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Tensor decompositions and their sensitivity



Fluorophores are fluorescent molecules with the property that
they re-emit light (emission) when they are excited by light.



Tensor decompositions and their sensitivity

Application: Fluorescence spectroscopy

The main application of fluorescence spectroscopy is
determining the type and concentration of fluorophores in a
mixture.

Some of its applications1 include:
study of biomolecules (e.g., study of cell dynamics);
analysis of dissolved organic materials in waste and
polluted water (e.g., identifying pollutants);
food chemistry (e.g., quality assessment).

1See resp. the reviews by Weiss (1999) and Moerner and Fromm (2003);
Hudson, Baker and Reynolds (2007); Smilde, Bro and Geladi (2005).
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The mathematical model
The intensity xi,j,k of the light that is emitted at wavelength ωj
when a fluorophore, diluted in water with concentration ck , is
excited at wavelength ωi is

xi,j,k = λiµjχk

X
=

λ

µ

χ

,

where
λi is the fraction of light absorbed at wavelength ωi ,
µj is the fraction of light emitted at wavelength ωj , and
χk is a constant proportional to the concentration ck .



Tensor decompositions and their sensitivity

The mathematical model

When r fluorophores occur jointly in different concentrations in
several diluted mixtures, the model becomes a tensor rank
decomposition:

X
=

λ1

µ1

χ1

+ · · ·+

λr

µr

χr

Alternative names: CANDECOMP, PARAFAC, CP
decomposition, canonical polyadic decomposition (CPD),
separated representation . . .
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Hitchcock (1927) introduced the tensor rank decomposition:

A =
r∑

i=1
a1

i ⊗ a2
i ⊗ · · · ⊗ ad

i

A
= + · · ·+

The rank of a tensor is the minimum number of rank-1 tensors
of which it is a linear combination.
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If the set of rank-1 tensors {A1, . . . ,Ar} is the unique set such
that A = A1 + · · ·+ Ar , then we call A an r-identifiable tensor.

Matrices are never r-identifiable, because

M =
r∑

i=1
ai ⊗ bi = ABT = (AX−1)(BX T )T

for every invertible X . For a general choice of X this results in
different rank-r factorizations.
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Kruskal (1977) gave a famous sufficient condition for proving
the r-identifiability of a third-order tensor

A =
r∑

i=1
ai ⊗ bi ⊗ ci ;

if the Kruskal ranks kA, kB, and kC of respectively {ai}, {bi},
and {ci} satisfy

1 < kA, kB, kC and r ≤ 1
2(kA + kB + kC − 2)

then A is r-identifiable.

The Kruskal rank of a set of vectors {xi} is the largest number
kX such that every subset of kX vectors is linearly independent.
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For example, a sufficient condition for the tensor

A =
n∑

i=1
ai ⊗ bi ⊗ ci , ai ,bi ,ci ∈ Rn,

to admit only this factorization is that {ai}i , {bi}i , and {ci}i are
all linearly independent sets.
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n1 × · · · × nd tensors are called generically r-identifiable if
the set of rank-r tensors that are not r-identifiable

is contained in a strict subvariety of
the smallest irreducible variety that contains all rank-r tensors.

It is conjectured2 that if n1 ≥ · · · ≥ nd ≥ 2,

rcr =
n1 · · · nd

1 +
∑d

k=1(nk − 1)
, and rub = n2 · · · nd −

d∑
k=2

(nk − 1),

then the general rule is:
if r ≥ rcr or d = 2 → not generically r-identifiable
if n1 > rub and r ≥ rub → not generically r-identifiable
if none of foregoing and r < rcr → generically r-identifiable

2See Bocci, Chiantini, Ottaviani (2014) and Chiantini, Ottaviani, V (2014)
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Sensitivity

In numerical computations, the sensitivity of the output of a
computation to perturbations at the input is very important,
because representation and roundoff errors will corrupt any
mathematical inputs.
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Condition numbers
The condition number quantifies the worst-case sensitivity
of f to perturbations of the input.

•
x

• y •
f(x)

•
f(y)

ε

κε

κ[f ](x) := lim
ε→0

sup
y∈Bε(x)

‖f(y)−f(x)‖
‖y−x‖ .
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If f : Fm ⊃ X → Y ⊂ Fn is a differentiable function, then the
condition number is fully determined by the first-order
approximation of f .

Indeed, in this case we have

f(x + ∆) = f(x) + J∆ + o(‖∆‖),

where J is the Jacobian matrix containing all first-order partial
derivatives. Then,

κ = lim
ε→0

sup
‖∆‖≤ε

‖f(x) + J∆ + o(‖∆‖)− f(x)‖
‖∆‖

= max
‖∆‖=1

‖J∆‖
‖∆‖ = ‖J‖2.
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The tensor decomposition problem

The condition number of computing the rank-1 terms in a
CPD was investigated only recently by Breiding and V (2018). I
discuss our strategy from Beltrán, Breiding, and V (2019b).

To compute the condition number, we study the addition map

Φr : (S × · · · × S)/Sr → Rn1×···×nd

{A1, . . . ,Ar} 7→ A1 + · · ·+ Ar ,

where S is the set of rank-1 tensors:

S :=
{

a1 ⊗ a2 ⊗ · · · ⊗ ad | ak ∈ Rnk \ {0}
}

;

it is a smooth manifold called the Segre manifold.
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v2(R2) ⊂ S2R2 ' R3.
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The manifold of rank-1 symmetric matrices v2(R2) \ {0} is
globally a nonlinear object . . .
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. . . but zooming in at (a1,1,2a2,1,a2,2) = ( 1
2 ,

1
2 ,

1
2 ) ∈ v2(R2),
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we see that it locally looks like a 2-dimensional linear space!
For a manifold, this is true at every point.
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A tangent vector to an m-dimensional embedded submanifold
M⊂ Rn at p is a vector tp ∈ Rn such that there exists a smooth
curve γ(t) ⊂M, t ∈ (−1,1), for which p = γ(0) and tp = γ′(0).

p

γ′(0)

γ(t)

TpM

M

The tangent space TpM⊂ Rn is the m-dimensional linear
subspace spanned by all tangent vectors.
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A smooth map F :Mm → N n between smooth manifoldsMm

and N n is a generalization of a smooth map between Euclidean
domains:

Mm

p F(p)

N n

F

f

φ φ−1

ψ ψ−1

Rm Rn
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For maps between manifolds, we can apply Rice’s (1966)
geometric framework of conditioning:3

Proposition (Rice, 1966)
LetM⊂ Rm be a manifold of inputs and N ⊂ Rn a manifold of
outputs. Then, the condition number of F : X → Y at x0 ∈ X is

κ[F ](x0) = ‖dx0 F‖ = sup
‖x‖=1

‖dx0 F(x)‖,

where dx0 F : Tx0M→ TF(x0)N is the derivative.

3See, e.g., Blum, Cucker, Shub, and Smale (1998) or Bürgisser and
Cucker (2013) for a more modern treatment.
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Recall that we seek the condition number of the inverse map of
the addition map

Φr : (S × · · · × S)/Sr → Rn1×···×nd ,

{A1, . . . ,Ar} 7→ A1 + · · ·+ Ar .

Unfortunately, we cannot apply Rice’s theorem because neither
the source nor the image of Φr is a manifold!

We nevertheless showed that one can restrict the domain and
image to open dense subsets such that the restriction is a
diffeomorphism: a smooth injective map with smooth inverse.
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LetMr;n ⊂ S×r be the set of tuples of rank-1 tensors
a = (A1, . . . ,Ar ) in Rn1×···×nd that satisfy:

1 Φr (a) is a smooth point of the Zariski closure of the set of
rank-r tensors;

2 Φr (a) is complex r-identifiable;
3 the derivative daΦr is injective;

Definition
The set of r-nice tensors is

Nr;n := Φr (Mr;n).



Tensor decompositions and their sensitivity
Sensitivity

Let M̂r;n :=Mr;n/Sr ; Beltrán, Breiding, and V (2019b) proved:

Proposition
Let Rn1×···×nd be generically r-identifiable. Then,

Φr : M̂r;n → Nr;n, {A1, . . . ,Ar} → A1 + · · ·+ Ar

is a diffeomorphism. Moreover, Nr,n is an open dense subset of
the set of tensors of rank bounded by r.
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Consequently, the inverse of Φr , restricted to the manifold of
r-nice tensors, is

τr;n : Nr;n → M̂r;n, A1 + · · ·+ Ar → {A1, . . . ,Ar},

which we call the tensor rank decomposition map.

As τr;n is a smooth map between manifolds we can apply Rice’s
theorem. Since τr;n ◦ Φr = IdNr;n we have at A ∈ Nr;n that

dAτr;n ◦ daΦr = IdTaNr;n ,

so that
κ[τr;n](A) = ‖dAτr;n‖2 = ‖(daΦr )−1‖2.
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The derivative daΦ is seen to be the map

daΦ : TA1S × · · · × TArS → TARn1×···×nd

(Ȧ1, . . . , Ȧr ) 7→ Ȧ1 + · · ·+ Ȧr .

Hence, if Ui is an orthonormal basis of TAiS ⊂ TAiRn1×···×nd ,
then the map is represented in coordinates as the matrix

U =
[
U1 U2 · · · Ur

]
∈ Rn1···nd×r dimS

In summary, the condition number of computing a CPD
{A1, . . . ,Ar} of A equals the inverse of the smallest singular
value of U = [ U1 U2 ··· Ur ].
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The tangent space to the Segre manifold S at

λa1 ⊗ · · · ⊗ ad , ak ∈ S(Rnk ), λ ∈ R,

is given by the span of a1 ⊗ · · · ⊗ ad and the vectors

q1
2 ⊗ a2 ⊗ · · · ⊗ ad , . . . , q1

n1
⊗ a2 ⊗ · · · ⊗ ad ,

...
a1 ⊗ · · · ⊗ ad−1 ⊗ qd

2 , . . . , a1 ⊗ · · · ⊗ ad−1 ⊗ qnd
2 ,

where {qk
i }i is an orthonormal basis of (ak)⊥. Hence, each Ui

has as columns the above vectors.



Tensor decompositions and their sensitivity
Sensitivity

Some examples

Example 1: Matrices
When d = 2, and A =

∑r
i=1 λiai ⊗ bi , then

U =
[
ai ⊗ bi a⊥i ⊗ bi ai ⊗ b⊥i

]
i .

This matrix does not have linearly independent columns
because, for example,

a1 ⊗ br ∈ 〈a1 ⊗ b1,a1 ⊗ b⊥1 〉 ∩ 〈ar ⊗ br ,a⊥r ⊗ br〉

Hence, the smallest singular value of U is zero, so that

κ(A1, . . . ,Ar ) =∞

for all r > 1 and d = 2.
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Example 2: Essentially matrices

When d ≥ 3 and A =
∑d

i=1 λia1
i ⊗ · · · ⊗ ad

i contains two rank-1
tensors

Ai = λia1
i ⊗a2

i ⊗a3⊗· · ·⊗ad and Aj = λja1
j ⊗a2

j ⊗a3⊗· · ·⊗ad

then

Ai + Aj ∈ 〈a1
i ,a1

j 〉 ⊗ 〈a2
i ,a2

j 〉 ⊗ a3 ⊗ · · · ⊗ ad︸ ︷︷ ︸
'R2⊗R2⊗R⊗···⊗R'R2×2

Since matrices have intersecting tangent spaces, i.e.,
span(Ui) ∩ span(Uj) 6= ∅, again we find that

∞ = κ(Ai ,Aj) ≤ κ(A1, . . . ,Ar )
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Example 3: Odeco tensors

When d ≥ 3 and A =
∑d

i=1 λiu1
i ⊗ · · · ⊗ ud

i where all {uk
i }i form

orthonormal bases, then it can be shown that U has
orthonormal columns. Hence,

κ(A1, . . . ,Ar ) = 1
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Interpretation
If

A = A1 + · · ·+ Ar =
r∑

i=1
a1

i ⊗ · · · ⊗ ad
i

B = B1 + · · ·+ Br =
r∑

i=1
b1

i ⊗ · · · ⊗ bd
i

are tensors in Rn1×···×nd , then for ‖A − B‖F ≈ 0 we have the
asymptotically sharp bound

min
π∈Sr

√√√√ r∑
i=1
‖Ai − Bπi‖2

F︸ ︷︷ ︸
forward error

. κ[τr;n](A)︸ ︷︷ ︸
condition number

· ‖A − B‖F︸ ︷︷ ︸
backward error
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Expected value

The condition number (of the problem of computing a CPD) is a
local property by its very definition. Given a CPD, it can be
computed quite efficiently.

Next, we would like to understand its global behavior:
what is a typical condition number?
where is the condition number small or large?
what is the distribution of condition numbers?

The motivation for studying these questions concerns the
analysis of the performance of computational methods for
solving the tensor rank decomposition problem.
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For example, the rate of convergence and radius of
attraction of Riemannian Gauss–Newton methods depend on
the condition number of the CPD.4
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4See, e.g., Breiding and V (2018b)
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Let the rank r and the size n1 ≥ · · · ≥ nd ≥ 2 be fixed.

The crudest global property one could hope to compute is the
expected value

E
A∼ρ

κ(A) :=

∫
Nr;n

κ(A)ρ(A) dA,

relative to a density ρ on Nr;n.

We consider the following natural Gaussian density

ρ(A) :=
1

Cr;n
e−
‖A‖2

2 , where Cr;n :=

∫
Nr;n

e−
‖A‖2

2 dA.
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For other computational problems estimates of the average
condition number have been computed:5

1. n× n matrices A with i.i.d. N(0,1) entries have

E[κ(A)] ≤ 20.1n.

2. Random homogeneous systems F of n polynomial equations
in n + 1 variables of degrees di have

E[κ(F)] ≤ 5
√

nN ln2(nN) where N =
n∑

i=1

(
n + di

n

)
3. n× n triangular matrices L with i.i.d. N(0,1) entries have

E[κ(L)] ≥ 2n−1

n .

5See Bürgisser and Cucker (2013) for the precise statements.
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Computing the expected value

Ir := E
A∼ρ

κ(A) =
1

Cr;n

∫
Nr;n

κ(A)e−
‖A‖2

2 dA

is quite hard; we do not have an expression for all ranks.

Nevertheless, Beltrán, Breiding, and V (2019) proved the
following surprising and harsh result:

Theorem
Assume that r ≥ 2,

n1 × · · · × nd tensors are r-identifiable, and
(n1 − 2)× · · · × (nd − 2) tensors are (r − 2)-identifiable,

then we have
Ir =∞.
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Conjecture (Beltrán, Breiding, V, 2019)

Ir =∞ for all r ≥ 2,

In order to test this conjecture numerically, we can consider
so-called perfect tensor spaces for which there exists an r
such that

dimNr;n = n1n2 · · · nd .

For these spaces, Nr;n is an open subset of Rn1×···×nd so that
we can sample from the Gaussian density ρ simply by drawing
an n1 × · · · × nd tensor A with i.i.d. standard normal entries.

We then use homotopy continuation to compute a CPD of A
using the HomotopyContinuation.jl package by Breiding and
Timme. If it finds a real CPD, we record its condition number.
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3 .
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The foregoing experiments support the conjecture. Indeed,

P(x) =

∫ x

0
p(y) dy = P[κ ≤ x] ≈ 1− cx−

2
3 ,

where p is the probability density function, P its cumulative
distribution function, and c > 0 is some constant.

From this we find, empirically,∫ ∞
1

κ · p(κ) dκ =
2
3

∫ ∞
1

κ−
2
3dκ =∞
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Numerical stability

In the previous section, we showed that the expected condition
number at the input of r-nice tensors Nr;n is

E
A∼ρ

κ(A) =∞

in many cases.

What if we would choose a different density ρ? For example, by
sampling the output of the decomposition problem randomly?
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We could decide to choose the so-called factor matrices

Ak :=
[
ak

1 ak
2 · · · ak

r
]
∈ Rnk×r

randomly by sampling each entry i.i.d. N(0,1). This yields a
corresponding tensor

A =
r∑

i=1
a1

i ⊗ · · · ⊗ ad
i ;

with probability 1 it is an r-nice tensor if the space is generically
r-identifiable.
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Something very interesting is going on here (r = 15):
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This picture was an eye-opener for us!

The only practical class of direct algorithms for computing
exact CPDs performs the following steps:

1 Orthogonally project the input n1 × n2 × n3 tensor A to an
n1 × n2 × 2 tensor PA.

2 Recover the first two factor matrices A1 and A2 from PA,
e.g., from a generalized eigendecomposition.

3 Recover the last factor matrix A3, e.g., by solving a linear
least squares problem.

Beltrán, Breiding and V (2019b) called them pencil-based
algorithms.
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Look again!
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With some effort we were able to prove the following result:

Theorem (Beltrán, Breiding, V, 2019b)
Let n1, n2 ≥ r ≥ 2 and n3 ≥ r + 2. For every pencil-based
algorithm, there exists an open set of the rank-r tensors in
Rn1×n2×n3 for which it is arbitrarily numerically forward
unstable.
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Conclusions

The presented results contribute to a body of work indicating
that computing CPDs is a very challenging problem in
general. The new state of the art is that

tensor rank is NP complete (Håstad, 1990);
open boundary tensors exist and there is an open set of
ill-posed inputs for approximation by a low-rank CPD (de
Silva and Lim, 2008);
the average condition number is infinite for most spaces
(Beltrán, Breiding, and V, 2019); and
almost all practical direct algorithms for CPD are
numerically unstable (Beltrán, Breiding, and V, 2019b).
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Further reading

Breiding and V (2018), The condition number of join
decompositions, SIMAX.
Breiding and V (2018c), On the average condition number of
tensor rank decompositions, arXiv:1801.01673, 2018.
Beltrán, Breiding, and V (2019), The average condition number
of tensor rank decomposition is infinte, In preparation.
Beltrán, Breiding, and V (2019b), Pencil-based algorithms for
tensor rank decomposition are not stable, arXiv:1807.04159.
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Vielen Dank für Ihre Aufmerksamkeit!
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Detailed integral computation

The idea is to transform this integral to a simpler domain by
exploiting the local diffeomorphism between Nr and
Mr ⊂ S × · · · × S and the fact that the Segre manifold can be
parameterized via the 2d -to-1 covering map

ψ :

D︷ ︸︸ ︷
R0 × Sn1−1 × · · · × Snd−1 → S

(λ,u1, . . . ,ud) 7→ λu1 ⊗ · · · ⊗ ud .
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For rank r = 2, we get from applying the co-area formula

I2 =

∫
N2

κ(A)e−
‖A‖2

2 dA

'
∫

D×2
Jac[Φ2 ◦ (ψ × ψ)](a, b) · κ(ψ(a), ψ(b))e−

‖ψ(a)+ψ(b)‖2
2 dadb,

where ' indicates equality up multiplication by a constant, and
Jac[φ](A) is the Jacobian determinant of φ at A.
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Let a = (λ,u1, . . . ,ud), b = (µ,v1, . . . ,vd), and consider

Ja =
[
u1 ⊗ · · · ⊗ ud λU̇2 ⊗ u2 ⊗ · · · ⊗ ud · · · λu1 ⊗ · · · ⊗ ud−1 ⊗ U̇d

]
Ua =

[
u1 ⊗ · · · ⊗ ud U̇2 ⊗ u2 ⊗ · · · ⊗ ud · · · u1 ⊗ · · · ⊗ ud−1 ⊗ U̇d

]
,

where U̇k ∈ Rnk×(nk−1) contains as columns an orthonormal
basis of u⊥k .

It follows that the Jacobian determinant is

Jac[Φ2 ◦ (ψ × ψ)](a, b) = det
([

Ja Jb
]T [Ja Jb

]) 1
2

= |λ|Σ−1|µ|Σ−1 det
([

Ua Ub

]T [Ua Ub

]) 1
2
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From Breiding and V (2018), we also know

κ(ψ(a), ψ(b)) =
∥∥[Ua Ub

]†∥∥
2.

Consequently,

Jac[Φ2 ◦ (ψ × ψ)](a, b)κ(ψ(a), ψ(b)) = ς1ς2 · · · ς2Σ−1,

where ςi is the ith largest singular value of
[
Ua Ub

]
.
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Analyzing the spectrum of
[
Ua Ub

]
is a challenge, but it is

feasible for rank 2. The key idea is the following observation.

Let u ∈ Sn and v := u+εx√
1+ε2

∈ Sn for some x ∈ Sn with x ⊥ u.
Then,

det
([

u v
])

= det

(
1√
2
[
u v

] [1 1
1 −1

])

≈
√

2︸︷︷︸
ς1

·
(
ε− 3

8ε
3 + · · ·

)
︸ ︷︷ ︸

ς2

The matrix product simplifies to

1√
2

[(
1 + 1√

1+ε2

)
u + ε√

1+ε2
x,

(
1− 1√

1+ε2

)
u− ε√

1+ε2
x
]
,

which has orthogonal columns!
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The whole idea generalizes to
[
Ua Ub

]
. We can show that

ς1 ≈ · · · ≈ ςΣ ≈
√

2 and ςΣ+1 ≥ · · · ≥ ς2Σ−1 ≥ C · ε

provided that

9
10‖u1 − v1‖ ≤ ‖ui − vi‖ ≤ ‖u1 − v1‖ i = 1,2, . . . ,d,

and where a = (λ,u1, . . . ,ud) and b = (µ,v1, . . . ,vd).

Let D(ε) be the open neighborhood of (Sn1−1 × · · · × Snd−1)×2

where ‖u1 − v1‖ = ε and the above conditions hold.
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Putting all of the foregoing together, we get

I2 ≥ C′
∫

(a,b)∈R2×D(ε)
‖u1−v1‖Σ−1|λ|Σ−1|µ|Σ−1e−

‖ψ(a)+ψ(b)‖2
2 dadb

With some effort, the integral over (λ, µ) against the weight
function can be shown to satisfy∫
R

∫
R
|λ|Σ−1|µ|Σ−1e−

‖λu1⊗···⊗ud +µv1⊗···⊗vd‖
2

2 dλdµ ≥ C′′
‖u1 − v1‖2Σ−1 .

Hence,
I2 ≥ C′C′′

∫
(a,b)∈D(ε)

1
‖u1 − v1‖Σ−1dadb.
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After some more work integrating out the spherical bands, we
are left with

I2 ≥ C′C′′C′′′
∫

u1∈Sn1−1

∫
v1∈Sn1−1,‖u1−v1‖≤ε

1
‖u1 − v1‖n1

du1dv1.

The inner integral, after switching to polar coordinates,
integrates to ∫ ε

0

tn1−2

tn1
dt

=∞.

Consequently,
I2 =∞ !
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