
items and/or the three factorial item design worked well for item
generation in both the item location explanatory MFRM and the
step difficulty explanatory LPCM approaches. It is demonstrated
that the three item properties (design factors) has a high explana-
tory value for the Verbal Aggression items, as high R2 values were
calculated below in each of the two approaches.

The results reveal that the MFRM and the LPCM fit worse than
the PCM and the MFRM fit better than the LPCM. These are as
expected because, in general, item explanatory models without
random item errors fit worse than the saturated model and
because the MFRM had the larger number of parameters than the
LPCM.

We looked at practical significance by examining the agreement
between the directly estimated step difficulties in the PCM and the
calculated step difficulties in the five polytomous item explanatory
models via correlations and graphical comparisons. As in Table 5,
the three polytomous random item effects models revealed almost
perfect agreement with the PCM in that their correlations were
0.99. This implies that item error terms worked well to enhance
prediction of the polytomous item difficulties. The LPCM had a
slightly higher correlation with the PCM than the MFRM
(q = 0.91 for the MFRM, and q = 0.93 for the LPCM), although the
LPCM fit worse than the MFRM.

Fig. 1 shows a graphical comparison of the estimated and calcu-
lated step difficulties between the models, which confirmed the
Verbal Aggression data.

LPCM LPCM + MISE LPCM + UISE

0.93 0.99 0.99
0.96 0.93 0.94
0.94 0.99 1
1 0.95 0.96

1 1
1



Fig. 1. Graphical agreement between models fitted to the Verbal Aggression data.
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correlation analysis results. In three panels, the step difficulty
points for the MFRM + OIE (blue circles), the LPCM + MISE (blue
dots), and the LPCM + UISE (green squares) were closer than the
two polytomous item explanatory models without random item
errors to the 45-degree line indicating perfect alignment. Com-
pared to the LPCM (red triangles) in the bottom panels, the MFRM
(red squares) in the top panel had similar dispersion of the points
but a few points were farther from the line. In particular, in both
the MFRM and the LPCM, disagreements with the PCM were larger
at the extremes (e.g., over ± 2). The second step difficulty of item
21 were located farthest from the 45-degree line in both models.
Although it was the largest in the PCM, the polytomous item
explanatory models without random item errors couldn’t recon-
struct it well. Those models estimate the item property effects
for a set of items sharing the common item property, not for an
individual item, so that there can be a discrepancy in the step dif-
ficulties between the individually estimated values and the calcu-
lated values by the estimated item property effects. However, the
proposed polytomous random item effects models can compensate
for the discrepancy by accounting for unexplained residual varia-
tion in the step difficulties even at the extremes.
Remember that the three categorical item properties (Behavior
Mode, Situation Type, and Behavior Type) are from the item design
factors of the Verbal Aggression items. To focus on methodological
and practical differences between the item location explanatory
MFRM and the step difficulty explanatory LPCM approaches, the
effects of the three item properties on the overall item difficulties
or the step difficulties were interpreted in each approach.

Table 6 presents the results of the fixed and random effects in
the two MFRM-based polytomous item explanatory models. The
estimated person variance (r2

h ) was 0.952 for the MFRM and
0.972 for the MFRM + OIE. These variance estimates indicate that
the shrinkage effect of the person variance estimate was small in
the MFRM and the MFRM + OIE compensated for the shrinkage
by enhancing prediction of the overall item difficulties.

In the MFRM + OIE, the overall item error variance was esti-
mated as 0.322, which means significant residual variability in
the overall item difficulties. R2 was calculated as 0.85 using the
estimated item property effects and the overall item error variance.
As expected from the goodness-of-fit results, the three item prop-
erties had a high explanatory power on the overall item difficulties
of the 24 Verbal Aggression items. In the MFRM, the standard



Table 6
Model parameter estimates and standard errors in the MFRM-based polytomous item explanatory models to the Verbal Aggression data.

Predictor Parameter MFRM MFRM + OIE

Estimate SE Estimate SE

Fixed effects
Intercept c0 1.58 0.08 1.69 0.18
Behavior Mode (Do) cDo 0.43 0.04 0.49 0.15
Situation Type (Other-to-blame) cOther �0.82 0.04 �0.89 0.14
Behavior Type (Curse) cCurse �1.28 0.05 �1.38 0.17
Behavior Type (Scold) cScold �0.63 0.05 �0.70 0.18
Step deviation parameters for each item s11 �0.22 0.13 �0.17 0.12

s21 0.00 0.13 �0.01 0.13
s31 �0.35 0.13 �0.32 0.13
s41 �0.47 0.12 �0.48 0.13
s51 �0.11 0.12 �0.12 0.13
s61 �0.11 0.13 �0.05 0.14
s71 �0.52 0.12 �0.56 0.12
s81 �0.29 0.13 �0.50 0.14
s91 �0.18 0.15 �0.45 0.19
s101 �0.62 0.12 �0.61 0.11
s111 �0.25 0.13 �0.25 0.14
s121 �0.19 0.15 �0.04 0.16
s131 �0.34 0.12 �0.35 0.12
s141 �0.25 0.13 �0.21 0.13
s151 �0.03 0.14 �0.03 0.15
s161 �0.17 0.13 �0.18 0.13
s171 �0.17 0.13 �0.22 0.13
s181 0.30 0.15 0.07 0.17
s191 �0.48 0.12 �0.62 0.14
s201 0.01 0.15 �0.30 0.18
s211 0.63 0.21 0.10 0.27
s221 �0.60 0.12 �0.49 0.13
s231 �0.56 0.13 �0.36 0.13
s241 �0.02 0.17 �0.06 0.21

Random effects
Overall item error variance r2

� 0.322 0.07
Person variance r2

h
0.952 0.05 0.972 0.05

Note: Estimate = posterior mean; SE = posterior standard deviation (empirical standard error); an estimate and a standard error of standard deviation were obtained for the
random effects from the Stan output.
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errors of the item property effects were underestimated due to
ignoring random residuals on the overall item difficulties. In the
MFRM + OIE, however, they were properly estimated considering
the random residuals, and all predictors of the item property
effects including the intercept were statistically significant at the
5% level. This was consistent with such a high R2. The item prop-
erty effects in the MFRM + OIE are interpreted below (but the step
deviation parameters s are not of interest for interpretation in the
item location explanatory MFRM approach).

For the Behavior Mode, holding other properties constant, the
Doing mode made the overall item difficulty of an item 0.49 logits
more difficult than the Wanting mode (cDo = 0.49, p = 0.001). In the
Situation Type, the Other-to-blame situation made the overall item
difficulty of an item 0.89 logits easier than the Self-to-blame
situation (cOther = -0.89, p < .001), keeping other properties con-
stant. For the Behavior Type, holding other properties constant,
compared to Shouting, Cursing made the overall item difficulty of
an item 1.38 logits easier (cCurse = -1.38, p < .001), and Scolding
made the overall item difficulty of an item 0.70 logits easier
(cScold = -0.70, p < .001). These results are similar to ones reported
earlier [15].

Table 7 shows the results for the fixed and random effects
parameters in the three LPCM-based polytomous item explanatory
models. The estimated person variance (r2

h ) was 0.952 for the
LPCM, 0.972 for the LPCM + MISE, and 0.972 for the LPCM + UISE.
The shrinkage effect of the person variance estimate was small in
the LPCM and both the LPCM + MISE and the LPCM + UISE compen-
sated for the shrinkage by enhancing prediction of the step difficul-
ties, as found in the item location explanatory MFRM approach.
Comparing the two LPCMs with polytomous random item errors,
the LPCM + UISE performed as well as the LPCM +MISE in recon-
structing the step difficulties and in compensating for the person
variance shrinkage, however, the LPCM +MISE performed better
than the LPCM + UISE in fitting to the Verbal Aggression data. This
implies that both multivariate and univariate item-step random
errors could account for unexplained residual variation in the step
difficulties comparably well, but item-step random errors worked
better for the Verbal Aggression data when the ordinal scale struc-
ture was considered. Thus, the results of the LPCM + MISE were
examined and interpreted step-specifically for each step.

From the results of the LPCM + MISE, the item-step error vari-
ance was estimated as 0.332 for the first step and 0.312 for the sec-
ond step, and their correlation was estimated as 0.82. Since the
item-step error standard deviation for each step was significant
at the 5% level, there was significant residual variability in the step
difficulties for each step. Using the estimated step specific item
property effects and the step specific item-step random error vari-
ances, R2 was calculated as 0.87 for the first step and 0.86 for the
second step. These R2 values were high as in the MFRM + OIE. Com-
pared to the underestimated standard errors in the LPCM, the
LPCM + MISE considered random residuals on the step difficulties
and provided the corrected standard errors. All predictors of the
step specific item property effects including the step intercepts
were statistically significant at the 5% level. This confirmed the
high R2 for both steps.

The effects of the three item properties on the step difficulties of
the first step were interpreted as follows. When a person answered
‘‘perhaps” rather than ‘‘no”, keeping other properties constant, the



Table 7
Model parameter estimates and standard errors in the LPCM-based polytomous item explanatory models to the Verbal Aggression data.

Predictor Parameter LPCM LPCM + MISE LPCM + UISE

Estimate SE Estimate SE Estimate SE

Fixed effects
Intercept x01 1.43 0.08 1.45 0.18 1.45 0.17

x02 1.77 0.12 1.96 0.19 1.90 0.20
Behavior Mode (Do) xDo1 0.54 0.06 0.53 0.14 0.56 0.14

xDo2 0.36 0.07 0.44 0.15 0.42 0.16
Situation Type (Other-to-blame) xOther1 �0.70 0.06 �0.71 0.15 �0.70 0.15

xOther2 �0.97 0.07 �1.09 0.16 �1.06 0.16
Behavior Type (Curse) xCurse1 �1.68 0.08 �1.71 0.17 �1.71 0.19

xCurse2 �0.93 0.10 �1.11 0.18 �1.06 0.20
Behavior Type (Scold) xScold1 �0.80 0.07 �0.83 0.19 �0.84 0.18

xScold2 �0.50 0.10 �0.61 0.19 �0.56 0.20
Random effects
Correlation between the steps qn12 0.82 0.16
Item-Step error variance (1st step) r2

n1
0.332 0.07

Item-Step error variance (2nd step) r2
n2

0.312 0.08

Univariate Item-Step error variance r2
e 0.332 0.05

Person variance r2
h

0.952 0.05 0.972 0.05 0.972 0.05

Note: Estimate = posterior mean; SE = posterior standard deviation (empirical standard error); an estimate and a standard error of standard deviation were obtained for the
random effects from the Stan output.
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Doing mode made the items 0.53 logits more difficult than the
Wanting mode (xDo1 = 0.53, p < .001), the Other-to-blame situation
made the items 0.71 logits easier than the Self-to-blame situation
(xOther1 = -0.71, p < .001), and compared to Shouting, Cursing made
the items 1.71 logits easier (xCurse1 = -1.71, p < .001) and Scolding
made the items 0.83 logits easier (xScold1 = -0.83, p < .001).

For the step difficulties of the second step, holding other prop-
erties constant, the Doing mode made the items 0.44 logits more
difficult than the Wanting mode (xDo2 = 0.44, p < .001), the
Other-to-blame situation made the items 1.09 logits easier than
the Self-to-blame situation (xOther2 = -1.09, p < .001), and compared
to Shouting, Cursing made the items 1.11 logits easier
(xCurse2 = -1.11, p < .001) and Scolding made the items 0.61 logits
easier (xScold2 = -0.61, p < .001), as a person answered ‘‘yes” rather
than ‘‘perhaps”. These results are similar to ones reported earlier [15].

In practice, we could figure out how the three item design fac-
tors (Behavior Mode, Situation Type, and Behavior Type) explain
and/or predict the overall item difficulties in the MFRM + OIE as
well as the step difficulties in the LPCM + MISE. This empirical
application demonstrated practical differences of the proposed
polytomous item explanatory models with random item errors in
interpreting the effects of the item properties on the overall item
difficulties or the step difficulties of the Verbal Aggression items.
Therefore, in addition to the methodological and conceptual differ-
ences in the two different polytomous item explanatory
approaches and the three types of polytomous random item errors,
the proposed models are practically different.

5. Conclusion and discussion

This paper has investigated how to extend the LLTM + e
approach to polytomous data. Considering the uncertainty in
explanation and/or the random nature of item parameters, the con-
cepts and types of polytomous random item effects were examined
and then they were incorporated into the existing polytomous
item explanatory models, the item location explanatory MFRM
and the step difficulty explanatory LPCM. Through the two model-
ing steps of polytomous extensions of the LLTM + e, the three poly-
tomous item explanatory models with random item errors were
proposed: the MFRM + OIE, the LPCM + MISE, and the LPCM + UISE.
Using a Bayesian inference method, an empirical study was
conducted to demonstrate practical implications and applications
of the proposed models to the Verbal Aggression data.
From the empirical findings, the proposed polytomous item
explanatory models with random item errors performed better in
fitting the data and also better in reconstructing the step
difficulties than the existing polytomous item explanatory models
without random item errors. The results demonstrated
methodological and practical differences of the proposed models
in interpreting the item property effects in each of the two polyto-
mous item explanatory approaches, the item location explanatory
MFRM and the step difficulty explanatory LPCM approaches. In
sum, The MFRM + OIE explains the overall item difficulties by the
item property effects and compensates for the discrepancy by
accounting for unexplained residuals regardless of the ordinal scale
structure, so that it can enhance to predict the overall item difficul-
ties. The LPCM + MISE or the LPCM + UISE explain the step difficul-
ties by the step specific item property effects and compensate for
the discrepancy by accounting for unexplained residuals with or
without consideration for the ordinal scale structure, so that they
can enhance to predict the step difficulties.

In educational and psychological measurement research, ran-
dom item effects models are a rather new approach and most
applications of them have been limited to dichotomous items
(e.g., [9,16,26,28,31,34,35]). However, little is known about ran-
dom item effects for polytomous items. This paper tried to shed
light on the methodological advantages and the practical implica-
tions of polytomous random item effects models in the context of
item explanatory modeling for polytomous data.

Polytomous random item effects models are emerging and
promising. In addition to the findings from the empirical exam-
ple, we emphasize potential uses of them as methodological
foundations in IRT modeling. First, although we have focused
on item explanatory modeling (i.e., polytomous item explanatory
models with random item errors), the proposed models could be
combined with other explanatory models such as person
explanatory and doubly explanatory models (see [15]). Second,
if item properties and individual persons interact, the proposed
models could be extended to multidimensional versions. This is
analogous to the Random-Weights Linear Logistic Test Model
(RW-LLTM; [60]) for polytomous items. If item properties and
fixed groups of persons interact, the proposed models could be
extended with differential facet functioning (DFF; see [15]).
Third, the proposed models are item explanatory models as well
as random item effects models by nature so that they could
boost potential uses of them for polytomous data. For example,
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if the items are nested within item groups, the proposed models
could be extended to hierarchical polytomous item structure
models with random residuals (see [10]). If finite mixtures of
underlying distributions of the person and/or item population
are assumed, the proposed models could be combined with
latent class models (see [16,20,25]). Fourth, the proposed models
could be used for making polytomous item families and item
banks. This stresses the generalizability potential and the ran-
dom sampling interpretation in computer adaptive testing, auto-
matic item generation, and generalizability in item response
modeling (see [7,12,34,36,62]).
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Appendix

A.1. Priors of model parameters for polytomous item explanatory
models with random item errors

Priors of model parameters for the MFRM + OIE

hp � N 0; r2
h

� �
;

rh � Cauchy 0; 5ð Þ; truncated at 0;

ck � N 0; 102
� �

;

sim � N 0; 32
� �

;

2i � N 0; r2
2

� �
;

r2 � Cauchy 0; 5ð Þ; truncated at 0:

Priors of model parameters for the LPCM + MISE

hp � N 0; r2
h

� �
,

rh � Cauchy 0; 5ð Þ; truncated at 0;

xkm � N 0;102
� �

for m 2 1 : M;

ni � MVNm 0; Rð Þ; where ni ¼ ni1; ni2; . . . ; nimð Þ0;
R ¼ diag rn

� ��X� diag rn

� �
; where rn ¼ rn1;rn2; . . . ;rnmð Þ0;

rnm � Cauchy 0; 2:5ð Þ for m 2 1 : M; truncated at 0;
X � LKJ 1ð Þ:

Priors of model parameters for the LPCM + UISE

hp � N 0; r2
h

� �
;

rh � Cauchy 0; 5ð Þ; truncated at 0;

xkm � N 0; 102
� �

for m 2 1 : M;
eim � N 0; r2
e

� �
;

re � Cauchy 0; 5ð Þ; truncated at 0:

The prior for the person ability parameter hp in all models is a
normal distribution with zero mean. The hyperprior for the stan-
dard deviation is a Cauchy distribution truncated to the positive
real values, i.e., a half-Cauchy distribution, with a location of zero
and a scale of 5. This half-Cauchy is a weakly informative prior that
provides a large mass near the boundary and also flattens out at
the boundary, regarded as a good default choice for scale parame-
ters [41,65]. In addition, the priors for the fixed item effects param-
eters, the item property effect parameters ck and xkm and step
deviation parameter sim, have weakly informative priors. Each
parameter follows a normal distribution with a zero mean (for
parameter identifiability) and a fairly large standard deviation
(for flatter priors). For the random item effects parameters �i, nim,
and eim, each of the priors is a normal distribution with a zero mean
as a usual error, and a half-Cauchy distribution is specified as a
weakly informative hyperprior for the standard deviation of each
prior.

In particular, the multivariate item-step random error vector
ni ni1; ni2; � � � ; nimð Þ0 in the LPCM + MISE follows a multivariate nor-
mal (MVN) distribution with a zero mean vector 0, and the prior
for the variance–covariance matrix R m�mð Þ is decomposed into
a scale or standard deviation vector rn rn1;rn2; � � � ;rnmð Þ0 and a cor-
relation matrix X. The components of the scale vector rnm have a
weakly informative hyperprior in each step m that follows a half-
Cauchy distribution with a small scale of 2.5, as recommend by
the Stan manual [65]. It is also recommended that an LKJ [42] prior
is placed on the correlation matrix X, and the LKJ correlation dis-
tribution with a shape of one is weakly informative due to reducing
to the identity distribution. Since it is computationally more effi-
cient and arithmetically stable to use a Cholesky factor of the vari-
ance–covariance matrix R [65], the Cholesky decomposition of R is
also implemented. Lastly, although the fixed and random item
effects are step specific in the LPCM + MISE, a univariate normal
distribution is used as the prior for the item property effect param-
eter xkm because it produces the same density much more effi-
ciently to the weakly informative multivariate normal prior with
no correlation information in Stan [65].

These priors are recommended by the Stan manual and other
Bayesian IRT studies (e.g., [14,24,38,41,45]).
A.2. Stan codes for polytomous item explanatory models with random
item errors

Stan codes for the MFRM + OIE
functions {
real pcm(int y, real theta, vector delta) {
vector[rows(delta) + 1] unsummed;
vector[rows(delta) + 1] probs;
unsummed = append_row(rep_vector(0.0, 1), theta - delta);
probs = softmax(cumulative_sum(unsummed));
return categorical_lpmf(y + 1 | probs);

}}
data {
int < lower = 1 > P; // number of persons
int < lower = 1 > I; // number of items/questions
int < lower = 1 > M; // number of steps per item (same for all

items)
int < lower = 1 > N; // number of observations (P*I; as if they

were in a vector)
int < lower = 1, upper = P > pp[N]; // person p for observation

n
int < lower = 1, upper = I > ii[N]; // item i for observation n
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int < lower = 0 > y[N]; // reponse/score for observation n:
y = 0, 1 . . . m_i

int < lower = 1 > K; // number of item predictors
matrix[I,K] Q; // matrix of item predictors

}
parameters {
vector[K] betaip; // betaip: item property effects on overall

item difficulty
vector[M-1] tau_free[I]; // tau: step deviation
vector[I] ierror;
real < lower = 0 > sigmai; // sigmai: sd of item errors
vector[P] theta; // theta: person ability
real < lower = 0 > sigmap; // sigmap: sd of person abilities

}
transformed parameters {
vector[I] beta; // beta: overall item difficulty
vector[M] tau[I]; // tau: step deviation
vector[M] delta[I]; // delta: step difficulty
beta = Q*betaip + ierror;
for(i in 1:I) for(m in 1:M-1)
tau[i,m] = tau_free[i,m];

for(i in 1:I)
tau[i,M] = -1*sum(tau_free[i,1:M�1]);

for(i in 1:I) for(m in 1:M)
delta[i,m] = beta[i] + tau[i,m];

}
model {// Case constraint (mean of thetas equals to zero)
target += normal_lpdf(theta | 0, sigmap);
sigmap ~ cauchy(0, 5) T[0, ]; // hyperprior for theta’s sd
target += normal_lpdf(betaip | 0, 10);
target += normal_lpdf(ierror | 0, sigmai);
sigmai ~ cauchy(0, 5) T[0, ];
for(i in 1:I)
target += normal_lpdf(tau[i] | 0, 3);

for (n in 1:N)
target += pcm(y[n], theta[pp[n]], delta[ii[n]]); // likelihood

}
generated quantities {
vector[N] log_lik;
real deviance;
for (n in 1:N)
log_lik[n] = pcm(y[n], theta[pp[n]], delta[ii[n]]);

deviance = sum(-2*log_lik);
}

Stan codes for the LPCM + MISE
functions {
real pcm(int y, real theta, vector delta) {
vector[rows(delta) + 1] unsummed;
vector[rows(delta) + 1] probs;
unsummed = append_row(rep_vector(0.0, 1), theta - delta);
probs = softmax(cumulative_sum(unsummed));
return categorical_lpmf(y + 1 | probs);

}}
data {// vectorized version
int < lower = 1 > P; // number of persons
int < lower = 1 > I; // number of items/questions
int < lower = 1 > M; // number of steps per item (same for all

items)
int < lower = 1 > N; // number of observations (P*I; as if they

were in a vector)
int < lower = 1, upper = P > pp[N]; // person p for observation

n
int < lower = 1, upper = I > ii[N]; // item i for observation n
int < lower = 0 > y[N]; // reponse/score for observation n:

y = 0, 1 . . . m_i
int < lower = 1 > K; // number of item predictors
matrix[I,K] Q; // matrix of item predictors

}
parameters {
matrix[K,M] deltaip; // deltaip: item property effects on step

difficulty
matrix[I,M] sserror;
corr_matrix[M] Omega;
vector < lower = 0 > [M] sigmad; // sd of step difficulties for

each step
vector[P] theta; // theta: person ability
real < lower = 0 > sigmap; // sigmap: sd of person abilities

}
transformed parameters {
matrix[I,M] delta; // delta: calculated step difficulty
cov_matrix[M] Vard;
delta = Q*deltaip + sserror;
Vard = quad_form_diag(Omega, sigmad);

}
model {// Case constraint (mean of thetas equals to zero)
matrix[M,M] chol_Sigma;
target += normal_lpdf(theta | 0, sigmap);
sigmap ~ cauchy(0, 5) T[0, ]; // hyperprior for theta’s sd
target += normal_lpdf(to_vector(deltaip) | 0, 10);
chol_Sigma = cholesky_decompose(Vard);
target += lkj_corr_lpdf(Omega | 1);
target += cauchy_lpdf(sigmad | 0, 2.5);
for (i in 1:I)
target += multi_normal_cholesky_lpdf(to_vector(sserror[i,]

) | rep_vector(0, M), chol_Sigma);
for (n in 1:N)
target += pcm(y[n], theta[pp[n]], to_vector(delta[ii[n]])); //

likelihood
}
generated quantities {
vector[N] log_lik;
real deviance;
for (n in 1:N)
log_lik[n] = pcm(y[n], theta[pp[n]], to_vector(delta[ii[n]]));

deviance = sum(-2*log_lik); //the sum of its unit deviances
}

Stan codes for the LPCM + UISE
functions {
real pcm(int y, real theta, vector delta) {
vector[rows(delta) + 1] unsummed;
vector[rows(delta) + 1] probs;
unsummed = append_row(rep_vector(0.0, 1), theta - delta);
probs = softmax(cumulative_sum(unsummed));
return categorical_lpmf(y + 1 | probs);

}}
data {
int < lower = 1 > P; // number of persons
int < lower = 1 > I; // number of items/questions
int < lower = 1 > M; // number of steps per item (same for all

items)
int < lower = 1 > N; // number of observations (P*I; as if they

were in a vector)
int < lower = 1, upper = P > pp[N]; // person p for observation

n
int < lower = 1, upper = I > ii[N]; // item i for observation n
int < lower = 0 > y[N]; // reponse/score for observation n:

y = 0, 1 . . . m_i
int < lower = 1 > K; // number of item predictors
matrix[I,K] Q; // matrix of item predictors

}
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parameters {
matrix[K,M] deltaip; // deltaip: item property effects on step

difficulty
matrix[I,M] iserror;
real < lower = 0 > sigmais; // sigmais: sd of item errors
vector[P] theta; // theta: person ability
real < lower = 0 > sigmap; // sigmap: sd of person abilities

}
transformed parameters {
matrix[I,M] delta; // delta: calculated step difficulty
delta = Q*deltaip + iserror;

}
model {// Case constraint (mean of thetas equals to zero)
target += normal_lpdf(theta | 0, sigmap);
sigmap ~ cauchy(0, 5) T[0, ]; // hyperprior for theta’s sd
target += normal_lpdf(to_vector(deltaip) | 0, 10);
target += normal_lpdf(to_vector(iserror) | 0, sigmais);
sigmais ~ cauchy(0, 5) T[0, ];

for (n in 1:N)
target += pcm(y[n], theta[pp[n]], to_vector(delta[ii[n]])); //

likelihood
}
generated quantities {
vector[N] log_lik;
real deviance;

for (n in 1:N)
log_lik[n] = pcm(y[n], theta[pp[n]], to_vector(delta[ii[n]]));
deviance = sum(-2*log_lik);

}
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