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Abstract

We propose a new approach for scaling prior to cluster analysis based
on the concept of pooled variance. Unlike available scaling procedures
such as the standard deviation and the range, our proposed scale avoids
dampening the beneficial effect of informative clustering variables. We
confirm through an extensive simulation study and applications to well
known real data examples that the proposed scaling method is safe and
generally useful. Finally, we use our approach to cluster a high dimen-
sional genomic dataset consisting of gene expression data for several spec-
imens of breast cancer cells tissue.
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1 Introduction

Every time cluster analysis is used to find homogeneous groups in the data, we
face the issue of how to scale the variables. The choice of scaling (including the
option of not scaling at all) has practical implications because in general clus-
tering methods are not scale-invariant. Even those clustering methods that are
scale-invariant, become scale-dependent when they are combined with vari-
able selection or regularization. As a consequence, we may get a different data
partition if the variables in the data are rescaled. Unfortunately, there is not a
generally accepted way to scale the variables for clustering.

There are conflicting recommendations regarding the scaling of the data in the
clustering literature. For example, Milligan and Cooper (1988) - often cited as
the main benchmark study of this topic in the context of hierarchical cluster-
ing - recommend scaling the variables by their range. Steinley (2004) came to
the same conclusion using k-means. On the other hand, Vesanto (2001) rec-
ommends the use of the standard deviation for k-means clustering. Schaffer
and Green (1996) studies clustering on real data examples and argues against
scaling with the range or the standard deviation. Stoddard (1979) also argued
against the use of the standard deviation in the analysis of laboratory proce-
dures.

While scaling may not always be necessary, it seems that in general the most
reliable approach is to use some sort of scaling for two main reasons. The first
reason is that scaling gets rid of the measurement scales of the variables. These
measurement scales may have a strong influence on the clustering results, to
the extend that a single very large variable can solely determine the whole clus-
tering outcome. Furthermore, it can be of practical importance to get rid of
measurement scales, e.g. a variable measuring “height” should have the same
effect on the clustering procedure when measured in centimeters or in meters.
The second reason is that scaling becomes practically mandatory in the con-
text of high-dimensional clustering with variable selection. Variable selection
is usually achieved through the addition of a penalization term to the objective
function. This penalization is typically not scale invariant and thus yields dif-
ferent outcomes depending on the variables’ relative sizes. Therefore, without
scaling, the penalty acts differently on each variable which will often lead to in-
effective variable selection.
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Though the arguments in favor of scaling before cluster analysis are clear, the
issue of how to scale is delicate. The reason is that there are two types of vari-
ables: informative variables and noise variables. Informative variables help to
separate clusters in the data whereas noise variables do not. If an informative
variable is scaled with a very large scale, it will be compressed to a small size
and thus there is a risk that much of its clustering power will disappear. In con-
trast, if a noise variable is scaled with a very small scale, it can potentially be
blown up to where it solely determines the clustering outcome. Note that this
issue is even more pronounced in high-dimensional datasets as they typically
contain many noise variables.
Ideally, we would like to have a scale that emphasizes the importance of infor-
mative variables while dampening the effect of noise variables by taking into
account the clustering structure of each variable.

The discussion so far suggest that there is a need for further study of both the
effect of scaling and the best choice of scale estimator in cluster analysis. De-
spite the considerable potential impact of scaling on cluster outcomes, papers
on this topic are scant, far apart, and lack consensus.

The rest of the paper is organized as follows. In Section 2 we introduce two
new scale estimators specially designed to scale variables before clustering: the
pooled standard deviation and the pooled absolute deviation. By using these
pooled scale estimators, we aim to scale variables without destroying their clus-
tering power if they have any. To calculate our proposed scale, we first run
k-means clustering on each of the variables. In order to choose the number
of clusters used to estimate the pooled scales, we use the Gap statistic (Tib-
shirani et al., 2001) with a sped-up bootstrapping procedure that bypasses the
otherwise unaffordable computational burden of this approach. The new scale
estimators are compared with existing scaling procedures in an extensive sim-
ulation study in section 4. Section 5 shows the application of the pooled scale
estimators prior to the hierarchical clustering of gene expressions of breast can-
cer sample tissues. Section 6 concludes.
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2 Methodology

2.1 Pooled scale estimators

Our starting point is the univariate k-means clustering. Assume we have a uni-
variate data set x1, . . . , xn . The well-known k-means clustering looks for the k
cluster centers which minimize the squared deviations for every point in the
data set to the closest cluster center. More precisely, the vector of cluster cen-
ters is defined as:

µ= (µ1, . . . ,µk ) = argmin
t=(t1,...,tk )

Sk (t),

where

Sk (t) =
√

1

n

n∑
i=1

d2,i (t) (1)

and d2,i (t) = min
1≤ j≤k

||xi − t j ||22. Note that Sk (µ) can be interpreted as an estima-

tor of scale. In particular, if k = 1, thenµ is the classical sample mean and S1(µ)
reduces to the classical standard deviation. If k > 1, the squared scale can be
interpreted as a pooled variance of the points around their cluster centers. As
an example, suppose that k = 2 and that the sets C1 and C2 contain the indices
of the points in the two clusters. Moreover, let |A| represent the number of ele-
ments in the set A, so that |C1|+|C2| = n. We then have S2

2(µ) = 1
n

∑n
i=1 d2,i (µ) =

1
n

∑
i∈C1 ||xi −µ1||22+ 1

n

∑
i∈C2 ||xi −µ2||22 = |C1|

n Var(C1)+ |C2|
n Var(C2), where Var(C j )

denotes the sample variance of the elements belonging to cluster j . We thus
obtain a weighted mean of the within-cluster variances, with weights propor-
tional to the number of observations in each cluster.

Our idea is to use Sk , with an appropriate (variable depending) value of k, for
scaling the variables prior to the application of a clustering procedure. We will
refer to this scale estimator as the pooled standard deviation. The intuition for
this scale estimator is the following. If a certain variable appears to not separate
any clusters in the data, we consider the variability of this variable to be unin-
formative and we use the largest scale, S1 (i.e. the classical standard deviation),
to scale it before clustering. However, when a variables does seem to separate
for example k clusters, then Sk will tend to be relatively small compared with
S1, and using Sk in that case will avoid dampening the variability (i.e. informa-
tion) in this variable. This way, we hope to preserve as much of the clustering
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information in each variable as possible, while still making the variables unit-
less.

As an alternative to k-means, k-medians clustering can also be used for the scal-
ing of the variables. Using the notation introduced above, the vector of cluster
centers in k-medians is defined as:

µ= (µ1, . . . ,µk ) = argmin
t=(t1,...,tk )

Mk (t),

where

Mk (t) = 1

n

n∑
i=1

d1,i (t)

and d1,i (t) = min
1≤ j≤k

|xi − t j |. The cluster centers now correspond to the median

of the observations in each cluster. Note that once again, Mk can be interpreted
as an estimator of scale. If k = 1, then µ is the classical sample median and
M1(µ) is the mean absolute deviation (from the median). If k > 1, Mk can be
interpreted as the pooled mean absolute deviation of every point around its
cluster center, where the pooling is done by a weighted average with weights
determined by the number of observations in each cluster. We will call Mk the
pooled mean absolute deviation. The pooled mean absolute deviation is ex-
pected to be more robust against outliers compared with the pooled standard
deviation. This is consistent with the results of the simulation study of Section
4.

Remark 1. Since we are using univariate k-means and k-medians to obtain the
pooled standard deviation and pooled mean absolute deviation, it is worth not-
ing that there is an algorithm which guarantees the convergence to a global op-
timum instead of a local one. This algorithm uses dynamic programming, runs
in O (kn2) time and is implemented in the R-package Ckmeans.1d.dp, see Wang
and Song (2011).

2.2 Determining k

An important question regarding our proposed pooled scale estimators is how
to choose the appropriate number of clusters k∗ for each variable in the dataset.
There is a vast literature on choosing the appropriate number of clusters and a
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recent comprehensive comparative study is given by Arbelaitz et al. (2013). In
the setting of pooled scale estimators, we need a criterion that is relatively fast
to compute and not too sensitive to spurious clusters. Most importantly, we
need a criterion that can distinguish between the “null-case” of one cluster ver-
sus the alternative case of two or more clusters. This is an important point,
since especially in high dimensional datasets, we expect that many variables
may not have interesting information for clustering the data and thus should be
scaled by the largest scale, i.e. the standard deviation or mean absolute devia-
tion. Note that this requirement makes many popular cluster validation indices
unsuitable for us, since many of them do not yield a reasonable comparative as-
sessment of the one-cluster-case.

A well known criterion that satisfies our needs is the Gap statistic (Tibshirani
et al., 2001), which is defined as follows. Suppose we have clustered the data
into k clusters, C1, . . . ,Ck , where C j denotes the indices of the observations
in cluster j . Let Wk be the sum of the within-cluster sums of squares around
their corresponding cluster means, i.e. Wk = ∑k

j=1

∑
i∈C j

(xi − x̄ j )2 where x̄ j =
1

|C j |
∑

i∈C j
xi is the mean of the observations in cluster j . In order to identify

the number of clusters, the value of log(Wk ) is compared to its expected value
E∗

n

[
log(Wk )

]
under a uniform reference distribution on the range of the dataset.

If this value deviates too much from its expected value under a uniform distri-
bution, it indicates the existence of clusters in the data. The intuition for the
comparison with the uniform distribution is that it is the distribution which
is most likely to generate spurious clusters (within the family of log-concave
densities) and will thus on average provide the strongest evidence against the
alternative hypothesis.

In principle, the reference distribution of log(Wk ) is determined by generating
bootstrap samples from the uniform distribution. As we would like scale every
variable in the dataset, this appears to lead to a prohibitive computational cost
which would scale poorly with the number of variables. Fortunately, there is
an efficient way to bypass this hindrance based on the results of proposition 1
below.

In our case, the clusters are coming from the k-means (or k-medians) clustering
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algorithm. This means that for a given clustering C1, . . . ,Ck , we have

Wk =
k∑

r=1
d2,i (µ1, . . . ,µk ) = n S2

k .

in the computation of the pooled standard deviation. For the pooled mean ab-
solute deviation, we redefine Wk such that it corresponds to the pooled within-
cluster sum of absolute deviations around the cluster medians:

Wk =
k∑

r=1
d1,i (µ1, . . . ,µk ) = n Mk .

Therefore, in our setting the gap statistic will be large when there is a “signifi-
cant difference” in the estimated pooled scale compared with the pooled scaled
estimate on data coming from a uniform distribution.

In order to estimate E∗
n

[
log(Wk )

]
and Var∗n

[
log(Wk )

]
, we apply k-means to B

bootstrap samples of size n. The mean of these samples serves as the estimate
for E∗

n

[
log(Wk )

]
and the appropriate scale, which accounts for the simulation

error in E∗
n

[
log(Wk )

]
, is then the standard deviation of the bootstrap samples

multiplied by
p

1+1/B .

We now turn to speeding up the bootstrapping procedure for scaling all the
variables in a dataset. The speed-up is achieved by exploiting the fact that we
are in the univariate setting and by using the properties of the proposed scaling
methods established in the following proposition.

Proposition 1. Let x= x1, . . . , xn be a sample of univariate observations and let
C1, . . . ,Ck be a partition of x resulting from solving the k-means clustering prob-
lem. Denote the value of the objective function with Sk as in Equation 1. Let s > 0
and t ∈R and consider z = z1, . . . , zn where zi = (xi − t )/s for i = 1, . . . ,n. We then
have:

1. Shift and Scale invariance of k-means clusters:
C1, . . . ,Ck is a solution to the k-means clustering problem on z.

2. Shift invariance and Scale equivariance of k-means objective function:
The value of the objective function of this clustering is Sk /s.

3. Shift and Scale invariance of gap statistic:
The number of clusters selected by the gap statistic is the same for x and z.
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The exact same result holds for clustering with k-medians. These results are
intuitive and follow from the fact that Manhattan and euclidean distances are
scale equivariant. We give the proof in the Appendix. Using this proposition, it
becomes clear that we need to bootstrap the reference distribution of log(Wk )
only once, instead of for every variable separately. The reason is that we can
first rescale each variable in the dataset by the range, so that all of them have
the same range of length one. Now the reference distribution of Wk is the same
for each of these variables, allowing us to bootstrap once from the uniform dis-
tribution on [0,1] to obtain the reference distribution for all variables. Note
that it does not matter on which interval of length 1 the variable takes its val-
ues, since the whole procedure is shift invariant as well.

Remark 2. The uniform distribution is not the only possible reference distribu-
tion one can use. Another option briefly suggest by Tibshirani et al. (2001) is
to use log-concave density estimation, which is possible for univariate distribu-
tions. This would yield a fit of a log-concave density to every variable in the data
from which bootstrap samples can then be drawn. While this takes into account
the individual distributions of every variable, the drawback is that in this case
we have to take the slow approach of generating separate reference distributions
for every variable.

Remark 3. Instead of the gap statistic, the jump statistic (Sugar and James, 2003)
may be used as an alternative. In the univariate setting, the jump statistic con-
siders the “distortions” d̂k = S2

k for several numbers of clusters k. They then define

the jumps as Jk = d̂−1/2
k − d̂−1/2

k−1 , where d̂0 ≡ 0. Finally, the number of clusters is
estimated by taking K ∗ = argmaxk Jk . One advantage of the jump statistic over
the gap statistic is that it faster to compute, since we do not need to bootstrap a
reference distribution. In our simulations however, the gap statistic performed
better.

3 Algorithm

We are now ready to describe the procedure we propose for scaling a dataset
prior to clustering. For a p-variate dataset X1, . . . , Xp with n observations per
variable, we apply the following steps to scale all the variables:
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1. Generate B bootstrap samples of size n from the uniform distribution on
[0,1] and cluster each of them using k-means. Retain all the values W ∗

k,b

for k = 1, . . . ,kmax and b = 1, . . . ,B . Denote with mk = (1/B)
∑

b log
(
W ∗

k,b

)
,

sdk =
[

(1/B)
∑

b

(
log

(
W ∗

k,b

)
−mk

)2
]1/2

, the estimates for the location and

scale of log(Wk )∗ respectively. Finally, put sk =p
1+1/B sdk .

2. For all variables X j , j = 1, . . . , p, do:

(a) Rescale the variable with its range to obtain Z j = X j /r j , where r j =
range

(
X j

)
.

(b) Cluster Z j using k-means for k = 1, ...,kmax and retain the values
Wk, j = n S2

k, j .

(c) Calculate the values of the gap statistic: Gap j (k) = mk − log
(
Wk, j

)
.

(d) Choose the number of clusters k∗, by setting
k∗ = smallest k such that Gap j (k) ≥ Gap j (k +1)− c sk+1.

(e) Rescale the value of the objective function of the appropriate k,
r j Sk∗, j , and use this pooled standard deviation to scale X j .

The constant c in the above procedure controls the rejection of the null model.
As c goes up, it becomes less likely to reject the null model of zero clusters.
A default value is c = 1, which works well according to Breiman et al. (1984)
and Tibshirani et al. (2001). For the number of bootstrap samples, a default of
B = 1000 yields almost no variance in the resulting scale estimates in our ex-
perience. Replacing k-means with k-medians yields the scaling procedure with
Mk , the pooled mean absolute deviation.

Example 1: Fisher’s Iris data
As an illustrative example we consider Fisher’s well-known Iris dataset (Fisher,
1936), collected by Anderson (1935). This dataset contains fifty samples from
each of three types of iris: Iris setosa, versicolor, and virginica. Each flower
is described by four variables which describe the dimensions of its sepal and
petal. Table 1 illustrates the effect of scaling with the proposed pooled stan-
dard deviation on this data and compares with the standard deviation and the
range. For the first two variables, the pooled standard deviation is equal to the
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standard deviation, because these variables do not seem to clearly distinguish
any groups in the data. However variables three and four seem to both distin-
guish two clear groups, resulting in significantly lower pooled standard devia-
tions. The last row of the table reports the adjusted rand index (ARI) (Hubert
and Arabie, 1985) with respect to the true classification when performing k-
means with k = 3 on the dataset after scaling. The ARI takes on values between
-1 and 1, where an ARI of 1 indicates perfect agreement between partitions and
the lower the ARI, the higher the disagreement between the partitions. It is
clear that scaling with the pooled standard deviation gives better results than
scaling with the standard deviation or the range, since neither of these take
into account the individual separative power of the variables. As a reference,
we mention that k-means clustering without scaling gives an ARI of 0.73.
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variable
standard
deviation

range
pooled

standard
deviation

Sepal Length
4 5 6 7 8

0
5

10
15

20
25

30

0.83 3.6 0.83

Sepal Width
2.0 2.5 3.0 3.5 4.0

0
5

10
15

20
25

30
35

0.44 2.4 0.44

Petal Length
1 2 3 4 5 6 7

0
10

20
30

1.77 5.9 0.40

Petal Width
0.0 0.5 1.0 1.5 2.0 2.5

0
5

10
15

20
25

30
35

0.76 2.4 0.18

k-means ARI 0.62 0.72 0.89

Table 1: The effect of variable scaling on Fisher’s Iris data. The pooled standard
deviation produces smaller scales for variable 3 and 4, resulting in a higher ARI
when clustering the data with the k-means algorithm after scaling.

4 Simulation study

The most well-known comparative study on the scaling of variables in clus-
tering is arguably the one by Milligan and Cooper (1988), building on Milligan
(1985). Recently, Qiu and Joe (2006) used the design of this simulation study
as a basis for a new algorithm to generate clusters with a specified degree of
separation. The R package clusterGeneration (Qiu and Joe., 2015) contains
an implementation of their algorithm and it will be the basis of our simulation
study.

We compare the following types of scaling in our simulation study:
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1. No scaling

2. The standard deviation: sd = 1
n−1

√∑n
i=1 (xi − x̄)2

3. The range: range = x(n) −x(1)

4. The mean absolute deviation: mad = 1
n−1

∑n
i=1 |xi −mediani xi |

5. The pooled standard deviation: psd = Sk∗

6. The pooled mean absolute deviation: pmad = Mk∗

In order to get a complete picture of the different scaling methods, we perform
an extensive simulation study. Each generated dataset has an even number of
clean variables which we vary between 2 and 10. The clusters are generated
from the multivariate standard normal distribution. We consider equally sized
clusters of size 100 each. The degree of separation between the clusters is either
separated (0.21) or well-separated (0.34), see Qiu and Joe (2006). We then add
a percentage of noise variables to the dataset varied between 0 and 2000 % of
the number of clean variables. The noise variables can either be multivariate
standard normal or uniform over the range of the clean variables. The uniform
noise variables are generated by adding a small gaussian perturbation to an
equally spaced grid over the range of the signal variables to ensure that they
don’t have any separative power. We did the simulation both on clean data as
well as contaminated data. For the contaminated data, 5 % of the observations
of each of the signal variables are replaced with points sampled randomly from

the uniform distribution on
[

X j −4 s
(
X j

)
, X j +4 s

(
X j

)]
, where X j and s

(
X j

)
denote the mean and standard deviation of the signal variable. Table 2 summa-
rizes the factors of our simulation study and their levels.

All together this gives 1280 different settings and for each of these, we gen-
erate 100 datasets. Each generated dataset is scaled using the six scale esti-
mators described above. Afterwards we perform the most popular methods
of connectivity-based clustering and centroid-based clustering. More specifi-
cally, we use hierarchical clustering on the Euclidean distances with single, av-
erage, complete and Ward’s linkage functions (Ward, 1963) as well as k-means
and partitioning around medoids using the manhattan distance (Kaufman and
Rousseeuw, 2009). For k-means, the algorithm of Hartigan and Wong (1979)
is used with 100 random starts and 100 maximum iterations for each starting
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factor levels #
number of clean variables 2, 4, 6, 8, 10 5

number of clusters 2, 3, 4, 5 4
degree of separation separated, well-separated 2

percentage noise variables added 0, 50, 100, 150, 200, 500, 1000, 2000 8
type of noise Gaussian, uniform 2

percentage of outliers 0, 5 2

Table 2: Design factors of the simulation study.

value.

We compare the results using the adjusted Rand index (ARI) (Hubert and Ara-
bie, 1985) which lies between -1 and 1 where 1 indicates a perfect clustering.
We cluster each dataset for a variety of target clusters k = 1, . . . ,3×T , where
T denotes the true number of clusters. For k-means this value is a direct in-
put, whereas for hierarchical clustering we cut the dendrogram at these various
levels of k. We then pick the optimal value of the ARI over these different clus-
terings. The reason for this procedure is that we want to evaluate the effect of
scaling on clustering without any distortion from the question of how to choose
the optimal number of custers. Furthermore, particularly in the case of hierar-
chical clustering, the clusterings resulting from a higher number of partitions
are often more reflective of the real underlying structure than cutting the den-
drogram at the true number of clusters, since single outlying observations can
distort the dendrogram significantly.

Figure 1 shows the big picture of the simulation results for hierarchical cluster-
ing on data without outliers. For each type of linkage, the graphs show the aver-
age ARI over all different settings with the increasing number of noise variables
on the x-axis. Several interesting observations can be made from these plots.
It is clear that as the number of noise variables increases, the clustering gets
more difficult resulting in generally lower ARI values. However, scaling with the
standard deviation or the mad is clearly more sensitive to noise variables than
the other methods. Scaling with the range does fairly well, which is in line with
the findings of Milligan and Cooper (1988). The pooled scale estimators out-
perform all the other methods, especially when the number of noise variables
is large. The difference between the psd and the pmad seems very small and
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not significant in these plots. Finally, not scaling appears to perform similarly
to scaling with either sd or mad. This is due to the particular simulation setup
and one must always take into account that the performance of not scaling the
variables can be completely destroyed by taking one noise variable which has a
variance which is much larger than the variance of the signal variables.

Figure 2 shows the results for k-means clustering and partitioning around medoids.
The conclusions are largely the same as for the case of hierarchical clustering.
When scaling with the standard deviation or mad, the true clustering structure
seems more difficult to retrieve. The range preserves more of the cluster struc-
ture and performs better than the sd and mad which is in line with Steinley
(2004). However, the pooled scale estimators again outperform the competi-
tors.

The simulation results presented above only give a rough overview of the per-
formance of the methods and do not show the performance in the presence of
outliers. The most interesting insight from a more detailed analysis of the re-
sults is that the performance of the methods is highly dependent on the type of
noise variables which are added to the signal variables. Scaling with the range
works well when the noise variables are more gaussian but fails when the noise
is more uniform. This can be explained by the fact that uniform noise vari-
ables have a large variance given their range. As a result, their impact on the
clustering is large when scaling with the range. Scaling with the sd and mad
work much better when the noise variables are more uniform than the case of
gaussian noise. This in turn can be explained by the fact that the uniform noise
variables have a high variance for their range compared with gaussian noise
variables. Scaling them by their variance pushes the uniform noise more to-
wards the center, which limits their influence.

The effect of outliers is shown in Figures 4 and 5 in the supplementary mate-
rial. These results expose the sensitivity of the range to the presence of outliers.
Other than that, the relative performance of the different scaling methods is
roughly the same as in the case of outlier free data. An interesting note is that
the pmad is clearly more robust to outliers than the psd, which resembles the
robustness of the mean absolute deviation versus that of the standard devia-
tion in classical scale estimation.
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(a) Single linkage
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(b) Average linkage

●

●

●

●

●

●

●

●

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% noise variables added

m
ea

n 
A

R
I

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

none
sd
range

mad
psd
pmad

(c) Complete linkage
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(d) Ward linkage

Figure 1: Simulation results for hierarchical clustering with single (a), aver-
age (b), complete (c) and Ward (d) linkage functions on outlier-free data. The
pooled scale estimators are the least sensitive to an increasing number of noise
variables.
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(a) k-means
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(b) Partitioning around medoids

Figure 2: Simulation results for k-means (a) and partitioning around medoids
(b) on data without outliers. The pooled scale estimators are more resistant to
the addition of noise variables to the data.
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5 Gene expression example

In a seminal paper Perou et al. (2000) analyzed gene expression patterns of
65 surgical specimens of human breast tumors. The data is publicly avaiable
at https://www.omicsdi.org/dataset. They identified 496 intrinsic genes,
which had significantly larger variation between different tumors compared
with the variation between paired samples from the same tumor. Using hier-
archical clustering with Eisen linkage (Eisen et al., 1998), they clustered the tu-
mors into 4 different types: basal-like, Erb-B2+, normal-breast-like and luminal
epithelial/ER+. We illustrate the effect of the pooled standard deviation in hier-
archical clustering with average, complete and ward linkage on these 496 genes.

Table 3 shows the resulting dendrograms when applying each of these cluster-
ing algorithms to the dataset after scaling it in various ways. For average link-
age, the pooled standard deviation clearly outperforms the other options. It
only misclassifies two observations, whereas the other methods split the large
group of luminal epithelial/ER+ tumors (in cyan) in two or more clusters and
fail to identify the smallest group (in green) which contains the Erb-B2+ tu-
mors. Complete linkage gives better results for all types of scaling. However,
without scaling or when using the range, the largest group of tumors get split
up into two groups. This does not happen when scaling with the standard de-
viation, yet quite a few tumors are misclassified in this case. When scaling
with the pooled standard deviation, only two tumors are misclassified using
complete linkage. Finally, with Ward’s linkage, both the pooled standard de-
viation and scaling with the range work well, with two and one misclassified
tumor respectively. Without scaling and with the standard deviation however,
the largest cyan cluster gets split up in two smaller clusters. In conlcusion, the
pooled standard deviation yields better recovery of the true clusters than the
other scaling methods.

In addition to improved clustering results, the pooled scaling procedure yields
a diagnostic tool in the form of scale ratios. More precisely, we can compare the
standard deviations of the variables with their pooled counterparts. Variables
for which the ratio of these two scales is large typically show a clear grouping of
the data, whereas variables for which this ratio is close to 1 do not distinguish
clear groups. These ratios can thus be used as a fast and intuitive variable-
screening procedure to identify potentially very informative variables, which is
often a main research goal in this context.
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In this example, only 8 of the 496 variables had a scale different from the stan-
dard deviation. The information on those 8 variables is presented in table 4.
Figure 3 shows the gene expressions for the 4 genes which had the highest scale
ratio. The colors again correspond to the 4 types of tumors. The top left panel
shows the gene GF200:96(8C12):384(2F23), which clearly groups the red and
blue points together and also shows high values for the majority of the cyan
group. The top right and bottom left panels show the genes GF201:96(88H2):384(11O4)
and PEROU:96(7F8):384(20L16), which distinctly separate the green tumors from
the others. In the bottom right panel, the red tumors seem to have slightly lower
values than the others, the blue tumors are grouped very tightly together and
the cyan tumors appear to contain a sub-cluster with elevated values for this
gene.
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(c) PEROU:96(7F8):384(20L16)
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Figure 3: Genes for which the pooled standard deviation is smaller than the
standard deviation. These genes generally cluster the majority of the true
groups together while sometimes identifying potentially interesting subclus-
ters.
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average linkage complete linkage ward linkage

no
scaling

standard
deviation

range

pooled
standard
deviation

Table 3: The effect of variable scaling on the gene expression data. The col-
ors correspond to the tumor type: basal-like in red, Erb-B2+ in green, normal-
breast-like in dark blue and luminal epithelial/ER+ in cyan. The pooled stan-
dard deviation generally yields superior recovery of the true clusters.
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variable ID Description sd / psd

GF200:96(8C12):384(2F23)
HUMAN BREAST CANCER, ESTROGEN

REGULATED LIV-1 PROTEIN (LIV-1) MRNA,
PARTIAL CDS H29407 45

3.5

GF201:96(88H2):384(11O4)
GROWTH FACTOR RECEPTOR-BOUND

PROTEIN 7 H53703 224
2.4

PEROU:96(7F8):384(20L16)

SWI/SNF RELATED, MATRIX ASSOCIATED,
ACTIN DEPENDENT REGULATOR OF

CHROMATIN, SUBFAMILY E, MEMBER 1
W63613 228

2.4

GF200:96(13D9):384(4G17)
CYTOCHROME P450, SUBFAMILY IIA

(PHENOBARBITAL-INDUCIBLE),
POLYPEPTIDE 7 T73031 61

2.2

PEROU:96(8A1):384(20B1) 68400 T57034 226 2.2
PEROU:96(6A1):384(20A2) 68400 T57034 227 2.2

GF200:96(14D12):384(4G24) APOLIPOPROTEIN D H15842 2.2
PEROU:96(9A9):384(18B18) IMMUNOGLOBULIN J CHAIN H24896 325 2.1

Table 4: Genes for which the pooled standard deviation is smaller than the stan-
dard deviation. The third column shows the ratios of these two scales.
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6 Conclusion

We introduced a new approach to variable scaling prior to cluster analysis which
we call pooled scale estimators. The performance of pooled scaling is com-
pared with the most common competitors on several popular clustering tech-
niques, with a particular focus on the case of high dimensional data with many
uninformative noise variables. Scaling with the pooled scale estimators yields
superior cluster recovery on the different clustering methods, in particular when
the data contains a lot of noise variables. Since this is a common theme in the
clustering of gene expression data, the performance was illustrated on breast
cancer gene expressions in which it also outperformed the competition. The
pooled scale estimates yield an additional diagnostic tool in the form of the ra-
tio between pooled scales and default scales, which quantify the presence of
cluster structure in the individual variables.

7 Acknowledgements

This work was supported by internal funds of the KU Leuven [to J.R.] and by the
Discovery grant from NSERC [to R.Z.].

22



References

Anderson, E. (1935). The irises of the gaspe peninsula. Bulletin of the American
Iris Society 59, 2–5.

Arbelaitz, O., I. Gurrutxaga, J. Muguerza, J. M. PÃl’rez, and I. Perona (2013).
An extensive comparative study of cluster validity indices. Pattern Recog-
nition 46(1), 243 – 256.

Breiman, L., J. Friedman, C. Stone, and R. Olshen (1984). Classification and Re-
gression Trees. The Wadsworth and Brooks-Cole statistics-probability series.
Taylor & Francis.

Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein (1998). Cluster analysis
and display of genome-wide expression patterns. Proceedings of the National
Academy of Sciences 95(25), 14863–14868.

Fisher, R. (1936). The use of multiple measurements in taxonomic problems.
Annals of Eugenics 7(2), 179–188.

Hartigan, J. A. and M. A. Wong (1979). Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statis-
tics) 28(1), 100–108.

Hubert, L. and P. Arabie (1985). Comparing partitions. Journal of Classifica-
tion 2, 193–218.

Kaufman, L. and P. Rousseeuw (2009). Finding Groups in Data: An Introduction
to Cluster Analysis. Wiley Series in Probability and Statistics. Wiley.

Milligan, G. (1985). An algorithm for generating artificial test clusters. Psycho-
metrica 50, 123–127.

Milligan, G. and M. Cooper (1988). A study of standardization of variables in
cluster analysis. Journal of Classification 5, 181–204.

Perou, C. M., T. SÃÿrlie, M. B. Eisen, M. van de Rijn, S. S. Jeffrey, C. A. Rees, J. R.
Pollack, D. T. Ross, H. Johnsen, L. A. Akslen, y. Fluge, A. Pergamenschikov,
C. Williams, S. X. Zhu, P. E. LÃÿnning, A.-L. BÃÿrresen-Dale, P. O. Brown,
and D. Botstein (2000). Molecular portraits of human breast tumours. Na-
ture 406(6797), 747 – 752.

23



Qiu, W. and H. Joe (2006). Generation of random clusters with specified degree
of separation. Journal of Classification 23, 315–334.

Qiu, W. and H. Joe. (2015). clusterGeneration: Random Cluster Generation (with
Specified Degree of Separation). R package version 1.3.4.

Schaffer, C. M. and P. E. Green (1996). An empirical comparison of variable
standardization methods in cluster analysis. Multivariate Behavioral Re-
search 31(2), 149–167. PMID: 26801454.

Steinley, D. (2004). Standardizing variables in k-means clustering. In D. Banks,
F. McMorris, P. Arabie, and W. Gaul (Eds.), Classification, Clustering, and Data
Mining Applications. Studies in Classification, Data Analysis, and Knowledge
Organisation, pp. 53–60. Springer, Berlin, Heidelberg.

Stoddard, A. M. (1979). Standardization of measures prior to cluster analysis.
Biometrics 35(4), 765–773.

Sugar, C. A. and G. M. James (2003). Finding the number of clusters in a dataset.
Journal of the American Statistical Association 98(463), 750–763.

Tibshirani, R., G. Walther, and T. Hastie (2001). Estimating the number of clus-
ters in a data set via the gap statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 63(2), 411–423.

Vesanto, J. (2001). Importance of individual variables in the k-means algorithm.
In D. Cheung, G. J. Williams, and Q. Li (Eds.), Advances in Knowledge Discov-
ery and Data Mining, Berlin, Heidelberg, pp. 513–518. Springer Berlin Hei-
delberg.

Wang, H. and M. Song (2011). Ckmeans.1d.dp: Optimal k-means clustering in
one dimension by dynamic programming. The R Journal 3(2), 29–33.

Ward, Jr., J. H. (1963). Hierarchical grouping to optimize an objective function.
Journal of the American Statistical Association 58(301), 236–244.

24



A Appendix

A.1 Proof of Proposition 1

We prove the resut in the case of k-means clustering. For k-medians clutering,
the proof is entirely analogous.

Proof. Part 1: effect of scaling on k-means clustering
Let x= x1, . . . , xn be a sample of univariate observations, k > 0 be a fixed natu-
ral number and suppose we have a solution to the k-means clustering problem
for this value of k. Denote the centers of the clusters in this solution by µ =
µ1, . . . ,µk , the sets of indices of the clusters by C1, . . . ,Ck and the value of the ob-

jective function by Sk (µ) =
√

1
n

∑n
i=1 di (µ) where di (µ) = min j=1,...,k ||xi −µ j ||22.

Let s > 0 be a positive real number, t ∈R a real number and consider the sample
z = z1, . . . , zn where zi = (xi − t )/s.

We show that the clustering given by C ′
j = C j and µ′ = µ′

1, . . . ,µ′
k where µ′

j =
(µ j − t )/s is a solution to the k-means problem on z. Note first of all that if C ′

j =
C j , we have µ′

j = (µ j −t )/s since the cluster centers are the sample means of the
elements in the clusters and the sample mean is affine equivariant. Therefore,
we also have that s S′

k (µ′) = Sk (µ).

Suppose now that the clustering given by µ′ does not solve the k-means prob-
lem on z1, . . . , zn , i.e. there exists a clustering given by the centers θ = θ1, . . . ,θk

such that S′
k (θ) < S′

k (µ′). Denote d ′
i (θ) = min j=1,...,k ||zi −θ j ||22. Now consider

the partition of the original dataset x1, . . . , xn given by the centers sθ+ t = s θ1+
t , . . . , s θk + t . We then have Sk (s θ+ t ) =

√∑n
i=1 di (s θ+ t ) = s

√∑n
i=1 d ′

i (θ) =
s S′

k (θ) < s S′
k (µ′) = Sk (µ). This is a contradiction since µ solves the k-means

clustering of x1, . . . , xn and thus we cannot have a clustering with a lower objec-
tive function.

Part 2: scale invariance of the gap analysis
Let k be fixed and consider the pooled within-cluster sum of squares Wk (x) =
nS2

k of the k-means clustering ofx. Letz = (x−t )/s for a scale s > 0 and location

1



t ∈R as before. Then Wk (z) =Wk (x)/s2 and so

Gapz(k) = EU[z(1),z(n)]
[
log(Wk )

]− log(Wk (z))

= EU[x(1),x(n)]
[
log(Wk )−2log(s)

]− (
log(Wk (x))−2log(s)

)
= EU[x(1),x(n)]

[
log(Wk )

]− log(Wk (x)) = Gapx(k).

Furthermore, we also have

VarU[z(1),z(n)]
[
log(Wk )

]= VarU[x(1),x(n)]
[
log(Wk )−2log(s)

]
= VarU[x(1),x(n)]

[
log(Wk )

]
.

So for every value of k, both the value of the gap statistic and the estimated
variance of log(Wk ) are invariant under the rescaling. Therefore, the optimal
number of clusters resulting from the analysis based on the gap statistic is the
same for x and z.
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B Supplementary Material

B.1 Additional simulation results
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(a) Single linkage
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(b) Average linkage
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(c) Complete linkage
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(d) Ward linkage

Figure 4: Simulation results for hierarchical clustering with single (a), average
(b), complete (c) and Ward (d) linkage functions on data with 5 % outliers. The
pooled scale estimators perform the best and the pmad is more robust to out-
liers than the psd.
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(a) k-means
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(b) Partitioning around medoids

Figure 5: Simulation results for k-means (a) and partitioning around medoids
(b) on data with 5 % outliers. The pooled scale estimators perform better than
the alternatives and the pmad is clearly more robust to outliers than the psd.
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