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Abstract

CT Perfusion (CTP) imaging has gained importance in the diagnosis of acute stroke. Conventional perfusion analysis performs a
deconvolution of the measurements and thresholds the perfusion parameters to determine the tissue status. We pursue a data-driven
and deconvolution-free approach, where a deep neural network learns to predict the final infarct volume directly from the native
CTP images and metadata such as the time parameters and treatment. This would allow clinicians to simulate various treatments
and gain insight into predicted tissue status over time. We demonstrate on a multicenter dataset that our approach is able to predict
the final infarct and effectively uses the metadata. An ablation study shows that using the native CTP measurements instead of the
deconvolved measurements improves the prediction.
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1. Introduction

Ischemic stroke, a major cause of mortality and disability
worldwide, is an acute disease where the blood supply to the
brain is hindered due to the occlusion of an artery. Due to
the reduction in perfusion, neuronal functioning is impaired5

and if perfusion is not re-established, brain tissue becomes ir-
reversibly damaged. Acute treatment aims at reopening the
blocked artery through treatment with intra-venous trombolyt-
ics and/or mechanical thrombectomy. Since both treatment op-
tions entail considerable costs and side effects (e.g. increased10

risk of haemorrhage), selection of patients who might benefit
is important. In early studies, patient selection was mainly
based on the time since stroke onset; e.g. intravenous trom-
bolysis with tPA is shown to be beneficial within 4.5 hours
(Hacke et al., 2008). Recent studies typically select patients15

based on both time parameters and advanced neuroimaging, al-
lowing patient-specific assessment of the benefits and risk of
treatment.

One commonly used imaging modality for acute stroke di-
agnosis is CT Perfusion (CTP), which consists of a series of20
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3D CT scans acquired after intra-venous injection of contrast
agent. The resulting 4D image shows the passage of con-
trast agent through the brain: in each spatial voxel we have a
time-attenuation curve showing the variation of intensity due
to the contrast agent. Much research has gone into the quan-25

tification of these images, particularly aiming at the estimation
of perfusion parameters such as cerebral blood flow (CBF),
cerebral blood volume (CBV) and Tmax. The most used ap-
proach for perfusion analysis works as follows (Fieselmann
et al., 2011). First the time-attenuation curves are converted to30

time-concentration curves that show the concentration of con-
trast agent over time. In CTP, there is a linear relationship be-
tween the change in attenuation and the concentration. Then
an arterial input function (AIF) is determined: this is the time-
concentration curve in one of the large feeding arteries of the35

brain. Subsequently, the time-concentration curve in each voxel
is deconvolved with the AIF, resulting in deconvolved time-
concentration curves. These curves correspond to what would
have been measured if the contrast bolus was infinitely short
and infinitely concentrated in the feeding artery – indeed, these40

curves are impulse response functions (IRF). As such, the de-
convolved time-concentration curves are no longer influenced
by the contrast injection protocol or the cardiac system of the
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particular patient. Finally, under some reasonable assumptions,
the perfusion parameters can be derived from these curves. For45

example CBF ∝ maxt IRF(t) and Tmax = argmaxt IRF(t).
The deconvolution operation plays a central role in current

perfusion analysis. However, deconvolution depends crucially
on the accurate selection of an AIF. Additionally, deconvolution
is a mathematically ill-posed problem and that is problematic50

given the low signal to noise ratio of perfusion images (Fiesel-
mann et al., 2011). Perfusion analysis software accounts for
this by preprocessing the images and by regularizing the de-
convolution. The preprocessing mainly aims at reducing the
noise through motion correction, temporal and spatial smooth-55

ing, and possibly spatial downsampling. The regularization of
the deconvolution suppresses the high frequency signal in the
reconstructed impulse response function. This can be done in
singular value decomposition (SVD) based deconvolution by
regularizing the singular values, e.g. using Tikhonov regular-60

ization. Nevertheless, the deconvolution-based perfusion pa-
rameters remain noise sensitive and research for improved algo-
rithms (Boutelier et al., 2012) or even deconvolution-free sum-
mary parameters (Meijs et al., 2016) remains ongoing.

The resulting perfusion parameters are used to assess the tis-65

sue status of the brain where – apart from healthy tissue – two
types are distinguished. Tissue that is already irreversibly dam-
aged is called the infarct core. Tissue that is at risk, i.e. tis-
sue that will undergo infarction if not eventually reperfused,
is called the penumbra. The combination of infarct core and70

penumbra is called the perfusion lesion. In current clinical prac-
tice, the perfusion lesion and core are determined by thresh-
olding the perfusion parameters. The optimal choice of perfu-
sion parameters and thresholds depends on the deconvolution
method (Bivard et al., 2013).75

Knowledge about the volumes of the core and the penumbra
is of great clinical importance, as they are used to determine
which treatment a patient should get (Albers, 2018; Nogueira
et al., 2018). However, the method that is used to analyze the
CTP images plays an important role in the accuracy of these80

volume estimations (Fahmi et al., 2012; Bivard et al., 2013).
Although great progress has been made in the previous years,
there is room and need for improvement.

The binary distinction between core and penumbra is some-
what artificial: as time passes, the core will become larger, as85

more and more penumbral tissue becomes irreversibly dam-
aged. The infarct growth rate differs between patients (Wheeler
et al., 2015; Guenego et al., 2018). It depends on factors such
as the location of the thrombus and the patient’s vascular con-
nectivity: there is considerable inter-subject variation in the90

amount of vascular redundancy and hence in the amount col-
lateral blood supply to the affected region (Liebeskind, 2003).
Knowledge about the growth rate of the core is of clinical im-
portance, as it allows assessment of the relevance of transfer-
ring a patient to a comprehensive stroke center depending on95

transport time. Hence it is valuable to not only predict core
and penumbra from an acute CTP scan, but also how the core
would evolve over time. Additionally, not every mechanical
thrombectomy procedure achieves complete reperfusion. Al-
though a more complete recanalization is arguably always bet-100

ter (Kleine et al., 2017), it is interesting to take this into account
in the model as it might give interventional radiologists infor-
mation about the added value of an additional attempt after a
partial recanalization.

1.1. Contributions105

In this paper we propose to train a deep neural network to
predict the final infarct from acute CTP images. The prediction
takes into account not only the CTP measurements, but also the
treatment parameters such as the time-to-recanalization and the
completeness of recanalization. Once the network is trained,110

it can make predictions for new patients based on hypothetical
treatment schemes. This allows to predict the ischemic core at
baseline (i.e. the predicted final infarct in case of an immediate
perfect recanalization), the perfusion lesion (i.e. the predicted
final infarct in case of no recanalization) or any intermediate115

scenario. The latter can be relevant if e.g. we first need to
transfer the patient and achieve recanalization at a particular
later time point. This provides clinicians with additional infor-
mation on the impact of potential treatment options. We show
that our method takes this information effectively into account120

resulting in better predictions.
Another contribution of this work is that the predictions are

made directly from the native CTP images while no explicit
deconvolution or calculation of perfusion parameters is per-
formed. We follow a true end-to-end learning approach and125

hence avoid the problematic deconvolution. We evaluate our
approach on the data of the MR CLEAN trial and show the
contributions of the various components of the method.

1.2. Related work

Estimation of tissue status and prediction of the final infarct130

based on perfusion measurements is a vast research domain.
Early work aimed mainly at finding thresholds for various per-
fusion parameters that correlated well with the final infarct in
patients with recanalization (with the final infarct closely re-
lated to the core) and patients without recanalization (final in-135

farct equal to the perfusion lesion) (Wintermark et al., 2006;
Bivard et al., 2013). These approaches are currently used in
clinical practice.

Various works have suggested to use more advanced machine
learning techniques to predict core and penumbra. Most of140

them use MR imaging which usually consists of two modalities:
MR Perfusion, which is similar to CTP, and diffusion weighted
imaging (DWI) (Wu et al., 2001; Scalzo et al., 2012; McKin-
ley et al., 2017; Nielsen et al., 2018). The latter modality gives
a clear signal regarding the viability of tissue and is consid-145

ered the golden standard to identify ischemic tissue, making
the prediction of final infarct easier than using only perfusion
information. With the advent of mechanical thrombectomy, ac-
curate determination of the time of recanalization became pos-
sible and this parameter was introduced in models. D’Esterre150

et al. (2015) investigated the influence of the time between on-
set and imaging and the time between imaging and recanaliza-
tion, finding that the former does not and the latter does influ-
ence the optimal perfusion parameters thresholds to determine
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the final infarct. Kemmling et al. (2015) proposed a multivari-155

ate generalized linear model that predicts the final infarct in
a voxelwise fashion based on CTP perfusion parameters and
clinical parameters including a binary recanalization status and
the onset-to-recanalization duration. It was trained and cross-
validated on 161 subjects that underwent CTP imaging and me-160

chanical thrombectomy. In a similar vein, the ISLES 2016 &
2017 challenges (Winzeck et al., 2018) invited researchers to
evaluate methods that predict the final infarct based on acute
DWI and MR Perfusion imaging. The organizers provided pub-
licly available training data and a blinded test set for the valida-165

tion. The challenge showed the competitive advantage of deep
neural networks.

All approaches discussed so far depend on deconvolution as
a first step, but there has been some work to avoid explicit de-
convolution. On one hand we can distinguish alternative per-170

fusion parameters that do not require deconvolution, such as
the first moment of the time-concentration curve (Christensen
et al., 2009). On the other hand, we see approaches that aim at
replacing the traditional deconvolution analysis with a learned
alternative (Ho et al., 2016). However, this approach seems to175

beg the question, since during training the ground truth per-
fusion parameters are provided by deconvolution analysis. In
our approach – starting from the native images and optimizing
the network for the best final infarct prediction – the optimal
features and how to calculate them is inferred directly from180

the data. The disadvantage of this approach is that those fea-
tures no longer have a clear physiological interpretation such as
the perfusion parameters have, but depending on the applica-
tion, this might be a price worth paying. Recently Pinto et al.
(2018) proposed a method for the ISLES 2017 challenge that185

uses, apart from the DWI image and the perfusion parameters,
also the native MR perfusion measurements to predict the final
infarct. They show that their method benefits from the native
measurements, but the obtained results are not as good as other
state-of-the-art approaches that did not include native measure-190

ments, making it hard to assess the added value of the native
measurements. The method did not take the reperfusion sta-
tus or other treatment data into account, presumably because
the dataset was fairly homogenous, consisting of mostly early
reperfused patients.195

2. Methods

We propose to use a voxelwise classification approach, where
a neural network learns the relation between the final infarct
status of a voxel (the output) and the CTP measurements and
the metadata (the input). The CTP measurements consists of200

the time-attenuation curves of that voxel, its neighboring vox-
els and the voxel of the AIF. The metadata consists of four val-
ues: the time between stroke onset and CTP imaging, the time
between CTP imaging and the end of the mechanical thrombec-
tomy, the mTICI scale after thrombectomy and the persistence205

of the occlusion at 24 hours CT angiography.

2.1. Preprocessing

There is considerable variability in the acquisition protocol
of CTP images and, due to the long acquisition time, the pa-
tient might move. During preprocessing, we account for both210

aspects, aiming to reduce the unnecessary variation that the net-
work need to cope with. First, if the CTP was acquired with
gantry tilt, the CTP images are resampled to an orthogonal grid
that has the same x-y plane and an orthogonalized z-axis. Sec-
ond, the CTP scan is motion corrected by rigidly aligning the215

volumes with the first volume. Registration is performed using
Elastix, optimizing for the sum of squared differences. Finally,
the images are spatially downsampled to 1.5 x 1.5 x 4 mm3 and
temporally resampled to one image per two seconds. The ra-
tionale is that the original high spatial resolution might help the220

registrations, whereas for the perfusion analysis, which has a
notoriously low Signal to Noise Ratio (SNR), a high resolution
would only slow down processing. If the CTP was acquired
in shuttle mode, i.e. with the patient continuously moving back
and forth in the scanner resulting in variable scan times per CTP225

volume, we account for this and resample the time series such
that each volume corresponds to a single time point.

2.2. Network

Our network is an extension of the model proposed by Kam-
nitsas et al. (2017) and has four different inputs. Each input230

is followed by series of operations such as convolutions and
upsampling, called the pathway, and finally the outputs of the
pathways are concatenated and fed into a common pathway that
gives the voxelwise prediction. The first input is the CTP im-
age which has 3 spatial dimensions plus time. This input is fed235

into a pathway consisting of 6 convolutional layers: three lay-
ers with 48 filters of 3x3x1 and three layers with 64 filters of
3x3x3. The second input is the downsampled CTP. The image
is downsampled with a factor 3 in plane, resulting in voxels of
4.5 x 4.5 x 4 mm3 and which provides the network a wider spa-240

tial context to base its prediction on. This second input’s path-
way has the same architecture as the first one and is followed
by an upsampling operation to recover the original resolution.
The third input is the arterial input function (AIF), which is a
one dimensional vector. This pathway consists of 2 convolution245

layers, each with 48 filters of 1x1x1, and an upsampling opera-
tion. The last input is the metadata (1D) and this pathway only
consists of an upsampling operation. At this point, the outputs
of the four pathways have the same spatial dimensions and are
concatenated in the feature dimension. This resulting output is250

fed through 3 convolutional layers with each a 1x1x1 kernel.
The first two have 150 filters and the final one has 1 filter and
gives the prediction.

In all convolutional layers, we use batch normalization (Ioffe
and Szegedy, 2015) and the PreLU activation function (He255

et al., 2015).
This network has a fully convolutional structure, which al-

lows to use dense inference and training. By predicting multiple
adjacent voxels simultaneously, the computational efficiency is
increased because redundant calculation in the overlapping re-260

ceptive fields of the output neurons are avoided. We use an
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Figure 1: The proposed neural network. There are four inputs: the CTP (3D+time) the downsampled CTP (3D+time), the arterial input function (AIF, time) and
the metadata (1D). The network has a fully convolutional structure, where each input can go through a series of convolutional layers before being upsampled to the
original resolution. The outputs of the four pathways are concatenated and are passed through 3 convolutional layers with a 1x1x1 kernel (acting as fully connected
layers) before the prediction is given.

output size of 21x21x5, giving the architecture visualized in
Fig. 1.

The input intensities are normalized by first clipping them to
the range of -100 to 1000 HU and then linearly transforming265

them to have mean of zero and a standard deviation of one.
During training, the network is optimized by stochastic gra-

dient descent with Nesterov momentum for the weighted cross-
entropy, with the positive class weighted ten times as heavy, re-
sulting in balanced training. The training samples are uniformly270

chosen from within the intracranial volume and augmented by
flipping samples left/right, small rotations, Gaussian noise and
a CTP specific augmentation we introduced in (Robben and
Suetens, 2018).

The CTP specific data augmentation exploits the fact that the275

perfusion measurements are a linear time invariant system. This
means that, if the contrast injection was a bit later, both the
AIF and the CTP timeseries would show the same delay. Sim-
ilarly, if the injection was earlier, all curves would shift to the
left. However, this has no influence on the actual tissue perfu-280

sion status or the viability of the tissue. If the concentration of
the iodine in the contrast agent were a fraction higher or lower,
the concentration curves would change with the same fraction.
But again, this has no impact on the tissue status. Hence, we
augment our training dataset by applying a random time shift285

(earlier or later) and a random scaling of the attenuation varia-
tion. The shift is randomly chosen between -4 and 6 time points
(since our measurements are discrete) and the scaling has a log

normal distribution between with µ of 0 and σ of 0.3.
The method is implemented in Python using Keras and Deep-290

VoxNet (Robben et al., 2018).

2.3. Ablation study
We want to measure the impact of the different design

choices and hence we gradually ablate our method to under-
stand how the different components contribute to the perfor-295

mance.

The impact of no deconvolution
To quantify the impact of the deconvolution-free approach

we benchmark a network working on the deconvolved time-
series. To obtain the deconvolved time series, we use Tikhonov300

regularized SVD-based deconvolution (Fieselmann et al., 2011)
with the Volterra discretization scheme (Sourbron et al., 2007) –
to which we simply refer as deconvolution. The deconvolution
has one hyperparameter, the relative regularization parameter
λrel which determines the amount of filtering and which is set305

to 0.4. As the deconvolution is very noise sensitive, we first per-
form a spatial Gaussian smoothing with an isotropic sigma of
2.5 mm. To make the comparison fair, we also test the proposed
(i.e. the non-deconvolution based) network on this smoothed
data - called Proposed (smoothed). The deconvolved time se-310

ries are used as input to the network Proposed (deconvolved).
This network and its training is identical to the one described
in Section 2.2, with the exception that the AIF is no longer pro-
vided and the CTP specific data augmentation is turned off.
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The impact of spatial context315

Current clinical systems do not take the spatial context into
account to determine the tissue status of a voxel. We are in-
terested in to what extent the spatial context affects the pre-
dictions. Hence we introduce two extra networks: One-voxel
(smoothed) and One-voxel (deconvolved). Both only have320

three 1x1x1 convolutions on the original resolution and do not
use the subsampled version and hence do not use spatial con-
text. Otherwise, both are identical to the earlier introduced
methods.

The impact of the CTP data augmentation325

We investigate the impact of our CTP specific data augmen-
tation and train the proposed network also without the augmen-
tation.

The impact of the metadata
Our network not only uses the imaging data, but also the330

treatment parameters. In current clinical practice, there is only
a distinction between core and penumbra – roughly correspond-
ing to immediate successful thrombectomy and no treatment at
all. The additional treatment parameters our method uses might
improve the accuracy of the predictions. To that end, we evalu-335

ate three variants of the proposed network. One that uses bina-
rized mTICI scores (0-2a vs 2b and 3), one that does not include
time from onset to CTP and one that does not have time from
CTP to end of thrombectomy.

3. Experiments340

We evaluate the proposed method and its variants on the data
of the MR CLEAN trial (described in more detail in the next
section, Sec. 3.1). In all experiments, we do a five-fold cross-
validation, and report the results aggregated over all the left-out
subjects. The hyperparameters of the optimization are experi-345

mentally set based on preliminary experiments on the first fold.

3.1. Dataset

MR CLEAN was a multicenter study to investigate the bene-
fit of thrombectomy in acute ischemic stroke (Berkhemer et al.,
2015). The study’s inclusion criteria are described in detail in350

the study protocol; in short: patients were randomized within
6 hours after stroke onset and when a large vessel occlusion
was identified in the anterior circulation. In our work, we in-
clude all MR CLEAN subjects that had a baseline CTP of suf-
ficient quality and a follow-up non-contrast computed tomog-355

raphy (NCCT) that could be registered to the acute CTP. This
results in 188 included subjects. The selection process is shown
in Fig. 2.

The MR CLEAN study protocol prescribes follow-up imag-
ing with NCCT at 24 hours and 5 days after onset. Where avail-360

able, we use the 5 day follow-up otherwise the 24 hour follow-
up is used. The follow-up images were semi-automatically de-
lineated and reviewed by an experienced reader (Boers et al.,
2013; Bucker et al., 2017).

Follow-up registered (188)  

With follow-up CT (219)

CTP sufficient quality (229)

CTP acquired (269)

All (500)

31 with invalid/incomplete data 
4 CTP acquired after treatment
5 insufficient contrast or motion 
corrupted

Figure 2: Subject selection.

The follow-up NCCT images are registered to the acute CTP365

images. First a rigid registration between the follow-up and the
acute CTP is performed. Afterwards, a non-rigid registration
is done in an attempt to compensate for brain swelling due to
edema. The found transformations are applied to the final in-
farct delineations. Finally, we segment the cerebrospinal fluid370

(CSF) – in particular the ventricles – from the acute CTP im-
ages, and exclude those voxels from the transformed final in-
farct, under the reasoning that CSF cannot infarct and any over-
lap between CSF and final infarct is rather due to misalignment.

We manually select in each CTP image an arterial input func-375

tion (AIF) and use those in all experiments. Hereto, we select
the time series of the voxel that shows the largest increase in
attenuation coefficent and is located in an unaffected proximal
artery.

3.2. Prediction of the final infarct380

The prediction of the final infarct is the most important ca-
pability of the network. For current clinical practice, the most
important metric is the volume of the final infarct, and hence
we focus on this metric and the difference in volume between
the predicted volume and true volume. As predicted volume,385

we take the sum of all predicted probabilities, multiplied with
the volume per voxel.

From a scientific point of view, the localization of the in-
farct is also interesting, and hence we also report the Dice and
the soft Dice scores. The latter is like the standard Dice score,390

except that the predictions are not binarized. Non-parametric
paired significance tests (bootstrapping) are used to test the sig-
nificance of the results.

3.3. Prediction of core and perfusion lesion

It is interesting to see how the metadata influences the predic-395

tion of the network, in particular the difference between imme-
diate recanalization and no recanalization. To this end, we pre-
dict for each subject in the test set the hypothetical final infarct
volume in the case of early complete recanalization (mTICI 3 at
60 minutes) and in case of no recanalization at all. In the former400

scenario, the predicted final infarct should correspond to the in-
farct core at baseline imaging, whereas in the latter scenario, it
should correspond to the perfusion lesion.
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Method Mean Mean Mean absolute
soft Dice Dice volume error (ml)

Proposed 0.40 0.48 36.7
Proposed (smoothed) 0.39 (**) 0.45 (**) 37.5
Proposed (deconvolved) 0.36 (**) 0.42 (**) 39.1
One-voxel (smoothed) 0.21 (**) 0.15 (**) 45.4 (**)
One-voxel (deconvolved) 0.17 (**) 0.04 (**) 48.6 (**)
Proposed (no data augmentation) 0.39 (*) 0.46 (**) 41.5 (**)
Proposed (binary mTICI) 0.40 0.48 38.5 (*)
Proposed (no time from onset to CTP) 0.40 0.48 38.4 (*)
Proposed (no time from CTP to end of
thrombectomy)

0.39 (**) 0.47 (*) 41.1 (**)

Table 1: The mean of the soft Dice, Dice and absolute volume error between the predicted and ground truth final infarct. A paired significance test is performed
between the proposed method and its variants, with (*) indicating P < 0.05 and (**) indicating P < 0.005.
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Figure 3: The true and predicted final infarct volumes for all subjects in the
testing folds, using the proposed method.

4. Results and discussion

Fig. 3 shows a scatter plot and a Bland-Altman plot of the405

true and predicted volumes for all subjects in the testing folds
using the proposed method. The mean volume error is -2.8 ml
(the prediction is a slight underestimation) and the mean abso-
lute volume error is 36.7 ml. The mean Dice score is 0.48. A
representative set of predictions is shown in Fig. 4.410

The achieved Dice and volume errors seem respectively very
low and high. We believe nevertheless that these are state-of-
the-art results on an inherently difficult problem. This is not an
image segmentation task, where all the relevant information is
contained in the input, but a prediction problem with a ground415

truth that is defined on images acquired several days later. For
example, the ISLES 2017 challenge (Winzeck et al., 2018) has
a similar goal, namely predicting the final infarct from acute
DWI and MR perfusion imaging, and reported a mean Dice
score of 0.32 the best result. Of course, a direct comparison420

between these values is not possible since the ISLES challenge
had different modalities (with especially the DWI imaging be-
ing very informative compared to perfusion imaging) and a dif-
ferent population (mostly early successful early recanalization,
which results in small lesions and hence lower Dice scores), but425

it illustrates the difficulty of the problem.

4.1. The impact of spatial context, no deconvolution and data
augmentation

Table 1 shows the mean Dice, soft Dice and absolute vol-
ume error of the proposed method and of the various ablated430

variants. It shows a gradual decrease in performance, both for
removing the spatial context as for working on the deconvolved
data. The beneficial effect of taking context into account is ex-
pected. Perfusion imaging is a noisy modality and suffers from
artifacts which results in – often visually – erroneous predic-435

tions. In some clinical studies, the results given by the con-
ventional voxelwise perfusion analysis are manually corrected.
We hypothesize that a human rater is able to do so, because she
takes spatial context into account. By providing spatial context,
the network is able to do this as well, which greatly improves440

results: the mean Dice score more than triples and the volume
error drops almost 20%.

The benefit of working on the native data is more remarkable.
It can be argued that, if we have a correct physical model, there
is no need to re-learn that model a second time from our own445

limited training data. From the perspective of physics, decon-
volution is the right way to approach the problem. However, the
way that deconvolution should be regularized is not dictated by
physics. We hypothesize that a neural network can do decon-
volution better as it has a learned model of the noise and con-450

centration curve shape. We showed this earlier on simulated
data (Robben and Suetens, 2018) and see this now confirmed
on real data: using the native data instead of the deconvolved
data improved the mean Dice score significantly from 0.42 to
0.48. Note however that learning this deconvolution implicitly455

is data-intensive and the proposed data augmentation is a nec-
essary part, even with our relatively large training set.

Apart from the improved performance, a second advantage
of avoiding the explicit deconvolution, is that the selection of
the AIF can become part of the network. In this work, we used460

manually selected AIFs for all experiments, but AIF selection
is a difficult problem and has great influence on the deconvo-
lution results. However, if the AIF is an input to the network,
it becomes possible to let the network learn to select the AIF
from an input patch and have the AIF selection optimized in an465

end-to-end fashion, such as was explored by Hess et al. (2018).
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(a) Subjects with the 20%, 40%, 60% and 80% percentile Dice score in the subgroup with a true final infarct volume less than 100 ml.

(b) Subjects with the 20%, 40%, 60% and 80% percentile Dice score in the subgroup with a true final infarct volume of at least 100 ml.

Figure 4: Predictions of the proposed method on a representative sample of subjects from the test set. The probabilistic predictions are overlayed in red on the
follow-up NCCT scan whereas the ground truth final infarct is outlined in blue.
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Figure 5: The predicted core and penumbra volumes for all subjects in the test-
ing folds, using the proposed method. Green subjects have a target mismatch
profile.

4.2. The impact of the metadata

Fig. 5 shows the volumes of the predicted core and penumbra
(perfusion lesion minus core). It shows that the predicted final
infarct volumes vary widely based on the treatment: the volume470

of the penumbra is the difference in final infarct volume be-
tween fast complete recanalization and no recanalization. This
is as expected and already widely reported in literature.

In the ablation experiments, we also investigated the influ-
ence of the metadata on the quality of the predictions. Table 1475

shows that in all cases the model became less predictive, which
shows that the model effectively uses the metadata. Leaving out
the time from CTP to end of treatment has the largest influence,
increasing the mean absolute volume error with 12%. Binariz-
ing the mTICI and leaving out the time from onset to CTP have480

smaller but still significant effect, both increasing the error with
5%. The importance of time from CTP to end of treatment and
the precise mTICI scores were already earlier reported in liter-
ature (Wheeler et al., 2015; D’Esterre et al., 2015; Kemmling
et al., 2015). The influence of time from onset to CTP is more485

surprising, as earlier literature reported this does not have an
influence (D’Esterre et al., 2015).

4.3. The quality of the ground truth

An important limitation of this study is the quality of the
ground truth. First, follow-up imaging is always with NCCT,490

which is less sensitive than MR. Second, the follow-up NCCT
scans are a mix of images acquired after 24 hours and after 5
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days. It is reported, on the MR CLEAN dataset, that the le-
sion still grows after 24 hours: Bucker et al. (2017) report that
between these time points the median infarct volume increases495

from 42 ml to 64 ml and more than half of the subjects witness
more 30% relative growth. This means that there is variabil-
ity on our ground truth, purely due to the moment of follow-up
acquisition. Part of this volume increase is likely due to gen-
uine delayed tissue death and part is due to edema, which is500

most pronounced at 3 to 5 days after the stroke. Finally, the
brain edema increases the volume of the final infarct, and hence
might result in overestimated core and penumbra volumes even
though we tried to correct for this by non-rigid registration and
CSF exclusion.505

4.4. Limited brain coverage

Our dataset is acquired on a variety of scanners, and not all of
them have full brain coverage during CTP acquisition. We find
that the coverage along the axial direction is on average 65 mm,
with the first and third quartiles being 40 and 96 mm. As a con-510

sequence, our ground truth final infarct volume is also limited
to this field of view, resulting in an underestimation of the fi-
nal infarct volume. The correlation between the final infarct
volume within the CTP volume and the scan length is 0.16.

5. Conclusion515

We have shown that a neural network can learn to predict the
final infarct volume from acute CTP images and the treatment
parameters. This might help clinicians to evaluate the various
treatment options. We performed a series of ablation experi-
ments, which tested the contribution of the various components520

of the method and showed the benefit of our deconvolution-free
approach.
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Röther, J., Fiehler, J., Kucinski, T., Østergaard, L., 2009. Comparison of 10
Perfusion MRI Parameters in 97 Sub-6-Hour Stroke Patients Using Voxel-
Based Receiver Operating Characteristics Analysis. Stroke 40, 2055–2061.
doi:10.1161/STROKEAHA.108.546069.

D’Esterre, C.D., Boesen, M.E., Ahn, S.H., Pordeli, P., Najm, M., Minhas, P.,590

Davari, P., Fainardi, E., Rubiera, M., Khaw, A.V., Zini, A., Frayne, R.,
Hill, M.D., Demchuk, A.M., Sajobi, T.T., Forkert, N.D., Goyal, M., Lee,
T.Y., Menon, B.K., 2015. Time-dependent computed tomographic perfusion
thresholds for patients with acute ischemic stroke. Stroke 46, 3390–3397.
doi:10.1161/STROKEAHA.115.009250.595

Fahmi, F., Marquering, H.A., Streekstra, G.J., Beenen, L.F., Velthuis, B.K.,
VanBavel, E., Majoie, C.B., 2012. Differences in CT perfusion summary
maps for patients with acute ischemic stroke generated by 2 software pack-
ages. American Journal of Neuroradiology 33, 2074–2080. doi:10.3174/
ajnr.A3110.600

Fieselmann, A., Kowarschik, M., Ganguly, A., Hornegger, J., Fahrig, R., 2011.
Deconvolution-Based CT and MR Brain Perfusion Measurement: Theoret-
ical Model Revisited and Practical Implementation Details. International
Journal of Biomedical Imaging 2011, 1–20. doi:10.1155/2011/467563,
arXiv:467563.605

Guenego, A., Mlynash, M., Christensen, S., Kemp, S., Heit, J.J., Lansberg,
M.G., Albers, G.W., 2018. Hypoperfusion ratio predicts infarct growth
during transfer for thrombectomy. Annals of Neurology 84, 616–620.
doi:10.1002/ana.25320.

Hacke, W., Kaste, M., Bluhmki, E., Brozman, M., Dávalos, A., Guidetti, D.,610
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- improved performance over classical approach 
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