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ABSTRACT
Radiative transfer is a key component in almost all astrophysical and cosmological simulations.
We present Magritte: a modern open-source software library for 3D radiative transfer. It uses
a deterministic ray-tracer and formal solver, i.e. it computes the radiation field by tracing
rays through the model and solving the radiative transfer equation in its second-order form
along a fixed set of rays originating from each point. Magritte can handle structured and
unstructured input meshes, as well as smoothed-particle hydrodynamics (SPH) particle data. In
this first paper, we describe the numerical implementation, semi-analytic tests and cross-code
benchmarks for the non-LTE line radiative transfer module of Magritte. This module uses
the radiative transfer solver to self-consistently determine the populations of the quantised
energy levels of atoms and molecules using an accelerated Lambda iteration (ALI) scheme.
We compare Magritte with the established radiative transfer solvers Ratran (1D) and Lime
(3D) on the van Zadelhoff benchmark and present a first application to a simple Keplerian disc
model. Comparing with Lime, we conclude that Magritte produces more accurate and more
precise results, especially at high optical depth, and that it is faster.
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1 INTRODUCTION

Radiative processes play an essential role in the dynamics, chemistry
and energy balance of various astrophysical objects, from planetary
and stellar atmospheres to galaxies and the Universe as a whole.
Radiation can provide a radiative pressure that can drive dynamics
(see e.g. Höfner et al. 2003), it can affect chemistry through various
photo-ionisation and photo-dissociation reactions (see e.g. Huggins
& Glassgold 1982), and it can efficiently heat or cool very localised
regions (see e.g. Woitke et al. 1996). Furthermore, the radiative
properties determine what can and cannot be seen in observations,
i.e. which regions are visible in what part of the electromagnetic
spectrum.

Ever since the first detection and identification of atoms and
molecules in space (Douglas&Herzberg 1941;Weinreb et al. 1963),
their line emission and absorption features have been an indispens-
able diagnostic tool to infer the physical and chemical conditions
throughout the Universe. In order to interpret the observational data,
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we require high precision atomic and molecular data (Schöier et al.
2005) aswell as sound theoreticalmodels. Historically, thesemodels
quickly evolved from highly idealised equilibrium systems to more
self-consistent non-equilibrium models (Mihalas & Athay 1973).
Moreover, with the advent of high (spatial) resolution imaging, for
instance using the Atacama Large Millimetre Array (ALMA), full
3D models are imperative to properly model the intricate structures
observed in the data (see e.g. Alves et al. 2019; Smith et al. 2018;
Decin et al. 2015; Maercker et al. 2012).

Given the tight coupling between radiation field andmedium, it
is crucial both in astrophysical and cosmological modelling to prop-
erly account for all radiative processes and their interdependence.
This, however, can be highly complicated due to: i) an intricate 3D
geometrical structure shielding or exposing specific regions to radi-
ation, ii) the scattering of radiation by dust or free electrons yielding
additional non-trivial coupling between the geometry and the radi-
ation field, and iii) the mixing in frequency space due to Doppler
shifts caused by velocity gradients in the medium. Furthermore,
the coupling between the radiative processes and the often very
specialised and diverse dynamical and chemical models requires a
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modular radiative transfer solver that can easily be integrated with
the various existing hydrodynamics and chemistry models. Finally,
the ever growing size and complexity of these models requires fast
and scalable algorithms that can efficiently leverage the wealth of
modern computational resources.

There are two main computational strategies to solve radiative
transfer problems. On the one hand there are probabilistic (Monte
Carlo) solvers such as e.g. RadMC-3D (Dullemond et al. 2012),
Skirt (Verstocken et al. 2017), CMacIonize (Vandenbroucke &
Wood 2018), and some components of Torus (Harries et al. 2019).
On the other hand there are deterministic or formal solvers such as
e.g. SPHray (Altay et al. 2008), 3D-pdr (Bisbas et al. 2012), and
Lampray (Frostholm et al. 2018). Furthermore, there are also codes
that combine ideas from both techniques such as Ratran (Hoger-
heijde & van der Tak 2000) and its 3D successor Lime (Brinch
& Hogerheijde 2010). The latter has been widely used to model
atomic and molecular lines in 3D models of various astrophysical
objects (see e.g. Booth et al. 2019; Montargès et al. 2019; Homan
et al. 2018; Evans et al. 2018; Walsh et al. 2016; Bergin et al. 2013;
Maercker et al. 2012; Andrews et al. 2012).

Currently, most radiative transfer solvers use probabilistic
methods. These methods mimic the physical photon transport by
propagating a number of photon packets through the medium (see
e.g. Noebauer & Sim 2019, for an extensive review). The main issue
with this approach is that the trajectories of these photon packets
are randomly determined by the properties of the medium. This
implies that they can get trapped in opaque regions, impeding them
from contributing much to the overall radiation field. Hence, a large
number of packets need to be propagated which can significantly in-
crease the computation time. Although many techniques have been
devised to avoid the trapping of photon packets (see e.g. Yusef-
Zadeh et al. 1984), it remains challenging for probabilistic radiative
transfer solvers to efficiently obtain accurate results, especially at
medium to high optical depths (Camps & Baes 2018).

Deterministic or formal solvers compute the radiation field
by solving the radiative transfer equation along rays through the
medium. Since the optical properties of the medium often depend
on the radiation field this has to be done in an iterativeway. Although
there are no photon packets in this approach, a problem physically
very similar to photon trapping canmanifest itself in the formof slow
convergence of the iteration process. In this context, the problemwas
first identified in the 1970s by various authors (see e.g. Scharmer
& Carlsson 1985, and references therein) and is more commonly
known as the Lamba-iteration problem. This problem arose when
attempts were made to model the radiative hydrodynamics of hot
stars without assuming local thermodynamic equilibrium (i.e. non-
LTE). The extremely slow or false convergence produced by this
effect resulted in erroneous fits to the observed data. Subsequent
work, for instance by Olson et al. (1986) and Rybicki & Hummer
(1991), elegantly addressed these issues using a technique called
accelerated Lambda iteration (ALI). For a complete overview of
these methods see, for example, Hubeny & Mihalas (2014).

Although deterministic solvers could better cope with the opti-
cal depth related issues, probabilistic solvers became more popular
due to their relative ease of implementation, especially in two and
three spatial dimensions. However, with the development of fast
solution methods it is now possible to implement a determinis-
tic solver with comparative ease. When combined with the ability
to sample rays finer, multi-dimensional ray-tracing codes can now
become powerful probes of objects with complex geometries, ve-
locity fields, and optical depth ranges. Moreover, their deterministic
computational scheme leads to various opportunities for optimisa-

tion and facilitates utilising the various layers of parallelism in the
calculation, further reducing the computational cost.

Magritte is a modern open-source software library for 3D
radiative transfer. It is written in C++11, but almost all classes and
functions are wrapped using PyBind11 (Wenzel et al. 2017) such
that they can also be used in Python. Our motivation to develop
Magritte is twofold. On the one hand, the ever increasing amount
of high quality observational data puts increasingly higher demands
on the modelling software, while, on the other hand, advances in
computer technology provide us with the means to meet these de-
mands. Common examples are the extended use of different layers
of parallelism (e.g. vector instructions, multi-threading and mes-
sage passing) and the growing availability of hardware accelerators
such as graphics processing units (GPUs) or field programmable
gate arrays (FPGAs). Using these technologies in an existing code
base, however, often requires a complete rewrite of the internal data
structures. Therefore, we opted to build a new code base that is flex-
ible enough to cope with the requirements for multiple astrophysical
and cosmological applications and has a modular data structure that
can readily be adapted to leverage the different forms of parallelism
and hardware accelerators available in modern (super)computer ar-
chitectures.

Since advances in modelling are increasingly made by im-
proved software implementations rather than new mathematical
techniques, it is imperative that both the software and its source code
are publicly available for the community to review and adapt. There-
fore, we commit ourselves to make future releases of Magritte and
its source code publicly available1 at github.com/Magritte-code.

This is the first paper in a series in which we will analyse the
physical, mathematical and computational aspects of the various
components of the software library. In this first paper, we present
Magritte’s module for atomic and molecular line radiative trans-
fer. The radiation field is computed self-consistently with the pop-
ulations of the quantised energy levels. In contrast to many early
treatments of line radiative transfer, this approach does not make
the assumption of local thermodynamic equilibrium (LTE), which
hence classifies it as a non-LTE solver. We present Magritte’s ray-
tracing schemewhich only uses cell locations and nearest neighbour
information. Therefore, it can easily cope with smoothed particle
hydrodynamics (SPH) particles as well as structured and unstruc-
tured model meshes. We introduce our solution method to solve the
radiative transfer equation along a ray pair and present our imple-
mentation of the accelerated Lambda iteration (ALI) scheme based
on Rybicki & Hummer (1991). To validate our methods, we run a
set of test models for which we can obtain semi-analytical results.
This way, we can get an absolute measure of the errors resulting
from our methods. We further demonstrate Magritte’s validity, by
performing a cross-code comparison with Ratran (Hogerheijde &
van der Tak 2000) and Lime (Brinch & Hogerheijde 2010) using the
van Zadelhoff et al. (2002) benchmark, and some additional vari-
ations on that. Finally, we present a first application of Magritte
modelling the CO emission of a simple Keplerian disc.

The structure of this paper is as follows. In Section 2, we in-
troduce the radiative transfer problem and elaborate on the tight
coupling between the radiation field and the medium. Section 3
presents our solution methods to the problem and the numerical im-
plementations. In Section 4, we describe a set of semi-analytic tests
and cross-code benchmarks to validate our methods and Section
5 describes a first application of Magritte to a simple Keplerian

1 Under GNU General Public License v2.0.
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disc model. Finally, our results are discussed in Section 6 and we
conclude with Section 7.

2 PHYSICAL PROBLEM

2.1 Radiative transfer

The objective of radiative transfer is to determine the radiation
field in a region, given the properties of the medium in that region
and some boundary conditions. The radiation field is described in
terms of its specific monochromatic intensity Iν(x, n̂), i.e. the en-
ergy transported in a certain direction in a certain frequency bin.
This is a function of frequency (ν), position (x) and direction (n̂).
Any interaction between the radiation field and the medium can
be described in terms of the change to the specific monochromatic
intensity. The radiative transfer equation relates this change in spe-
cific monochromatic intensity Iν(x, n̂) along a ray in direction n̂ to
the local emissivity ην(x) and opacity χν(x) of the medium. Scat-
tering introduces an extra contribution to both the emissivity and
opacity (Chandrasekhar 1960; Steinacker et al. 2013). The time-
independent radiative transfer equation including scattering reads

n̂ · ∇Iν(n̂) = ην −
(
χν + χscaν (n̂)

)
Iν(n̂)

+

∮
dΩ′

∫ ∞
0

dν′ Φν ν′(n̂ , n̂′) Iν′(n̂′),
(1)

where χscaν (n̂) is the extra opacity due to scattering andΦν ν′(n̂ , n̂′)
is the scattering redistribution function which gives the probability
for radiation of frequency ν′ incoming along direction n̂′ to be
scattered in direction n̂ and to be shifted to frequency ν.

For local radiative processes, we assume both the emissivity
and opacity to be isotropic, i.e. independent of the direction n̂. How-
ever, in contrast to the classical general formulation of the transfer
equation by Cannon (1971, 1972), we allowed for a directional
dependence in the scattering opacity. This more general approach
allows us to also treat, for instance, scattering from dust grains that
are aligned by a magnetic field (see e.g. Andersson et al. 2015,
and the references there). The anisotropy of the scattering opac-
ity slightly complicates the solution methods. However, we have
included it to keep our solution methods as general as possible.

The radiative transfer equation (1) is a first-order integro-
differential equation. Generally, it can only be solved in an iterative
way, since both the emissivity and opacity depend on the radiation
field. We discuss our solution strategy for solving the transfer equa-
tion in section 3.3. First, we break down the coupling between the
medium and the radiation field.

2.2 Coupling radiation field & medium

In general we can distinguish four types of interactions between a
radiation field and a medium based on the frequency range on which
they act: line, ionisation, continuum and scattering interactions. In
this first paper, we will limit ourselves to atomic and molecular line
interactions.

2.2.1 Atomic and molecular lines

Electronic, rotational and vibrational transitions between the quan-
tized energy levels in atomic and molecular species can lead to
significant emission and absorption in narrow frequency ranges.

These transitions are referred to as line transitions, due to the char-
acteristically narrow features they induce in spectra.

The resulting emissivity and opacity due to a line transition
from a level i to a level j (with level energies Ei > Ej ) are given in
terms of the Einstein Ai j , Bji and Bi j coefficients and the popula-
tions ni(x) of the quantized energy levels

η
i j
ν (x) =

hν
4π

ni(x) Ai j φ
i j
ν (x),

χ
i j
ν (x) =

hν
4π

(
nj (x) Bji − ni(x) Bi j

)
φ
i j
ν (x).

(2)

where Ai j and Bi j account, respectively, for spontaneous and stimu-
lated emission and Bji accounts for absorption. Note that stimulated
emission is treated as negative absorption. Both line emissivity and
opacity are proportional to the line profile function φi jν (x). In this
paper, we assume Gaussian line profile functions2 resulting from
the Doppler shifts caused by the thermal and turbulent motions of
the atoms and molecules in the medium,

φ
i j
ν (x) =

1
δνi j (x)

√
π

exp

[
−

(
ν − νi j

δνi j (x)

)2
]
, (3)

where the characteristic line width

δνi j (x) =
νi j

c

√
3thermal(x)2 + 3turbulent(x)2, (4)

is determined by the mean thermal and turbulent velocities of the
medium in the co-moving frame.

Many early line radiative transfer models assumed the popula-
tions of the quantized energy levels to be in local thermodynamic
equilibrium (LTE), i.e. particle velocities, level populations, and
radiation field are completely determined by the local gas temper-
ature. In contrast, we will only assume kinetic equilibrium, i.e. we
only assume a Maxwell-Boltzmann distribution for the particle ve-
locities. This situation is often referred to as non-LTE. As a result,
the mean local velocity of the gas particles in the co-moving frame
can be characterised by

3thermal(x) =

√
2kBT(x)

mspec
, (5)

where mspec is the mass of the species of gas under consideration. If
we make no further assumptions on the level populations, they can
only be determined by directly solving the kinetic rate equations,
which, in the co-moving frame, are given by,

∂ni(x)
∂t

=

N∑
j=1

nj (x)Pji(x) − ni(x)
N∑
j=1

Pi j (x). (6)

The components of thematrix Pi j (x) denote the transition rates from
level i to level j. Hence, for each level i, Pii(x) = 0. The transition
rates are composed of a radiative part Ri j (x) and a collisional part
Ci j (x), such that

Pi j (x) = Ri j (x) + Ci j (x). (7)

The radiative part can be expanded further in terms of the
Einstein coefficients and the average radiation intensity in the line

Ri j (x) =
{

Ai j + Bi j Ji j (x), for i > j
Bji Ji j (x), for i < j

(8)

where Ji j (x) is the local mean intensity in the spectral range of the

2 However, all our methods can also readily be applied to all other types of
line profile functions.
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transition i j. It is computed by averaging the specific monochro-
matic intensity Iν(x, n̂) over all directions (n̂) and integrating it over
the line profile φi jν (x), such that

Ji j (x) =
∮

dΩ
4π

∫ ∞
0

dν φi jν (x) Iν(x, n̂). (9)

The collisional part of the transition rates is composed of the
collisional rates (Kp

ij
) for each collision partner (p), weighted by

their respective abundances

Ci j (x) =
∑
p∈C

Kp
ij
(x) np(x), (10)

where C is the set of collision partners. The position dependence
in the collisional rates stems from their dependence on the local
temperature of the gas species.

For the models in this paper, we used the energy levels, Ein-
stein coefficients and collisional de-excitation rates from the Leiden
Atomic and Molecular Database3 (LAMDA, Schöier et al. 2005).
The collisional excitation rates are computed from the de-excitation
rates, assuming the detailed balance relation

Kji(x) = Ki j (x)
gj

gi
exp

(
hνi j

kBT(x)

)
(11)

where gi denotes the statistical weight of the respective level.
We assume the radiative time scales to be much smaller than

any other time scale in the system. Hence, to find the level popu-
lations given the radiation field, we solve equation (6) in the static
limit, i.e. assuming that for all levels i, ∂ni(x)/∂t = 0. Dropping the
position dependence on all variables, the resulting linear equation
for each level i can be written as∑
j, j<i

{
niAi j −

(
njBji − niBi j

)
Ji j

}
−

∑
j, j>i

{
nj Aji −

(
niBi j − njBji

)
Ji j

}
+

N∑
j=1

{
niCi j − njCji

}
= 0.

(12)

It is important to remember that the radiation field, and thus Ji j ,
depends on the level populations through the line contributions to
the emissivity and opacity (see equation 2). This dependence can
be expressed mathematically using a Lambda operator. We define
this operator such that it yields the mean intensity in the line when
acting on the set of all level populationsN ≡ {ni(x), for all x and i}.

Ji j = Λi j [N] (13)

In most practical cases it is unfeasible to directly invert the Lambda
operator (i.e. directly solve the radiative transfer equation (1)) and
solve the kinetic rate equations (12) for the level populations. In-
stead, we solve equation (12) iteratively, by evaluating Ji j using the
values from the previous iteration. However, this method, known as
Lambda iteration, converges notoriously slowly. Over the years, var-
ious methods have been devised to accelerate its convergence (for
an overview see e.g. Hubeny & Mihalas 2014, and the references
there). We use the operator splitting method (Cannon 1973a,b) in a
very similar way to Rybicki & Hummer (1991). The idea is to split
the Lambda operator into an approximated part (Λ∗i j ) that can easily

3 Database can be found at home.strw.leidenuniv.nl/~moldata.

be evaluated and inverted given the current level populations, and
a residual part (Λi j − Λ

∗
i j ) that can easily be evaluated using the

populations of the previous iteration. Hence,

Ji j = Λ
∗
i j [N] +

(
Λi j − Λ

∗
i j

)
[N†], (14)

where the dagger (†) indicates that the quantity is evaluated using
the previous iteration. In this way, the contribution of the level
populations of the previous iteration can be minimised. The kinetic
rate equations (12) can thus be rewritten as∑
j, j<i

{
niAi j −

(
njBji − niBi j

) (
Λ
∗
i j [N] + Jeffi j

) }
−

∑
j, j>i

{
nj Aji −

(
niBi j − njBji

) (
Λ
∗
i j [N] + Jeffi j

) }
+

N∑
j=1

{
niCi j − njCji

}
= 0,

(15)

where we introduced the effective mean intensity in the line,

Jeffi j =
(
Λi j − Λ

∗
i j

)
[N†]. (16)

Note that the effective mean intensity is now the only quantity that
is evaluated using the level populations of the previous iteration.
Clearly, the choice of the approximated Lambda operator (ALO) is
essential for the success of this acceleration scheme. In some cases
the diagonal part of the Lambda operator already suffices (Olson
et al. 1986), however in 3D models, a non-local ALO is often
preferred. We discuss our implementation of the ALO, following
Rybicki & Hummer (1991), in Section 3.4.

3 NUMERICAL IMPLEMENTATION

3.1 Discretisation of the model

The first step in simulating an astrophysical object is finding a way
to represent the object on a computer. This comes down to finding
an appropriate discretisation scheme for all physical parameters of
the model. For radiative transfer simulations the spatial, spectral
and directional discretisation schemes are most crucial.

3.1.1 Spatial discretisation

There are many different types of spatial discretisation schemes,
each tailored to their specific use cases. Over the years, there has
been a clear evolution from structured schemes, like e.g. regular
Cartesian grids, to unstructured schemes, like e.g. Voronoi grids or
smoothed particle hydrodynamics (SPH) discretisations.

Since we aim to build a general-purpose library that can easily
be integrated with other codes, we do not want to tie Magritte to a
certain discretisation scheme. Instead, we designed our algorithms
such that they only require data that can easily be deduced from
any discretisation scheme, and yet allow us to efficiently trace rays
and solve the transfer equation. Magritte’s ray tracing algorithm,
presented in Section 3.2, only requires the positions of the cell
centres4 (or equivalently the positions of the particles in an SPH
scheme) and the nearest neighbours lists for each cell (or particle).

4 We do not require a strict definition of the cell centre. If we define a cell
as a unit in the discretisation of the spatial volume, then the cell centre may
be any point in that volume. (We only use the cell centre to locate the cell.)
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Hence, the input is effectively a point cloud complemented with
nearest neighbour information. The boundary of the model can then
be defined as the set of points in the convex hull of the point cloud.

In principle, one could use a separate spatial discretisation to
sample the density, velocity and temperature distributions of the
model. In practice, however, one usually samples all three on the
same discretisation. This is the case, especially for hydrodynam-
ics computations, where all these parameters should be sampled
equally well. However, for radiative transfer computations, espe-
cially when considering lines, it is essential to properly sample any
changes in the velocity field along a certain line of sight. Since
this effect depends on the velocity field in a certain direction it is
difficult to fully take this into account in the spatial discretisation.
In Magritte, when detecting large changes in the velocity field
along a ray, we make an appropriate interpolation on-the-fly when
ray-tracing, without adjusting the mesh (see also Section 3.2).

3.1.2 Spectral discretisation

The requirements for the spectral discretisation vary for different
stages in the computation. For instance, when determining the level
populations, we are only interested in the radiation in the lines,
whereas when computing spectra we require a proper frequency
sampling over the full spectrum. To accommodate this, Magritte
can change its spectral discretisation throughout a simulation.

At the stage where the level populations are obtained, the fre-
quency bins are distributed to suit the integration of the radiation
field over the line. In Magritte these integrals are evaluated using
quadrature formulae. Assuming a Gaussian line profile, the corre-
sponding Gauss-Hermite quadrature for any frequency dependent
function y(ν) is given by∫ ∞

0
dν φi jν (x) yν →

Nq∑
n=1

wn y
(
νi j + rnδνi j (x)

)
, (17)

where Nq is the number of quadrature points and the quadrature
weights are given by

wn =
2Nq−1Nq!(

NqHNq−1(xn)
)2 , (18)

HNq−1 is the physicists’ version of the Hermite polynomial and the
rn are the roots of the physicists’ version of the Hermite polynomial
HNq (x) (see e.g. Abramowitz & Stegun 1972). To be able to easily
evaluate these quadratures in Magritte, we define a separate set of
frequency bins for each cell, given by{
νi j + rn δνi j (x), for each transition i j and root rn

}
, (19)

possibly appended with additional frequency bins. Note that this set
has to be different for each cell, since it depends on the local line
profile width δνi j (x).

At the stage where spectra or images are created, extra fre-
quency bins can be appended to the list above to improve the sam-
pling of the spectrum. The current version of Magritte allows one
to append a set of user-defined frequency bins, or to add extra bins
with a user-defined spacing around each line.

3.1.3 Directional discretisation

Magritte is a ray-tracing code, i.e. the radiation field is determined
by solving the radiative transfer equation along a set of rays (straight
lines) originating from each cell centre. A ray can be defined by a

point, in our case the cell centre, and a direction. The direction of
the rays will play a key role in scattering and will determine the
viewing angles for the images we can take.

In general, there are no preferred directions. Therefore, we dis-
cretise the directions uniformly. In 1D and 2D models this is trivial.
In 3D, we determine the direction of a ray using the HEALPix5

discretisation of the sphere (Gorski et al. 2005). Given a level of re-
finement, `, it discretises a unit sphere in Nrays = 12× 4` uniformly
distributed pixels of equal area. For each pixel, there is an associated
unit vector pointing from the origin of the sphere to the pixel centre.
These unit vectors determine the directions of Magritte’s rays for
3D simulations. Hence, a directional average for a quantity y(n̂) can
be translated into an average over rays,

1
4π

∮
dΩ y(n̂) →

1
Nrays

Nrays∑
r=1

yr . (20)

The uniform directional sampling scheme bears the danger of
missing the contributions of very localised sources of emissivity or
opacity. Furthermore, there might be situations in which there is
one or more preferred directions, and one might better consider a
non-uniform distribution of the ray directions. Therefore, in future
versions, we will investigate more advanced directional weighting
schemes. In any case, the internal structure of Magritte allows
for any distribution of rays, allowing us to easily explore various
directional distribution schemes in the future.

3.2 Ray tracing

In order to solve the radiative transfer equation along a certain ray,
the emissivity and opacity of the cells that are encountered along
that ray must be known. Furthermore, the path length that the ray
traces through each cell must be computed. All this must be done
assuming only a point cloud with nearest neighbour information.

The idea of Magritte’s ray tracing algorithm is to walk along
the ray from one cell to the next and determine the path length
through each cell by projecting the cell centres onto the ray. To
determine which cell is next, the set of all nearest neighbours of
the current cell is considered. From this set the neighbour is chosen
which is closest to the ray and whose projection on the ray lies
farther than that of the current cell. This procedure is then repeated
until the boundary of the mesh is reached. Figure 1 shows a visual
example of how this algorithm works. Once the rays have been
traced, the transfer equation can be solved.

In each step from one cell to the next, the change in velocity
along the ray is computed and checked for large variations. If the
velocity field, and thus the resulting Doppler shift, changes too
much the emissivity and opacity are interpolated between the cells
such that the velocity steps are only a certain (user defined) fraction
of the local line width. In this way, we avoid losing or improperly
accounting for line contributions due to an inadequate sampling of
the velocity field.

3.3 Solving the transfer equation along a ray pair

In Magritte, the radiation field is obtained by solving the radiative
transfer equation along each pair of a ray and its antipode through
the model. Although in this paper we are only concerned with
line radiative transfer, we present our general solution method for

5 Source code for HEALPix can be found at healpix.sourceforge.net.
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Figure 1. A visual representation Magritte’s ray tracing algorithm for the
ray R originating from cellO. The goal is to findwhich cells are encountered
along the ray and hence which cell centres should be projected on the ray.
Clearly, the cell O itself lies on the ray. The next cell encountered is the
neighbour ofO that lies closest to the ray. We call this cell P1. Now the next
cell to be projected is the neighbour of P1 that lies closest to the ray and that
is further away from O than P1. The last condition is there to ensure that
one proceeds along the ray towards the boundary. This process is repeated
until the boundary of the mesh is reached.

the full radiative transfer equation (1) including scattering. In this
way, the treatment in this paper more closely resembles the actual
implementation in the code and paves the way for our future work.

For numerical stability, we solve the transfer equation in its
second-order form as suggested by Feautrier (1964). We define the
mean intensity-like (u) and flux-like quantity (v) along a ray as

uν(n̂) ≡
1
2

(
Iν(n̂) + Iν(−n̂)

)
,

vν(n̂) ≡
1
2

(
Iν(n̂) − Iν(−n̂)

)
,

(21)

to describe the radiation field. To simplify notation further on, we
also define new quantities to represent the scattering redistribution
function and scattering opacity up and down the ray

Φ
±
ν ν′(n̂ , n̂

′) ≡
1
2

(
Φν ν′(n̂ , n̂′) ± Φν ν′(−n̂ , n̂′)

)
,

χ±ν (n̂) ≡
1
2

(
χscaν (n̂) ± χscaν (−n̂)

)
.

(22)

Finally, to avoid lengthy integral equations we define

Ψ
±
ν (n̂) ≡

∮
dΩ′

∫ ∞
0

dν′ Φ±ν ν′(n̂ , n̂
′) Iν′(n̂′). (23)

From here onward, we drop all ν and n̂ dependencies for notational
simplicity. We proceed by adding and subtracting the transfer equa-
tion (1), once for n̂ and once for −n̂. This yields a coupled set of
first-order differential equations in u and v,

n̂ · ∇v = −
(
χ + χ+

)
u − χ- v + Ψ

+ + η,

n̂ · ∇u = −
(
χ + χ+

)
v − χ- u + Ψ

−.
(24)

Solving the equations, once for u and once for v, yields a set of
second-order differential equations, which are our generalised ver-
sions of the Feautrier equations (Feautrier 1964)(
1 − D2

)
u =

η + Ψ+

χ + χ+
− D

(
Ψ−

χ + χ+

)
,(

1 − D2
)
v =

Ψ−

χ + χ+
− D

(
η + Ψ+

χ + χ+

)
,

(25)

where we defined a new differential operator D as

D ≡
1

χ + χ+
(χ− + n̂ · ∇) . (26)

Note that the order of the factors in the definition ofD is important,
since they do not commute. Both equations in (25) are still coupled
through their Ψ± terms. However, the contributions between the
scattering opacity, χscaν (n̂), and the scattering redistribution func-
tion, Φν ν′(n̂ , n̂′), can be arranged such that Φν ν(n̂ , n̂) = 0. Hence,
the coupling between the equations in (25) can be weakened.

The generalised Feautrier equations (25) can thus be solved
in an iterative way by evaluating their right hand sides using the
solution of the previous iteration. In each iteration, two separate
ordinary second-order differential equations then have to be solved.
The boundary conditions can be determined from the incoming
radiation on both sides of the ray pair. Bymaking a Taylor expansion
of the intensity, the incoming radiation can be related to u and v, in
the same way as in the standard Feautrier procedure with improved
boundary conditions for plane parallel geometries by Auer (1967).

In Magritte, the radiation field is computed by solving the
equations (25) for each ray pair. Since the right hand sides are
treated in an iterative way, these act effectively as sources. The
second-order differential operators on the left hand sides will result
in tridiagonal matrices on the discretised ray pairs. The form of
the equations in (25) still resembles the original Feautrier equations
enough that the standard solution method (Feautrier 1964) with the
numerical improvements by Rybicki & Hummer (1991) can readily
be adapted to this generalised case.

3.4 Accelerated Lambda Iteration

From the first equation in (25) we can identify the Lambda operator
for our solution scheme, as defined in equation (13)

Λi j [N] = Li j

[
η + Ψ+

χ + χ+
− D

(
Ψ−

χ + χ+

)]
, (27)

where we used the auxiliary linear operator Li j , defined as

Li j [ . ] =
1
2

∮
dΩ
4π

∫ ∞
0

dν φi jν
(
1 − D2

ν

)−1
[ . ]. (28)

Following Rybicki & Hummer (1991), we can construct an approx-
imation to the Lambda operator by considering only the diagonal
band of the matrix representation of the auxiliary operator Li j . We
call this operator L∗i j . The operator L∗i j is easy enough to invert,
due to its band diagonal structure. However, using it as the ALO
would render (15) into a system of non-linear equations for the level
populations, which would still be hard to solve. In order to retain
the linearity of (15), we instead define our ALO as

Λ
∗
i j [N] =

n†
j
Bji − n†

i
Bi j

njBji − niBi j
L∗i j

[
ηi j (N)

χ(N†) + χ+(N†)

]
(29)

where we only evaluate the line emissivity in the argument of L∗i j
with the new level populations and add an extra factor which goes to
unity when the level populations converge. Since the line emissivity
is linear in the level populations (see equation 2) the statistical
equilibrium equation will remain linear in the new level populations
and can be written as∑
j, j<i

{
niAi j − Λ̃

∗
i j [ni] −

(
njBji − niBi j

)
J eff
i j

}
−

∑
j, j>i

{
nj Aji − Λ̃

∗
ji[nj ] −

(
niBi j − njBji

)
J eff
i j

}
+

N∑
j=1

{
niCi j − njCji

}
= 0,

(30)
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where the effective mean intensity, defined in (14), is given by

Jeffi j = Ji j − L∗i j

[
ηi j (N†)

χ(N†) + χ+(N†)

]
(31)

and we introduced another auxiliary approximated operator

Λ̃
∗
i j [ni] =

h
4π

(
n†
j
Bji − n†

i
Bi j

)
L∗i j

[
Ai j νφ

i j
ν ni

χ(N†) + χ+(N†)

]
. (32)

Note that this operator is linear in the new level populations and not
symmetric in the level indices i and j. However, since our ALO (29)
is symmetric in these indices, it can be implemented on the level of
the transition matrix.

Apart from the ALO, we also use Ng-acceleration (Ng 1974)
in Magritte to speed-up convergence even more. This accelera-
tion method introduces a special iteration step every M number of
(regular) iterations. In this special iteration step, the level popula-
tions of the next iteration are predicted by a linear combination of
the populations of the previous M iterations. This is done by min-
imising the change in the level populations for the prediction based
on the last M − 1 and the one to last M − 1 iterations. Since the
Ng-iteration step does not require the computation of the radiation
field, it is much faster than a regular iteration and thus accelerates
the iteration process. The Ng-method allows us to specify a weight
for the contribution of the different levels to the prediction (see e.g.
Olson et al. 1986). For this paper, a uniform weighting scheme was
applied, but Magritte can readily be adapted to handle any other
scheme.

3.5 Imaging the model

When modelling astrophysical objects in 3D, one often requires
images of the model from several viewpoints in several frequency
ranges, in order to compare the model with observations.

In Magritte, these images can be obtained using the solution
of the outward directed radiation field on the endpoints of each
ray pair. One can construct the image by considering the outward
directed radiation along a certain ray and projecting the locations
of the originating points on the plane orthogonal to the ray. The
result is a set of points on a plane with a corresponding intensity,
which can be easily rendered into an image. Note that since every
point in the model contributes to one point in the image, the spatial
resolution of the resulting image is exactly equal to the highest
achievable resolution for that model.

4 TESTS & BENCHMARKS

To demonstrate the validity of our methods and to better understand
their limitations, we have conducted a series of comparisons with
analytical models and benchmarked against established radiative
transfer codes. The analysis for these tests and benchmarks was
performed in a collection of Jupyter notebooks (Kluyver et al.
2016), which are publicly available on GitHub6.

4.1 Semi-analytical tests

To assess the accuracy of Magritte’s ray tracer and radiative trans-
fer solver, we first reproduce some semi-analytically solvable line

6 Benchmarks can be found at github.com/Magritte-code/Benchmarks.

radiative transfer models. This will help us later to better assess the
uncertainties associated to the results of our simulations. We cannot
overemphasise the importance of these analytical tests as they are
the only way to obtain absolute measures of the accuracy.

4.1.1 Homogeneous Hubble-Lemaître models

As a first test, we consider the radiative transfer of a single line
on a uniformly spaced grid with a constant molecular abundance
and temperature distribution, and a constant velocity gradient. The
velocity distribution is thus given by the Hubble-Lemaître law

3(r) = c∆β r, (33)

where we parametrised the velocity gradient ∆β as a fraction of
the speed of light c. The boundary condition is given by incoming
cosmic microwave background (CMB) radiation, i.e a black-body
spectrum Bν of temperature TCMB = 2.725 K. If we assume LTE
level populations, the line source function Sνi j is spatially constant.
In that case, one can find the mean intensity by directly integrating
the transfer equation, yielding

Jν(x) = Sνi j +
(
Bν − Sνi j

) ∮
dΩ
4π

e−τν (x,n̂) (34)

where the optical depth, assuming Gaussian line profiles centred
around νi j and with a line profile width δνi j , is given by

τν(`) =
χi j

2ν∆β

{
Erf

[
ν − νi j

δνi j

]
− Erf

[
ν (1 − ∆β`) − νi j

δνi j

]}
, (35)

where Erf is the error function, and `(x, n̂) is the distance from point
x to the boundary, as measured along the ray in direction n̂. Since
the Hubble-Lemître velocity law is both translation and rotation
invariant, only the total distance to the boundary appears in the
expression for the optical depth.

Considering only a single ray in the interval [−R, R], the mean
intensity in r ∈ [0, R], as expressed in equation (34), reads

Jν(r) = Sνi j +
1
2

(
Bν − Sνi j

) [
e−τν (r) + e−τν (R−r)

]
, (36)

where the average over all directions reduces to the average intensity
flowing up and down the ray.

In three dimensions, assuming a spherical boundary with ra-
dius R, the mean intensity expressed in equation (34) reduces to

Jν(r) = Sνi j +
1
2

(
Bν − Sνi j

) ∫ π

0
dθ sin θ e−τν (`(r,θ)) (37)

where the distance to the boundary `(r, θ) is given by

`(r, θ) = r cos θ +
√

R2 − r2 sin2 θ. (38)

The θ-integral in the expression for the mean intensity can easily be
computed numerically.Note that introducing the spherical boundary
breaks the translation invariance of the problem.

Although these are simple models, they can demonstrate some
key issues in numerical radiative transfer modelling. In particular,
both models can be used to directly assess the accuracy of the
radiative transfer solver and to test the sampling in velocity space.
Especially in line radiative transfer it is crucial to properly sample
the velocity field, since too large a step in velocity from one cell
to the next can Doppler-shift a line directly from one wing to the
other without capturing the effect of the core of the line. This can be
tested by adjusting the velocity gradient. By considering both the
single ray and full 3D model we can also assess the quality of the
spatial interpolations onto the rays.
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Figure 2. Comparison between Magritte and the semi-analytical solution
of the mean intensity as a function of frequency in the Hubble-Lemaître
model, evaluated at different radii. The dots indicate Magritte’s results
and the line represent the analytic results. Frequencies are expressed with
respect to the line centre ν21 ≈ 179.88 GHz as a fraction of the line profile
width δν21 ≈ 519.03 kHz. The relative error of two values is measured as
twice the absolute difference over their sum.

Table 1. Line data of the fictitious 2-level species. This is the same fictitious
2-level species as used in Problem 1 in van Zadelhoff et al. (2002).

E2 − E1 [cm−1] g2/g1 A21 [ s−1] K
H2
21 [cm3s−1]

6.0 3.0 1.0 × 10−4 2.0 × 10−10

For this test we used a fictitious 2-level species in a (radially)
uniformly spaced grid [−R, R]with R = 495 km, and with a velocity
gradient c∆β = 0.01 s−1. The line data for the fictitious 2-level
species are summarised inTable 1.We assume a constantH2 number
density of nH2 = 1.0×1012 m−3 and a constant fractional abundance
of the fictitious 2-level species X ≡ nfict/nH2 = 10−4. To obtain
the level populations, we assume LTE with a constant temperature
distribution T = 45 K. Furthermore, we assume the gas has no
turbulent velocity component. The 3D model is obtained from the
1D model by mapping each 1D grid point to a shell of 3D grid
points uniformly distributed over a sphere. The model parameters
for Magritte can be found in Table 2.

Figure 2 shows a comparison between the solution of
Magritte and the semi-analytical solutions (36, 37) of the Hubble-
Lemaître models. Magritte’s numerical result clearly agrees with
the analytic solution with a relative error well below 10−4 almost
everywhere, where the relative error of two values is measured as
twice the absolute difference over their sum.

4.1.2 Simple power-law density distribution

As a second semi-analytic test, we consider the radiative transfer
of a single line on a logarithmically spaced grid, with a constant
temperature distribution, with no velocity field, and a (spherically)

symmetric density distribution given by a power-law

nH2 (r) =


0 for r < Rin

nH2 (Rin)
(
Rin
r

)2
for r ≥ Rin

(39)

where rin is the inner radius of the model. The boundary condition
is again given by incoming cosmic microwave background (CMB)
radiation, i.e a black-body spectrum Bν of temperature TCMB =
2.725 K. If we again assume LTE level populations, the line source
function Sνi j is spatially constant. As a result the mean intensity
is again given by equation (34). To compute the optical depth, one
needs to integrate the density distribution along every ray. Assuming
a spherical boundary with radius R, the optical depth is given by

τν(r, θ) =
χi j φ

i j
ν r

sin θ

(
π

2
− θ + arccos

(
r sin θ

R

)
− f (r, θ)

)
(40)

where the function f (r, θ) accounts for the rays that go through the
empty core (r < Rin) of the model and is given by

f (r, θ) =

{
2 arccos

(
r sin θ
Rin

)
for θ < θcore

0 for θ ≥ θcore
(41)

andwhether or not a ray passes through the empty core is determined
by the direction of the ray at each radius, θcore = arcsin (Rin/r).

Considering only a single ray in the interval [−R, R], the mean
intensity is given by

Jν(r) = Sνi j +
1
2

(
Bν − Sνi j

) [
e−τν (r,0) + e−τν (r,π)

]
, (42)

where the average over all directions reduces to the average intensity
flowing up and down the ray. Note that one should be careful in
taking the limits θ → 0 and θ → π, but that both are well-defined.

In three dimensions, one can simply integrate over the entire
solid angle to obtain the mean intensity

Jν(r) = Sνi j +
1
2

(
Bν − Sνi j

) ∫ π

0
dθ sin θ e−τν (r,θ). (43)

However, one should be careful of distinguishing between rays that
do and do not pass through the empty core of the model.

For this test we used the same fictitious 2-level species as
before (Table 1) in a radially logarithmically spaced grid [−R, R]
with Rin = 1.0 × 1013 m and R = 7.8 × 1016 m, and without a
velocity field. The H2 number density just outside the empty core is
nH2 (Rin) = 2.0 × 1013 m−3 and a constant fractional abundance of
the fictitious 2-level species X ≡ nfict/nH2 = 10−6 is used. To obtain
the level populations, we assume LTE with a constant temperature
distribution T = 20 K. Furthermore, the gas has a turbulent velocity
component of vturb = 150 m s−1. The 3D model is obtained from
the 1D model by mapping each 1D grid point to a shell of 3D grid
points uniformly distributed over a sphere. The model parameters
for Magritte can be found in Table 2. This model setup is identical
to Problem 1b in van Zadelhoff et al. (2002). However, here we are
only interested in the resulting radiation field when the levels are in
LTE (see also Section 4.2).

Figure 3 shows a comparison between the solution of
Magritte and the semi-analytical solutions (42, 43) of the sim-
ple power-law density distribution models. Magritte’s numerical
result clearly agrees with the analytic solution. Only at the steep
edges of the line is there a larger relative error (∼ 0.4), which can
be attributed to the steepness of the solution and the discrete mesh.
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Figure 3. Comparison between Magritte and the semi-analytical solution
of the mean intensity as a function of frequency in a model with a simple
power-law density distribution, evaluated at different radii. The dots indicate
Magritte’s results and the line represent the analytic results. Frequencies
are expressed with respect to the line centre ν21 ≈ 179.88 GHz as a fraction
of the line profile width δν21 ≈ 357.53 kHz. The relative error of two values
is measured as twice the absolute difference over their sum.

Table 2. Magritte parameters for the semi-analytic test models.

model (Nshells) Ncells Nrays Nq

Hubble-Lemaître 1D 50 100 2 100
3D 50 12 528 192 100

density distribution 1D 50 100 2 100
3D 50 12 528 192 100

4.2 Cross-code benchmarks

There are no analytic solutions for the full non-LTE line radiative
transfer problem, so the only way to fully test Magritte’s line
radiative transfer module is by benchmarking it against established
codes. Although this does not prove the validity of the code, it is
reassuring to find the same results in different ways.

For the benchmarks we used the (1D) problems presented in
van Zadelhoff et al. (2002) (from here on referred to as the bench-
mark paper) and compared our results with the publicly available
version of the 1D Monte Carlo radiative transfer code Ratran7

(Hogerheijde & van der Tak 2000). Since Magritte is intrinsically
multidimensional, the 1D benchmarking models were mapped to
their 3D equivalents by mapping each 1D grid point to a shell of
3D grid points uniformly distributed over a sphere.

7 Source code can be found at personal.sron.nl/∼vdtak/ratran/frames.html.

Figure 4. Comparison of the results for Problem 1 a/b of the van Zadelhoff
et al. (2002) benchmark obtained with Magritte (dots) and Ratran (lines).
The relative difference of two values is measured as twice the absolute
difference over their sum.

4.2.1 Van Zadelhoff Problem 1 a/b

The first test, referred to as problem 1 a/b in the benchmark paper,
considers a fictitious two-level species in a spherically symmetric
cloud, without velocity field, with a constant temperature distribu-
tion, and a density distribution given by a power law. The entire
model can thus be defined analytically. The model setup is essen-
tially the same as in the simple power-law density distribution test
in Section 4.1.2. The only difference is that in Problem 1a the
relative molecular abundance X = 10−8 results in a low optical
depth, whereas in Problem 1b the relative molecular abundance is
X = 10−6, yielding a relatively high optical depth.

Figure 4 shows a comparison between the resulting level pop-
ulations for Problem 1a/b obtained with Magritte and Ratran.
Both are clearly in good agreement.

4.2.2 Van Zadelhoff Problem 1 c/d

Since line radiative transfer models critically depend on a proper
sampling of the velocity field along the line of sight of each ray,
it is worthwile to test if this is properly accounted for. Therefore,
we consider again benchmark problem 1 a/b from the previous
paragraph, but this timewith a non-zero velocity field. Although this
test was not part of the van Zadelhoff et al. (2002) benchmark, we
can still compare our results with Ratran. We consider a velocity
field that is pointing radially outward, given by

v(r) = 3∞

(
r − Rin
R − Rin

)γ
r̂. (44)

In the benchmarks below we used γ = 0.5 and since it is the
same model setup as in Section 4.1.2 and 4.2.1 the inner radius is
Rin = 1.0×1013 m. Furthermore, we consider two different terminal
velocities v∞ = 10 km s−1 and 50 km s−1.
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Figure 5. Comparison of the results for Problem 1 c/d obtained with
Magritte (dots) and Ratran (lines). The indicated velocities are the 3∞ for
each model. The relative difference of two values is measured as twice the
absolute difference over their sum.

Figure 5 shows a comparison between the resulting level pop-
ulations for Problem 1 c/d obtained with Magritte and Ratran.
Both are clearly in good agreement. However, in order to obtain
this result, we needed to increase the number of grid points in the
input for Ratran by a factor of 10 (resulting in 500 logarithmically
spaced grid points). For any lower number of grid points, Ratran
had difficulty properly sampling the velocity field and produced
significantly different results from Magritte.

4.2.3 Van Zadelhoff Problem 2 a/b

The third test has a more realistic setup and considers the lines of
HCO+ in a snapshot of an inside-out collapse model by Shu (1977).
This is referred to as problem 2 a/b in the benchmark paper. The
parameters describing the input model were taken from the website
of the benchmark8. Themodel consists of 50 logarithmically spaced
grid points. In each grid point the radial velocity, gas temperature,
micro-turbulence, and HCO+ and H2 abundances are given. Again
there are two cases, one with a relatively low optical depth where the
fractional HCO+ abundance is X = 10−9 and one with a relatively
high optical depth where the relative molecular abundance is X =
10−8.

Figure 6 shows a comparison between the results for Problem 2
a/b obtained withMagritte andRatran. Overall, both codes agree
well with relative differences below 0.3 for the first five levels. This
is comparable to what Brinch & Hogerheijde (2010) find in their
Figure 10 forLime andwhat Rundle et al. (2010) find in their Figures
2 and 3 for Torus. Furthermore, Rundle et al. (2010) report that for
l = 0 their relative deviation from the benchmark paper is less than
5%, which is also comparable to what we find.

8 Benchmark website: www.strw.leidenuniv.nl/astrochem/radtrans/.

Figure 6. Comparison of the results of the first 5 levels (of 41) for Problem
2 a/b of the van Zadelhoff et al. (2002) benchmark obtained with Magritte
(dots) and Ratran (lines). The relative difference of two values is measured
as twice the absolute difference over their sum.

Table 3. Magritte parameters for the benchmark models.

model (Nshells) Ncells Nrays Nq

Problem 1 a/b/c/d 50 23 280 192 24
Problem 2 a/b 50 23 280 192 24

5 APPLICATION

To demonstrate the applicability of Magritte in a more realistic
setup, we consider the CO line radiative transfer in a simple Keple-
rian disc model. This is a typical use case of 3D radiative transfer
modelling (see e.g. Booth et al. 2019; Homan et al. 2018) The den-
sity distribution in cylindrical (r, φ, z) co-ordinates is described by

ρ(r, φ, z) =


0 for r < rin

ρin
(
r
rin

)p
exp

[
− 1

2

(
z

H(r)

)2
]

for r ≥ rin,
, (45)

with p = −2.125, and a vertical Gaussian scale height given by

H(r) = rin

√
kBTin
mH2

rin
GM?

(
r

rin

)h
, (46)

where h = 1.125 and mH2 is the mass of H2. The fractional CO
abundance is a constant nCO = 5.0×10−4. Furthermore, we assume
a gas temperature distribution given by a power-law

T(r, φ, z) = T?

(
r
r?

)q
, (47)

in which we take q = −0.5, and a Keplerian velocity field

v(r, φ, z) =
√

GM?

r
φ̂. (48)

The remaining physical parameters of the star and the disc are
summarised in Tables 4 and 5 respectively.
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Table 4. Parameters of the star in the Keplerian disc model.

M? [M�] T? [K] r? [AU]

2.0 2500 2.0

Table 5. Parameters of the Keplerian disc.

ρin [kg m−3] Tin [K] rin [AU]

5.0 × 10−12 1500 10.0

Since we do not yet have a fully implemented algorithm to
generate model meshes (see Section 6.4.1), we currently use the
sampling algorithm and Voronoi mesher implemented in Lime9

(Brinch & Hogerheijde 2010).
Figure 7 shows 16 channel maps of the CO J = 6 − 5 transi-

tion in an edge-on view of the Keplerian disc model produced by
Magritte. From left to right and top to bottom, one can clearly see
the left half of the disc moving away from the observer and being
red-shifted, whereas the right half of the disc is moving towards the
observer being blue-shifted.

Figure 8 shows a composite image stacking 16 channel maps
depicted in Figure 7, as well as the relative integrated intensity for
each of the channel maps as a function of the velocity along the line
of sight with respect to the rest-frame of the observer. The relative
integrated intensities are normalised with respect to the maximum
integrated intensity of the channel-maps.

6 DISCUSSION

6.1 ALI and Ng acceleration schemes

Both accelerated Lambda iterations (ALI) and the Ng acceleration
scheme are used in Magritte to ensure correct results and reduce
the computation time. This is done to avoid false convergence and to
reduce the number of required iterations in computing the non-LTE
level populations.

In general, a wider (i.e. more non-local) band diagonal ma-
trix ALO yields a better approximation to the Lambda operator
and thus will yield better convergence. However, when a non-local
ALO is used, the resulting level populations from solving equa-
tion (30) cannot be guaranteed to be positive, and thus can become
unphysical (Rybicki & Hummer 1991). This becomes apparent, in
particular, when the solution is far from converged or when a larger
bandwidth is used. It is hard to determine in advance whether a
certain bandwidth for the ALO will result in unphysical level pop-
ulations. Even the simplest two-cell model with a two-level species
can easily be made to fail. Hence, when using a non-local ALO,
one should always check the validity of the level populations after
solving the statistical rate equations. If for a certain ALO, the com-
putation yields unphysical level populations, one can always set up
and solve the system of rate equations again using only a part of
the ALO. Setting up and solving the statistical rate equations only
takes a fraction of the time required to compute the radiation field
and the corresponding ALO. Therefore, the trade-off that should
be considered in deciding the bandwidth of the ALO is the gained
reduction in iterations versus the time it costs to compute the extra

9 Source code can be found at github.com/lime-rt/lime.

off-diagonal elements. Unfortunately, there is no generally appli-
cable (problem independent) way to make this trade-off since the
number of required iterations strongly depends on the model under
consideration. Hauschildt et al. (1994) recommended optimal band-
widths for some typical model setups, however, these only apply to
their particular implementation. By default,Magrittewill use a di-
agonal (i.e. local) ALO. Larger bandwidth ALOs can be used when
specifically requested. However, Magritte will always check the
validity of the resulting level populations and reduce the bandwidth
if required. Moreover, given a model, Magritte can predict how
the computation time of one iteration would change when changing
the bandwidth of the ALO. This should help users to decide on an
appropriate bandwidth for their particular model.

The effectiveness of the Ng acceleration scheme depends on
the quality of the solutions in previous iterations. Therefore, it is
advisable to start acceleration only after a certain level of conver-
gence is already reached. Also, the optimal balance between regular
and Ng accelerated iteration steps is highly problem dependent. It
is, however, less critical than the choice of ALO bandwidth since
the computational cost of taking into account more iterations in
the Ng acceleration scheme is negligible (compared to the cost of
computing the radiation field and the corresponding ALO). By de-
fault, Magritte will perform an Ng acceleration step after every
four regular iterations, and using the level populations of all four
previous iterations.

6.2 Accuracy, precision, and re-sampling invariance

The results of the semi-analytic tests and cross-code benchmarks in
Section 4 clearly demonstrate the accuracy and precision of the ra-
diative transfer and level population solver ofMagritte. All models
were run for various numbers of cells, rays and frequency bins. Also
the uniform distributions of the mesh points over the spherical shell
was varied, as well as the relative distributions of the mesh points
over the shells. These variations did not induce any significant dif-
ferences in the results of Magritte, demonstrating its re-sampling
invariance. The parameters of the models presented in this paper
are all about five times larger than the coarsest model that produces
reasonable results.

The van Zadelhoff et al. (2002) problem 1 benchmarks with the
additional velocity field, presented in Section 4.2.2, emphasise the
importance of a proper sampling of the velocity field. In Magritte
this is automatically taken care of by the ray-tracer which will in-
terpolate the source and optical depth if the velocity changes too
rapidly, whereas in Ratran the user has to provide a 10 times finer
model mesh in order to obtain accurate results (comparing Figures
5 and A1). This is acceptable for a 1D solver such as Ratran,
because the sampling of a 1D velocity field can still be assessed
with comparative ease by the user. In 3D, however, velocity struc-
tures can become extremely complex along the various lines of
sight. Therefore, the on-the-fly assessment and interpolation of the
velocity field, as implemented in Magritte, is essential to ensure
accurate results.

Figure 9 shows a comparison between the results of Magritte
andLime10 (Brinch&Hogerheijde 2010) for the van Zadelhoff et al.
(2002) benchmark problem 1a for different numbers of grid points.
The bottom plots show the errors on the solutions, i.e. the relative
difference with respect to the Ratran solution, which is assumed to

10 Throughout this paper any reference to Lime refers to (currently latest)
release version 1.9.5 (see github.com/lime-rt/lime/releases).
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Figure 7. Channel maps with contours of the CO J = 6 − 5 transition in an edge-on view of the Keplerian disc model.

be the most accurate. Both solvers used the exact same model mesh.
In order to do this, the model was first run with Lime which created
the mesh that could then also be used by Magritte. The results for
both solvers are plotted after the same number of iterations (which
was around 30). The exact number was determined by the number of
iterations that Magritte required to reach a relative change in level
populations below 10−7. In order to make a fair comparison the Ng
acceleration in Magritte was disabled and only a local (diagonal)
ALO was used. Nevertheless, the results of Magritte are clearly
more accurate than the results of Lime. This is apparent especially
for the coarser meshes with fewer mesh points. Furthermore, the
results of Magritte are more precise, i.e. less spread at a given
radius, than the results of Lime. This can be attributed to the Monte
Carlo noise present in the solution of Lime.

Figure 10 shows a comparison between the results ofMagritte
and Lime for the van Zadelhoff et al. (2002) benchmark problem

1b, which is similar to problem 1a, but has a higher optical depth.
Both solvers again use the same model mesh consisting of 30 000
grid points. The plot shows the results after 147 iterations (when
Magritte reached a relative change in level populations below
10−7). Clearly, the result of Magritte is much more accurate than
the result of Lime. This can partly be attributed to the mesh, since
also the results of Magritte are slightly worse than the results
obtained on the mesh of shells in the comparison with Ratran
(see Section 4.2.1). Nevertheless, there is clear discrepancy in the
accuracy that can be achieved with Magritte and Lime in this high
optical depth problem. We tried increasing the number of mesh
points with a factor of 10 but did not see any improvement in the
performance of Lime.

MNRAS 000, 1–15 (2019)
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Figure 8. Composite image of the channel maps of the CO J = 6 − 5
transition in the edge-on view of the Keplerian disc model (left) and the
relative integrated intensity for each of the channel maps as a function of
velocity (right).

Figure 9. Comparison of the results for Problem 1 a of the van Zadelhoff
et al. (2002) benchmark obtained with Magritte and Lime for different
numbers of grid points. The relative error of two values is measured as
twice the absolute difference with respect to the solution of Ratran over
their sum.

6.3 Computational performance

Magritte was especially designed to achieve good scalability of
performance on modern distributed computer architectures and to
leverage hardware acceleration. However, since a significant part
of radiative transfer research is mainly performed on commercial
workstations (laptops and desktops), Magritte should also per-
form well on these (shared memory) systems. Figure 11 shows the
preliminary (strong) scaling of Magritte for the Keplerian disc
model of Section 5 on a shared memory system (32-core Intel Sky-
lake, with hyper-threading disabled). The fact that the run time is
almost perfectly inversely proportional to the number of threads

Figure 10. Comparison of the results for Problem 1 b of the van Zadelhoff
et al. (2002) benchmark obtained with Magritte and Lime. The relative
error of two values is measured as twice the absolute difference with respect
to the solution of Ratran (dotted line) over their sum.

Figure 11. Plot of the (strong) scaling of Magritte’s parallelisation for
shared-memory systems. The dots indicate the relative timings and the grey
line indicates the ideal scaling behaviour. Timings are averages over seven
runs performed on one 32-core Intel Skylake node of the CSD3 cluster.
(Hyper-threading was disabled for these runs such that the number of threads
effectively corresponds to the number of cores used.)

shows that Magritte can both effectively and efficiently use the
available computational resources. The (strong) scaling in Figure
11 is only preliminary in the sense that no effort was made to ensure
load balancing over the cores, which could improve the scaling.
Future versions of Magritte will include an active load balancing
algorithm to ensure good (strong) scaling results independent of the
model geometry (De Ceuster et al. in prep.).

To gauge the computational speed ofMagritte, we performed
and timed the van Zadelhoff et al. (2002) benchmark problem 1
(see also Section 4.2.1) with the established 3D radiative transfer
code Lime and compared the results with Magritte. We used the
Voronoi model mesh produced by Lime as input for Magritte to

MNRAS 000, 1–15 (2019)
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ensure that both solvers got the exact same input. To further ensure
a fair comparison we disabled the Ng acceleration in Magritte
and only used a local (diagonal) ALO. We performed 35 iterations
(which in Magritte corresponded to a relative change in level
populations below 10−7). We found that Magritte was about 1.6
times faster than Lime11 on the same mesh for the same number of
iterations. This is mainly due to the implementation with the explicit
vectorisation and despite the fact the formal solver used inMagritte
is more precise and intrinsically slower than the one in Lime. Note
that we only measured the time spent in the computation of the
radiation field and the level population solver and not the time spent
in creating, reading or writing the model mesh. Considering that
Magritte can already obtain accurate and precise results for much
coarser grids (see Section 6.2), we could conclude that Magritte
is more than 1.6 times faster. However, how much more largely
depends on the required accuracy and is hard to compare between
Magritte and Lime because of the intrinsic difference in precision.

When large velocity fields are included, Magritte will be
slightly slower than Lime because of its careful treatment of the
Doppler shifts along each ray. However, this careful treatment is
required to obtain accurate results (see Section 6.2). The current
implementation heavily prioritises accuracy over speed. In future
versions, the new meshing algorithm will allow us much better
control over the accuracy of the radiative transfer solver, which will
allow us to better balance the trade-off between accuracy and speed.

6.4 Future development of Magritte

The current paper only reports on the first step in the development
of Magritte. The code base is still under active development and
will be extended and improved over the next few years. The design
strategy will be twofold, on the one hand focusing on developing
a complete radiative transfer library with a complete modelling
pipeline to confront simulations with observations, and on the other
hand achieving higher performance by leveragingmodern computer
architectures.

6.4.1 Meshing algorithm

The next step towards a complete radiative transfer modelling li-
brary will be to develop a mesher to generate 3D meshes for a given
model (distributions for density, velocity, temperature, etc.). Since
Magritte is a formal solver we can build the mesh based on the
numerical error it will induce in the radiative transfer computations.
The algorithms used by the mesher can then also be used to assess
and improve model meshes coming from hydrodynamical simula-
tions. A strong handle on the model mesh and thus on the induced
numerical errors will greatly improve the accuracy and reliability
of radiative transfer computations.

6.4.2 Including more physics

The next piece of physics to be included in Magritte will be to
account for scattering within the existing radiative transfer solver.
Once we can account for scattering, we can do dust continuum ra-
diative transfer and include a thermal balance module to iteratively
determine the dust temperature. Later, we will focus on coupling

11 Asmeasured with 8 threads on the 8 cores of a decent but standard laptop
with an Intel Core i7-7700HQ CPU clocked at 2.8 GHz.

Magritte with (photo)chemistry and hydrodynamics codes to pro-
vide fully self-consistent radiation-hydro-chemical models.

6.4.3 Computational aspects

The initial motivation to develop Magritte was to create a general-
purpose software library for 3D radiative transfer, that could lever-
age modern computer architectures, such as highly distributed sys-
tems with accelerators (e.g. GPUs and FPGAs), to improve the per-
formance of astrophysical and cosmological simulations. Therefore,
Magritte was vectorised and parallelised for both shared and dis-
tributed memory systems, and can off-load certain computations to
accelerators. The full optimisation and parallelisation strategy will
be presented in a forthcoming paper.All future releases ofMagritte
and its source code, including the optimised and accelerated ver-
sions, will be made publicly available1 at github.com/Magritte-
code.

7 CONCLUSIONS

In this first paper in a series on Magritte: a modern open-source
software library for 3D radiative transfer modelling, we presented
and tested its non-LTE line radiative transfer module. Magritte
uses a deterministic ray-tracer and formal solver that computes the
radiation field by (iteratively) solving the radiative transfer equa-
tion along a fixed set of rays originating from each point. The
ray-tracing algorithm only requires the locations of the cell centres
and the nearest neighbour lists. Hence, it can readily be applied to
smoothed particle hydrodynamics (SPH) particles, as well as struc-
tured and unstructured model meshes. We formulated an elegant
solution method for the second-order form of the radiative transfer
equation along a ray pair based on Feautrier (1964) and Cannon
(1971, 1972), treating the scattering contributions from other rays
in an iterative way. Furthermore, we presented our implementation
of the accelerated Lambda iteration scheme by Rybicki & Hummer
(1991) in this context. We demonstrated the validity of Magritte
by comparing its results against both semi-analytical model solu-
tions and the established (1D) radiative transfer solver of Ratran
(Hogerheijde & van der Tak 2000) on the van Zadelhoff et al. (2002)
benchmark for line radiative transfer. As an example application, we
used Magritte to generate channel maps of CO lines in a simple
Keplerian disc model. Comparing our results with the established
3D radiative transfer solver Lime (Brinch & Hogerheijde 2010), we
conclude that Magritte produces more accurate and more precise
results, especially at high optical depth, and that it is faster.
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APPENDIX A: ADDITIONAL FIGURE

In this appendix we present an additional figure supporting our
claims regarding the accuracy, precision and re-sample-invariance
of Magritte with respect to Ratran.

Figure A1 shows a comparison between the results obtained
with Magritte (in 3D) and Ratran (in 1D) for a mesh with 50
shells, in contrast to figure 5 in the main body of the paper where
the results for a 50 shell mesh for Magritte was compared to a
500 shell mesh for Ratran. The relative differences for the coarser
Ratran model are about 4 times larger than for the finer model.
This is due to the insufficient sampling of the velocity field which
Magritte can and Ratran cannot account for.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A1. Comparison of the results for Problem 1 c/d, obtained with
Magritte (dots) and Ratran (lines) both on a model mesh with 50 shells.
The indicated velocities are the 3∞ for each model. The relative difference
of two values is measured as twice the absolute difference over their sum.
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