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Li, Luo, Ferrari, Hui and Qin (hereafter referred to as Li et al.) have worked on an important

theme. With the growing use of variable selection methods for model search and data mining, it

is important for the users to be aware of the variability involved with the use of such procedures.

Since data sets might be large and might consists of a large number of variables, it is important

to have fast methods that compute such model uncertainty quantifications.

1 Emphasis on the true model

A quest for truth is noble. From the start the authors make the assumption that there exists

a true model and that they are so lucky as to have specified this true model within their set of

possible models. Such a scenario is ideal for consistent selection methods. Indeed, such methods’

driving spirit is to identify the true model with probability converging to one, or even almost

surely for some situations.

This search for the truth might be narrow-minded, however, since not everyone will be so

fortunate to have used the true data generating density in the likelihood construction. In terms

of Li et al., this means that there is no m∗ in the model set that is searched over. While the

theory of the paper does not apply, it still makes sense to think about this – realistic – scenario

since also in such cases, it is useful to get an idea about the variability resulting from the model

selection.

Charkhi and Claeskens (2018) study the asymptotic selection behaviour of the Akaike in-

formation criterion (AIC), which is known not to be consistent. Their results explicitly use

the overselection property of the AIC. Confidence intervals for model parameters or linear com-

binations thereof, conditional on the selected model, are constructed using certain truncated

Gaussian random variables. Interestingly, only in case no true model is present and least-false

(also called pseudo-true) parameters serve as limits for maximum likelihood estimators, uni-

formly valid results are obtained. A direct extension to build confidence sets for the model

rather than for parameters in the model selected by using AIC seems tricky, though. The in-
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terpretation certainly needs care in case one cannot assume there is a true model in the model

set.

2 Model selection as a one-step or a two-step procedure?

The selection of a model using an information criterion is often a two-level procedure. In

low dimensional models, the first, procedural level typically consists of the maximisation of

the likelihood. If the minimisation problem is numerically ill-posed or ill-conditioned, such as

in high dimensional models (where the number of observations is lower than the number of

parameters to be estimated), the likelihood is regularized before being optimized. Basis pursuit

or lasso (Chen et al., 1998; Tibshirani, 1996) adopts an `1-regularization of the log-likelihood.

In any case, the procedural level performs the actual selection and estimation of the model

parameters. For lasso, this becomes, θ̂ = arg minθ { − logLn(θ) + λn
∑p

j=2 |θj |}, where in a

regression model, typically the intercept is not penalized. The regularization parameter, λn,

controls the size of the selected model. Finetuning of λn forms the second level of the variable

selection. In practice, the finetuning of λn is equivalent to fixing the model size. It can be

performed by optimization over λn or over the model size of an information criterion such as

AIC, BIC, Mallows’s Cp, cross-validation, etc. Some of these criteria, such as AIC, Mallows’s Cp

and cross-validation aim at optimisation of the expected log-likelihood with respect to the data

generating process, or optimisation of a closely related objective, such as the prediction error, or

the (Kullback-Leibler) distance to the data generating process. This way, the criterion typically

leads to an efficient choice of the regularization parameter, as opposed to the consistent choice

by methods such as BIC. As the objective function measures some distance between the model

under consideration and the data generating process, its optimisation amounts to finding the

best balance between (squared) bias and variance. The resulting information criterion transforms

this balancing problem into a balance between the observed log-likelihood and model complexity.

The model complexity can be expressed using the notion of (generalized) degrees of freedom (Ye,

1998), which for the analysis of a fixed model corresponds to the model size. In general, the

degrees of freedom depend on the procedural level, and more precisely on the number and effect

of false positives on the variance of the estimator in the selected model. In the lasso procedure,

the false positives are numerous, but their effect is tempered by the shrinkage in the operation,

thereby leading to the result that the degrees of freedom are given by the size of the selected

model (Tibshirani and Taylor, 2012; Zou et al., 2007; Gao and Fang, 2011). In absence of a

shrinkage, the expression for the degrees of freedom, and thus for the likelihood-complexity

balance, is less straightforward (Jansen, 2014).

All of the model selection aspects should be incorporated when constructing model confidence

bounds. Hence the use of 10-fold cross-validation to determine λn in a regularized estimation

procedure might result in a different estimated/selected model as when BIC is used to specify

λn, for example. It would be interesting to investigate whether the current approach with the

incorporation of bootstrap results, can also handle such a full, two-step, selection procedure.

3 Selective inference for model confidence sets?

In case of regularized estimation with a fixed value of λn, the estimator θ̂ might have several

components that are exactly equal to zero. Denote the selected model by M̂lasso. The proce-

2



dure of selective inference (Lee et al., 2015) deals with the selection uncertainty by explicitly

investigating the selection event {M̂lasso = M}. That means, it characterizes what makes that

the selected model M̂lasso is given by M . This knowledge leads to post-selection intervals for

the regression parameters. See also Taylor et al. (2016) for selection events corresponding to

forward selection and to using the algorithm for least angle regression. It would be interesting

to investigate whether their truncated Gaussian test statistics that are conditional on the ac-

tive set of coefficients, could be used to form confidence sets for the model, rather than for the

parameters in the model. One possible step in this direction could be to use their conditional

results in combination with a law of total probability to obtain marginal results.

4 Choice of the model set

Charkhi and Claeskens (2018) observed that confidence intervals for model parameters clearly

depend on the model setM. The more models in the model set, the more inequalities determine

the selection event. For post-selection inference on the model parameters, it would be best to

use as few models in the selection as possible.

A question worth considering is which influence the model set M has on the model confi-

dence bounds. Would an enlargement of the set of models, which leads to an increase in selection

uncertainty since more models need to be considered, also lead to different/larger model confi-

dence sets? To gain more understanding about this question we took the diabetes data set as in

Li et al., Section 4, and we have used their R code to the extended data set which also includes

quadratic effects and pairwise interactions of all variables. This enlarges the design matrix from

10 columns with only main effects, to 64 columns with all additional effects added. While it

turned out that Algorithm 1 still works for 10 variables, even though it takes some time, it was

totally infeasible to get results with a larger number of variables due to the exponential order

of calculations needed. Algorithm 2, however, works fast enough to include all 64 variables in

the largest model.

We give here the results for adaptive lasso, using the unmodified R code of the authors. We

consider a nominal level of 95% and take the model selection bounds for which the bootstrap

coverage exceeds this value by the smallest amount.

Scenario 1: 10 main effects in the largest model. The coverage of the MCB is 98.7%.

The lower bound model contains the variables: bmi, ltg, map.

The upper bound model is equal to the full model, including all 10 main effects.

Scenario 2: 10 main effects and 45 pairwise interactions in the largest model. The coverage of

the MCB is 95.7%.

The lower bound model contains the variable bmi. The upper bound model contains all variables

except for age and the interactions between age and bmi and between map and glu. There are

52 variables in the upper bound model.

Scenario 3: 10 main effects, 9 quadratic effects and 45 pairwise interactions. The coverage of

the MCB is 95.8%.

The lower bound model contains the variable bmi. The upper bound model contains all variables

except for age and the interactions between age and bmi and between map and glu. Since here

the full model is larger, there are 61 variables in the upper bound model.

We see that if we increase the number of variables from 10 to 55 and further to 64, the lower
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bound model only contains a single variable anymore (bmi), the upper bound though increases

drastically: only three variables are not included in the upper bound model. Coincidently, it

are the same three variables. The width increases from 7 to 51 and 60.

How should we interpret this? It makes sense that the intervals get wider since the model set

M contains more elements. With only 10 main effects in the model, the MCB contains 27 = 128

models out of the 210 = 1024 models in the model setM, this gives a ratio of 1/8=12.5%. When

adding pairwise interactions, the MCB contains the large number of 251 models out of a total of

255 models, which gives a ratio of 1/16=6.25%. This ratio stays the same for the last case where

the MCB contains 261 models, out of a total of 264 possible models. These are really large sets.

Looking at the difference between the number of variables in the upper bound and the lower

bound models, corresponds to the width of the MCB. Is this width representative enough for

such a large set of models? While the MCBs in the last two scenarios contain a large, even a

huge number of models, their relative percentage of the models in the model set is only half of

what it was for the first scenario. Would this merely be an effect of the exponential number of

models, or could there be another explanation?
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