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Abstract

In this article, we aim to study the problem of the growth of intermetallic phases in solder

joints undergoing mechanical deformation, using a phase-field model for multi-phase systems

that can treat diffusion, elastic and plastic deformation. A suitable model is formulated

and applied to Sn–Cu/Cu lead-free solder joints. The growth of the intermetallic layers

during solid-state annealing is simulated for different strain states. We assess the values

of stiffness tensors available in literature and perform ab initio calculations to support the

selection of reasonable values from literature. We also perform a parametric study with

different eigenstrain values and applied strains. We find that there is a significant effect

of the considered eigenstrains and applied strains on the growth kinetics of the system and

parabolic growth kinetics is followed in cases where the intermetallic layers grow. We thereby

establish the importance of strain in the growth of intermetallic layers and the need for more

targeted experiments on the role of strain in the reliability of the solder joint.

Keywords: Phase-field modelling, Lead-free solders, Microstructure, Deformation, ab

initio calculations

1. Introduction

Lead-free soldering has been an active area of research for the last decade following the

ban on the usage of lead in microelectronic devices. Sn-Cu based lead-free solder alloys
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are mostly used in electronic packaging and high temperature applications [1, 2]. During

the soldering process, Cu3Sn and Cu6Sn5 intermetallic compound (IMC) layers form at the5

interface between the Cu substrate and the Sn-Cu solder alloy. When the layers are thin, the

intermetallic phases give strength to the solder joint. However, due to the large difference

in mechanical properties between the hard, but brittle, IMCs and the soft Cu-substrate and

Sn-Cu solder, regions vulnerable to crack formation are created [3] when the IMC layers

grow in thickness. Therefore, controlling the growth of the IMCs is key to improving the10

reliability of the solder joints, however, is till today not achieved, despite huge experimental

efforts [4, 5, 6, 7]. Due to the large number of influencing factors, there is often a large

discrepancy between experimental findings from different studies.

Some experimental studies indicate that, besides annealing temperature and duration,

mechanical stresses or deformation, experienced by the solder joint during processing or in15

service conditions, may affect the growth kinetics of the IMCs. Lin et. al [8] have, for

example, reported that an applied tensile or compressive strain of 2.5% increases the growth

rate of the Cu6Sn5 layer, while that of the Cu3Sn is retarded for compressive strain, when

annealing at 200 ◦C. Based on their experimental observations, it was concluded that the

enhanced growth of Cu6Sn5 for compressive stress may be devoted to the smaller grain20

size for Cu6Sn5 when compressive stress was applied, which resulted in an increase of the

diffusion through the Cu6Sn5 layer. A similar effect was observed in other lead-free solder

joints also, for example, in Sn-Ag/Cu joint [9]. In another study, Lin et al. [10] have found

that an applied strain of 0.34% did not affect the growth rate of the IMCs although the

morphology was influenced by it. Panchenko [11] has observed that the Cu3Sn thickness25

increased with increased bonding pressure (of upto 2.42 MPa) during the processing of a

SnAg/Cu interconnect at 250 ◦C. Unfortunately, the experimental observations only do not

give sufficient information to fully understand the way mechanical stresses or strains may

affect the growth behavior of IMCs in solder joints.

Phase-field simulations of IMC growth in lead-free solder joints have been reported in30

literature, including diffusion [12, 13, 14] and mechanical deformation [15, 16, 17]. Xiong

and Huang [15] have used a phase-field model taking into account only elastic effects (and

electromigration) in order to simulate the IMC growth in a Cu/Sn-microbump/Cu structure.
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They predicted that at 150 ◦C, Cu3Sn grains grow at a higher rate under external compressive

stress while Cu6Sn5 grows faster under external tensile stress. They have implemented a35

phase-field model with a Vegard’s law type formulation of eigenstrain and they consider

only elastic deformation even though high stresses above the yield limit are reached. It is

thus clear that plastic effects must be considered in the phase-field model to obtain realistic

results. Hektor et al. [17] were the first to perform diffusion-deformation coupled multi-phase

simulations of Cu6Sn5 growth at Sn/Cu joint at room temperature ageing, including effects of40

plastic deformation, giving a much more realistic representation than all the models before.

However, they have interpolated the elastic energy density in the phase-field model using a

Reuss-Sachs’ condition, which was shown [18] to lead to interface-width-dependent excess

energy at the interface, which is not physically present. Since in phase-field simulations, the

width of the interfaces is usually enlarged artificially to limit the computational requirements,45

the effect of this excess energy can become excessively high [18], depending on the size of

the grains, the width of the diffuse interface assumed in the phase-field model and the

heterogeneity in elastic properties between the different phases. Moreover, they did not

include the Cu3Sn phase in their simulations, while experiments show that this phase is

present during annealing and one can expect that its growth will affect the stress conditions50

in the joint and the growth of the Cu6Sn5 phase. Since they observe linear growth kinetics of

the IMC layers, we believe that their simulations only consider initial transient growth and

did not reach the steady-state regime where parabolic growth kinetics are expected generally

for intermetallic growth even when mechanical effects are present [19, 20]. Moreover, only

the effect of eigenstrains caused by the volume change associated with the growth of the55

IMC, in the absence of applied strain, is considered.

In general, multi-phase phase-field models coupling composition evolution and elasto-

plastic deformation have recently been developed by a few groups. Capturing the macro-

scopic effect of the presence and movement of dislocations through phenomenological

plasticity-related variables, phase-field models have been developed and implemented by60

[21, 22, 23, 24, 25, 26, 27, 28]. A generic method to include hardening in the plastic regime

was proposed by Gaubert et al. [23], into which a crystal plasticity framework was later incor-

porated [21]. Cottura et al. [24] applied this model to study rafting in Ni-based superalloys.
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Cottura et al. [29] further developed this study by coupling the phase-field model to strain-

gradient crystal plasticity through dislocation densities. The authors developed [18, 30] a65

quantitative phase-field model coupling chemical and elastic strain energies, satisfying lo-

cal both chemical and mechanical equilibrium at the interface. We validated the model in

2D and 3D for cases of inhomogeneous anisotropic elastic moduli and applied strains. In a

series of papers, Schneider and co-workers developed [31] a quantitative phase-field model

for including elastic energy, which was validated for the condition of applied stress, which70

they further developed to couple with chemical composition evolution [32] and extended to

a multi-phase elasto-plastic coupled formulation [27].

The purpose of this study is to simulate the effect of different strain states on the IMC

growth kinetics in Cu/Cu-Sn solder joints including both elastic and plastic deformation, to

understand better the role and effect of various mechanical loading conditions. Therefore, we75

first introduce a multi-phase phase-field model satisfying local interfacial equilibrium while

treating diffusion [33, 34] and coupled with the scheme we introduced [18, 30] for including

elastic energy quantitatively and the plasticity formulation developed by Gaubert et al. [23].

Secondly, various simulations will be performed with this model. Different from the study of

Hektor et al. [17], in this work, the simultaneous growth of Cu3Sn and Cu6Sn5 layers will be80

considered and sufficiently long annealing times will be taken to verify whether a steady-state

regime with parabolic growth kinetics can be obtained in the presence of strains. Moreover,

besides the effect of eigenstrains due to the formation of the IMC layers, the effect of applied

tensile and compressive strain on top of them will be studied. Since the work of Hektor et

al. [17] shows that the initially scalloped morphology of the Cu6Sn5 layer evolves towards a85

morphology with almost flat interfaces during annealing, structures with flat interfaces will

be considered in this study to reduce the computation time, thereby enabling quantitative

analysis of the long-term annealing behavior. Finally, as part of this work, we have performed

ab initio calculations of the stiffnesses of the pure Cu, Cu3Sn, and pure Sn phases, in addition

to the data available in literature and in order to support the selection of a reasonable value90

among the several, but scattered, values reported in the literature.

The rest of this paper is organised as follows. The phase-field model for multiphase sys-

tems combining diffusion, elastic and plastic deformation is formulated in Section 2. The
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input data from experiments and theoretical estimates that have been used in the simulations

are discussed in Section 3. Simulations of Cu/Cu3Sn/Cu6Sn5/Sn layers representing anneal-95

ing of Sn-Cu/Cu lead-free solder joints at 180 ◦C are performed for different deformation

conditions (Section 4).

2. Phase-field model formulation

In a phase-field model, the microstructure is represented by phase-field variables which

vary smoothly across different domains, giving rise to diffuse interfaces. At the mesoscale,100

the interface regions are usually taken much wider than the physically observed values in

order to minimise computational resources. This is possible if special care is given to the

phase-field model formulation to ensure that the expected bulk and interfacial properties

and local chemical and mechanical equilibrium at the interfaces are obtained, so that the

results become independent of the choice of the diffuse interface width. In this work, we use105

the multi-phase phase-field framework developed by Moelans [34] and incorporate the quan-

titative elastic energy formulation introduced by the authors [18, 30] and plastic deformation

by Gaubert et al. [23] and Cottura et al. [24]. The elastoplastic formulation was validated

for two–phase systems with planar interfaces by the authors [35] (reproduced in Appendix

D) using an analytical solution.110

We consider a system with two chemical components and N phases (ρ = α,β,...). It

is assumed that the system is at a constant temperature. Only one grain per phase is

considered. Undeformed α phase is taken as the reference state, therefore the eigenstrain in

α is 0: ε∗,αij = 0.

The following phase-field variables, which are functions of space r and time t, are taken

into account in order to simulate diffusion and mechanical deformation: c(r,t), the chemical

composition, the order parameters ηρ, representing the different phases ρ, which take the

value 1 inside the bulk of ρ phase and transition to 0 at the boundaries with other phases:

η(r, t) = ηα(r, t), ηβ(r, t), ...., ηρ(r, t), ....., ηN(r, t),

and the elastic and plastic strain fields: εelij(r, t), ε
pl
ij(r, t).115
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In order to define bulk properties of the system (compositions, different types of energies,

etc.) at the diffuse interface, the following interpolation function is used:

hα(η) = φα(η) =
|ηα|2
N∑
ρ=1

|ηρ|2
, (1)

for which
N∑
ρ=1

φρ = 1. φρ can be interpreted as the phase fraction of phase ρ.

For this work, a total free energy functional with the following contributions is defined

as:

F =

∫
V

[
f ch(ηρ, c) + f int(ηρ) + f el(ηρ, ε

el
ij) + f vp(ηρ, ε

pl
ij)
]

dV, (2)

where f ch is the chemical free energy density, f int the interfacial energy density, f el the

elastic strain energy density, and f vp the plastic strain energy density. The formulation of120

f int, f ch and f el are taken from our previous works and are discussed in Appendix A.

For this work, the viscoplastic strain energy density f vp was added to these models,

extending the viscoplastic energy formulation of Gaubert et al. [23] to multi-phase systems.

Hardening is not considered in this study. For each phase, plastic strain εpl,ρij and cumulative

plastic strain pρ =
∫
t
| ˙
εpl,ρij |dt are introduced. The cumulative plastic strain rate evolution is

given by [23]:

ṗρ =

〈
J2(σ

ρ
ij)−R

ρ
0

Kρ

〉n
, (3)

where Rρ
0 is the yield stress, Kρ is a scaling parameter, n the hardening exponent, and the

von Mises stress J2(σ
ρ
ij) =

√
3/2 (σρij)

′(σρij)
′, with ′ denoting the deviatoric part. <> denotes

the positive part of the enclosed term; therefore, this term is zero in the phases in which von

Mises stress is less than the yield stress. For the multi-phase system, the viscoplastic strain

energy density f vp is then interpolated as

f vp =
N∑
ρ=1

φρf
vp,ρ. (4)

where f vp,ρ = Rρ
0p
ρ.
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The evolution equation for the conserved variables is given by:

∂c

∂t
= −
−→
∇ .
−→
J =

−→
∇ .M(η, c)

−→
∇
δF (η, c, εelij, ε

pl
ij)

δc
=
−→
∇ .

[[
N∑
ρ=1

φρM
ρ

]
−→
∇ ∂f

ch

∂c

]
, (5)

where Mρ is the interdiffusion mobility of phase ρ. It is related to the interdiffusion coefficient

D̃ρ as:

Mρ =
1

Vm

D̃ρ

∂2fch,ρ

∂(cρ)2

, (6)

where Vm, the molar volume, is taken as a constant and the same for each phase and f ch,ρ

is the composition-dependent chemical bulk free energy of phase ρ (introduced in Appendix

A.1).125

For non-conserved variables, a Ginzburg-Landau type equation is used:

∂ηρ
∂t

= −L(η)
δF (η, r)

δηρ

= −L(η)

(
∂f ch

∂ηρ
+
∂f int

∂ηρ
+
∂f el

∂ηρ
+
∂f vp

∂ηρ

)
, (7)

where L(η) =

(∑
ρ,σ

Lρ,σηρησ

)
/

(∑
ρ,σ

ηρησ

)
, with Lρ,σ related to the interface mobility of

ρ/σ interface. For diffusion-controlled growth,

Lρ,σ =
4m

3κ(cρeq − cσeq)2
Mρ +Mσ

2
, (8)

where cρeq and cσeq are the equilibrium compositions of the phases ρ and σ respectively.

The plastic strain evolution for each phase is given by:

∂εpl,ρij

∂t
=

3

2
ṗρ

σρij
J2(σ

ρ
ij)
. (9)

3. Simulation details

3.1. Phase-field model implementation

In diffusion-controlled phase transformations, the chemical diffusion is much slower than

the relaxation of displacements. Therefore, at each time step, the stresses and strains at130

mechanical equilibrium are calculated after solving the displacement field using the spectral
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iterative perturbation method of Hu and Chen [36]. Initially, the plastic strains are assumed

to be zero. These later take non-zero values in the phases that plastically deform. The driving

forces for phase evolution from the chemical, interfacial, elastic and plastic contributions are

calculated as formulated in [34], Appendix A.3, and Section 2. The evolution equations135

for the phase-field variables and the plastic strain are solved at every time step using finite

difference discretisation in order to obtain the composition field and the microstructure

represented by the order parameters.

3.2. System definition and initialisation of the phase-field simulations

Diffusion and mechanical deformation in Sn-Cu/Cu solder joints during solid-state an-140

nealing at 180 ◦C are simulated in this work. The phases ρ = Fcc-Cu, Cu3Sn, Cu6Sn5, and

Bct-Sn are considered (Figure 1). One-dimensional systems of 256 grid points (with 2 grid

points in the y direction in order to use the spectral method for solving the displacement

field) and with grid size ∆x = 0.1 µm are considered. The width of the layers are taken

as 10.8 µm of Cu, 2 µm of Cu3Sn, 2 µm of Cu6Sn5, and 10.8 µm of Sn. The time step is145

taken as ∆t = 0.01 s. For cases with eigenstrains based on volume change (‘NoApp VolEig’,

‘AppTensY VolEig’, ‘AppCompY VolEig’, and ‘AppCompX VolEig’, see section 3.9 and Ta-

ble 1), ∆x = 0.05 µm and system size of 4 × 512 grid points was used, since the diffuse

interface width had to be taken narrower in these cases to assure stability of the η profiles.

The initial compositions of the phases are taken as cFcc−Cui = 0.026, cCu3Sni = 0.25, cCu6Sn5
i150

= 0.455, and cBct−Sni = 0.999958, expressed as molar fraction of Sn. The compositions of

Fcc-Cu and Bct-Sn correspond to their values at equilibrium with Cu3Sn and Cu6Sn5 at

180 ◦C respectively.

3.3. Gibbs energies of the Cu–Sn system

The Cu–Sn system is part of the COST 531 thermodynamic database for lead-free solders155

[37] and also of the NIST database for solder alloys [38], providing us with a composition

dependence of the Gibbs energies of these phases. However, the Cu3Sn and Cu6Sn5 phases

are treated as stoichiometric compounds in these databases, and hence cannot give rise to

gradients in chemical potential needed to drive the diffusion in the phase-field simulations.
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Figure 1: Initial structure (figure not to scale) of size 0.2 µm × 25.6µm used to simulate Cu/Sn-Cu solder

joint under different conditions

Bct-Sn is treated as a stoichiometric compound in the COST 531 database. A composition-160

dependent Gibbs energy description is available in the NIST database, however, one with

a miscibility gap, which gave complications in the phase-field simulations. Therefore, a

parabolic composition dependence of the Gibbs energy for all phases, of the form

f ch,ρ =
Aρ

2
(c− cρ0)2 +Bρ(c− cρ0) + Cρ, (10)

was assumed. This avoids the difficulties associated with assessing sublattice models con-

taining many parameters [39] for the stoichiometric phases and is computationally more165

efficient in the phase-field simulations. Moreover, in this case, since the compositions in the

different phases are not expected to deviate much from equilibrium, a parabolic composition

dependence with accurate fit near the equilibrium composition of each phase contains all the
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required thermodynamic information. The fitting of the parabolic descriptions is done such

that, for the solution phases, Fcc-Cu and Bct-Sn, the equilibrium composition and Gibbs170

energy, diffusion potential (i.e. first derivative of the Gibbs energy) and second derivative of

the Gibbs energy at the equilibrium composition (as calculated using Thermo-Calc [40] with

the COST 531 or NIST database at 180 ◦C) are reproduced in the simulations. The remain-

ing model parameters were adapted, such that for the IMC phases, Cu3Sn and Cu6Sn5, only

a very narrow homogeneity range is obtained around the stoichiometric composition and175

such that the Gibbs energy (as calculated using Thermo-Calc with the COST 531 or NIST

database at 180 ◦C) is reproduced in the simulations at the stoichiometric composition. The

parameter values Aρ = 2.65 · 1010, 1.794 · 1011, 1.794 · 1010, and 8.97 · 1012 J/m3 for, respec-

tively, the Fcc-Cu, Cu3Sn, Cu6Sn5, and Bct-Sn phase, Bρ = −4.09 ·109, −4.09 ·109, 4.52 ·108,

and 4.52 · 108 J/m3, and Cρ = −1.71 · 109, −2.61 · 109, −2.66 · 109, and −2.42 · 109 J/m3
180

were obtained. The minima of the parabola are at compositions cρ0 = 0.026, 0.25, 0.455, and

0.999958 respectively, given as the molar fraction of Sn. Since the Cu-solubility in the Bct-Sn

phase is extremely low (i.e. the equilibrium molar fraction of Sn, xSn is very close to 1), we

had to take the A-values in the free energy density for the intermetallic phases smaller than

the ABct−Sn obtained for the Bct-Sn phase to avoid that xSn in the Bct-Sn phase exceeds the185

value 1 at any moment in the simulations. A plot of the fitted parabolic functions are shown

in Figure 2 along with the common tangents for the Fcc–Cu + Cu3Sn, Cu3Sn + Cu6Sn5

and Cu6Sn5 + Bct–Sn phase fields. The corresponding equilibrium compositions in terms

of molar fraction of Sn calculated for these three regions are 0.0427 in Fcc-Cu + 0.2525 in

Cu3Sn, 0.2725 in Cu3Sn + 0.4266 in Cu6Sn5, and 0.4544 in Cu6Sn5 + 1.0000 in Bct–Sn.190

3.4. Eigenstrain

A full description of the eigenstrain in each phase, requires knowledge of the crystallo-

graphic structure of each phase and the orientation relationship between the different phases

[41]. There are a few measurements of orientation relationships and lattice spacings for

Cu3Sn and Cu6Sn5 available in the literature [42, 43, 44, 45, 46, 47, 11]. Shang et al. [47, 46]195

have measured the lattice spacings of Cu and Cu3Sn for several orientation pairs in SnBi/Cu

solder joints. However, they have not measured the lattice spacings for Cu6Sn5 in the same

10



0 0.2 0.4 0.6 0.8 1

Molar fraction of Sn

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

G
ib

b
s
 e

n
e

rg
y
 d

e
n

s
it
y
 (

J
/m

3
)

10
9

Fcc-Cu

Cu
3
Sn

Cu
6
Sn

5

Bct-Sn

Figure 2: Parabolic functions fitted for Gibbs energy density showing the common tangents for the Fcc–Cu

+ Cu3Sn, Cu3Sn + Cu6Sn5 and Cu6Sn5 + Bct–Sn phase fields. A small solubility range is introduced for

the intermetallic phases in order to drive the diffusion through these phases in phase-field simulations.

studies. There are other studies that measure the lattice spacings for Cu6Sn5 and Cu for

different orientation pairs [42, 43, 44, 11]. However, they measure either at early stages

of the intermetallic formation when Cu3Sn has not formed [42, 45] or assuming hexagonal200

crystal structures for Cu6Sn5 and Cu3Sn, as in the case of Panchenko et al. [11] and Suh

et al. [43]. Furthermore, the lattice spacings change with temperature. There is thus no

consistent set of experimental lattice spacing measurements for the orientation pairs in the

Sn-Cu/Cu solder joint at 180 ◦C, which we consider as the annealing temperature in this

study. Moreover, in this study, we consider the overall growth behavior of the, possibly205

polycrystalline, IMC layers, without considering the individual grains, each with a different

crystal orientation, within the phases. Therefore, we choose the eigenstrains based on the

molar volume change due to IMC formation. Furthermore, assuming an initially completely

relaxed Cu-Sn joint, we take the eigenstrains in Fcc-Cu and Bct-Sn both equal to zero and

the eigenstrains in Cu3Sn and Cu6Sn5 as dilatational tensors based on the volume change210

associated with the formation of each IMC from the reference Cu-Sn structure. Though this

does not accurately reflect the eigenstrains that would, in reality, arise from the crystallo-

graphic structures, this assumption considers an average volume change effect due to the
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formation of the IMC without a detailed description of the polycrystal structure, that would

require more accurate experimental data.215

Using the TCSLD3 solder database from Thermo-Calc, which has descriptions of molar

volume for different phases, we derive the dilatational eigenstrain in each IMC as 1/3 ×

(V IMC
m − s1V Cu

m − s2V Sn
m )/(s1V

Cu
m + s2V

Sn
m ), where V IMC

m is the molar volume of the IMC

phase (Cu3Sn or Cu6Sn5), s1 and s2 are the weighted stoichiometric coefficients of the IMC

and V Cu
m and V Sn

m are the molar volumes of Fcc-Cu and Bct-Sn respectively. At 180 ◦C, we220

obtain the molar volumes from TCSLD3 database as V Cu3Sn
m = 9.5490 · 10−6 m3, V Cu6Sn5

m

= 1.0564 · 10−5 m3, V Cu
m = 7.3402 · 10−6 m3 and V Sn

m = 1.6554 · 10−5 m3. This gives a

dilatational eigenstrain of -0.00327 in Cu3Sn and -0.0279 in Cu6Sn5. This value for Cu6Sn5

is considerably higher than the value of -0.003 used by Hektor et al. [17]. Therefore, we do a

parametric study for the eigenstrain of Cu6Sn5 with four three different sets of dilatational225

eigenstrains (ε∗,rhokl = ε∗,rho× [1 1 0]) for the two phases: (i) ε∗,Cu3Sn = 0, ε∗,Cu6Sn5 = 0, (ii) (i)

ε∗,Cu3Sn = -0.00327, ε∗,Cu6Sn5 = -0.0279, (iii) (i) (ii) ε∗,Cu3Sn = -0.00327, ε∗,Cu6Sn5 = -0.00327,

and (iv) (iii) ε∗,Cu3Sn = -0.00327, ε∗,Cu6Sn5 = -0.001635.

3.5. Applied strains

To consider the effect of mechanical loading conditions, we perform simulations with230

and without applied strains. In Lin et al. [8], they study the effect of applying tensile and

compressive strains of 2.5 % to the solder joint. We use the same value in our simulations

with applied strains.

3.6. Parameters related to plastic deformation

Cu3Sn and Cu6Sn5 are brittle and do not undergo plastic deformation. In experiments,235

the yield stress and hardening parameters are usually measured for the full solder joint.

Therefore, limited data are available regarding individual phases, as required by the phase-

field model. The yield stress measured by Deng et al. [48] using nanoindentation of a Sn-

3.5Ag/Cu solder joint is used for the 4 phases: 180± 9 MPa for Fcc-Cu, 1787± 108 MPa for

Cu3Sn, 2009± 63 MPa for Cu6Sn5, and 35± 0.4 MPa for Bct-Sn. However, nanoindentation240

measurements of mechanical properties may give even larger errors of 20% due to pile-up

effects, as discussed by Dimcic [49]. The hardening exponents for Cu and Sn are taken from
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the work of Marques et al. [50], which uses nanoindentation to study the creep behaviour of

Sn-Ag-Cu/Cu solder joints at 25 ◦C, as nFcc−Cu = 12± 7 and nBct−Sn = 7.8± 3. The scaling

parameter is taken as KFcc−Cu = KBct−Sn = 300 MPa.245

3.7. Diffusion and interface-related parameters

The following diffusion coefficients are used: ˜DFcc−Cu = 10−25 m2s−1, ˜DCu3Sn = 4.04·10−16

m2s−1 , ˜DCu6Sn5 = 1.12 · 10−15 m2s−1, and ˜DBct−Sn = 10−14 m2s−1. For all phases except

Bct-Sn, expressions from Mei et al. [51] at 180 ◦C are used. The value used for ˜DBct−Sn

is lower than the value from Mei et al. to ensure that we can take a larger time step and250

achieve steady-state growth in a realistic time scale. Guan and Moelans [52] showed that

this does not affect the intermetallic growth significantly.

For most cases, the parameters related to the interfacial energy are taken as: κ = 2.25 ·

10−7 J m−1, γ = 1.5, m = 5 · 106 J m−3. The interface mobility, L, is taken as 8 · 10−13 m3

N−1 s−1. This gives an interfacial energy of 0.5 J m−2 and interfacial width of 3.3 ∆x. It255

was verified that for these parameter values the growth-rate coefficients are reproduced with

an error smaller than 1% in simulations for systems with planar interfaces [53, 34]. Grain

boundary diffusion is not considered. For cases with eigenstrains based on volume change

(‘NoApp VolEig’, ‘AppTensY VolEig’, ‘AppCompY VolEig’, and ‘AppCompX VolEig’, see

section 3.9 and Table 1), κ = 1.125 · 10−7 J m−1 and m = 10 · 106 J m−3 were taken. This260

was done in order to ensure the stability of the η profiles, while retaining the actual system

size, interfacial energy and interfacial width (in terms of grid points) as in the other cases.

3.8. ab initio calculation of stiffness tensors

One of the key input parameters in this study is the stiffness of all phases. There is some

experimental information available on the stiffnesses of pure Cu and Sn at low temperatures265

[54, 55]. However, the stiffnesses of the intermetallic phases Cu3Sn and Cu6Sn5 are difficult

to measure using tensile tests due to their brittle nature. There are some measurements

of Young’s modulus using compression tests [56] and micro- and nano-indentation [49], but

since none of these phases is isotropic, we need measurements of the full stiffness tensor. Ab

initio calculations have been performed [57, 58, 59, 60, 61] for Cu3Sn and Cu6Sn5, however270

there is a large spread on the reported data and it is difficult to conclude on which values are

13



most accurate. Therefore, we have performed extra ab initio calculations for the 4 phases,

with convergence criteria that are more severe than in any of the previous studies, to guide

our selection of appropriate stiffness coefficients for the phase-field simulations.

The first-principles calculations were performed using Vienna Ab-initio Simulation Pack-275

age (VASP 5.2 [62, 63, 64, 65]) at 0 K for pure Cu, Cu3Sn, and pure Sn phases. Cal-

culations for Cu6Sn5 were also attempted, however we were unable to make them con-

verge due to the complex monoclinic crystal structure of Cu6Sn5 with large number of

atoms in the unit cell. GGA-PBE approximation [66, 67] was used for the exchange-

correlation functional with projected augmented wave potentials [68, 69]. Brillouin zones280

were sampled using Monkhorst-Pack [70] k-point meshes. The initial crystal structure files

for Cu, Sn, and Cu3Sn [71] were obtained from the Materials Project database [72, 73,

74, 75, 76]. Cu exists in a face-centred cubic structure with Fm3m space group (https:

//materialsproject.org/materials/mp-30/), Cu3Sn in an orthorhombic structure with

Pmnm space group (https://materialsproject.org/materials/mp-581786/), and Sn in285

body-centred tetragonal structure with I41/amd space group (https://materialsproject.

org/materials/mp-84/). Different cut-off energies and k-point meshes were tested with the

aim of obtaining a precision of 1 meV/atom for the energy calculation, compared to 0.01

eV/atom in previous calculations. The cut-off energy was then fixed at 414 eV and k-point

meshes of 15 × 15 × 15, 11 × 14 × 13, and 12 × 12 × 22 were used for Cu, Cu3Sn, and290

Sn respectively. The system was allowed to relax till the energy converged to less than 10−7

eV/atom. Starting with the relaxed structure, the IBRION = 6 option in VASP was used

to calculate the stiffness tensors. This option calculates the stress at different deformations

applied to the system and derives the elastic constants. The results are discussed in Section

4.1.295

3.9. Simulated cases

Simulations are performed considering elastic and plastic deformation until steady-state

growth of the intermetallic phases is reached for all cases. In order to study the effects of

eigenstrains and different loading conditions, we performed nine different simulations and

we discuss the same divided into four different subsections: (i) no applied strains and the300

14
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eigenstrain in the IMCs varied from zero to higher values as described in Section 3.4, (ii)

and (iii) the effect of applied strains in one direction with two different sets of eigenstrains,

and finally (iv) the effect of loading direction. The full list of parameters that have been

varied in each case and a short name for each case are provided in Table 1.

Table 1: List of simulation case studies with different sets of input parameters. Corresponding growth rates

of IMCs in columns kCu3Sn (m2s−1) and kCu6Sn5
(m2s−1).

Case ε∗,Cu3Sn ε∗,Cu6Sn5 Applied strain kCu3Sn (m2s−1) kCu6Sn5 (m2s−1)

(i) Effect of eigenstrains with no applied strains (Section 4.2.1):

NoApp ZeroEig 0 0 [0 0 0] 1.7021 · 10−17 4.4460 · 10−17

NoApp VolEig -0.00327 -0.0279 [0 0 0] 3.4448 3.44 · 10−17 1.1261 1.13 · 10−17

NoApp EqEig -0.00327 -0.00327 [0 0 0] 1.7004 1.70 · 10−17 4.4521 4.45 · 10−17

NoApp LowEig -0.00327 -0.001635 [0 0 0] 1.6909 1.69 · 10−17 4.4767 4.48 · 10−17

(ii) Effect of applied strains with eigenstrains based on volume change (Section 4.2.2):

NoApp VolEig -0.00327 -0.0279 [0 0 0] 3.4448 3.44 · 10−17 1.1261 1.13 · 10−17

AppTensY VolEig -0.00327 -0.0279 [0 0.025 0] 3.9599 3.96 · 10−17 2.1472 2.15 · 10−18

AppCompY VolEig -0.00327 -0.0279 [0 -0.025 0] 2.7687 2.77 · 10−17 1.3049 1.30 · 10−17

(iii) Effect of applied strains with equal eigenstrains (Section 4.2.3):

NoApp EqEig -0.00327 -0.00327 [0 0 0] 1.7004 1.70 · 10−17 4.4521 4.45 · 10−17

AppTensY EqEig -0.00327 -0.00327 [0 0.025 0] 1.6351 1.64 · 10−17 3.9134 3.91 · 10−17

AppCompY EqEig -0.00327 -0.00327 [0 -0.025 0] 1.6773 1.68 · 10−17 3.6804 3.68 · 10−17

(iv) Effect of loading direction with eigenstrains based on volume change (Section 4.2.4):

NoApp VolEig -0.00327 -0.0279 [0 0 0] 3.4448 3.44 · 10−17 1.1261 1.13 · 10−17

AppCompY VolEig -0.00327 -0.0279 [0 -0.025 0] 2.7687 2.77 · 10−17 1.3049 1.30 · 10−17

AppCompX VolEig -0.00327 -0.0279 [-0.025 0 0] 1.1325 1.13 · 10−16 −− (shrinks)

4. Results and discussion305

4.1. ab initio calculations of stiffness tensors

Tables 2 and 3 show the values of stiffnesses from literature (both experimental mea-

surements and ab initio calculations) and those calculated in the present study. The lattice

parameters of the relaxed structures [53] from the calculations performed in the present study
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were found to be: aCu = bCu = cCu = 3.626 Å, aCu3Sn = 5.537 Å, bCu3Sn = 4.323 Å, and310

cCu3Sn = 4.871 Å, aSn = bSn = 5.942 Å, cSn = 3.221 Å. These are close to the experimentally

reported values for Sn and other calculated values for Cu3Sn and within the error bar of 1.1

Å2/atom expected for the equilibrium unit cell volume [77]. There are intrinsic errors in the

values obtained from ab initio calculations due to the exchange-correlation functional (Exc)

that is used. Lejaeghere et al. [77] have also shown that an error bar of 23 GPa is expected315

in the values of stiffness tensors calculated using GGA-PBE functional from a comparison

of calculated values [78] for pure elements with experimental values. Taking this error into

account, the values from the present study are close to the experimental values for the Cu

phase as seen from Table 2. For Cu3Sn, the values are similar to those of [59] and there is a

large difference with the other calculated values from literature, even though An et al. [58]320

have used the same structure as that used in this work. Since there are no experimentally

measured values for the stiffness of Cu3Sn, we cannot comment further on the accuracy of

the calculated values. For Sn, the use of LDA [61] seems to give stiffness values closer to the

experimental values [55]. However, the values from the present work and from the work of

Ghosh [61] using GGA are close to each other and, considering the error bar, are close to the325

experimental values. Moreover, the lattice parameters are better estimated by calculations

from the present work compared to [61].

As input for the phase-field simulations, the experimentally measured stiffnesses of Cu

[54] and Sn [55] are used. Since the stiffnesses calculated by ab initio in the present work

for Cu and Sn match the experimental values well and we have ensured high accuracy for330

our calulations, we use the values at 0 K calculated in the present work for Cu3Sn. These

values are closest to those of [59]. For Cu6Sn5, the values from Chen et al. [57] and [60] are

close to each other, especially when considering the reduced 2D version. We use the values

from Chen et al. [57] for Cu6Sn5. At 300 K, the stiffness of Cu drops by about 5% [54]

and that of Sn by about 10–15% [55]; however, these are neglected since we do not have335

any information about the temperature dependence of the stiffnesses of Cu3Sn and Cu6Sn5.

Moreover, the orientation dependence of the elastic constants is also not taken into account.

Since the phase-field simulations will be performed in 2D, the reduced 2D version of the

elastic constants at 0 K for Cu, Cu3Sn, Cu6Sn5, and Sn (extrapolated from experimental

16



measurement) were derived assuming plane strain conditions.340
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4.2. Simulation of intermetallic growth in Sn–Cu/Cu solder joints

Since this is the first time that the coupled elastic and plastic deformation models used

in this study are implemented in a multi-phase framework, we verified that the elastic and

viscoplastic energy densities interpolate linearly across the interfaces. A short discussion on

this is provided in Appendix E.345

For all cases where the eigenstrains are non-zero, the von Mises stress exceeds the yield

stress in the Fcc-Cu and/or the Bct-Sn phase; therefore, it is necessary to consider both

elastic and plastic deformation for simulating intermetallic growth with the set of parameters

used in this study. For example, Figure 3 shows the von Mises stress profiles for cases

‘AppCompY VolEig’ at t = 1000 s and 100100 s (Figure 3a) and ‘AppCompY EqEig’ at t350

= 1000 s and 500100 s (Figure 3b). For both cases, as expected, the von Mises stress in

Fcc-Cu and Bct-Sn reduce with time as plastic strain evolves.

100 200 300 400 500

Distance (grid points)

0

0.5

1

1.5

2

2.5

S
tr

e
s
s
 (

P
a
)

10
9

von Mises stress at

t = 100100 s

Fcc-Cu

Bct-Sn

Cu
6
Sn

5

Cu
3
Sn

von Mises stress 

at t = 100 s

Cu
6
Sn

5

Cu
3
Sn

Fcc-Cu

Bct-Sn

(a)

50 100 150 200 250

Distance (grid points)

0

0.5

1

1.5

2

2.5

S
tr

e
s
s
 (

P
a
)

10
9

von Mises stress

at t = 500100 s

Fcc-Cu

Bct-Sn

Cu
6
Sn

5

Cu
3
Sn

von Mises stress

at t = 100 s

(b)

Figure 3: The von Mises stresses at times (a) t = 1000 s and 100100 s for case (a) ‘AppCompY VolEig’ at

times (b) t = 1000 s and 500100 s for case ‘AppCompY EqEig’: these illustrate that the von Mises stress

exceeds the yield stress (shown in dotted green lines for each phase) and it is therefore necessary to consider

both elastic and plastic deformation. This is also true for all cases with non-zero eigenstrains. The phases

present in the simulations are Fcc-Cu, Cu3Sn, Cu6Sn5 and Bct-Sn from left to right (indicated only in (a)

for readability).

The growth of the intermetallic phases is assumed to be diffusion-controlled and the most

commonly reported relation is a parabolic time dependence at steady-state [79]:

d = d0 +
√
kt (11)
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where d = thickness of the layer at time t, d0 the initial thickness, and k the growth-rate355

coefficient. In this study, we fit the widths with the parabolic relation taking the steady-

state region as the duration from 20 to 44 h or 72000 to 158400 s (corresponding to 268.33 to

397.99 s1/2), since the phase-field variables become fully diffuse only after an initial period

of time and, moreover, there is an initial transient region in which parabolic growth kinetics

are not observed. For the case ‘AppTensY VolEig’ alone, the fitting is done from 268.33360

s1/2 to 331.81 s1/2, which is the latest available result. The k values for both Cu3Sn and

Cu6Sn5 for all cases are also listed in Table 1 and will be discussed further in the following

subsections.

4.2.1. Effect of eigenstrains with no applied strains

Firstly, to study the effect of eigenstrains on the growth rates without the effect of ap-365

plied strain, we consider four three cases as listed in Table 1. For all cases, there are

no externally applied strains, which implies that the average total strain is zero. The

first case ‘NoApp ZeroEig’ is equivalent to considering no mechanical deformation since

the eigenstrains are zero and there are no applied strains also. As a parametric study, we

have chosen three cases, with the eigenstrain value for Cu6Sn5 varying across the three cases370

and the value for Cu3Sn fixed at -0.00327 (based on volume change). The three cases are

‘NoApp VolEig’, where the eigenstrain of Cu6Sn5 is also determined based on volume change

(= -0.0279), ‘NoApp EqEig’, where equal eigenstrains of -0.00327 are used for both phases,

and ‘NoApp LowEig’, where the eigenstrain in Cu6Sn5 = -0.0016325, which is half of the

value in Cu3Sn. Figure 4 shows the growth kinetics of all cases with no applied strains. All375

cases show parabolic IMC growth after an initial transient regime.

The cases ‘NoApp EqEig’ and ‘NoApp LowEig’ show very similar growth kinetics.

are very similar to the first case with zero eigenstrains, showing that there is not a significant

effect on the growth kinetics with the choice of eigenstrains for these two cases. However,

fFor ‘NoApp VolEig’ case, the growth rate is significantly different from all the other two380

cases. considered in this subsection. The growth of Cu3Sn is accelerated and that of Cu6Sn5

is decelerated compared to other cases. As seen from Table 1, kCu3Sn for ‘NoApp VolEig’ is

over twice the value for other cases and kCu6Sn5 is about four times smaller than the value for

21



the other cases. The much higher value of eigenstrain in Cu6Sn5 in this case clearly changes

the growth rates significantly. This shows that the IMC growth kinetics can change385

with the magnitude of eigenstrains present in the system.

Figure 4c shows the composition profiles for all cases at time t ≈ 100000 s and the initial

composition profile at t = 0, which is the same for all cases. There is a composition gradient

across the IMCs as diffusion occurs through them and the IMCs grow. There seems to be

no significant effect of the strains on the composition of the IMCs.390

Previous experimental measurements of the growth coefficient k [80, 81, 79, 82, 49]

which do not consider any effect of applied strains range from 4.2025 · 10−18 4.20 · 10−18 to

7.4304 · 10−17 7.43 · 10−17 m2s−1 for Cu3Sn and 1.0693 · 10−17 1.07 · 10−17 to 1.7424 · 10−16

1.74 · 10−16 m2s−1 for Cu6Sn5 respectively. Though these studies do not explicitly consider

the influence of strains in the system, there will always be some internal strains present due395

to lattice mismatch and the resulting eigenstrains. The growth coefficients for all four three

cases considered in the present work fall within this rather wide range from experiments. In

general, Cu6Sn5 has a much higher growth rate than Cu3Sn as thicker layers of Cu6Sn5 are

observed in experiments. This is true for all simulation cases except ‘NoApp VolEig’, where

kCu6Sn5 is less than kCu3Sn, which is due to the higher eigenstrain in Cu6Sn5 compared to400

the other cases. We thereby establish that the choice of eigenstrain is very important in

the IMC growth kinetics and through simulations, we can study the effects of eigenstrains

independently unlike experiments where there are a large number of parameters that can

change simultaneously.

4.2.2. Effect of applied strains with eigenstrains based on volume change405

Next, we consider the effect of applied strains on the growth rates. With the eigen-

strains fixed to values based on volume change for the two IMCs, we consider three cases:

‘NoApp VolEig’, a reference case with no applied strains, ‘AppTensY VolEig’, with applied

tensile strain of 2.5% in the y direction, and ‘AppCompY VolEig’, with an applied compres-

sive strain of 2.5% in the y direction. Figure 5 shows the growth kinetics for all three cases.410

All cases show parabolic IMC growth after an initial transient period when there are applied

strains also. We stopped the ‘AppTensY VolEig’ at around 110000 s since the strains became
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Figure 4: Simulation results of intermetallic layer growth at 180 ◦C considering the effect of eigenstrains

when there are no applied strains: (a) Cu3Sn and (b) Cu6Sn5 layer width show parabolic growth kinetics for

all cases and the eigenstrains based on volume change show significant effect on the growth; (c) Composition

profiles at t ≈ 100000 s compared to the initial composition, showing no significant effect of eigenstrains.

too high at the interface between Cu6Sn5n and Bct-Sn and the small strain limit would not

hold any further.

There is an increase in the growth rate of Cu3Sn in case of applied tensile strain but415

a decrease in the case of applied compressive strain. The trend is reversed for Cu6Sn5,

where there is a significant decrease (over five times smaller k) in growth rate in the case

of applied tensile strain and a small increase in the case of applied compressive strain. The

corresponding values of k may be found in Table 1.
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Figure 5c shows the composition profiles for all cases at t ≈ 100000 s. There is a small420

drop in the composition of Cu6Sn5 for the case ‘AppCompY VolEig’, but overall there is no

significant effect of applied strains on the phase compositions.
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Figure 5: Simulation results of intermetallic layer growth at 180 ◦C considering the effect of applied strains

with eigenstrains based on volume change: (a) Cu3Sn and (b) Cu6Sn5 layer width show parabolic growth

kinetics for all cases and there is a clear effect of applied strains on growth kinetics; (c) Composition profiles

at ≈ 100000 s compared to the initial composition.

In order to investigate further the effect of the applied strains, Figure 6 shows the profiles

of elastic energy density (6a), von Mises stress (6b), viscoplastic energy density (6c), and

cumulative plastic strain (6d) at time t = 100100 s for all cases. The high value of elastic425

energy density for ‘AppTensY VolEig’ can be directly correlated to the decreased growth rate
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of Cu6Sn5 compared to the case of no applied strains. In the case of ‘AppCompY VolEig’,

the elastic energy in Cu3Sn is highest among all phases and there is a corresponding decrease

in the growth rate compared to the case of no applied strains. Plastic deformation in Fcc-Cu

and Bct-Sn correspond to the von Mises stress profile. The magnitude of plastic deformation430

is highest in the case of compressive applied strain. Figure 6b also shows that the von Mises

stress in the IMCs is higher than the yield stress for some conditions and this shows that

there is a likelihood of brittle fracture to occur in the IMCs in these cases. This is in line

with the observations of Lin et al. where they observe a lot of cracks in Cu6Sn5.
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Figure 6: Simulation results of intermetallic layer growth at 180 ◦C considering the effect of applied strains

with eigenstrains based on volume change: (a) Elastic energy densities, (b) von Mises stress (yield stress of

each phase shown in green dotted lines), (c) Viscoplastic energy density, and (d) Cumulative plastic strain

at t = 100100 s for all cases. The high elastic energy in Cu6Sn5 for ‘AppTensY VolEig’ leads to decrease in

growth rate and the plastic deformation follows the von Mises stress profile.
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An applied strain of 2.5% is chosen in this work similar to the experimental study of435

Lin et al. [8]. They have performed experiments on Sn/Cu layers with applied tensile and

compressive strains of 2.5% at 200 ◦C. They observe that the Cu3Sn layer shows accelerated

growth with tensile strain and decelerated growth with compressive strain. For Cu6Sn5,

there is accelerated growth for both types of applied strains, but there is a steep increase

when the strain is compressive. In our simulations, we observe a similar trend for Cu3Sn and440

for Cu6Sn5 for applied compressive strain, though the change is small, but for Cu6Sn5 with

applied tensile strain, the growth is decelerated significantly. Therefore in the next section,

simulations with applied strains are presented using a smaller eigenstrain value for Cu6Sn5

to analyze how eigenstrain affects the growth rate under applied loading conditions.

4.2.3. Effect of applied strains with equal eigenstrains445

In order to further study the effect of applied strains, we perform simulations with another

set of eigenstrains (= -0.00327 in both IMCs). Here again, we consider three different

cases: ‘NoApp EqEig’, a reference case with no applied strains, ‘AppTensY EqEig’, with

applied tensile strain of 2.5% in the y direction, and ‘AppCompY EqEig’, with an applied

compressive strain of 2.5% in the y direction. Figure 7 shows the growth kinetics for all three450

cases. All cases show parabolic IMC growth after an initial transient period when there are

applied strains for this set of eigenstrains also.

As shown in Table 1, there is a small decrease in the growth rates of both Cu3Sn and

Cu6Sn5 for both applied tensile and compressive strains for this case.

Figure 7c shows the composition profiles for all cases at t ≈ 100000 s and there is no455

difference between all cases as expected.

Figure 7d shows the elastic energy densities at t = 100000 s for all cases. The magnitude

of the energies are much lesser than those in Section 4.2.2 and therefore, the effect of strains

on the growth kinetics is small.

Some trends from Lin et al. [8] were similar for the cases considered in Section 4.2.2, but460

for the cases considered in the current section, only the decelerated growth with compressive

strain for Cu3Sn is similar to the experimental trends. On the other hand, the growth rates

of Cu6Sn5 are smaller than those of Cu3Sn for all cases in Section 4.2.2, whereas in the
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Figure 7: Simulation results of intermetallic layer growth at 180 ◦C considering the effect of applied strains

with equal eigenstrains: (a) Cu3Sn and (b) Cu6Sn5 layer width show parabolic growth kinetics for all cases

and there is an effect of applied strain on the growth rate; (c) Composition profiles at t ≈ 100000 s compared

to the initial composition; (d) Elastic energy densities at t = 100000 s.

current section, the growth rates of Cu6Sn5 are larger than those of Cu3Sn for all cases. The

latter is in better agreement with experimental observations [8] where the Cu6Sn5 layer is465

always found to be thicker than the Cu3Sn layer.

4.2.4. Effect of loading direction with eigenstrains based on volume change

Finally, we also perform simulations to show the effect of the loading direction on IMC

growth. We consider three cases for discussion in this section, while fixing the eigenstrains
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to values based on volume change: ‘NoApp VolEig’, reference case with no applied strains,470

‘AppCompY VolEig’, with applied compressive strain in the y direction, and finally, ‘App-

CompX VolEig’, with applied compressive strain in the x direction.

Figure 8 shows the growth kinetics for all three cases. When the direction of applied

compressive strain changes from y to x, Cu6Sn5 starts to shrink immediately. This clearly

shows the importance of loading direction on the intermetallic growth. Moreover, this also475

indicates that the phase equilibria shift in the presence of strains. Figure 8c shows the com-

position profiles of all cases at t ≈ 100000 s (t = 108100 s for case ‘AppCompX VolEig’).

We see that the composition of Cu6Sn5 changes and has almost disappeared for case ‘Ap-

pCompX VolEig’. Also, a less steep composition gradient has developed at the interface

between Cu6Sn5 and Bct–Sn. Figure 8d shows that the elastic energy density in Cu6Sn5 is480

much higher than in the other phases, which could explain why it shrinks. Since the effect of

loading direction is not clearly discussed in any experimental work to the best of our knowl-

edge, we need further investigation from both experiments and simulations to understand

the effect of the loading direction.

From this study on the effect of different eigenstrains and applied strains, we can conclude485

that strains play an important role in intermetallic growth in Sn-Cu/Cu solder joints. In

addition to explaining some of the experimental observations, the power of these simulations

lies in their ability to obtain insights on different coupled effects which cannot be isolated

or controlled in experiments and which are, nevertheless, important for understanding this

type of microstructure evolution. Further experimental validation is required on the effect of490

applied strains which were studied in this work. This approach can also be used to study the

effect of morphology by considering an initial multi-grain structure. Furthermore, we can

extend this approach to multi-component systems to simulate IMC growth in higher order

systems like Sn-Ag-Cu/Cu solder joints.

5. Conclusions495

We formulated and validated a quantitative multi-phase phase-field model taking into

account elastic and plastic deformation. This was applied to the growth of intermetallic

layers formed in a Sn-Cu/Cu solder joint during solid-state ageing at 180 ◦C. We performed
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Figure 8: Simulation results of intermetallic layer growth at 180 ◦C considering the effect of loading direction

with eigenstrains based on volume change: (a) Cu3Sn and (b) Cu6Sn5 layer width: change in loading

direction to x from y forces the Cu6Sn5 to shrink due to high elastic energy (d); (c) Composition profiles

at t ≈ 100000 s compared to the initial composition: phase equilibria changes with loading direction; (d)

Elastic energy densities at t = 100000 s

a parametric study with different values of eigenstrains and externally applied strains. When

no externally applied strains are considered (but considering the elastic and plastic effects500

due to eigenstrains, which are inherently present in experiments), the growth rates from our

simulations fall within the wide range of the corresponding experimentally measured growth

rates reported in the literature. Some observations from experiments with regard to the effect

of external loading of the joint on the IMC growth, were reproduced in the simulations. The

29



simulations show that, not only the magnitude of the external loading, but also the loading505

conditions (i.e. tensile or compressive) and its direction with respect to the joint, has an

influence on the growth behavior of the IMCs. However, further experiments are required

to validate the effect of applied strains shown in this work. Though not clearly established

by experimental studies so far, it is worth to mention that all simulations where the IMCs

grow, showed parabolic growth kinetics at steady-state even when mechanical deformation510

was included, as it is normally expected for diffusion controlled growth. Moreover, our study

showed that the growth behaviour of the IMC phases and the effect of externally applied

strains in the simulations is sensitive to the used eigenstrain values. This urges the need for

more accurate eigenstrain values. Finally, and most importantly, through these simulations,

we were able to study and clearly isolate the effect of eigenstrains, applied strains and the515

loading direction on the IMC growth rates, which can guide more focused future experimental

work.
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[14] M. Park, R. Arróyave, Concurrent nucleation, formation and growth of two intermetallic

compounds (Cu6Sn5 and Cu3Sn) during the early stages of lead-free soldering, Acta

Materialia 60 (2012) 923–934.555

31



[15] H. Xiong, Z. Huang, Effects of stress and electromigration on microstructural evolution

in microbumps of three-dimensional integrated circuits, Transactions on Device and

Materials Reliability (2014).

[16] R. L. J. M. Ubachs, Thermomechanical modelling of microstructure evolution in solder

alloys, Ph.D. thesis, Technische Universiteit Eindhoven, 2005.560

[17] J. Hektor, M. Ristinmaa, H. Hallberg, S. Hall, S. Iyengar, Coupled diffusion-deformation

multiphase field model for elastoplastic materials applied to the growth of Cu6Sn5, Acta

Materialia 108 (2016) 98–109.

[18] A. Durga, P. Wollants, N. Moelans, Evaluation of interfacial excess contributions in

different phase-field models for elastically inhomogeneous systems, Modelling and Sim-565

ulation in Materials Science and Engineering 21 (2013) 055018.

[19] E. Chason, N. Jadhav, W. Chan, L. Reinbold, K. Kumar, Whisker formation in Sn and

Pb-Sn coatings: Role of intermetallic growth, stress evolution, and plastic deformation

processes, Applied Physics Letters 92 (2008) 171901.

[20] F. Haddadi, Rapid intermetallic growth under high strain rate deformation during high570

power ultrasonic spot welding of aluminium to steel, Materials & Design 66 (2015)

459–472.

[21] A. Gaubert, Y. Le Bouar, A. Finel, Coupling phase field and viscoplasticity to study

rafting in Ni-based superalloys, Philosophical Magazine 90 (2010) 375–404.

[22] X. Guo, S.-Q. Shi, X. Ma, Elastoplastic phase field model for microstructure evolution,575

Applied Physics Letters 87 (2005) 221910.

[23] A. Gaubert, A. Finel, Y. Le Bouar, G. Boussinot, Viscoplastic phase field modelling

of rafting in Ni base superalloys, Continuum Models and Discrete Systems CMDS11

(2008) 161–166.

[24] M. Cottura, Y. Le Bouar, A. Finel, B. Appolaire, K. Ammar, S. Forest, A phase field580

model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base

superalloys, Journal of the Mechanics and Physics of Solids 60 (2012) 1243–1256.

32
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Appendix A. Different contributions to the free energy

Appendix A.1. Chemical energy

The chemical energy density is defined using the interpolation function (1) as:

f ch =
N∑
ρ=1

φρf
ch,ρ =

N∑
ρ=1

φρ
Gρ,m(c)

Vm
, (A.1)
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where Gρ,m is the molar Gibbs energy of phase ρ and Vm a constant value related to the

molar volume. A constant molar volume value of 10−5 m3 mol−1 is assumed for all phases.

Volume changes due to phase transformations are taken into account through the eigenstrain

in the elastic part of the free energy. Phase compositions cρ are introduced:

c =
N∑
ρ=1

φρcρ, (A.2)

which are determined by assuming local chemical equilibrium at every point, i. e. , the

diffusion potentials are assumed to be equal in all the coexisting phases of all components:

∂f ch,α

∂cα
=
∂f ch,β

∂cβ
= ... =

∂f ch,ρ

∂cρ
= µ̃. (A.3)

Appendix A.2. Interfacial energy

The interfacial energy density according to Moelans et al. [84, 85] is formulated as:

f int = mf0(η) +
κ

2

N∑
ρ

(∇ηρ)2, (A.4)

where f0 is a multi-well potential. The full form of f0 is given as a fourth-order Landau

polynomial in the order parameters:

f0(η) =
N∑
ρ=1

[
η4ρ
4
−
η2ρ
2

]
+ γ

N∑
ρ=1

N∑
σ>ρ

η2ρη
2
σ +

1

4
. (A.5)

γ, κ, and m are taken as constants and determine, together with f0, the specific interfacial

energy and the diffuse interface width [84].760

Appendix A.3. Elastic energy

The elastic strain energy density is interpolated as:

f el =
N∑
ρ=1

φρf
el,ρ. (A.6)

The elastic energy is formulated using the scheme proposed by the authors ([30]). In this

study, it is extended to multi-phase systems and plastic deformation is also considered.

The elastic energy according to Hooke’s law is:

f el,ρ =
1

2
εel,ρij C

ρ
ijklε

el,ρ
kl (A.7)
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where εel,ρij is the elastic strain in ρ and Cρ
ijkl is the stiffness of phase ρ. The elastic strain

is defined as: εel,ρij = εij + δεel,ρij − ε
∗,ρ
ij − ε

pl,ρ
ij , where εij is the applied strain, δεel,ρij the local765

heterogeneous strain and ε∗,ρij the eigenstrain, and εpl,ρij the plastic strain [86]. The total strain

is given by ερij = εij + δερij.

In a reduced 2D version, we take into consideration the local equilibrium at the interfaces

(interface normal direction: 1 and parallel direction: 2) where σ11 and σ12 components of

the stress are equal in the two phases and the total strain ε22 is equal in the two phases.770

σ11 and σ12 are then calculated using Steinbach-Apel’s scheme [87], since it uses the

Reuss-Sachs condition of equal stresses at the interfaces. Therefore, in our scheme, the

stress components σρ11 = σSAS11 , σρ12 = σSAS12 .

ε22 is calculated using Voigt-Taylor’s scheme [88] since it uses the equal total strain

condition at the interfaces. Therefore, in our scheme, the total strain component ερ22 = εV TS22 .775

From this, the elastic strains are calculated as: εel,V TS,ρ22 = εV TS22 − ε∗,ρ22 − ε
pl,ρ
22 .

The unknown components σρ22, ε
el,ρ
11 and εel,ρ12 are formulated as follows:

σρ22 = Cρ
1122ε

el,ρ
11 + Cρ

2222ε
el,V TS,ρ
22 + 2Cρ

2212ε
ρ
12, (A.8)

εel,ρ11 = Sρ1111σ
SAS
11 + Sρ1122σ

ρ
22 + 2Sρ1112σ

SAS
12 , (A.9)

εel,ρ12 = Sρ1112σ
SAS
11 + Sρ2212σ

ρ
22 + 2Sρ1212σ

SAS
12 . (A.10)

σρ22 can be calculated in terms of σSAS11 , σSAS12 and εel,V TS,ρ22 as

σρ22 =
Cρ

1122(S
ρ
1111σ

SAS
11 + 2Sρ1112σ

SAS
12 ) + Cρ

2222ε
el,V TS,ρ
22

1− Cρ
1122S

ρ
1122 − 2Cρ

2212S
ρ
2212

+
2Cρ

2212(S
ρ
1112σ

SAS
11 + 2Sρ1212σ

SAS
12 )

1− Cρ
1122S

ρ
1122 − 2Cρ

2212S
ρ
2212

. (A.11)

εel,ρ11 and εel,ρ12 may also be computed similarly using Equations (A.9)–(A.10).

The elastic energy is given by:780

f el =
N∑
α

φαf
el,α (A.12)

=
N∑
α

1

2
φα(σSAS11 εel,α11 + σα22ε

el,V TS,α
22 + σSAS12 εel,α12 ) (A.13)
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The elastic driving force for microstructural evolution, ∂fel

∂ηα
, is related to ∂fel

∂φα
(see Ap-

pendix B), which is calculated as:

∂f el

∂φα
= f el,α + φα

∂f el,α

∂φα
+
∑
ρ6=α

φρ
∂fρ,el

∂φα
, (A.14)

= fα,el +
1

2
φα

[
∂σSAS,11

∂φα
εel,α11 + σSAS,11

∂εel,α11

∂φα
+
∂σα22
∂φα

εel,α,V TS22

]

+
1

2
φα

[
∂σSAS12

∂φα
εel,α12 + σSAS12

∂εel,α12

∂φα

]

+
1

2

∑
ρ 6=α

φρ

[
∂σSAS11

∂φα
εel,ρ11 + σSAS11

∂εel,ρ11

∂φα
+
∂σρ22
∂φα

εel,V TS,ρ22

]

+
1

2

∑
ρ 6=α

φρ

[
∂σSAS12

∂φα
εel,ρ12 + σSAS12

∂εel,ρ12

∂φα

]
, (A.15)

since εel,V TS,α22 is a constant with respect to all φ. The partial stress and strain derivatives

are fully derived in Appendix C.

For 3D systems, a similar approach as given in [30] may be followed, which includes all785

the stress and strain components.

Appendix B. Calculation of driving forces for microstructure evolution

∂f el

∂ηρi
=

∑
σ 6=ρ

∂f el

∂φσ

∂φσ
∂ηρi

+
∂f el

∂φρ

∂φρ
∂ηρi

(B.1)

= − 2ηρi∑
α

|ηα|2
∑
σ 6=ρ

φσ
∂f el

∂φσ
+

2ηρi∑
α

|ηα|2
(1− φρ)

∂f el

∂φρ
(B.2)

=
2ηρi∑

α

|ηα|2

[
∂f el

∂φρ
−
∑
σ

φσ
∂f el

∂φσ

]
(B.3)
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Appendix C. Calculation of strain and stress derivatives for elastic driving force

The partial derivatives are given as:

∂σα22
∂φα

=
Cα

1122(S
α
1111

∂σSAS11

∂φα
+ 2Sα1112

∂σSAS12

∂φα
)

1− Cα
1122S

α
1122 − 2Cα

2212S
α
2212

+
2Cα

2212(S
α
1112

∂σSAS11

∂φα
+ 2Sα1212

∂σSAS12

∂φα
)

1− Cα
1122S

α
1122 − 2Cα

2212S
α
2212

(C.1)

∂σα22
∂φρ

=
Cα

1122(S
α
1111

∂σSAS11

∂φρ
+ 2Sα1112

∂σSAS12

∂φρ
)

1− Cα
1122S

α
1122 − 2Cα

2212S
α
2212

+
2Cα

2212(S
α
1112

∂σSAS11

∂φρ
+ 2Sα1212

∂σSAS12

∂φρ
)

1− Cα
1122S

α
1122 − 2Cα

2212S
α
2212

(C.2)

∂εα11
∂φα

= Sα1111
∂σSAS11

∂φα
+ Sα1122

∂σα22
∂φα

+ 2Sα1112
∂σSAS12

∂φα
(C.3)

∂εα12
∂φα

= Sα1112
∂σSAS11

∂φα
+ Sα2212

∂σα22
∂φα

+ 2Sα1212
∂σSAS12

∂φα
(C.4)

∂εα11
∂φρ

= Sα1111
∂σSAS11

∂φρ
+ Sα1122

∂σα22
∂φρ

+ 2Sα1112
∂σSAS12

∂φρ
(C.5)

∂εα12
∂φρ

= Sα1112
∂σSAS11

∂φρ
+ Sα2212

∂σα22
∂φρ

+ 2Sα1212
∂σSAS12

∂φρ
(C.6)

∂σSAS,α
′

11

∂φα
= Cα′

1111

∂εSAS,α
′

11

∂φα
+ Cα′

1122

∂εSAS,α
′

22

∂φα
+ 2Cα′

1112

∂εSAS,α
′

12

∂φα
(C.7)

∂σSAS,α
′

12

∂φα
= Cα′

1112

∂εSAS,α
′

11

∂φα
+ Cα′

2212

∂εSAS,α
′

22

∂φα
+ 2Cα′

1212

∂εSAS,α
′

12

∂φα
(C.8)

with
∂εSAS,α

′

kl

∂φα
= [φαI +

∑
ρ6=α

Mρ′

klmn]−1[−ε∗,α
′

kl − ε
SAS,α′

kl ]

and
∂εSAS,ρ

′

kl

∂φα
= Mρ′

klmn

∂εSAS,α
′

kl

∂φα
(C.9)

where Mρ′

klmn = [Cρ′

ijkl]
−1Cα′

ijmn.790

Appendix D. Model validation for two-phase systems

We consider a 3D laminate structure of size 2×64×2 grid points made of alternating

domains of α and β (Figure D.9a) with equal stiffnesses subjected to a tensile strain along

x direction. This is similar to the structure considered by Cottura et al. [24] for which
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they have provided analytical solution of the strain state. There is assumed to be no misfit795

between the two phases, so the eigenstrain is zero. Plastic deformation happens only in

the β phase and α is an elastic phase. No hardening is considered in the β phase. The

non-dimensional parameters used in this simulation are listed in Table D.4. They do not

correspond to physical values and have been scaled down in order to speed up the simulations.

The stiffnesses in the two phases are assumed to be isotropic with C1111 = 197000, C1122 =800

144000, and C1212 = 90000. The interpolation function for two-phase systems is taken as φα

= p(φ) = φ3(6φ2 − 15φ+ 10) and φβ = 1 - p(φ).

Appendix D.1. Frozen structure

First, we consider a frozen microstructure, i.e., the phase-field variables do not become

diffuse at the interface. The kinetic parameters L and M are taken to be zero in order to805

ensure this. Tensile strain is applied in the x direction (see Figure D.9a) starting from 1.775

× 10−3 (this generates von Mises stress less than yield stress) until 1.82 × 10−3 with an

increment of 1 × 10−10 in each time step.

When the stress exceeds the yield stress, the plastic strain evolution begins in the β phase

as expected. At a final applied strain of 1.82 × 10−3, the cumulative plastic strain profile810

is given in Figure D.9b. The plastic strain evolves such that the von Mises stress remains

at the value of the yield stress as expected, since we assume that there is no hardening

in the β phase. The plastic strain components are shown in Figure D.9c. As expected

from the analytical solution [24], εpl,β11 = pβ (= 1.4453 × 10−4), and εpl,β22 = εpl,β33 = −pβ/2

(= −7.2267× 10−5).815

Appendix D.2. Introducing diffuse interface

After stopping the simulation when the applied tensile strain reaches 1.82 × 10−3, we

introduce the diffuse interface in order to study the evolution of composition and check the

interpolation of the viscoplastic energy across the diffuse interface. L and M now take values

as listed in Table D.4. The simulations are run until equilibrium is reached.820

Figure D.10a shows the elastic strain profiles that are obtained. εel22 is non-zero only

in the β phase due to the plastic strain contribution, since the applied and heterogeneous

strains are uniform and zero throughout the system as expected [24].
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Table D.4: Input parameters (non-dimensional) used for the simulations

Parameter 3D-AppliedStrain

System size 2×64×2

Time step 10

Grid size 1

M 10−7

L 10−5

Aα 103

Aβ 103

cα,0 0.2

cβ,0 0.8

W 1.1002

κ 4.0901

Rα 105

Rβ 86

Kα 150

Kβ 150

nα 5

nβ 5

Applied strain 0.001775 to 0.00182

Applied stress 0

Eigenstrain 0

In quantitative phase-field models, the addition of strain energy is not expected to con-

tribute to excess energy at the diffuse interface which is not present in sharp interface de-825

scriptions. In order to verify this, we plot the elastic and viscoplastic energy densities as

a function of the interpolation function p(φ) (Figures D.10b and D.10c). The elastic and

viscoplastic energy densities both follow a linear interpolation with respect to p(φ), thus
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confirming that there are no excess interfacial energy contributions from the strain energy

formulation (see Chapter [18]).830

The compositions also change from their equilibrium values (0.2 and 0.8) with no strains.

The new compositions in the two phases are 0.20002 and 0.80002 respectively. If there is

no plastic deformation, the deviation in composition may be calculated using [89]. However,

the elastic stresses are now relaxed by the viscoplastic deformation. To the best of our

knowledge, there are no analytical relations to directly calculate the composition change835

when both elastic and plastic strains are present in the system. In our previous studies

(Chapters [18] and [30]), we have shown that the composition deviation is captured well by

the phase-field model considering elastic energy. Therefore, the phase-field model may also

be used to determine the composition deviation due to elastic and plastic deformation in

cases where analytical solutions are not available as long as the relevant strain energies are840

considered in a quantitative phase-field framework.

Appendix E. Model validation for multi-phase systems

As mentioned in Section 2, in quantitative phase-field models, the presence of the diffuse

interface does not give rise to excess energy. Since this is the first time we introduce our

elastic energy scheme for multi-phase systems, we verify that this is indeed the case. A similar845

validation for two-phase systems may be found in [35]. To demonstrate this, the elastic energy

density at 100000 s is plotted as a function of φFcc and φCu3Sn at the Fcc-Cu/Cu3Sn interface

for case ‘NoApp LowEig’ in Figure E.11a. The elastic energy density interpolates linearly

with φFcc and φCu3Sn. Therefore, there is no excess energy generated at the interface due to

the elastic energy formulation [18]. Similar plots for viscoplastic energy density at 100000s850

at the interface between Cu6Sn5 and Bct-Sn phases for case ‘NoApp EqEig’ in Figure E.11b

show that there is no excess energy generated due to the viscoplastic energy formulation

also.
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Figure D.9: Simulation results (with non-dimensional parameters) for a laminate structure with applied

strain: (a) Initial structure (figure not to scale) (b) Cumulative plastic strain profile for β phase (c) Plastic

strain profiles of components εpl11 and εpl22.
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Figure D.10: Simulation results (with non-dimensional parameters) for a laminate structure with applied

strain: (a) Elastic strain profiles after introducing a diffuse interface (b) Elastic energy interpolation with

respect to p(φ) (c) Viscoplastic energy interpolation with respect to p(φ)
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Figure E.11: (a) Linear interpolation of elastic energy density with respect to φFcc−Cu and φCu3Sn across

the interface between Fcc and Cu3Sn for case ‘NoApp LowEig’ at 100000 s shows that there is no excess

energy at the interface due to the elastic energy formulation, (b) Similar plots for the viscoplastic energy

density at the interface between Cu6Sn5 and Bct-Sn for case ‘NoApp EqEig’ at 100000 s shows that there is

no excess energy due to the viscoplastic energy forumation.
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