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1 Introduction

The AdS/CFT correspondence has offered many insights into the structure of the Renor-
malization Group (RG). Soon after the original conjecture by Maldacena it was realized
that one can use supersymmetric gravitational domain wall solutions interpolating be-
tween AdSs vacua of string theory to describe RG flows between strongly interacting four-
dimensional superconformal field theories (SCFTs) [1, 2]. Furthermore this vantage point
was used to obtain a holographic proof of the a-theorem. There have been numerous



generalizations of these original results to SCFTs in other dimensions. Our goal here is to
build upon this body of work and study general constraints on supersymmetric holographic
RG flows. Rather than studying explicit top-down models in ten- or eleven-dimensional
string/M-theory, we will explore the space of AdS vacua and the flows connecting them
in general gauged supergravity. In this paper our main interest is in RG flows deforming
four-dimensional N' = 2 SCFTs, hence we will work in half-maximal supergravity in five
dimensions (though we will also extend some of our results to other dimensions).

This “bottom-up” approach to studying general properties of SCFTs with holographic
duals by employing gauged supergravity has recently received some attention in the context
of understanding the space of exactly marginal couplings of SCF'Ts in various dimensions,
see [3-12] and references thereof. While these results present interesting holographic pre-
dictions for strongly interacting SCFTs it should be noted that some of the supergravity
results can also be shown more generally, without a reference to holography, using purely
algebraic techniques [13]. Questions about the structure of RG flows triggered by relevant
deformations on the other hand are less accessible with field theory tools and thus the su-
pergravity results derived here should teach us important general lessons for the structure
of supersymmetric RG flows.

To understand the general constraints for the existence of distinct supersymmetric
AdS5 vacua and the flow connecting them we present a detailed analysis of the supersym-
metry conditions in half-maximal gauged supergravity. The results depend on the number,
n, of vector multiplets in the theory and on the type of gauging performed. The existence
of at least one AdSs vacuum with 16 supercharges implies that an U(1) x SU(2) x H.
subgroup of the SO(5, n) global symmetry of the supergravity theory should be gauged [8].
The U(1) x SU(2) gauge field is dual to the R-symmetry of the four-dimensional N/ = 2
SCFT dual to this AdSs while H, represents the continuous flavor symmetry. If H. is
trivial we find that there is a unique AdSs vacuum with 16 supercharges in the supergrav-
ity theory.! However when H, is non-trivial then it must contain an SO(3) subgroup and
there can be another AdSs vacuum in the supergravity theory with a different value of the
cosmological constant. Moreover these two distinct AdSs vacua are connected by a regular
supersymmetric domain wall solution in the gauged supergravity theory which we construct
analytically. In addition we establish that the RG flow in the dual QFT should be triggered
by vacuum expectation values (vevs) for two scalar operators of dimension A = 2 and the
ratio of these vevs has to be a fixed constant. One of the two scalar operators belongs to the
energy momentum multiplet of the SCFT and the other one sits in the SO(3) C H. flavor
current multiplet. The different values of the cosmological constants of the two AdSs5 vacua
translate into different values for the conformal anomalies of the dual UV and IR N = 2
SCFTs. We compute this ratio of central charges using our supergravity results and are
able to reproduce it by an anomaly calculation in the dual SCFT. The result is a universal
expression for the IR conformal anomalies in terms of the UV conformal anomalies as well
as the central charges of the SO(3) flavor current. We also find that these anomalies are
related to the constant that controls the relation between the scalar vevs triggering the flow.

IThis result can also be established for AdS vacua with 16 supercharges in four-, six-, and seven-
dimensional half-maximal gauged supergravity.



Having described the conditions for the existence of N' = 4 AdS vacua in five-
dimensional gauged supergravity it is natural to ask whether there are other AdS vacua
which preserve less supersymmetry. To answer this we analyze the general conditions for
N = 2 AdSs vacua and then we focus on theories that admit both an A/ = 4 and one or
more N = 2 vacua. Perhaps not surprisingly we find that as we increase the number of
vector multiplets in the supergravity theory we can have an increasing number of distinct
N = 2 AdSs5 vacua. The details of this structure depend on the matter content and the
choice of gauging in the supergravity theory. To illustrate our general approach we focus on
two particular examples. We first establish a holographic analog of the QFT result in [14]
in which it was shown that every four-dimensional A" = 2 SCFT with an exactly marginal
deformation admits an RG flow to an IR A/ = 1 SCFT. In addition it was shown in [14]
that the conformal anomalies of the IR and UV SCFTs obey a universal relation. This
type of RG flow was in fact first constructed and discussed in some particular holographic
examples, see [2, 15, 16], but here we offer a more general treatment. Our general setup
should capture the RG flow relating the N’ = 2 and /' = 1 Maldacena-Nuniez SCFTs [17]
arising from Mb5-branes wrapped on a Riemann surface. While it is widely believed that
this RG flow exists, and is of the class discussed in [14], its explicit holographic construc-
tion is still elusive. Our results should offer some insight into this problem. Moreover, if
our setup can be embedded in eleven-dimensional supergravity it can potentially capture
holographic RG flows connecting the ' = 2 Maldacena-Ntunez SCFT [17] and one of the
N =1 SCFTs studied in [18, 19]. In addition to this we study a setup with one N' = 4
and two distinct N/ = 2 AdS5 vacua and discuss the supersymmetric domain wall solutions
which interpolate between them. This may capture holographic RG flows which relate the
N = 2 Maldacena-Nuniez SCFT and two of the N' =1 SCFTs of [18, 19].

Finally we would like to note that we do not study a specific embedding of the gauged
supergravity theories we work with in string or M-theory. Thus our results are universal
and apply to all supersymmetric AdS vacua which admit a lower-dimensional effective
description in terms of half-maximal supergravity. This universality is somewhat similar
in spirit to the results for holographic RG flows across dimensions discussed in [20].

We begin our presentation in the next section with a brief general introduction to five-
dimensional N' = 4 gauged supergravity. In section 3 we identify under what conditions
there can be two distinct AdS vacua of such a supergravity theory which preserve all
16 supercharges and construct gravitational domain wall solutions interpolating between
these vacua. Whenever such a flow is possible it exhibits a universal relation between the
UV and IR central charges which we establish by field theory methods in section 4. We
continue in section 5 with a study of the conditions for the existence of AdS5 vacua with 8
supercharges and a discussion on domain wall solutions connecting such vacua. Section 6
is devoted to a short discussion on our results and their implications for holography. In
appendix A we present the extension of some of the results in section 3 to half-maximal
gauged supergravity in four, six and seven dimensions. In appendix B we give some more
details on the flow in section 5.



2 Gauged half-maximal supergravity

In this section we review the basic properties of five-dimensional gauged N/ = 4 (half-
maximal) supergravity [21-24] that are relevant for our analysis, mainly following [24].

Ungauged N = 4 supergravity has USp(4) R-symmetry and consists of a gravity mul-
tiplet and n vector multiplets. The gravity multiplet contains the metric g, , four gravitini
wf“ i = 1,...,4 transforming in the 4 of USp(4), six vectors (dubbed the graviphotons)
AZ,AZ‘, with A', m = 1,...,5 transforming in the 5 of USp(4) and Ag being neutral,
four spin-1/2 fermions x* in the 4 of USp(4), and one neutral real scalar . We will label
the vector multiplets with the index a = 1,...,n. Each vector multiplet contains a vector
Af,, four spin-1/2 gaugini A% and five real scalar fields. All together the scalar fields
parametrize the coset space

SO(5,n)

Mgear = SO(1,1) x SO(5) x SO(n) ’

(2.1)

where the first factor is spanned by X while the second factor is spanned by the scalars
in the vector multiplet, which we denote by ¢*, x = 1...,5n. We indicate the coset
representative of the second factor by V = (Vy™, Var®), where M = 1,...,n+ 5 labels the
fundamental representation of SO(5,n). Being an element of SO(5,n) this obeys

nun = —Vu"VN™ + VuVYne, (2.2)

where nyy = diag(—1,—-1,—1,—1,—1,4+1,...,+1) is the flat SO(5, n) metric, which is also
used to raise and lower the M, N indices (while the m,n and a,b indices are contracted
with the SO(5) and SO(n) Kronecker delta, respectively). Alternatively, the coset can be
represented by the positive definite scalar metric

Myn = Vu"VN™ +Vu“Vn, (2.3)

which also plays the role of the gauge kinetic matrix for the (5 + n) vector fields Afy =
(A}, Af). The metric on the scalar manifold, which determines the scalar kinetic terms, is

1
ds?(Mgea) = 38272d%2 — ngMNdMMN . (2.4)

The isometry group of the scalar manifold, SO(1, 1) x SO(5,n), is the global symmetry
group of the ungauged supergravity action. In addition, the scalar field space admits a
local invariance under SO(5) x SO(n). The group SO(5) is promoted to Spin(5) ~ USp(4)
when discussing the couplings to the fermions. It is then convenient to convert the SO(5)
index m of the scalar vielbeine V™ into USp(4) indices 7, j via SO(5) gamma matrices,

1 y
Varl = SV (2.5)

This satisfies V¥ = V19! and QijVMij = 0 and hence transforms in the 5 of USp(4).
Here €);; is a 4 x 4 real symplectic matrix.



In gauged supergravity a subgroup of the global symmetry group SO(1,1) x SO(5,n) is
promoted to a local gauge symmetry by introducing minimal couplings to the gauge fields
and their supersymmetric counterparts. In this way part of the global symmetry group is
broken. When some vector fields transform in non-trivial non-adjoint representations of
the gauge group, additional Stiickelberg-like couplings to antisymmetric rank-two tensor
fields may be required in order to ensure closure of the gauge symmetry algebra. Such
vector fields can then be gauged away, leaving just massive tensor fields together with the
other vectors [21, 23, 24].

The possible gaugings are classified by the embedding tensor formalism [25-27]. This
introduces the gauge couplings via a spurionic object — the embedding tensor — and
also requires auxiliary fields that consist of a tensor field for each of the original vector
fields. In A/ = 4 supergravity, the embedding tensor splits into three different represen-
tations of SO(1,1) x SO(5,n), denoted by &y, Eun = f[MN] and fynp = f[MNp}. Their
transformation under SO(5,n) follows from the indicated index structure. With respect
to SO(1,1), &y and faynp carry charge —1/2, while £yy has charge 1. Supersymmetry
of the Lagrangian imposes a set of quadratic constraints on the embedding tensor, whose
possible solutions parametrize the different consistent gauged N = 4 supergravity theories.
In this paper we are interested in theories admitting at least one fully supersymmetric
AdSs vacuum. In [6] it was shown that a necessary condition for this is {34 = 0. This
means that the SO(1,1) part of the global symmetry is not involved in the gauging and
the gauge group is entirely contained in SO(5,n). We therefore take {3y = 0 from now on.
In this case, the quadratic constraints are simply given by

frpanfrg™ =0,
v fonp = 0.

The fynp correspond to structure constants for a (non-Abelian) subgroup of SO(5,n),

(2.6)

while the £y assign the charges under the U(1) gauge field AB.
The embedding tensor determines the gauge covariant derivatives,

Dy =V, — A i tnp — AL tnp (2.7)

where ty/n = t[pn] generate s0(5,n). It also determines the shift matrices that appear in
the fermion supersymmetry variations and specify the scalar potential.
In the following we abbreviate the contraction of the embedding tensor components

MNP and ¢éMN with the coset representatives Vy;™ and V¢ by

free = pUNPYy YNt Ypr e = MYy YN,
frme = pUNEyymyynype o fme = MNyymyye
fmab _ pMNPy) my) ay) b gab — ¢MNy) ay b
fabe — fMNPy), ay) by (2.8)

These “dressed” embedding tensor components will always be denoted by a hat symbol.
Since they depend on the scalars, generically they vary along domain wall solutions. Also,
they appear in the conditions for supersymmetric AdS vacua.



2.1 Supersymmetric domain walls

We will be interested in supersymmetric domain wall solutions. The metric is of the form
ds? = PANd2(RY?) + dr? (2.9)

where A(r) is the warp factor which depends only on the radial coordinate r. The one-
and two-form supergravity fields vanish, while the scalars have a radial profile, ¥ = X(r),
¢* = ¢*(r). In particular, when the solution is AdSs, the scalars are constant and we have
A = r/l, where ¢ is the AdS radius. The latter is related to the cosmological constant,
which in our conventions is the same as the critical value of the scalar potential, V = —6/¢2.

The supersymmetry conditions for solutions of this form (and with {37 = 0) read [28]

~A'vsei +iPle; =0, (2.10)
. i
€ + ¢"wai'ej — 5 Plse; =0, (2.11)
Yse +1X20nPle; =0, (2.12)
¢ v2 U y5e; — 2P e; =0, (2.13)

where ¢; are the supersymmetry parameters, satisfying the symplectic-Majorana condition

€ = Q;;C(e7)T. A prime means derivative with respect to r and v@™ are the vielbeins on

the % scalar manifold, defined as

d¢vi™ = —(V~idy)em. (2.14)

Moreover we introduced the shift matrices

1 1

P =P"Tp,",  with  P™ = o7 B2 4 S ST fogy,(215)
where €""P4" is the totally antisymmetric symbol, and
a 1 2 fam 1 —1 famn
The shift matrices also determine the scalar potential as
L 32 ij 3 5ij
V = §P Paij + éﬁ os P 82Pij - 2P sz (217)

The supersymmetry conditions above are obtained by setting to zero the fermion vari-
ations given in [24].2 Egs. (2.10), (2.11) arise from the gravitino variation, (2.12) arises
from the variation of the spin 1/2 fermion in the NV = 4 gravity multiplet, while (2.13)

2The fermionic shifts given in [24] are related to P¥ and P*% appearing here as AY = \/gpij, AY =
f\/EZQzP”, ALY = %P’”‘i. For the scalar manifold geometry and the Clifford algebra we use the

same conventions as in [28]. We have reabsorbed the gauge coupling constant g appearing in [24] into the
embedding tensor.



comes from the gaugino variation. The derivation of (2.10), (2.11) assumes that the su-
persymmetry parameters depend on the coordinate r but are constant on R13; this means
that we are only describing the Poincaré supersymmetries. For generic domain walls these
are all the supersymmetries allowed, however in the special case of AdS solutions one also
has the conformal supersymmetries, which depend on the coordinates on R'3. For this
reason, the case of AdS solutions will be analyzed separately in the next sections.

As we discuss in detail later, the domain wall supersymmetry conditions imply the
existence of a real superpotential function W constructed out of the shift matrix P™", which
drives the flow of the warp factor and the scalar fields. Introducing an index X = (0, z),
we can denote the scalars as ¢* = (X, ¢*) and the scalar kinetic matrix as

gxy = (32_2 0 ) : (2.18)

0 gay
Then the flow equations read
A=w, ¢¥=-37 0w, (2.19)

However, this is not the full information encoded into supersymmetry. Indeed, one also
finds a set of algebraic constraints restricting the scalar fields that can possibly flow. After
these constraints are satisfied, the scalar potential (2.17) can be expressed in terms of the
superpotential as

9
V=3 Y OxWoy W — 6W?2. (2.20)

This is sufficient to ensure that the Einstein and scalar equations of motion are satisfied [29,
30]. When in particular the superpotential is extremized, dxW = 0, we obtain an AdS
solution with radius /=1 = W.

The specific form of the superpotential and of the constraints depends on the amount
of supersymmetry being preserved and will be discussed in the next sections.

3 Holographic flows between N/ = 2 SCFTs

In this section, we first review the conditions for fully supersymmetric AdSs vacua in half-
maximal gauged supergravity. Then we show that if there is one such vacuum and the gauge
group does not contain any compact part in addition to the U(1) x SU(2) R-symmetry of
the vacuum, then the latter is unique, up to moduli. If on the other hand there is one
N = 4 vacuum preserving an SO(3) in addition to the R-symmetry and a certain condition
on the gauge coupling constants is satisfied, then we show that there exists a second N' = 4
AdS vacuum and we construct an explicit flow connecting the two.

3.1 Review of conditions for N/ =4 AdSs5 vacua

It was shown in [8] that the necessary and sufficient conditions for five-dimensional half-
maximal supergravity to admit a fully supersymmetric AdSs solution amount to a simple



set of constraints on the dressed components of the embedding tensor. In addition to the
aforementioned ¢M = 0, these conditions read:

gmnéral =, (3.1)
&t =0, (3.2)

fmne =0, (3.3)
6vV22% En = — Emnpar fP7 (3.4)

where necessarily ém” and fm”p are not identically zero.® The first condition arises from
the gravitino equation while (3.2)—(3.4) are equivalent to P?% = 9xPY = 0. The AdS
cosmological constant is read from the scalar potential (2.17) and is

3

V:—§

SEEME (3.5)
The conditions above imply [8] that the theory has gauge group
G = U(1) x Hye x H. C SO(5,n), (3.6)

where H. C SO(n) is a compact semi-simple subgroup, while H,. is a generically non-
compact group admitting SO(3) as maximal compact subgroup. If Hy. is simple, it can
be either SO(3), SO(3,1), or SL(3,R). When £% = 0, the product of the U(1) factor in
G with the SO(3) subgroup of H,. embeds block-diagonally as SO(2) x SO(3) in SO(5).
If £90 £ 0, the U(1) factor is a diagonal subgroup of SO(2) ¢ SO(5) and SO(2) € SO(n).
In the vacuum, the gauge vectors of U(1) and of SO(3) C Hy. are graviphotons, with
U(1) being always gauged by the vector A°, while the gauge vectors of H. and of the non-
compact generators of H,. belong to vector multiplets. The non-compact part of Hy is
spontaneously broken and the corresponding gauge vectors are massive. Finally, the vectors
that are charged under the U(1) factor of the gauge group are eaten up by antisymmetric
rank-two tensor fields via the Stiickelberg mechanism. In total, the AdS vacuum is invariant
under U(1) x SU(2) x H.. The U(1) x SU(2) corresponds to the R-symmetry of the dual
N =2 SCFT, while H, represents the flavor group of that SCFT.

These properties are most easily seen if we perform a global SO(1,1)xSO(5, n) transfor-
mation sending the A/ = 4 critical point to the origin of the scalar manifold, so that ¥ = 1
and (Vi™, Vi®) is the identity element of SO(5,n). By further making an SO(5) x SO(n)
transformation, we can choose

N ‘\}59’ (3.7)

and the only other non-vanishing components are of the form
¢4B where A,B,C = 6,7,...,n+5. Then f!?% are SU(2) structure constants, while the

f123

flAB’ fQAB’ fSAB7 fABC and

3Condition (3.4) differs by a factor of —2 from the one given in [8] because we are including a factor of
1/2 in the map (2.5) and when evaluating the shift matrices of [24] we are taking V™ = —nF2Vgo™. See
footnote 5 in [8].



non-vanishing ¢4 implies that the vectors Aﬁ, Ai are eaten up by tensor fields. Moreover,

fHAB | f24B  ¢3AB complete the SU(2) structure constants to those of Hye, while f45C are
the H. structure constants.
From (3.5) we find that the cosmological constant is

V=—=g".

= (3.8)

The N = 4 vacuum may admit a set of moduli, namely flat directions of the scalar
potential along which full supersymmetry is preserved. These are deformations of V% and
Var® such that €% is invariant, i.e.

Vart Ve = ¢ (3.9)

It was proven in [8] that these moduli span the space % for some m.

3.2 Uniqueness in the absence of flavor symmetries

In the absence of any flavor symmetries H. we can prove that there cannot be two N = 4
AdSs5 solutions with different values of the cosmological constant. We arrive at this result
by showing that in any two such solutions the contractions émném” and fmnp fm"p must
take the same value. From (3.4) we infer that the SO(1,1) scalar ¥ is also unchanged.
Then from (3.5) we conclude that the cosmological constant takes the same value in the
two solutions.

We first consider the EMN components of the embedding tensor, in their dressed version
E=VTey = (5;: g;b) The supersymmetry conditions (3.2), (3.1) and the spectral theory
of real, antisymmetric matrices imply that by a local SO(5) x SO(n) transformation, &
evaluated on the solution can be put in the canonical block-diagonal form:

¢ = diag(0,0,0, e, i€, B¢, ..., Bpe,0,...,0) , (3.10)
where € = (91 é), while +ia are the only non-vanishing eigenvalues of ém” and +ipf,
+ifB,...,£iB, are the non-vanishing eigenvalues of f“b. It is understood that when
é“b = 0 there are no g eigenvalues. Let us now assume there are two different field

configurations corresponding to N’ = 4 AdSj5 solutions. The two corresponding vielbeins V
are related by an SO(5, n) transformation. However the latter cannot change the eigenvalues
of f , neither can it reshuffle the a eigenvalue with the 8’s, because the former lives in the
timelike eigenspace while the latter live in the spacelike eigenspace. It follows that f is the
same in the two vacua up to SO(5) x SO(n) transformations. In particular, £, = 202
is the same in the two vacua.

We now turn to the fMNP components of the embedding tensor. We can assume with
no loss of generality that one of the N' = 4 AdS5 solutions sits at the origin of the scalar
manifold. In an SO(5) gauge such that (3.7) is true, the other N'= 4 AdS vacuum must
admit an SU(2) C Hy. gauge group with structure constants f128 = Yy lYn2Ypd fUNP
The choice of an SU(2) subgroup inside Hy is described by the coset Hp./SU(2). Hence



the first three components of the coset representative in the two vacua are related as
V' = AnNont,
V2 = AuVon?, (3.11)
Vi® = AN on?,

with A € H,. being given by

Amn Amb 0 c cmb
AN = y | = exp ol , (3.12)
Aan Aa l’l/chan O

where (f.)m" are the non-compact generators of Hp. and u¢ are free real parameters.
These transformations A have been identified in [6, 8] as the Goldstone bosons for the
spontaneous breaking Hy,. — SU(2). Since the V’s in the two AdSs5 vacua are related by a
gauge transformation, the structure constants fm"p should be preserved. This can easily
be seen at first order in u¢ recalling that (3.3) holds for the vacuum at the origin:

f123 — VMIVN2VP3fMNP —_ AMIANQAP?)fMNP
= 243 S S+ OG2) = S+ 0(?). (3.13)

In particular, fmnp fm”p takes the same value in the two vacua. This concludes our proof.

We remark that a similar argument of uniqueness for fully supersymmetric AdS vacua
when H, is trivial can be derived in N' = 4 supergravity in dimensions four, six and seven.
We provide this in appendix A.

3.3 Two distinct N/ =4 AdSs5 vacua

Now let us assume that the H. part of the gauge group is non-trivial. Since by definition
H. C SO(n) and does not contain any U(1) factor, a non-trivial H. must contain an SO(3).
subgroup. As we are going to show, in this case one may have multiple fully supersymmetric
vacua by modifying the choice of the SO(3) subgroup corresponding to the SU(2) x U(1)
vacuum R-symmetry within the full gauge group G given in (3.6).

We will assume in the following that the first vacuum is set at the origin of the scalar
manifold and is invariant under H, (hence the dual SCFT has H. flavor symmetry). In
the second vacuum, the U(1) part of the R-symmetry must also be a diagonal subgroup
of SO(2) € SO(5) and SO(2) C SO(n). Since A is the gauge vector of that U(1) globally
over scalar field space, this can only be if Vy/* and Vy,° differ from their values in the
first vacuum by moduli, that is 545 = &% as discussed in section 3.1. Therefore the two
vacua are only distinguished by the values of Vj;™ for m = 1,2,3. The condition (3.3)
then means that in the second vacuum we find an SO(3)y subgroup of G that is gauged
by A™ = AMyym m =1,2,3. Most generally this subgroup can be a subgroup SO(3)s C
SO(3)1 x SO(3)., where SO(3); is part of the R-symmetry in the original vacuum, while
SO(3). € H.. We can use SO(5,n) rotations to choose this SO(3). group to be in the
M =6,7,8 directions at the origin. We will denote the SO(3). structure constants by

o =g, (3.14)

~10 -



where A is a real constant, while as before we will take

=g, &= —\}59 (3.15)
for the gauge coupling constant of SO(3); x U(1). The gauge fields of SO(3); are thus
AL23 those of SO(3), are AS™8 while A%® are eaten up by tensor fields since they are
charged under the U(1) gauged by A°.

As already seen before, the embedding tensor above leads to an N = 4 vacuum at
the origin of the scalar manifold, with cosmological constant V = —%gQ. We can also
assume that in the second vacuum the coset representative V™ has for m = 1,2,3 only
components in the M = m and M = m + 5 directions. We then parametrize the coset

representative as
Y = e—2¢1t16—2¢2t27—2¢3t38 , (316)

where (tyrn)p©@ = (5[?\/[77 n)p are the generators of s0(5, n) in the fundamental representation.
More explicitly, its non-trivial part is

cosh ¢ 0 0 0 0 —sinh ¢ 0 0
0 cosh @9 0 00 0 — sinh ¢9 0
0 0 coshgps 00 0 0 —sinh ¢s ...
0 0 0 10 0 0 0 -
Y = 0 0 0 01 0 0 0 ] (3.17)
— sinh ¢ 0 0 00 coshg 0 0
0 — sinh ¢o 0 00 0 cosh ¢9 0
0 0 —sinh ¢3 0 0 0 0 cosh ¢3

With the choice above for the embedding tensor and for the scalar fields, the only non-trivial
N = 4 condition on the scalars ¢y, is given by (3.3), which leads to

tanh ¢, tanh ¢,, = Atanh ¢, , (3.18)

with (m,n,p) cyclic permutations of (1,2,3). Apart for the trivial solution ¢,, = 0, these
equations have the solution ¢; = g = ¢35 = ¢ (or ¢1 = —a = —3 = ¢, etc.), with

tanh ¢ = \. (3.19)
This implies that a second vacuum can only exist for
Al < 1. (3.20)
In that vacuum, we find that the coupling constant of SO(3)2 is
128 — g (1 _ )\2)

Using this and the fact that £% = ¢4 = —% g, we find from (3.4) that the scalar > is
determined as

2 (3.21)

-1/6

= (1-% (3.22)
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Then (3.5) gives for the cosmological constant
=221\ (3.23)

In order to identify which gauge symmetries are spontaneously broken we study the
covariant derivative of the scalar fields around the second vacuum. Starting from (2.7),
one can see that in general the scalar covariant derivative reads

D¢am _ d¢am _ éamAO + famnAn _ anmbAb’ (324)

where A" = APYpn, A% = APYp are dressed vectors and we have defined dg®™ = vI"dep”.
We expand the covariant derivative at first order in the field fluctuations around the
second vacuum. In particular the constants

FLT8 _ 286 _ 36T _ (1- )\2)—1/2 7 (3.25)
are non-zero and lead to

D(¢17 . ¢26) _ d(¢17 . ¢26) + 2f178A8
— d(¢"7 — ¢%) — 29 (1 — A2) 7" (4% — A4?) (3.26)

while ¢'7 +$?% remains uncharged (here 6, 7, 8 denote the values taken by the a index). One
also has similar expressions for simultaneous cyclic permutations of the indices m = (123)
and a,b = (678). It follows that Ao = (1 - )\2)_1/2 (Aa - )\A“_5), with a = 6,7, 8, are all
massive, and the gauge group SO(3); x SO(3). is indeed broken to the diagonal subgroup
SO(3), with structure constant (3.21), gauged by A™ = (1 — X\2)~1/2(A™ — XA>*™)_ for
m = 1,2,3. If moreover SO(3). is part of a larger gauge group H., and there are other
generators of H, that do not commute with SO(3),, then the constants fMN M =6,7,8
and N, P > 8 are non-zero. In the second vacuum this leads to non-vanishing structure
constants given by fm“b — sinh ¢ f(M=m+5)(@=N)(b=P) that give a mass to the gauge vectors
corresponding to those symmetries. That means that SO(3); x H, is spontaneously broken
to the product of SO(3)2 with the maximal commutant of SO(3). in H,.

We emphasize that by the procedure above we find a possible second NV = 4 vacuum
for every inequivalent embedding of SO(3). into H. such that the condition (3.20) holds.

In section 3.5 we present a domain wall solution between the two N = 4 vacua above
and discuss its holographic interpretation.

3.4 Conditions for flows with eight Poincaré supercharges

Domain wall solutions preserving eight of the sixteen supercharges were only partially
discussed in [28]. Here we provide their complete characterization (when &)y = 0), which
to the best of our knowledge has not appeared in the literature before.*

Starting from the gravitino shift matrix P defined in (2.15), we introduce the super-

W = /2 Py P . (3.27)

4The analysis is also similar in spirit to the one performed in N = 2 supergravity in [31].

potential
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Then the supersymmetry conditions are equivalent to the flow equations

1 mn Fra m £n]pa
—_y3emn PPIETe = p,m frlpa

42

When these constraints are satisfied, the scalar potential (2.17) can be written in terms of

A =W, (3.28)
Y = -—220:sW, (3.29)
¢ = —3g"o,W , (3.30)
together with the constraints
plmnpral — | (3.31)
s, (W=tpm) =0, (3.32)
femrp, =0, (3.33)
(3.34)

the superpotential as

= ggwazwayw + g

¥2(0sW)? — 6W?2. (3.35)
Clearly, the flow equations and the form of the potential agree with (2.19), (2.20).

One can show that if the constraints (3.31)—(3.34) are satisfied and the superpotential
W is extremized, then the N' = 4 AdS conditions of section 3.1 are recovered. In other
words, the fixed points of flows preserving eight supercharges are N' = 4 AdS solutions.
The converse implication is of course also true, as an N’ = 4 AdS5 solution can be seen as
a domain wall preserving eight Poincaré supercharges and having constant scalars.

Proof. Let us prove the supersymmetric flow equations above. We start from the grav-
itino equation (2.10). Multiplying by P we obtain

P PPUT Vi € = (2P P — (A’)Q] i . (3.36)

In order to solve this equation while preserving eight degrees of freedom in the supersym-
metry parameter €;, we need the two sides to vanish separately [28]. In this way we obtain
the constraint (3.31) and the evolution equation (3.28) for the warp factor, where W is
defined as in (3.27). Since now

PrEpI = w267, (3.37)
we can write
P=WI, (3.38)
so that I2 = —1 is an almost complex structure. Then the gravitino equation (2.10) takes
the form of the projector
Iej +ivse, =0, (3.39)

which precisely reduces the number of independent components in ¢; by half.
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Using the relations just obtained, the differential equation (2.11) for the spinor is
solved by
AlZg; (3.40)

€ — €

where ¢; is a covariantly constant spinor on R'? (with the covariant derivative including
the USp(4) connection).

We now pass to the supersymmetry condition (2.12). Since it has to hold for any
spinor satisfying the projector (3.39), it must be that

(S50, + 15205 P7) (755/“ n ink> —0, (3.41)

which is equivalent to
Yok —22osPIR =0 (3.42)

because the terms linear in 75 cannot compensate the others and thus have to vanish
separately. Using (3.38) and noting that I? = —1 implies Tr(I0sI) = 0, gives the flow
equation (3.29) for X, together with constraint (3.32).

It remains to discuss the supersymmetry equation (2.13). The same argument used to
manipulate equation (2.12) allows to infer that (2.13) together with the projection (3.39)
is equivalent to

¢TI = 2prikp (3.43)

Separating the terms transforming in different irreducible representations of USp(4), we get

PiL; =0,
k
P4 e = 0,
1 L
ivgijpam[kj = gy:c¢1/7 (3.44)

where to obtain the last equation we used vj gl vyij = 4gzy. Recalling the definition of
the gaugino shift matrix (2.16), the first and the second are easily seen to correspond to
constraints (3.33) and (3.34), respectively. The third instead gives the flow equation (3.30),
because

1 ) )
iv;ijpwkm = —39,W. (3.45)

This can be seen by an explicit computation: evaluating the derivative of (3.27) one finds

N 1 ~
—39,W =™ <\/§ Y2 L, + 52—1%@%1@ fqm) : (3.46)
where we used D,V = —Vy%2™. Exactly the same expression is obtained by

evaluating %UZMP“ 1.7, This concludes our proof.

3.5 Flow between two N/ = 4 AdSs vacua and its holographic dual

We now construct a flow connecting the two A/ = 4 AdS5 vacua discussed in section 3.3.
This should correspond to a holographic RG flow connecting two N = 2 four-dimensional
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SCETs. We preserve all the eight Poincaré supersymmetries along this flow and these get
enhanced to sixteen at the AdS fixed points by the eight additional conformal supercharges.

We again use the local symmetry on the scalar manifold to choose the relevant com-
ponents of the embedding tensor as in (3.14), (3.15). We see from the solution for the
second N = 4 vacuum that besides ¥ the only flowing scalars should be ¢1, g2, ¢3 in the
parametrization (3.17) of the coset representative. Since we do not want to break the
diagonal SO(3)2 symmetry along the flow, we set the three scalars equal to each other,
¢1 = ¢2 = ¢3 = ¢. We can then construct the shift matrix (2.15) and the superpoten-
tial (3.27). We obtain:

P =Wl (3.47)
with the superpotential being
1 1
W= g »2 4 39 27! (cosh® ¢ — A7 !sinh? ¢) | (3.48)

where we are assuming g > 0 for simplicity.? It is easy to check that the constraints (3.31)—
(3.34) are satisfied with no further assumptions.

The metric on the subspace spanned by the two scalars is computed from (2.4) and
reads

ds? = 3%72d¥? + 3d¢?. (3.49)

The scalar potential is

V= %gQE_Z [cosh4 ¢ (cosh(2¢) — 2) — 4X! cosh® ¢ sinh® ¢ + A2 sinh? ¢ (cosh(26) + 2)]

— g%% (cosh® ¢ — A sinh® ¢) . (3.50)
The superpotential and the scalar potential are related as in (2.20), namely

3

V:§

»2(9sW)? + g(8¢W)2 —6W?2. (3.51)

Imposing extremization of the superpotential, 9;W = dsW = 0, one recovers the two
fully supersymmetric AdS vacua, that is the one at the origin,
3 9

=1, ¢=0, W:%, V=—3g, (3.52)

and the one at non-trivial values of the scalar fields,

B 1. 14
S5 =(1-23)"" =g, = -log w=2952, vz—;gQEjf.

2 °1-)\’ 2
(3.53)
We recall that we should impose A < 1 in order to have a well-defined vacuum.
It is easy to compute the masses of the scalar fields at these two vacua. They are given
by the eigenvalues of the matrix ¢X¥ dx 0y V where ¢gXV is the inverse of the scalar metric.

5Strictly speaking, formula (3.27) for the superpotential yields the absolute value of the right hand side
of (3.48). However assuming g > 0 we see that both in the first vacuum (X = 1,¢ = 0) and in the second
vacuum the right hand side of (3.48) is positive; we can thus remove the absolute value.
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It is useful to compute the dimensionless scalar mass, i.e. the combination m?2¢? where ¢ is
the scale of AdS. At the UV vacuum one finds

myl? =mil* = —4. (3.54)
At the IR vacuum one has
myl® = -4,  mi*=12. (3.55)

We can now employ the holographic identity m?¢? = A(A—4) to extract the conformal
dimensions of the operators dual to the two scalars at the UV and IR AdS vacua. At the
UV vacuum we find that both scalars are dual to operators of dimension A = 2. In the IR
vacuum Y is still dual to an operator of dimension Ay = 2 and is thus relevant, however
the operator dual to ¢ is irrelevant and has dimension Ay = 6.

Notice that in an N'= 2 SCFT the energy-momentum multiplet contains the SU(2) x
U(1) R-current as well as a real operator of dimension 2 (see for example page 18 in [32]).
We thus find that the conformal dimensions computed in (3.54) and (3.55) are consistent
with identifying the scalar 3 as the gravitational dual to the operator of dimension 2 in the
energy-momentum multiplet. This is also consistent with the supergravity analysis since >
sits in the gravity multiplet of five-dimensional half-maximal supergravity. Through similar
reasoning one finds that the operator dual to the scalar ¢ is the bottom component in the
UV SO(3) flavor current multiplet. This operator is sometimes referred to as momentum
map operator. It transforms as a triplet of both the R-symmetry and the flavor SO(3)’s
and we are giving a vev to the component invariant under the diagonal SO(3) subgroup.

The value of the cosmological constants at the two AdS vacua in (3.54) and (3.55)
determines the ratio of the central charges of the dual SCFTSs, see for example [2]. We find

~3/2
CIR Vir 2
— = == =1-)\". 3.56
cuv (VUV> (3.56)

Since A% < 1 this result is compatible with the a-theorem. Notice that this is also the same

ratio as (gir/g) 2
The flow equations generated by the superpotential (3.48) via (3.28)—(3.30) read

, where g is the gauge coupling of the IR R-symmetry, given in (3.21).

1 1
E, = — g 923 —|— g g (COSh3 ¢ - >\_1 Slnh3 ¢) )
¢ = —g Y~ lsinh ¢ cosh ¢ (Coshqb — X tsinh ¢) )

Tt is possible to solve analytically for ¥ and A as a function of ¢. After a short calculation
one finds that the solution for ¥ is

(cosh¢ — A sinh ¢) 1/3
2(9) = 3.58
@ (cosh(2¢) + ¢1 sinh(2¢))/3 (3.58)
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Figure 1. Left: numerical solutions for ¢(r) (red solid line) and 3(r) (blue solid line). The dashed
red/blue lines are the values for the scalars at the IR vacuum in (3.53). We have fixed g = 1 and
A=l = 1.1. Right: numerical solution for A(r) for the same values of g and A\. The IR/UV is at
large negative/positive values of r. The function A(r) is linear in these regions and the scalars
attain their fixed point values as expected from (3.52) and (3.53).

where c; is an integration constant. In order for the solution to reach the IR, AdS vacuum
in (3.53) we should fix ¢y = —% (A+A7!). In a similar way one can find the following
solution for the warp factor,

1 (sinh ¢ — A~! cosh ¢)(cosh ¢ — A~ sinh ¢)3

Al#) = 6 log sinh3(2¢)

+oes, (3.59)

where cs is a trivial integration constant that can be set to any desired value by shifting
the radial coordinate r. The asymptotic behavior of A close to the two AdS vacua is

1 1
Auv =~ —3 log ¢, Ar ~ 3 log(¢ — @) . (3.60)

This is the expected divergent behavior of the metric function close to the two AdS vacua.
One can plug the analytic solution for ¥(¢) back into the second equation in (3.57) and
solve for the function ¢(r) in quadratures. Then one can use this solutions to find also the
functions 3(r) and A(r). We were not able to solve for ¢(r) analytically, however a typical
numerical plot for the scalars and metric function is not hard to generate, see figure 1.

It is also instructive to analyze the flow close to the UV AdS vacuum in order to
understand what drives it. We can linearize the flow equations in (3.57) around the vacuum
in (3.52) to find

¢~ —g¢, Ya—g(X-1), A~ (3.61)

Using that the AdS scale is £ = 2/g we find the approximate solution
d)%%e_%/e, Y al4uge 2 A % (3.62)

Since the scalars ¢ and X are dual to operators of dimension 2 in the SCFT we can conclude
that the RG flow is driven by vacuum expectation values for these two operators. If there
were explicit sources for the operators the approximate UV solution should have had an
re~2"/¢ term in the asymptotic expansion. This is clearly absent in our setup.
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Expanding the explicit analytic solution in (3.58) around the UV AdS vacuum at ¢ ~ 0
we find

A
E%1+§¢+.... (3.63)
We thus conclude that the constants vy, and vy in (3.62) are related by

A
Uy = g Ve - (364)

It would be interesting to understand field-theoretically the corresponding relation between
the operator vevs.

4 Field theory derivation of ratio between central charges

We pause here our supergravity analysis and present a field theory explanation for the ratio
of UV and IR central charges of N' =2 SCFT’s found holographically in (3.56).

4.1 Anomalies in four-dimensional N' = 2 SCFTs

The R-symmetry of four-dimensional N = 1 SCFTs is U(1)g,._,. The cubic and linear
't Hooft anomalies aref

Tr(R3Y_;) and  Tr(Rn=1). (4.1)

Via N’ = 1 supersymmetric Ward identities these anomalies are related to the conformal
anomalies by the well-known relations [33]
0= 2Ry ) — S Te(Raer), €= S T(Riy) — - Tr(Rpr—r) (4.2)
T 3 VW=D T gy V=L, T 39 V=L T gy HHUN=L '
For four-dimensional /' = 2 SCFTs the R-symmetry is SU(2)g x U(1)g,,_,. The gen-
erators of SU(2) g are denoted by I,, a = 1,2,3.” There is a unique A/ = 1 superconformal
subalgebra of the N = 2 superconformal algebra. This fixes how the U(1)g,,_, is embedded
into the Cartan of the SU(2)r x U(1)g,,_, R-symmetry, see for example [14, 34],

1 4
Ry=1= §RN:2 + 513, (4.3)

and it is this Rpr—; that is used to compute the conformal anomalies via (4.2). Continuous
flavor symmetries in four-dimensional A’ = 2 SCFTs are characterized by a flavor central
charge kr given by the 't Hooft anomaly (see eq. (2.6) of [34])

kF 5ab = —2TI‘(RN:2TaTb) y (4.4)

where T, are the generators of the flavor group.

5The Tr symbol in all equations below should be understood formally. In the presence of a Lagrangian
it indicates a trace over the charges of the chiral fermions in the theory.

"The indices a, b used in the present field theory section are unrelated to the SO(n) indices used in the
rest of the paper.
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4.2 RG flow between N = 2 SCFTs

We are interested in an RG flow which connects two distinct four-dimensional NV = 2
SCFTs. In parallel with the supergravity setup, assume that the UV SCFT has SU(2) g x
U(1)g,_, and an SU(2) r flavor symmetry.® The generators of the flavor symmetry algebra

—_—

in the UV will be denoted by Tj. In the IR SCFT the symmetry is SU(2)p x U(1)Rr,_,

e

where SU(2) ; is the diagonal subgroup of SU(2)g x SU(2)p. The UV conformal anomalies
are computed by (4.2) using the generator

1 4
RV, = SBv=2+ 23, (4.5)

while for the IR conformal anomalies we use the generator

1 4
Ry, = gRsz + 5(13 +T13), (4.6)

where we are assuming that the SU(2)g and SU(2)r generators are normalized in the
same way, so that the respective structure constants are the same. We now note that the
following identities are true due the properties of the generators of SU(2)z and SU(2)p

Tr(R3_oTy) = Tr(T3T3T3) = Tr(I,) = Tr(T,) = 0. (4.7)

With this at hand it is easy to show that

TRRL)Y) = TR - ke, TREL) =T(RRY). ()

Using these identities we arrive at the following simple relations between the UV and IR
conformal anomalies

1 1
alR = ayv — ZkF : CIR = CUV — ZkF : (4.9)

In unitary SCFTs one can show that kp > 0 so the result above is in harmony with the
a-theorem.”
For theories with a = ¢, such as the large N theories described by our holographic

setup, the result (4.9) can be written as

AR _ 4 8 kgiv = =1+ ?r(RN:2T3T3) . (4.10)
Cuv 9 Tr[(RN:I) ] @TI'(RN:2) + Tr(RN:2I3I3)

Now we can use the AdS/CFT dictionary to compare this expression with our super-
gravity results. The relation between the SCF'T symmetry generators and the supergravity
vectors gauging that symmetry is

1 A
Rpar—g — sAY, I3 — —A3, Ty — ZA8, (4.11)
g g

8This analysis can be generalized to a more general flavor symmetry group. In that case the discussion
below applies to an SU(2) subgroup of the flavor group.

9Notice that there are stronger unitarity bounds on the flavor central charge given in Equations (4.16)
and (4.17) of [35].

~19 —



where the 1/g and A\/g rescalings are introduced because in the conventions of section 3.3
the supergravity vectors A123 and A%"8 are gauging the SO(3); and SO(3).. groups with
gauge couplings g and g/\, respectively, while we have assumed that I, and T, have the
same structure constants. Moreover, s is a real constant that is taking care of any potential
rescaling of the A° gauge field in order to match CFT and supergravity conventions. It
turns out that the specific value of this constant is not important for our analysis.

Using (4.11), the 't Hoof anomalies translate into coefficients of supergravity topolog-
ical terms as

2

TI"(R?V’ZQ) — 83d000, TI"(R/\/:213]3) — %dogg, TI(RNZQTng) — Sg);dogg ,
(4.12)
where we are omitting a possible overall factor that will not play any role in our calculation.
Therefore in supergravity language the expression in (4.10) reads

Vir \ d
uv 15-dooo + do33

In five-dimensional half-maximal supergravity, the coefficients dygo, doss, dogg are compo-
nents of a symmetric tensor danp, with M,N,P = {0, M} =0,1,...5+ n, that controls
the topological term. In particular, the gauge variation of the topological term contains
A pHMAHN AS AP where HM are covariant field strengths [24]. Crucially, the only non-
zero components of the daap tensor are doyry = dyony = dynvo = M- Plugging dogg =
0 and dogg = —dp33 into (4.13) we obtain precisely the relation (3.56) we found in supergrav-
ity. Thus we find that the ratio of central charges of the UV and IR N' = 2 SCFTs which we
found in supergravity is precisely reproduced by the anomaly matching calculation above.

The discussion above also provides a field theory counterpart of the constant A entering
in the supergravity embedding tensor and controlling the relation between the vevs of the
operators triggering the flow. Comparing (3.56) with (4.9), we obtain

PR
depy

(4.14)

The existence of the holographic RG flow imposes that 0 < A2 < 1 and it is important to
understand whether this constraint can be understood from the dual large N field theory.
Unitarity of the SCFT immediately implies that A> > 0, however we are not aware of
any field theory argument for why one should find A? < 1. It will be most interesting to
understand better this condition and for which N'= 2 SCFT it is obeyed.

5 Holographic flows from /' =2 to N =1 SCFTs

In this section we study holographic flows between an N = 4 AdS5 vacuum and an N = 2
AdSs vacuum with a different cosmological constant. First we will provide the conditions
for the existence of N' = 2 AdS vacua, independently of whether there is also an N’ = 4
vacuum. Then we consider specific models allowing for an AN/ = 4 AdS vacuum and study
the existence of N/ = 2 AdS vacua. Finally, we construct domain wall solutions between
such AdS vacua and discuss their holographic interpretation.
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5.1 Conditions for N/ = 2 AdS5 vacua

We start by providing general conditions for AdSs solutions of half-maximal gauged super-
gravity preserving eight supercharges, which have not been discussed in the literature so
far. The only assumption we make is 3y = 0.

The supersymmetries of an ' = 2 AdSs solution transform as a doublet of SU(2) ~
USp(2), hence we need to identify the relevant USp(4) — SU(2) breaking of the R-
symmetry of half-maximal supergravity. This was already discussed in [28] and we sum-
marize it here. The gravitino shift matrix (2.15) defines the SO(5) vector

X™ = P, Py (5.1)

with norm

1X| = /XmX,, = \/8 (PmnP,,,)2 — 16 Pmn P, PPAP,,, . (5.2)

Let us focus on the generic case where this does not vanish (we will comment on the special
case X = 0 at the end of this section). Then we can introduce a normalized vector

X" = X"/|X|, (5.3)

which specifies an SO(4) subgroup of SO(5). On the spinors, this defines a reduction
USp(4) — SU(2)4+ x SU(2)_, where the plus and minus refer to the +1 eigenvalues of
X = X,,I'™;7. The supersymmetry preserved by our N' = 2 AdS vacuum transforms
under either one of these SU(2) factors. Without loss of generality we can choose SU(2) 4,
meaning that the supersymmetry parameters satisfy the projection

Xej=¢ . (5.4)

Having identified the USp(4) — SU(2) breaking by means of the vector X™, we find
that the conditions for an N’ = 2 AdS5 vacuum are:

1
O P — ST On Py Xy = 0, (5.6)
n3gma — Vafmmex, =0, (5.7)
N 1 .
(0" = X™X,p) (0 — X" Xg) [P — S pgr [P X" = 0. (5.8)

The proof is given below. We observe that (5.6) and (5.8) are self-duality conditions on
the four-dimensional space orthogonal to X™.' The AdS radius is fixed by

t=w, (5.9)

"We can derive some other, non-independent, relations. Contracting (5.6) with X,, and using (5.5) we
obtain fI™™ X4 = 0, while contracting (5.7) with X, we find £*"X,, = 0.

- 21 —



where

W= \/2 pmnp, . — | X]|

- \/ 2 PPy, — (/8 (P10 Pyy)2 — 16 P By, PP Py, (5.10)

As we will discuss in the next section, this expression for W defines the superpotential
driving supersymmetric flows of the scalar fields. This is extremized at the AdS point.

It would be interesting to study the moduli space of the conditions above. This would
most easily be done by exploiting the symmetry of the scalar manifold to set the undeformed
vacuum at the origin and the unit vector X™ to point in a chosen direction. However, this
analysis goes beyond the scope of the present paper and we leave it for future work.

We can also discuss the spontaneous breaking of the gauge group in the N’ = 2 vacuum
by looking at the scalar covariant derivative (3.24). Working at leading order in the field
fluctuations around the vacuum, separating the term along the vector X™ from those
transverse to it and using the supersymmetry conditions above, we get

1
V2
I D™ = II™dgp™ — HszaangAq + Hnmj?nabAb _ éam (AO +

Xin D™ = Xindg™™ + —=5° £ Ay + X f 70 Ay,

1
V2

where II7" = 67) — X" X,,, projects on the subspace transverse to X,,,. The terms contain-

Z3Xn/1"> ,(5.11)

ing the Ao gauge vectors signal that all non-compact generators of the gauge group are
spontaneously broken in the A/ = 2 vacuum and their gauge bosons acquire a mass via the
Stiickelberg mechanism. This is analogous to what happens in N’ = 4 AdS; vacua. The
remaining terms give generically mass to some of the vectors of the form II" A™ and to the

combination A° + %EZﬂXm/lm. The U(1) generated by the transformation

1
V2

is unbroken and corresponds to the R-symmetry of the A/ = 2 vacuum. This also corre-
sponds to the R-symmetry of the dual N'=1 SCFT.

A 5 A% —3BdN, AT — A™ — X™d), (5.12)

Proof. Let us derive the N/ = 2 supersymmetry conditions given above. Using the AdS
conditions A’ = % and X/ = ¢* = 0, the supersymmetry equations (2.10)—(2.13) reduce to

. 1
iPe; = 7 5€i (5.13)

1
€ YRR (5.14)
OnPie; =0, (5.15)
Pe; =0. (5.16)
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Using (5.13) twice, we obtain

— Xej = [612 - 2Pman"] € (5.17)
and one can easily see that, as long as X does not vanish, and after making a harm-
less sign choice, this is equivalent to the USp(4) — SU(2) projection (5.4) together with
egs. (5.9), (5.10) [28].

Eq. (5.14) is trivially solved in terms of a constant spinor ¢; as ¢; = eiéi. However we
must recall that (5.13), (5.14) were derived from the gravitino variation assuming that the
supersymmetry parameter ¢; does not depend on the R"3 domain wall coordinates, there-
fore they only capture the Poincaré supersymmetry of AdS. When the conformal supersym-
metries are also taken into account, one finds that the gravitino equation does not constrain
the degrees of freedom in ¢; further than (5.4). For this reason, the analysis from now on
differs from the one in [28], where only the Poincaré supersymmetries were considered.

The remaining two equations, namely (5.15) and (5.16), constrain the embedding ten-
sor and lead to the actual conditions for NV = 2 vacua. Since they must hold on any spinor
satisfying the projection (5.4), we infer that

82Pik (5kj —i—ij) =0,
=0.

PYF (57 + X7 (5.18)

Recalling the definition of the shift matrices (2.15), (2.16) and displaying the SO(5) gamma
matrices, these equations can be rewritten as

s P™™ (T )™ (017 + X,p(TP)47) = 0, (5.19)
(V252 (L) + Fom (D)) (849 + X, (T7)e) = 0. (5.20)
Working out the contractions of the USp(4) indices, (5.19) is equivalent to
OsP"X, =0,
dx P — %amnpq’“agppqxr = 0. (5.21)

The first can be combined with the identity P™"X,, = 0 (following from the definition of
X, and the fact that P PP1P"s] trivially vanishes in five dimensions) to give (5.5), while
the second is already the same as (5.6). Separating the different USp(4) representations, it
is straightforward to see that (5.20) is equivalent to (5.7), (5.8). This concludes our proof.
The derivation above assumed that X does not vanish. When X = 0 the solution may
preserve eight Poincaré supercharges, which is the situation considered in section 3. How-
ever, it may still be possible to have N' = 2 AdSj5 vacua with vanishing X. This still requires
the existence of a unit vector X, however now unrelated to the X defined in (5.1), project-
ing out half of the spinor degrees of freedom as in (5.4). For this to be compatible with the
gravitino equation we also need that X;/ and P/ commute, which is equivalent to demand-
ing P"" X, = 0. The rest of the analysis of the supersymmetry equations is unchanged,
hence conditions (5.5)—(5.8) still hold and the AdS radius is given by ¢~! = /2P™ P,
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5.2 Review of conditions for minimally supersymmetric flows

After having identified models admitting both N'= 4 and N/ = 2 AdS; vacua, we will be
interested in describing supersymmetric domain walls connecting them. Away from the
fixed points, the domain wall should preserve just four Poincaré supercharges, namely the
minimal amount of supersymmetry on R3. The necessary and sufficient conditions for such
domain walls in half-maximal supergravity were given in [28].!! Here we summarize them.

The conditions use the same vector X and the same superpotential W defined in
section 5.1, however now the scalars are non-constant and depend on the radial coordinate.
In addition to solving the flow equations

A=W, (5.22)
Y = -—220sW, (5.23)
" = -3¢ oW, (5.24)

one has to impose the following constraints along the flow:

OsX™ =0, (5.25)
os (WP =0, (5.26)
£ X, =0, (5.27)
fmna 4 rpga pmn
+ WP-qufﬁq P =0, (5.28)
where we have introduced
mn ]' mn 1 mn T
P+ = 5 (P - 56 Pq quXT) (529)
and 1
I (5= X7 X,)(6 — XX P S fPX (5.30)

both living in the four-dimensional space orthogonal to X and being anti-self-dual.'?

The superpotential (5.10) can also be written as W = 2,/P7" P, ,,. One can then
use (5.26) to show that Ox Py is proportional to Py, and is therefore analogous to (5.28).

We are interested in constructing domain wall solutions interpolating between an
N = 4 and an N' = 2 AdS5 vacuum. Thus one of the fixed points has to satisfy the
restrictive NV = 4 conditions (3.1)—(3.4).1 The other fixed point instead has to satisfy the
N = 2 conditions (5.5)—(5.8). One can see that the latter are in fact equivalent to the con-
straints (5.25)—(5.28), together with the condition that the superpotential is extremized. We
now proceed to discuss two explicit examples which display all these features.

"The analysis of [28] was restricted to an embedding tensor satisfying £ar = 0. Recall that we are also
assuming this condition here as it is necessary for a fully supersymmetric AdSs vacuum. Also note that
in [28] two superpotentials W4 were constructed, depending on the preserved supersymmetry; without loss
of generality here we choose W = W,.

12The “4” subscript comes from the original definitions in [28]. Although expressed in a slightly different
form, these constraints are equivalent to egs. (3.29), (3.31), (3.32) in [28].

13Notice that the vector X™ has to vanish there, so that the four Poincaré supersymmetries preserved
along the flow can be enhanced to eight (plus the conformal supersymmetries).

— 24 —



5.3 A model with one N = 2 vacuum

An example of a supersymmetric domain wall solution connecting a maximally supersym-
metric AdS; vacuum to an N = 2 AdSs vacuum is the well-known Freedman-Gubser-
Pilch-Warner (FGPW) flow [2]. This was originally constructed in the SO(6) maximal
supergravity, where the UV vacuum is the standard SO(6) invariant critical point, while
the IR N = 2 vacuum is the one first found in [36]. As discussed in [2] this domain wall
solution can also be described in half-maximal gauged supergravity by a model with two
N = 4 vector multiplets and a gauging determined by the truncation of SO(6) maximal
supergravity. Here we extend the FGPW model allowing for a more general gauging. We
could also allow for an arbitrary number of vector multiplets as done in section 3 when
studying flows between two N = 4 vacua (see [15] for such an extension of the FGPW
model), however all essential features of the flow are already captured by a model with two
multiplets, so we restrict to that.

We choose the embedding tensor as

F128 _ o ¢4 — 7%’ 7= _2gp7 1, (5.31)
where g and p are parameters. The vectors A', A2 A3 gauge SU(2), A° gauges U(1), while
A* A5 A5 AT are eaten up by tensor fields.

The FGPW model obtained by truncating SO(6) maximal supergravity has p = 2,
so that £7 = €45, In this case the fully superymmetric vacuum has a complex modulus,
parameterizing the space SU(1,1)/U(1). Since the conditions of section 3.1 are satisfied,
we have a fully supersymmetric solution at the origin of the scalar manifold for any value
of p. In order to obtain an N'= 2 vacuum at some other point of the scalar manifold, we
break the SO(3) rotations in the 1,2, 3 directions by mixing the 1,2 and 6,7 directions on

the scalar manifold. We thus parameterize the % coset representative as'?

cosh ¢ 0 000 —sinh¢ 0

0 coshg 000 0 —sinh ¢
0 0 100 O 0

Y = e 2he—20tr 0 0 010 0 0 : (5.32)
0 0 001 O 0

— sinh ¢ 0 000 cosho 0
0 —sinh¢ 000 0 cosh ¢
The dressed embedding tensor (2.8) then reads:
€ = —V2gp™ " sink® ¢, 1% = geosh® .,
£ = - f17 = — %6 = gsinh ¢ cosh ¢,

V2’ (5.33)
é” = —526 = \/igp_l sinh ¢ cosh ¢, f367 = gsinh2 o,

7= —Vagp~t cosh® ¢,

MWe could introduce two different scalars but the A/ = 2 vacuum conditions would set them equal.
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where by 6,7 we are denoting the values taken by the a index. For the unit vector defining
the USp(4) — SU(2) projection of the supersymmetries we find X™ = sign(p)d5".
The metric on the space spanned by the scalars X, ¢ in this case is

ds* = 3%72d%% 4 2d¢?, (5.34)
while the scalar potential is

1
V = g?cosh? ¢ |2 p2sinh? ¢ — ¥ + 12_2 (cosh(2¢) — 3)| . (5.35)

The N = 2 vacuum conditions (5.5), (5.8) are satisfied automatically. Eq. (5.6) gives

cosh® ¢ = % (1 — 2|p| ' sinh? ¢) , (5.36)

while (5.7) yields
(1—|p|™'23)sinh¢ = 0. (5.37)

In addition to the N' = 4 AdSs5 solution

Y=1, $=0, V:—%f, (5.38)
we obtain the A/ = 2 AdSs solution

¥3 = 2 _ L1 poprayp2 —2 V= Lg2p 30 2
=lpl, =g (1+2] p* + |l : = =59 I+ ol)

(5.39)
Note that the latter only exists for |p| > 1 since only then we have a real scalar ¢. For
lp| = 1 the N/ = 2 AdS;5 vacuum merges with the A" = 4 vacuum at the origin.
In the N' = 2 vacuum most of the gauge symmetries are broken. From (5.11) we see
that the non-trivial scalar covariant derivatives around this vacuum are:

DB = 6% + ¢ |P\3—1A2’

-1
D¢73:d¢73:|:g |p|3 Al,

D% — ¢™) = d(¢™ - ¢™") F %g\/m (V2omta®+ %) . (5.40)

The vector fields on the right hand side get a mass through the Stiickelberg mechanism.
The vectors in the first two lines are just two of the gauge vectors of the gauged SU(2).
The N = 2 vacuum is invariant under the combination (%p‘lAO — A?’), corresponding
to the U(1) R-symmetry.

We can now move on to study the supersymmetric flow connecting the N’ = 4 and the
N = 2 vacua. The superpotential reads

W= g »~ cosh? ¢ + %22 (1 —2|p| " sinh? ) , (5.41)

where we are assuming g > 0. It is easy to check that with the parameterization (5.32) of
the coset representative, the constraints (5.25)—(5.28) are satisfied. This means that it is

— 96 —



consistent to assume that the only flowing scalars are 3, ¢. One can also check that the
scalar potential and the superpotential are related as

V= %22(6214/)2 + Z((%W)Q —6W2. (5.42)

in agreement with (2.20). The flow equations (3.29), (3.30) for the scalar fields read
Y = % [cosh? ¢ + 22 (2]p| ' sinh® ¢ — 1)] , (5.43)
¢ = % (o] 7152 = £71) sinh(2¢) . (5.44)

From now on we assume without loss of generality that p > 0 so that we can remove the
absolute values.

Let us call the operators dual to the two scalars Oy and Os,. Expanding around the
N = 4 vacuum one finds that the dimensionless masses of the two scalars are

mil? = —4(1—p72),  mpl?=-4. (5.45)

Using the standard AdS/CFT relation m2¢? = A(A — 4) this implies that the dimensions

of the dual operators are'®

2
AO¢:2+*, A@E:2. (5.46)
P

Along the RG flow there is operator mixing and in the IR, SCFT we have two new eigenstates
of the dilatation operator. The corresponding operator dimensions are

72 72
Ap, =3 25 — ——— Ap, =1 25 — —— . 5.47
01 +4/ 24, O + 21 ( )

For any p > 1 we have that Ap, > 4 and thus this is always an irrelevant operator. For
Ap, one finds
2<Np, <4, 1<p<25,

(5.48)
4<Ap, <6, 25<p< 0.
The ratio of central charges (in the planar limit) of the dual SCFTs is
OR (VN =2>_3/2 _ % (5.49)
cuv V=4 (2+p)?

Since the N' = 2 vacuum only exists for p > 1, we find that the well-known 27/32 ratio
of central charges [2, 14] is realized only for p = 2. As already noticed, this value is also
exactly the one where one finds a modulus for the A/ = 4 vacuum, corresponding to a
marginal coupling in the dual SCFT.

150One could in principle choose the other root of the quadratic equation for Ap s> 18 Ao, =2— %. This
however violates the unitarity bound, A > 1, for 1 < p < 2. Moreover for p = 2 we know from the FGPW

model that Ap, = 3 which is obeyed for the choice in (5.46).
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Figure 2. Left: numerical solutions for ¢(r) (red solid line) and v/6log ¥(r) (blue solid line). The
dashed red/blue lines are the values for the scalars at the IR N’ = 2 AdSs vacuum at r — —oo.
The UV N = 2 AdSs vacuum is at r — oo with ¢ = v/6log¥® = 0 there. We have fixed g = 1 and
p = 2. Right: a contour plot of the superpotential as a function of the scalars v/6log % (horizontal
axis) and ¢ (vertical axis) together with a parametric plot of the numerical solution for the scalars
from the left panel.

Let us compare the ratio in (5.49) with the ratio of central charges from equation (2.22)
in [19] where we fix z = 1 for the UV theory (this corresponds to the Maldacena-Nufiez
N = 2 solution) and the goal is to map the parameter z from [19] to the parameter p
in (5.49). From [19] we find

cr 922 — 14 (1+322)%/2
cov 1622 '

(5.50)

One can now find a map between 22 and p. The explicit expression is not very illuminating
but one finds that 2> = 0 is mapped to p = 2 and 2% = 1 is mapped to p = 1. Moreover
the map is monotonic, i.e. if we restrict ourselves to 0 < 22 < 1 we have to restrict p to
be in the range 2 > p > 1. This suggest that our model with two vector multiplets may
describe holographic RG flows between the N’ = 2 Maldacena-Ntnez vacuum and some of
the N' =1 vacua with |z|] < 1 studied in [19].

The flow equations (5.43) for this model can be integrated numerically. This is illus-
trated in figure 2. It is clear from this figure that there is a smooth domain wall solution
which interpolates between the N’ =4 and N' = 2 AdS; vacua.

To understand better what drives the flow we can expand the BPS flow equations
near the N' = 4 AdS5 vacuum in the UV. The linearized expansion of the BPS equations
depends on the value of p. For p > 2 we find

¢ = cy e~ (2=2/0)r/t Srl+ege /0 (5.51)
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while for 1 < p < 2 the result is

b~y e~ =2/t Yr14 ci?éi_fio)e_‘lr(l_pl)/ﬁ +ege 2/t (5.52)
Using (5.46) we conclude that the RG flow is driven by a source term for the operator
Oy proportional to the constant cy. The constant cx is related to the vev of the operator
Oy, which is dynamically generated along the RG flow. The expression in (5.51) has the
expected form for scalar fields with masses as in (5.45). The result in (5.52) however is
different since for 1 < p < 2 one should keep quadratic (and higher order) terms in ¢ in
the linearized expansion of the differential equation for the scalar ¥ in (5.43).

The case p = 2 should be treated separately and the linearized expansion of the BPS
equations near the N'= 4 AdSs then reads

4
¢~ cy e/t Y1+ @ci re 2/t 4 eg e/ (5.53)

This is the behavior of an RG flow triggered by sources for operators of dimensions 3 and
2. This behavior was also observed in section 5 of [2]. The regular numerical solution
displayed in figure 2 fixes a particular relation between the constants cs and csx; which
depends on the value of p.

Now we turn our attention to reproducing the ratio (5.49) between the central charges
from a field theory argument. This can be viewed as a generalization of the results in [14]
which is reproduced by selecting p = 2 above. To this end suppose that we have a deforma-
tion of the N = 2 SCFT dual to the N’ = 4 AdS5 vacuum in the UV which is such that the
resulting RG flow ends in an /' = 1 SCFT with a superconformal R-symmetry given by the
following linear combination of the Cartan generators of the UV SU(2) x U(1) R-symmetry

1+ 4—2
aRN:2+ «

R}, = I. (5.54)

Using this superconformal R-symmetry and the anomaly relations in (4.2) one readily
finds the following relation between the UV and IR central charges

3
1052(06 + 1)CUV s

1
ar = a(a® — ayy + glat - 3a”)cuv -

ajr = (1 + a3)aUV — ( )
5.95

For a = 1/2 the result above reproduces the anomaly calculation in [14]. When the UV
theory has ayy = cyv, such as in SCFTs with a weakly coupled gravity dual, one finds
that the relations in (5.55) reduce to

1
AR = CIR = Z(a + 1)(a — 2)2 ayy - (5.56)

This suggests that to reproduce the supergravity result found in (5.49) above we have to

make the identification!® 949
p=12 (5.57)

2—«

16Unitarity and the a-theorem imply that 2 > a > 0 which is mapped to the range co > p > 1 in the
supergravity analysis.
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This indeed turns out to be the case since as we show in appendix B the combination
of gauge fields which are massless at the IR /' = 2 vacuum in (5.39) corresponds to the
generator

RB =P Ryot——1Is, (5.58)

p+2 p+2

which after the identification in (5.57) reduces to (5.54). As an additional consistency
check one can show that the charge of the scalar ¢ under the supergravity gauge field
corresponding to the UV superconformal R-symmetry generator, i.e. the one in (5.54)
with o = 0, is %(1 + p~1). This should correspond to the superconformal R-charge of the
operator Oy in the dual SCFT. It is generally expected that operators dual to supergravity
scalar fields belong to chiral multiplets and thus the conformal dimension of O should be

determined by its R-charge via the relation

4 2
Ay=-x-(1+p H=2+72. 5.59
s=g Xz =242 (5.59)

It is reassuring to find that this result nicely agrees with the one obtained in (5.46) from
an explicit evaluation of the mass of the scalar ¢.

5.4 A model with two N/ = 2 vacua

We now consider a more involved model displaying an N/ = 4 vacuum and two distinct
N = 2 vacua. Since this is similar to the previous example we studied we keep the
presentation short. We take four vector multiplets and choose the embedding tensor as

g _ _
R T (L A Y )

For simplicity, we assume g > 0, p; > 0, p2 > 0. We parameterize an % coset

element in terms of the scalar fields ¢, x as

V — e—2(;5 cos X (t16+t27)—2¢ sin x (tlg-l—tzg)

ch¢ 0 000 —she cos x 0 —shg sin x 0

0 cho 000 0 —sh¢ cos x 0 —sh¢sin x
0 0 100 0 0 0 0
0 0 010 0 0 0 0
= 0 0 001 0 0 0 0
—she cos x 0 0 0 0 ch¢cos? x + sin? x 0 shQ% sin 2y 0

0 —sh¢cosy 0 0 0 0 ch¢ cos? x + sin? x 0 Sh2% sin 2y
—shesin x 0 000 shQ% sin 2 0 ch¢ sin? x 4 cos? x 0

0 —sh¢siny 0 0 0 0 shzg sin 2 0 chgsin? x + cos? x

Again we have X™ = ¢5*. In addition to the usual N' = 4 vacuum at the origin with
cosmological constant V' = —% g%, we obtain two N/ = 2 vacua by solving the supersymme-
try conditions in a way similar to the example in section 5.3. The first N’ = 2 vacuum is

1 2 _
S =p1, x=0, 82¢:§<1+2P1+2\/P%+Pl—2>7 V(1i2:_%p12/3(2+p1)27

(5.61)
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while the second is

=3 _ EE SIS v [ o @ _ 9" -2 2
=p2, X—27 e —3< + 2p2 + 24/ p5 + p2 2), V_/\/'ZQ_ 602 (24 p2)*.
(5.62)
Note that for the two vacua to be distinct we need p; # pz. In addition it is simple to
find the ratio of central charges of the dual SCFTs. If we assume that p2 > p; > 1 we find
the N' = 4 vacuum is in the UV, the vacuum in (5.61) is intermediate and the vacuum

in (5.62) is in the deep IR,

1 1 —-3/2 9 9 —3/2
i _ Vil __2T; ‘i _ Vi, = _F2 (56
cuv V=4 2+pm)3’ cuv V=4 (24 p2)3
The metric on the space spanned by the three scalars X, ¢, x is
ds? = 3%72d%2 + 2d¢? + 2sinh? ¢ dy 2. (5.64)

The expression for the scalar potential is not particularly illuminating, however it can
easily be recovered using (2.20) and the superpotential

W = % Y~ cosh? ¢ + % »? [1 -2 (pl_1 cos? x + p2_1 sin? X) sinh? qﬂ . (5.65)

Let us now discuss possible supersymmetric flows connecting the three supersymmet-
ric vacua in this model. The constraints (5.25)—(5.28) are satisfied, so a flow involving
¥, ¢, x will not require switching on other scalars. The superpotential above generates the
following flow equations for the scalar fields:

Y = % [cosh2 ¢+ 253 (,OI1 cos? x + py ' sin® X) sinh® ¢ — 23] )
¢ = 5[ (o cos’x + py ' sin x) — 271 ] sinh(29),
g9, _ _ :
X = 2 (pa' —pr') E%sin(2y). (5.66)

There are flows from the A/ = 4 vacuum to either one of the ' = 2 vacua with y = 0 (5.61)
or x = 7/2 (5.61). These flows have a constant value for the scalar x and can be constructed
numerically in a way very similar to the one described at the end of section 5.3. On the other
hand, in order to flow from the vacuum in (5.61) to the one in (5.62) the scalar y has to
flow. This seems to imply that the numerical integration of the BPS flow equations is finely
tuned and it is more challenging to construct these flows numerically. This is most likely
related to the fact that both vacua in (5.61) and (5.62) are saddle points of the potential V.

6 Discussion

In this paper we studied the general structure of supersymmetric AdS vacua in half-maximal
five-dimensional gauged supergravity as well as possible supersymmetric domain-wall so-
lutions that connect them. Our results have a direct application to holography where they
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translate into constraints on the possible conformal vacua and RG flows of four-dimensional
N =2 SCFTs with a gravity dual.

The approach we took in this work is “bottom-up”, i.e. we eschewed any reference to
a particular embedding of the gauged supergravity into string or M-theory and studied the
general structure of the five-dimensional theory. On one hand this allowed us to obtain
very general results that should be applicable to all four-dimensional N’ = 2 SCFTs with
a holographic dual, but on the other hand leaves the question open to what are concrete
realizations in ten or eleven dimensions. For instance the domain wall connecting two
supersymmetric AdSs vacua with sixteen supercharges studied in section 3.5 should imply
a corresponding RG flow connecting two A/ = 2 SCFTs with a gravity dual. We provided
further evidence for this claim with the anomaly calculation in section 4, however we are
not aware of an explicit example of such an RG flow either in a “top-down” model arising
from string or M-theory or in field theory. A potential realization of this A/ = 2 RG flow
might be provided by the theories of class S, i.e. N' = 2 SCFTs arising from Mb5-branes
compactified on a punctured Riemann surface, discussed in [37]. The vev deformation
of the UV N = 2 SCFTs which reduces the SU(2) R-symmetry and the SU(2)p flavor
symmetry to the diagonal subgroup (preserved all along the flow) may be provided by an
appropriate “Higgsing of a puncture” on the Riemann surface. It was furthermore shown
in [37] how to describe this class of strongly interacting A/ = 2 SCFTs holographically in M-
theory. What is missing to connect this set-up to our results is a well-defined prescription
to assign a given five-dimensional gauged supergravity theory to any of the AdSs eleven-
dimensional solutions in [37]. It will be interesting to understand how to make such a link.
We should also stress that the results presented in section 4 for the conformal anomalies
of the UV and IR V' = 2 SCFTs are valid beyond the supergravity approximation. It may
be useful to emphasize that the IR central charges arr and cr in section 4 are those of
the full IR SCFT. As a consequence of the partial spontaneous breaking of the UV global
symmetry, the IR theory will contain a free sector made of Goldstone bosons in addition to
the interacting sector.!” In class S theories it is known how to separate the contributions
of the Goldstone bosons from the rest, see e.g. [38].

We were also able to describe general constraints for the existence of AdSs vacua
and domain-walls with eight supercharges in a gauged supergravity theory with at least
one AdSs vacuum with 16 supercharges. These results should be useful to understand
RG flows between N’ = 2 and N/ = 1 SCFTs in four dimensions. The model with two
vector multiplets discussed in section 5.3 is a particularly simple example of our general
results which nevertheless is rich enough to capture interesting physics. For p = 2 this
model provides a holographic realization of the universal field theory RG flow discussed
n [14]. A well-known “top-down” example of this RG flow is provided by the N' =1 mass
deformation of N' =4 SYM [1, 2], as well as its Zj, orbifold [15, 16, 39]. It is widely expected
that this universal RG flow should connect also the N' = 2 and N' = 1 Maldacena-Ntez
SCFTs arising from Mb5-branes wrapping a smooth Riemann surface [17]. These theories
have holographic dual AdSs vacua but there is no known domain wall solution connecting

1"We thank Prarit Agarwal for useful discussions on this.
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them. The supergravity solution with p = 2 described in section 5.3 should serve as a
five-dimensional effective description of this holographic RG flow. It will certainly be very
interesting to embed this five-dimensional model into a consistent truncation of eleven-
dimensional supergravity. We are not aware of an explicit embedding of the model with
p # 2 in section 5.3 into string or M-theory. However it is natural to conjecture that it may
be describing holographic RG flows between the N’ = 2 Maldacena-Ntunez SCFT and one of
the N'=1 SCFTs with 0 < |z| < 1 studied in [18, 19]. By the same token we can speculate
that the model with one /' = 4 and two N = 2 vacua described in section 5.4 may describe
holographic RG flows connecting the ' = 2 Maldacena-Nufiez vacuum with two of the V' =
1 theories with |z| < 1in [18, 19]. To establish these conjectures rigorously one has to show
how to construct a consistent truncation for the eleven-dimensional supergravity solutions
of [18, 19] to five-dimensional gauged supergravity. Partial progress in this direction was
presented in [40], however the solution to the full problem is still out of reach.

Finally we would like to point out that various interesting conjectures about the struc-
ture of RG flows in quantum field theory were presented in [41, 42]. Supersymmetric CFTs
with holographic duals and the RG flows connecting them provide a natural playing ground
to explore these conjectures and we hope that some of our results may be useful in this
context.
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A TUniqueness of half-maximal AdS solutions in various dimensions

Half-maximal gauged supergravity theories in different dimensions share a very similar
structure. Their matter content and their couplings are completely fixed by the number
of vector multiplets and the embedding tensor specifying the gauge group. Therefore a
natural question is the possible existence of a no-go result for multiple N' = 4 vacua within
half-maximal supergravity in dimension other than five, similar to the one obtained in
section 3.2. Indeed, in this appendix we show that, again under the assumption that the
only compact subgroup of the gauge group is the R-symmetry of the vacuum, an analogous
proof holds in dimensions four, six and seven. In more general situations it is natural to
expect that there may be two distinct N' = 4 vacua in four, six and seven dimensions. This
should be viewed as a generalization of the five-dimensional results presented in section 3.3.
It should then be possible to exhibit holographic RG flows connecting these distinct AdS
vacua analogous to the ones studied in section 3.5. Indeed, examples of such flows in six-
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and seven-dimensional half-maximal gauged supergravity have been studied in [43, 44]. Tt
will be interesting to study this further and understand these holographic RG flows from
the point of the dual SCFT.

A.1 Four dimensions

In four dimensions, fully supersymmetric AdS vacua in half-maximal supergravity have
been discussed in [6]. There it was shown that the gauge group of N'=4 AdS vacua is

G = H, xH_xH. C SO(6,n), (A1)

so that Hy have the same properties as Hy. in five dimensions, see (3.6), but with the
novelty that H, and H_ are electrically and magnetically gauged, respectively. In the
AdS,4 vacuum we find again the breaking

Hy — SU(2)4 . (A.2)

In the holographically dual 3d N' =4 SCFT, SU(2); x SU(2)_ is the R-symmetry group.
H_ is again compact and semi-simple and is gauged under vector multiplet gauge bosons.
It corresponds to the group of flavor symmetries in the dual SCFT. The embedding tensor

has components /NP (while ¢! have to vanish in the N = 4 vacuum). If we define

P = Yy "YNVpP (T MNP MNPy (A.3)

where 7 is the SL(2) complex scalar in the gravity multiplet, then the A" = 4 supersymmetry
conditions read

VMmVNanafiMNP =0, (A.4)
éamnpqrsfqrs = —if""P, (A.5)

Using the quadratic constraints and the symmetries of the scalar manifold one can take

1 1
— ’ - ipu. A6
f123 = 3\@# fa56 3\/§1H ( )

The cosmological constant is V = —%fm”pffnnp = —|ul?

Let us fix one N' = 4 AdS4 vacuum to be at the origin, and let us assume that H, is
trivial. Then we can argue analogously to the five-dimensional case that because of (A.4),
the following identities hold (up to SO(6) rotations) in the second vacuum

V' = AuNont, vt = AuNont,
V2 = AVon?, Va® = AnNoN®, (A7)
Vi® = AnNon?, Viu® = AnNon®,

where A and A describe the embedding of SU(2)+ into Hy, respectively, which correspond

to Goldstone directions in Vj/™, cf. (3.12). Note that the two SU(2) gauge groups cannot
mix since they are electrically and magnetically gauged.
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A.2 Six dimensions

In six dimensions, half-maximally supersymmetric AdS vacua are the only allowed super-
symmetric AdS vacua and have been constructed and studied in [10, 45-47]. Let us start
by briefly reviewing [10].
The gauge group is
G = Hx H' C SO(4,n), (A.8)

where H C SO(3,m) and H' C SO(1,n —m) for some m < n. As in lower dimensions, this
gauge group is spontaneously broken in a supersymmetric vacuum to its maximal compact

subgroup, which turns out to be
SO(3) x H., (A.9)

where SO(3) is gauged by three of the four graviphotons and corresponds to the R-
symmetry group of the dual CF'T, while H. C SO(n—m) corresponds to flavor symmetries.
The supersymmetry constraints on the embedding tensor reflect the discussion of the

gauge group and are given by

Va VN VPl fUYE = 0,

V" VNOVpt I =0,

V"IN VR MNP =0,

Va " VN VPP FUNE = g emnp (A.10)
for m = 1,2,3. The gauge coupling g and the mass m of the two-form in the gravity
multiplet together also determine the cosmological constant via

V = —207m? (3%1)3/2. (A.11)

Again, if we fix one half-maximal AdSg vacuum to sit at the origin and we assume
that H,. is empty, we can argue from the third equation in (A.10) that the vielbein
V%, Var™, Var®) of any other N' = 4 AdSg vacuum must be related by the following
embedding

Vi = SN,

V' = AnVon',

Vi® = AnVon?,

Vit = AyNon?, (A.12)
where A has the same form as in (3.12) and therefore describes the embedding of SO(3)
into H'. Similarly, = is a transformation in SO(1,n —m) whose non-vanishing components
are Zp® and Z,° given by

0% = Al fpo?. (A.13)

Again, the transformations A and = are precisely the Goldstone modes of the model, and
thus the N' = 4 vacuum is unique.

When H, contains an SO(3) subgroup, multiple supersymmetric AdSg solutions pre-

serving all sixteen supercharges can be found. A supersymmetric flow between two such
solutions was constructed in [43].
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A.3 Seven dimensions

Supersymmetric AdS vacua of half-maximal supergravity in seven dimensions have been
discussed in [7]. Analogous to lower dimensions, the gauge group is of the form

G=H x H. Cc SO(3,n), (A.14)

where H is spontaneously broken in the AdS vacuum to its maximal compact subgroup
SO(3), which is gauged by graviphotons and corresponds to the R-symmetry of the dual
CFT. The compact group H. C SO(n) corresponds to flavor symmetries in the CFT. This
result is found by inspecting the supersymmetry conditions imposed on the embedding
tensor components fynp, v These read:

Em =0,
VMmVNTLVPanNP -0 ’
V™ VN"WpP fUNE — g gmnp (A.15)

where the gauge coupling constant g determines the cosmological constant. Again, if H, is
trivial the only transformations that leave these conditions invariant are

Vit = Ay Nont,
Vir? = AyNon?,

Vit = AN on?, (A.16)

with A given by (3.12), which corresponds to shifts by a Goldstone boson, establishing
uniqueness of the supersymmetric AdS7 vacuum.

Also in this case, when H, contains an SO(3) subgroup, one can have multiple AdS7
solutions preserving sixteen supercharges, as well as supersymmetric flows connecting them,
see [44] for an example.

B The generator of the IR U(1)g symmetry

In this appendix we show that the generator of the U(1) R-symmetry at the IR fixed point
of the holographic flow discussed in section 5.3 is given in field theory units by

L (B.1)

We can extract the information we need from the action of the supergravity gauge
covariant derivative on the spinor parameter ¢;. The general form of the gauge covariant
derivative was given in eq. (2.7). When acting on the spinor parameter, this reads:

1 . . . .
De = Ve~ £(= AT [y + A foPTy, + ATy )e (B.2)

where V is the covariant derivative in the ungauged supergravity theory and we are sup-
pressing the USp(4) indices on the spinor as well as on the SO(5) gamma matrices.
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Before coming to the IR vacuum, let us consider the vacuum at the origin of the scalar
manifold, preserving sixteen supercharges. Recalling the form (5.31) of the embedding
tensor, we have at that point:

1 g
De = Ve— [ —=gA™e™T, — 2 _AT )e, B.3
( 49 np 2\/5 45 ( )
where in this equation the indices m,n,p run over 1,2,3 only. The embedding of the
SU(2) x U(1) R-symmetry of the N/ = 4 vacuum in USp(4) is such that we have the
following identification:
1

T45 = Ry—2, _ngnprnp =I,, m=123. (B.4)

Therefore the covariant derivative can be written as

€ € <g m \/T N2> € ( )

Now let us consider the supersymmetric flow discussed in section 5.3. Since we have
found there that X,/ = (I'3);/, the supersymmetries being preserved along the flow are

€4 = 1+2F3 €. This also implies I'y5e;. = —T'19e4. Acting with the projector 1+2F3 on (B.2)

to select these supersymmetries and using the expression for the dressed components of
the embedding tensor given in (5.33), we arrive at

1
Dey = Ve, — % <—A3 cosh? ¢ + prAO(p — 2sinh? ¢)> | SPY (B.6)

At the UV vacuum ¢ = 0 and this yields

9

2v2

Of the two symmetries generated by Ra—o and I3, one linear combination is preserved

De, = Ve, — (gA%I3 — ARpr—o)ey . (B.7)

along the flow, while another one is spontaneously broken, with the associated gauge field
becoming massive. The symmetry that is preserved is manifest by evaluating the covariant

derivative at the IR vacuum. Recalling that the latter is characterized by cosh? ¢ = %2,
sinh? ¢ = pT_l, we find
De; = Ve, — ART e, | (B.8)
with
1
AR = 9oy < —140 _ A3> : B.9
5(2+7) Nolk (B.9)

and ['19 is the generator of the IR R-symmetry, which should be understood as the linear
combination of Ryr—s and I3 we are after. In addition, when in the main text we discussed
the gauge symmetries being broken, we found that the combination

Abroken — g(\/ipilAO +A3) (B.lO)
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is massive (this is determined up to an overall normalization that will not matter). Inverting
the relation between A™, AProken and A9 A3 we obtain

A0 — V2p ( Abroken 6 AIR>

3g 24p
1 12

A3 - <Abroken _ AIR> ) (B.ll)
39 2+p

Plugging this in (B.7), we find that the generator multiplying A™ is (B.1), which is what
we wanted to show.

As an additional consistency check of our results, let us retrieve the ratio of central
charges by studying the topological term in supergravity. After ignoring all other vector
fields, the relevant Chern-Simons term of half-maximal supergravity is

Log ~ A" AdA3 AdA3. (B.12)
If we also discard the vector becoming massive in the IR vacuum, the remaining Chern-

32v/2p
932+ p)?

The coefficient of this term in the supergravity Lagrangian is proportional to the cubic

Simons term is

LB~ AR A FIR A IR (B.13)

R-symmetry anomaly of the IR superconformal R-symmetry which gives the leading con-
tribution to the ajr = cir conformal anomaly. The analogous Chern-Simons term in the
UV can be obtained by setting p — 1 in (B.13) to find

LUV 322
Cs ™~ 2793

AV A FUV ARV (B.14)

Taking the ratio of the two coefficients in (B.13) and (B.14) above we obtain the same
result as the central charge ratio in (5.49) computed by comparing the IR and UV values
of the cosmological constant.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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