

Tensor decompositions and their sensitivity

Fluorophores are fluorescent molecules with the property that they re-emit light (emission) when they are excited by light.

Application: Fluorescence spectroscopy

The main application of **fluorescence spectroscopy** is determining the **type** and **concentration** of fluorophores in a mixture.

Some of its applications¹ include:

- study of biomolecules (e.g., study of cell dynamics);
- analysis of dissolved organic materials in waste and polluted water (e.g., identifying pollutants);
- food chemistry (e.g., quality assessment).

¹See resp. the reviews by Weiss (1999) and Moerner and Fromm (2003); Hudson, Baker and Reynolds (2007); Smilde, Bro and Geladi (2005).

The mathematical model

The **intensity** $x_{i,i,k}$ of the light that is emitted at wavelength ω_i when a fluorophore, diluted in water with concentration *c^k* , is excited at wavelength ω*ⁱ* is

where

- λ_i is the fraction of light absorbed at wavelength $\omega_i,$
- μ_j is the fraction of light emitted at wavelength ω_j , and
- χ_k is a constant proportional to the concentration $c_k.$

The mathematical model

When *r* fluorophores occur jointly in different concentrations in several diluted mixtures, the model becomes a **tensor rank decomposition**:

Alternative names: CANDECOMP, PARAFAC, CP decomposition, canonical polyadic decomposition (**CPD**), separated representation . . .

[Introduction](#page-5-0)

Overview

[Sensitivity](#page-11-0)

- **[Expected value](#page-32-0)**
- **[Numerical stability](#page-42-0)**
- **[Conclusions](#page-49-0)**

Hitchcock (1927) introduced the **tensor rank decomposition**:

The **rank** of a tensor is the minimum number of rank-1 tensors of which it is a linear combination.

If the set of rank-1 tensors $\{A_1, \ldots, A_r\}$ is the unique set such that $A = A_1 + \cdots + A_r$, then we call A an r **-identifiable** tensor.

Matrices are never *r*-identifiable, because

$$
M = \sum_{i=1}^r \mathbf{a}_i \otimes \mathbf{b}_i = AB^T = (AX^{-1})(BX^T)^T
$$

for every invertible *X*. For a general choice of *X* this results in different rank-*r* factorizations.

Kruskal (1977) gave a famous **sufficient condition** for proving the *r*-identifiability of a third-order tensor

$$
A=\sum_{i=1}^r\mathbf{a}_i\otimes\mathbf{b}_i\otimes\mathbf{c}_i;
$$

if the **Kruskal ranks** k_A , k_B , and k_C of respectively $\{a_i\}$, $\{b_i\}$, and {**c***i*} satisfy

$$
1 < k_A, k_B, k_C \text{ and } r \leq \frac{1}{2}(k_A + k_B + k_C - 2)
$$

then *A* is *r*-identifiable.

The Kruskal rank of a set of vectors $\{x_i\}$ is the largest number k_X such that every subset of k_X vectors is linearly independent.

For example, a sufficient condition for the tensor

$$
\mathcal{A}=\sum_{i=1}^n \mathbf{a}_i\otimes \mathbf{b}_i\otimes \mathbf{c}_i, \quad \mathbf{a}_i, \mathbf{b}_i, \mathbf{c}_i\in\mathbb{R}^n,
$$

to admit only this factorization is that $\{a_i\}_i$, $\{b_i\}_i$, and $\{c_i\}_i$ are all linearly independent sets.

 $n_1 \times \cdots \times n_d$ tensors are called **generically** *r*-identifiable if the set of rank-*r* tensors that are not *r*-identifiable is contained in a strict subvariety of the smallest irreducible variety that contains all rank-*r* tensors.

It is **conjectured**² that if $n_1 \geq \cdots \geq n_d \geq 2$,

$$
r_{cr} = \frac{n_1 \cdots n_d}{1 + \sum_{k=1}^d (n_k - 1)}, \text{ and } r_{ub} = n_2 \cdots n_d - \sum_{k=2}^d (n_k - 1),
$$

then the **general rule** is:

if *r* ≥ *r*_{cr} or *d* = 2 → not generically *r*-identifiable
if *n*₁ > *r*_{ub} and *r* ≥ *r*_{ub}
→ not generically *r*-identifiable not generically *r*-identifiable if none of foregoing and $r < r_{cr} \rightarrow$ generically *r*-identifiable

²See Bocci, Chiantini, Ottaviani (2014) and Chiantini, Ottaviani, V (2014)

Overview

- **[Expected value](#page-32-0)**
- **[Numerical stability](#page-42-0)**
- **[Conclusions](#page-49-0)**

[Tensor decompositions and their sensitivity](#page-0-0) **[Sensitivity](#page-11-0)**

In numerical computations, the **sensitivity** of the output of a computation to **perturbations** at the input is very important, because representation and roundoff errors will corrupt any mathematical inputs.

Condition numbers

The **condition number** quantifies the **worst-case sensitivity** of *f* to perturbations of the input.

Condition numbers

The **condition number** quantifies the **worst-case sensitivity** of *f* to perturbations of the input.

If $f : \mathbb{F}^m \supset X \to Y \subset \mathbb{F}^n$ is a differentiable function, then the condition number is fully determined by the first-order approximation of *f*.

Indeed, in this case we have

$$
f(\mathbf{x}+\mathbf{\Delta})=f(\mathbf{x})+J\mathbf{\Delta}+o(||\mathbf{\Delta}||),
$$

where *J* is the **Jacobian matrix** containing all first-order partial derivatives. Then,

$$
\kappa = \lim_{\epsilon \to 0} \sup_{\|\mathbf{\Delta}\| \le \epsilon} \frac{\|f(\mathbf{x}) + J\mathbf{\Delta} + o(\|\mathbf{\Delta}\|) - f(\mathbf{x})\|}{\|\mathbf{\Delta}\|}
$$

$$
= \max_{\|\mathbf{\Delta}\|=1} \frac{\|J\mathbf{\Delta}\|}{\|\mathbf{\Delta}\|} = \|J\|_2.
$$

The tensor decomposition problem

The condition number of **computing the rank-1 terms in a CPD** was investigated only recently by Breiding and V (2018). I discuss our strategy from Beltrán, Breiding, and V (2019b).

To compute the condition number, we study the **addition map**

$$
\Phi_r: (\mathcal{S} \times \cdots \times \mathcal{S})/\mathfrak{S}_r \to \mathbb{R}^{n_1 \times \cdots \times n_d}
$$

$$
\{\mathcal{A}_1, \ldots, \mathcal{A}_r\} \mapsto \mathcal{A}_1 + \cdots + \mathcal{A}_r,
$$

where S is the set of rank-1 tensors:

$$
\mathcal{S}:=\big\{\bm{a}^1\otimes \bm{a}^2\otimes \cdots \otimes \bm{a}^d\mid \bm{a}^k\in\mathbb{R}^{n_k}\setminus\{0\}\big\};
$$

it is a **smooth manifold** called the **Segre manifold**.

[Sensitivity](#page-11-0)

The manifold of rank-1 symmetric matrices $v_2(\mathbb{R}^2) \setminus \{0\}$ is **globally** a nonlinear object . . .

[Sensitivity](#page-11-0)

we see that it **locally** looks like a 2-dimensional linear space! For a manifold, this is true at every point.

A **tangent vector** to an *m*-dimensional embedded submanifold $M \subset \mathbb{R}^n$ at *p* is a vector $\mathbf{t}_p \in \mathbb{R}^n$ such that there exists a smooth curve $\gamma(t) \subset \mathcal{M}, t \in (-1, 1)$, for which $p = \gamma(0)$ and $\mathbf{t}_p = \gamma'(0)$.

The **tangent space** $T_{p}\mathcal{M} \subset \mathbb{R}^{n}$ is the *m*-dimensional linear subspace spanned by all tangent vectors.

A **smooth map** $F : \mathcal{M}^m \to \mathcal{N}^n$ between smooth manifolds \mathcal{M}^m and \mathcal{N}^n is a generalization of a smooth map between Euclidean domains:

For maps between manifolds, we can apply Rice's (1966) **geometric framework of conditioning**: 3

Proposition (Rice, 1966)

Let $M \subset \mathbb{R}^m$ *be a manifold of inputs and* $N \subset \mathbb{R}^n$ *a manifold of outputs. Then, the condition number of F* : $\mathcal{X} \rightarrow \mathcal{Y}$ *at* $x_0 \in \mathcal{X}$ *is*

$$
\kappa[F](x_0) = ||\mathrm{d}_{x_0}F|| = \sup_{\|x\|=1} ||\mathrm{d}_{x_0}F(x)||,
$$

where $d_{x_0}F : T_{x_0}M \to T_{F(x_0)}N$ *is the derivative.*

 3 See, e.g., Blum, Cucker, Shub, and Smale (1998) or Bürgisser and Cucker (2013) for a more modern treatment.

Recall that we seek the condition number of the **inverse map** of the addition map

$$
\Phi_r: (\mathcal{S} \times \cdots \times \mathcal{S})/\mathfrak{S}_r \to \mathbb{R}^{n_1 \times \cdots \times n_d},
$$

$$
\{\mathcal{A}_1, \ldots, \mathcal{A}_r\} \mapsto \mathcal{A}_1 + \cdots + \mathcal{A}_r.
$$

Unfortunately, we cannot apply Rice's theorem because neither the source nor the image of Φ*^r* is a manifold!

We nevertheless showed that one can **restrict the domain and image** to **open dense subsets** such that the restriction is a **diffeomorphism**: a smooth injective map with smooth inverse.

Let $M_{r,n} \subset \mathcal{S}^{\times r}$ be the set of tuples of rank-1 tensors $\mathfrak{a} = (\mathcal{A}_1, \ldots, \mathcal{A}_r)$ in $\mathbb{R}^{n_1 \times \cdots \times n_d}$ that satisfy:

- ¹ Φ*r*(a) is a **smooth point** of the Zariski closure of the set of rank-*r* tensors;
- ² Φ*r*(a) is complex *r***-identifiable**;
- ³ the **derivative** daΦ*^r* **is injective**;

Definition

The set of *r***-nice tensors** is

$$
\mathcal{N}_{r;\mathbf{n}}:=\Phi_r(\mathcal{M}_{r;\mathbf{n}}).
$$

[Sensitivity](#page-11-0)

Let $\mathcal{M}_{r;{\mathbf n}}:=\mathcal{M}_{r;{\mathbf n}}/\mathfrak{S}_r$; Beltrán, Breiding, and V (2019b) proved:

Proposition

Let R *ⁿ*1×···×*n^d be generically r-identifiable. Then,*

$$
\Phi_r: \widehat{\mathcal{M}}_{r;\mathbf{n}} \to \mathcal{N}_{r;\mathbf{n}}, \{\mathcal{A}_1, \ldots, \mathcal{A}_r\} \to \mathcal{A}_1 + \cdots + \mathcal{A}_r
$$

is a diffeomorphism. Moreover, N*r*,**ⁿ** *is an open dense subset of the set of tensors of rank bounded by r.*

Consequently, the inverse of Φ*^r* , restricted to the manifold of *r*-nice tensors, is

$$
\tau_{r;\mathbf{n}}:\mathcal{N}_{r;\mathbf{n}}\to\widehat{\mathcal{M}}_{r;\mathbf{n}},\ \mathcal{A}_1+\cdots+\mathcal{A}_r\to\{\mathcal{A}_1,\ldots,\mathcal{A}_r\},
$$

which we call the **tensor rank decomposition map**.

As τ*r*;**ⁿ** is a smooth map between manifolds we can apply Rice's theorem. Since $\tau_{r;\mathbf{n}} \circ \Phi_r = \mathrm{Id}_{\mathcal{N}_{r;\mathbf{n}}}$ we have at $A \in \mathcal{N}_{r;\mathbf{n}}$ that

$$
\mathrm{d}_{\mathcal{A}}\tau_{r;\mathbf{n}}\circ\mathrm{d}_{\mathfrak{a}}\Phi_r=\mathrm{Id}_{\mathrm{T}_{\mathfrak{a}}\mathcal{N}_{r;\mathbf{n}}},
$$

so that

$$
\kappa[\tau_{r;\mathbf{n}}](\mathcal{A})=\|\mathrm{d}_{\mathcal{A}}\tau_{r;\mathbf{n}}\|_2=\|(\mathrm{d}_{\mathfrak{a}}\Phi_r)^{-1}\|_2.
$$

The derivative $d_a\Phi$ is seen to be the map

$$
d_{\mathfrak{a}}\Phi: T_{\mathfrak{A}_1}S \times \cdots \times T_{\mathfrak{A}_r}S \to T_{\mathfrak{A}}\mathbb{R}^{n_1 \times \cdots \times n_d}
$$

$$
(\mathfrak{A}_1, \ldots, \mathfrak{A}_r) \mapsto \mathfrak{A}_1 + \cdots + \mathfrak{A}_r.
$$

Hence, if U_i is an orthonormal basis of $T_{\mathcal{A}_i} \mathcal{S} \subset T_{\mathcal{A}_i} \mathbb{R}^{n_1 \times \cdots \times n_d}$, then the map is represented in coordinates as the matrix

$$
U = \begin{bmatrix} U_1 & U_2 & \cdots & U_r \end{bmatrix} \in \mathbb{R}^{n_1 \cdots n_d \times r \dim S}
$$

In summary, the condition number of computing a CPD $\{A_1, \ldots, A_r\}$ of *A* equals the inverse of the smallest singular value of $U = [U_1 U_2 \cdots U_r]$.

The tangent space to the Segre manifold S at

$$
\lambda \mathbf{a}^1 \otimes \cdots \otimes \mathbf{a}^d, \quad \mathbf{a}^k \in \mathbb{S}(\mathbb{R}^{n_k}), \lambda \in \mathbb{R},
$$

is given by the span of $\mathbf{a}^1 \otimes \cdots \otimes \mathbf{a}^d$ and the vectors

$$
\begin{array}{ccc}\mathbf{q}_2^1\otimes \mathbf{a}^2\otimes \cdots \otimes \mathbf{a}^d, & \dots, & \mathbf{q}_{n_1}^1\otimes \mathbf{a}^2\otimes \cdots \otimes \mathbf{a}^d, \\ \\ \mathbf{a}^1\otimes \cdots \otimes \mathbf{a}^{d-1}\otimes \mathbf{q}_2^d, & \dots, & \mathbf{a}^1\otimes \cdots \otimes \mathbf{a}^{d-1}\otimes \mathbf{q}_2^{n_d},\end{array}
$$

where $\{\boldsymbol{q}^{k}_{i}\}_{i}$ is an orthonormal basis of $(\boldsymbol{a}^{k})^{\perp}$. Hence, each U_{i} has as columns the above vectors.

Some examples

Example 1: Matrices

When $d = 2$, and $A = \sum_{i=1}^{r} \lambda_i \mathbf{a}_i \otimes \mathbf{b}_i$, then

$$
U=\begin{bmatrix} \mathbf{a}_i\otimes \mathbf{b}_i & \mathbf{a}_i^{\perp}\otimes \mathbf{b}_i & \mathbf{a}_i\otimes \mathbf{b}_i^{\perp} \end{bmatrix}_i.
$$

This matrix does not have linearly independent columns because, for example,

$$
\textbf{a}_1\otimes \textbf{b}_r \in \langle \textbf{a}_1\otimes \textbf{b}_1, \textbf{a}_1\otimes \textbf{b}_1^\perp \rangle \cap \langle \textbf{a}_r\otimes \textbf{b}_r, \textbf{a}_r^\perp\otimes \textbf{b}_r \rangle
$$

Hence, the smallest singular value of *U* is zero, so that

$$
\kappa(\mathcal{A}_1,\ldots,\mathcal{A}_r)=\infty
$$

for all $r > 1$ and $d = 2$.

Example 2: Essentially matrices

When $d \geq 3$ and $\mathcal{A} = \sum_{i=1}^d \lambda_i \mathbf{a}_i^1 \otimes \cdots \otimes \mathbf{a}_i^d$ contains two rank-1 tensors

$$
A_i = \lambda_i \mathbf{a}_i^1 \otimes \mathbf{a}_i^2 \otimes \mathbf{a}^3 \otimes \cdots \otimes \mathbf{a}^d \quad \text{and} \quad A_j = \lambda_j \mathbf{a}_j^1 \otimes \mathbf{a}_j^2 \otimes \mathbf{a}^3 \otimes \cdots \otimes \mathbf{a}^d
$$

then

$$
\mathcal{A}_i + \mathcal{A}_j \in \underbrace{\langle \bm{a}^1_i, \bm{a}^1_j \rangle \otimes \langle \bm{a}^2_i, \bm{a}^2_j \rangle \otimes \bm{a}^3 \otimes \cdots \otimes \bm{a}^d}_{\simeq \mathbb{R}^2 \otimes \mathbb{R}^2 \otimes \mathbb{R} \otimes \cdots \otimes \mathbb{R} \simeq \mathbb{R}^{2 \times 2}}
$$

Since matrices have intersecting tangent spaces, i.e., span(U_i) ∩ span(U_i) $\neq \emptyset$, again we find that

$$
\infty = \kappa(\mathcal{A}_i, \mathcal{A}_j) \leq \kappa(\mathcal{A}_1, \ldots, \mathcal{A}_r)
$$

[Sensitivity](#page-11-0)

Example 3: Odeco tensors

When $d \geq 3$ and $\mathcal{A} = \sum_{i=1}^d \lambda_i \mathbf{u}_i^1 \otimes \cdots \otimes \mathbf{u}_i^d$ where all $\{\mathbf{u}_i^k\}_i$ form orthonormal bases, then it can be shown that *U* has orthonormal columns. Hence,

$$
\kappa(\mathcal{A}_1,\ldots,\mathcal{A}_r)=1
$$

[Tensor decompositions and their sensitivity](#page-0-0) **[Sensitivity](#page-11-0)**

Interpretation

If

$$
\mathcal{A} = \mathcal{A}_1 + \cdots + \mathcal{A}_r = \sum_{i=1}^r \mathbf{a}_i^1 \otimes \cdots \otimes \mathbf{a}_i^d
$$

$$
\mathcal{B} = \mathcal{B}_1 + \cdots + \mathcal{B}_r = \sum_{i=1}^r \mathbf{b}_i^1 \otimes \cdots \otimes \mathbf{b}_i^d
$$

are tensors in $\mathbb{R}^{n_1 \times \cdots \times n_d}$, then for $\|\mathcal{A} - \mathcal{B}\|_F \approx 0$ we have the **asymptotically sharp bound**

$$
\underbrace{\min_{\pi \in \mathfrak{S}_r} \sqrt{\sum_{i=1}^r ||\mathcal{A}_i - \mathcal{B}_{\pi_i}||_F^2}}_{\text{forward error}} \lesssim \underbrace{\kappa[\tau_{r;\mathbf{n}}](\mathcal{A})}_{\text{condition number backward error}}
$$

Overview

[Numerical stability](#page-42-0)

[Conclusions](#page-49-0)

The condition number (of the problem of computing a CPD) is a **local property** by its very definition. Given a CPD, it can be computed quite efficiently.

Next, we would like to understand its **global behavior**:

- what is a typical condition number?
- where is the condition number small or large?
- o what is the distribution of condition numbers?

The motivation for studying these questions concerns the analysis of the **performance of computational methods** for solving the tensor rank decomposition problem.

For example, the **rate of convergence** and **radius of attraction** of Riemannian Gauss–Newton methods depend on the condition number of the CPD.⁴

Let the rank *r* and the size $n_1 \geq \cdots \geq n_d \geq 2$ be fixed.

The crudest global property one could hope to compute is the **expected value**

$$
\mathop{\mathbb{E}}_{\mathcal{A} \sim \rho} \kappa(\mathcal{A}) := \int_{\mathcal{N}_{r,\mathbf{n}}} \kappa(\mathcal{A}) \rho(\mathcal{A}) \, \mathrm{d} \mathcal{A},
$$

relative to a density ρ on N*r*;**n**.

We consider the following natural Gaussian density

$$
\rho(\mathcal{A}):=\frac{1}{C_{r;\boldsymbol{n}}}\textrm{e}^{-\frac{\|\mathcal{A}\|^{2}}{2}},\quad \textrm{where $C_{r;\boldsymbol{n}}:=\int_{\mathcal{N}_{r;\boldsymbol{n}}}\textrm{e}^{-\frac{\|\mathcal{A}\|^{2}}{2}}\textrm{d}\mathcal{A}$.}
$$

For **other computational problems** estimates of the average condition number have been computed:⁵

1. $n \times n$ matrices A with i.i.d. $N(0, 1)$ entries have

 $\mathbb{E}[\kappa(A)] \leq 20.1n$.

2. Random homogeneous systems *F* of *n* polynomial equations in $n + 1$ variables of degrees d_i have

$$
\mathbb{E}[\kappa(F)] \leq 5\sqrt{nN} \ln^2(nN) \quad \text{where } N = \sum_{i=1}^n \binom{n+d_i}{n}
$$

3. $n \times n$ triangular matrices L with i.i.d. $N(0, 1)$ entries have

$$
\mathbb{E}[\kappa(L)] \geq \frac{2^{n-1}}{n}.
$$

 5 See Bürgisser and Cucker (2013) for the precise statements.

Computing the expected value

$$
\mathcal{I}_r:=\mathop{\mathbb{E}}_{\mathcal{A}\sim\rho}\kappa(\mathcal{A})=\frac{1}{C_{r;\mathbf{n}}}\int_{\mathcal{N}_{r;\mathbf{n}}}\kappa(\mathcal{A})e^{-\frac{\|\mathcal{A}\|^2}{2}}\,\mathrm{d}\mathcal{A}
$$

is quite hard; we do not have an expression for all ranks.

Nevertheless, Beltrán, Breiding, and V (2019) proved the following **surprising and harsh** result:

Computing the expected value

$$
\mathcal{I}_r:=\mathop{\mathbb{E}}_{\mathcal{A}\sim\rho}\kappa(\mathcal{A})=\frac{1}{C_{r;\mathbf{n}}}\int_{\mathcal{N}_{r;\mathbf{n}}}\kappa(\mathcal{A})e^{-\frac{\|\mathcal{A}\|^2}{2}}\,\mathrm{d}\mathcal{A}
$$

is quite hard; we do not have an expression for all ranks.

Nevertheless, Beltrán, Breiding, and V (2019) proved the following **surprising and harsh** result:

Theorem

Assume that $r > 2$ *,*

• $n_1 \times \cdots \times n_d$ *tensors are r-identifiable, and*

(*n*¹ − 2) × · · · × (*n^d* − 2) *tensors are* (*r* − 2)*-identifiable, then we have*

$$
\mathcal{I}_r=\infty.
$$

Conjecture (Beltrán, Breiding, V, 2019)

$$
\mathcal{I}_r = \infty \quad \text{for all } r \geq 2,
$$

In order to test this conjecture numerically, we can consider so-called **perfect tensor spaces** for which there exists an *r* such that

$$
\dim \mathcal{N}_{r;\mathbf{n}}=n_1n_2\cdots n_d.
$$

For these spaces, $\mathcal{N}_{r,\mathbf{n}}$ is an **open subset** of $\mathbb{R}^{n_1 \times \cdots \times n_d}$ so that we can sample from the Gaussian density ρ simply by drawing an $n_1 \times \cdots \times n_d$ tensor *A* with i.i.d. standard normal entries.

We then use **homotopy continuation** to compute a CPD of *A* using the HomotopyContinuation.jl package by Breiding and Timme. If it finds a real CPD, we record its condition number.

The asymptotic slope of every curve is about $-\frac{2}{3}$ 3 .

The foregoing experiments support the conjecture. Indeed,

$$
P(x)=\int_0^x p(y)\,\mathrm{d}y=\mathrm{P}[\kappa\leq x]\approx 1-cx^{-\frac{2}{3}},
$$

where *p* is the **probability density function**, *P* its **cumulative distribution function**, and *c* > 0 is some constant.

From this we find, empirically,

$$
\int_{1}^{\infty} \kappa \cdot p(\kappa) \, \mathrm{d}\kappa = \frac{2}{3} \int_{1}^{\infty} \kappa^{-\frac{2}{3}} \mathrm{d}\kappa = \infty
$$

Overview

- **[Expected value](#page-32-0)**
- 4 [Numerical stability](#page-42-0)

[Conclusions](#page-49-0)

In the previous section, we showed that the expected condition number at the **input** of *r*-nice tensors $N_{r,n}$ is

$$
\mathop{\mathbb{E}}_{\mathcal{A}\sim\rho}\kappa(\mathcal{A})=\infty
$$

in many cases.

What if we would choose a different density ρ ? For example, by sampling the **output** of the decomposition problem randomly?

We could decide to choose the so-called **factor matrices**

$$
\boldsymbol{A}_k := \begin{bmatrix} \mathbf{a}_1^k & \mathbf{a}_2^k & \cdots & \mathbf{a}_r^k \end{bmatrix} \in \mathbb{R}^{n_k \times r}
$$

randomly by sampling each entry i.i.d. *N*(0, 1). This yields a corresponding tensor

$$
\mathcal{A}=\sum_{i=1}^r\mathbf{a}_i^1\otimes\cdots\otimes\mathbf{a}_i^d;
$$

with probability 1 it is an *r*-nice tensor if the space is generically *r*-identifiable.

Something very interesting is going on here $(r = 15)$:

(a) A , B , and C i.i.d. standard normal entries.

This picture was an eye-opener for us!

The **only practical class of direct algorithms** for computing exact CPDs performs the following steps:

- **1** Orthogonally project the input $n_1 \times n_2 \times n_3$ tensor A to an $n_1 \times n_2 \times 2$ tensor *PA*.
- 2 Recover the first two factor matrices A_1 and A_2 from PA , e.g., from a **generalized eigendecomposition**.
- ³ Recover the last factor matrix *A*3, e.g., by solving a **linear least squares problem**.

Beltrán, Breiding and V (2019b) called them **pencil-based algorithms**.

Look again!

(a) A , B , and C i.i.d. standard normal entries.

With some effort we were able to prove the following result:

Theorem (Beltrán, Breiding, V, 2019b)

Let n_1 , $n_2 > r > 2$ and $n_3 > r + 2$. For every pencil-based algorithm, there exists an **open set** of the rank-*r* tensors in R *ⁿ*1×*n*2×*n*³ for which it is **arbitrarily numerically forward unstable**.

Overview

- **[Expected value](#page-32-0)**
- **[Numerical stability](#page-42-0)**

The presented results contribute to a body of work indicating that computing CPDs is a very **challenging problem** in general. The new state of the art is that

- **o** tensor **rank is NP complete** (Håstad, 1990);
- **o** open boundary tensors exist and there is an open set of ill-posed inputs for approximation by a low-rank CPD (de Silva and Lim, 2008);
- **the average condition number is infinite** for most spaces (Beltrán, Breiding, and V, 2019); and
- almost all practical **direct algorithms for CPD are numerically unstable** (Beltrán, Breiding, and V, 2019b).

Further reading

- Breiding and V (2018), *The condition number of join decompositions*, SIMAX.
- Breiding and V (2018c), *On the average condition number of tensor rank decompositions*, arXiv:1801.01673, 2018.
- **•** Beltrán, Breiding, and V (2019), The average condition number *of tensor rank decomposition is infinte*, In preparation.
- **•** Beltrán, Breiding, and V (2019b), Pencil-based algorithms for *tensor rank decomposition are not stable*, arXiv:1807.04159.

Vielen Dank für Ihre Aufmerksamkeit!

Introduction

- Hitchcock, *The expression of a tensor or a polyadic as a sum of products*, J. Math. Phys., 1927.
- Kruskal, *Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics*, Lin. Alg. Appl., 1977.

Generic identifiability

- Angelini, *On complex and real identifiability of tensors*, Rev. Mat. Uni. Parma, 2017.
- Angelini, Bocci, Chiantini, *Real identifiability vs. complex identifiability*, Linear Multilinear Algebra, 2017.
- Ballico, *On the weak non-defectivity of veronese embeddings of projective spaces* , Centr. Eur. J. Math., 2005.
- Bocci, Chiantini, and Ottaviani, *Refined methods for the identifiability of tensors*, Ann. Mat. Pura Appl., 2013.
- Chiantini and Ottaviani, *On generic identifiability of 3-tensors of small rank*, SIAM J. Matrix Anal. Appl., 2013.
- Chiantini, Ottaviani, and Vannieuwenhoven, *An algorithm for generic and low-rank specific identifiability of complex tensors*, SIMAX, 2014.
- Chiantini, Ottaviani, and Vannieuwenhoven, *On generic identifiability of symmetric tensors of subgeneric rank*, Trans. Amer. Math. Soc., 2017.
- Chiantini, Ottaviani, and Vannieuwenhoven, *Effective criteria for specific identifiability of tensors and forms*, SIAM J. Matrix Anal. Appl., 2017.
- Galuppi and Mella, *Identifiability of homogeneous polynomials and Cremona Transformations*, J. Reine Angew. Math., 2017.
- Qi, Comon, and Lim, *Semialgebraic geometry of nonnegative tensor rank*, SIMAX, 2016.

Sensitivity

- Blum, Cucker, Shub, and Smale, *Complexity and Real Computation*, 1998.
- **•** Beltrán, Breiding, and Vannieuwenhoven, The average condition *number of tensor rank decomposition is infinite*, 2019. (In preparation)
- Beltrán, Breiding, and Vannieuwenhoven, Pencil-based algorithms for *tensor rank decomposition are not stable*, arXiv:1807.04159, 2019b.
- Breiding and Vannieuwenhoven, *The condition number of join decompositions*, SIAM J. Matrix Anal. Appl., 2018.
- Breiding and Vannieuwenhoven, *Convergence analysis of Riemannian Gauss-Newton methods and its connection with the geometric condition number*, Appl. Math. Letters, 2018b.
- Breiding and Vannieuwenhoven, *On the average condition number of tensor rank decompositions*, arXiv:201801.01673, 2018c.
- **•** Bürgisser and Cucker, *Condition: The Geometry of Numerical Algorithms*, Springer, 2013.
- Lee, *Introduction to Smooth Manifolds*, 2013.
- Rice, *A theory of condition*, SIAM J. Numer. Anal., 1966.
- Vannieuwenhoven, *A condition number for the tensor rank decomposition*, Linear Algebra Appl., 2017.

Detailed integral computation

The idea is to transform this integral to a simpler domain by exploiting the local diffeomorphism between \mathcal{N}_r and $M_r \subset S \times \cdots \times S$ and the fact that the Segre manifold can be parameterized via the 2^d-to-1 covering map

$$
\psi : \overbrace{\mathbb{R}_0 \times \mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1}}^{\mathcal{D}} \to \mathcal{S}
$$

$$
(\lambda, \mathbf{u}_1, \dots, \mathbf{u}_d) \mapsto \lambda \mathbf{u}_1 \otimes \cdots \otimes \mathbf{u}_d.
$$

For rank $r = 2$, we get from applying the co-area formula

$$
\mathcal{I}_2 = \int_{\mathcal{N}_2} \kappa(\mathcal{A}) e^{-\frac{\|\mathcal{A}\|^2}{2}} d\mathcal{A}
$$

$$
\simeq \int_{D^{\times 2}} Jac[\Phi_2 \circ (\psi \times \psi)](\mathfrak{a}, \mathfrak{b}) \cdot \kappa(\psi(\mathfrak{a}), \psi(\mathfrak{b})) e^{-\frac{\|\psi(\mathfrak{a}) + \psi(\mathfrak{b})\|^2}{2}} d\mathfrak{a} d\mathfrak{b},
$$

where \simeq indicates equality up multiplication by a constant, and $Jac[\phi](A)$ is the Jacobian determinant of ϕ at A.

Let
$$
\mathbf{a} = (\lambda, \mathbf{u}_1, \dots, \mathbf{u}_d)
$$
, $\mathbf{b} = (\mu, \mathbf{v}_1, \dots, \mathbf{v}_d)$, and consider
\n
$$
J_{\mathbf{a}} = [\mathbf{u}_1 \otimes \cdots \otimes \mathbf{u}_d \quad \lambda \dot{U}_2 \otimes \mathbf{u}_2 \otimes \cdots \otimes \mathbf{u}_d \quad \cdots \quad \lambda \mathbf{u}_1 \otimes \cdots \otimes \mathbf{u}_{d-1} \otimes \dot{U}_d]
$$
\n
$$
U_{\mathbf{a}} = [\mathbf{u}_1 \otimes \cdots \otimes \mathbf{u}_d \quad \dot{U}_2 \otimes \mathbf{u}_2 \otimes \cdots \otimes \mathbf{u}_d \quad \cdots \quad \mathbf{u}_1 \otimes \cdots \otimes \mathbf{u}_{d-1} \otimes \dot{U}_d],
$$
\nwhere $\dot{U}_k \in \mathbb{R}^{n_k \times (n_k - 1)}$ contains as columns an orthonormal basis of \mathbf{u}_k^{\perp} .

It follows that the Jacobian determinant is

$$
Jac[\Phi_2 \circ (\psi \times \psi)](a, b) = det([\mathcal{J}_a \quad \mathcal{J}_b]^T [\mathcal{J}_a \quad \mathcal{J}_b])^{\frac{1}{2}}
$$

= $|\lambda|^{\Sigma - 1} |\mu|^{\Sigma - 1} det([\mathcal{U}_a \quad \mathcal{U}_b]^T [\mathcal{U}_a \quad \mathcal{U}_b])^{\frac{1}{2}}$

From Breiding and V (2018), we also know

$$
\kappa(\psi(\mathfrak{a}),\psi(\mathfrak{b})) = ||[U_{\mathfrak{a}} \quad U_{\mathfrak{b}}]^{\dagger}||_2.
$$

Consequently,

 $Jac[\Phi_2 \circ (\psi \times \psi)](a, b) \kappa(\psi(a), \psi(b)) = \varsigma_1 \varsigma_2 \cdots \varsigma_{2\mathcal{F}-1},$

where ς_i is the *i*th largest singular value of $\begin{bmatrix} U_\mathfrak{a} & U_\mathfrak{b} \end{bmatrix}$.

Analyzing the spectrum of $\begin{bmatrix} U_\mathfrak{a} & U_\mathfrak{b} \end{bmatrix}$ is a challenge, but it is feasible for rank 2. The key idea is the following observation.

Let
$$
\mathbf{u} \in \mathbb{S}^n
$$
 and $\mathbf{v} := \frac{\mathbf{u} + \epsilon \mathbf{x}}{\sqrt{1 + \epsilon^2}} \in \mathbb{S}^n$ for some $\mathbf{x} \in \mathbb{S}^n$ with $\mathbf{x} \perp \mathbf{u}$.
Then,

$$
\det\begin{pmatrix} \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix} \end{pmatrix} = \det\begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{pmatrix}
$$

The matrix product simplifies to

$$
\frac{1}{\sqrt{2}}\left[\left(1+\tfrac{1}{\sqrt{1+\epsilon^2}}\right)u+\tfrac{\epsilon}{\sqrt{1+\epsilon^2}}x,\quad \big(1-\tfrac{1}{\sqrt{1+\epsilon^2}}\big)u-\tfrac{\epsilon}{\sqrt{1+\epsilon^2}}x\right],
$$

which has **orthogonal columns**!

Analyzing the spectrum of $\begin{bmatrix} U_\mathfrak{a} & U_\mathfrak{b} \end{bmatrix}$ is a challenge, but it is feasible for rank 2. The key idea is the following observation.

Let
$$
\mathbf{u} \in \mathbb{S}^n
$$
 and $\mathbf{v} := \frac{\mathbf{u} + \epsilon \mathbf{x}}{\sqrt{1 + \epsilon^2}} \in \mathbb{S}^n$ for some $\mathbf{x} \in \mathbb{S}^n$ with $\mathbf{x} \perp \mathbf{u}$.
Then,

$$
\det\begin{pmatrix} \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix} \end{pmatrix} = \det\begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{pmatrix} \approx \underbrace{\sqrt{2}}_{\varsigma_1} \cdot \underbrace{\begin{pmatrix} \epsilon - \frac{3}{8} \epsilon^3 + \cdots \end{pmatrix}}_{\varsigma_2}
$$

The matrix product simplifies to

$$
\frac{1}{\sqrt{2}}\left[\left(1+\frac{1}{\sqrt{1+\epsilon^2}}\right)u+\frac{\epsilon}{\sqrt{1+\epsilon^2}}x,\ \ \, \left(1-\frac{1}{\sqrt{1+\epsilon^2}}\right)u-\frac{\epsilon}{\sqrt{1+\epsilon^2}}x\right],
$$

which has **orthogonal columns**!

The whole idea generalizes to $\begin{bmatrix} U_a & U_{\mathfrak b} \end{bmatrix}$. We can show that

$$
\varsigma_1 \approx \cdots \approx \varsigma_{\Sigma} \approx \sqrt{2} \quad \text{and} \quad \varsigma_{\Sigma+1} \geq \cdots \geq \varsigma_{2\Sigma-1} \geq C \cdot \epsilon
$$

provided that

$$
\frac{9}{10}\|\boldsymbol{u}_1-\boldsymbol{v}_1\|\leq \|\boldsymbol{u}_i-\boldsymbol{v}_i\|\leq \|\boldsymbol{u}_1-\boldsymbol{v}_1\|\quad i=1,2,\ldots,d,
$$

and where $\mathfrak{a} = (\lambda, \mathbf{u}_1, \dots, \mathbf{u}_d)$ and $\mathfrak{b} = (\mu, \mathbf{v}_1, \dots, \mathbf{v}_d)$.

Let $D(\epsilon)$ be the open neighborhood of $(\mathbb{S}^{n_1-1} \times \cdots \times \mathbb{S}^{n_d-1})^{\times 2}$ where $\|\mathbf{u}_1 - \mathbf{v}_1\| = \epsilon$ and the above conditions hold.

Putting all of the foregoing together, we get

$$
\mathcal{I}_2 \geq C' \int_{(\mathfrak{a},\mathfrak{b})\in \mathbb{R}^2\times D(\epsilon)} \Vert \textbf{u}_1 - \textbf{v}_1\Vert ^{\Sigma-1} \vert \lambda\vert ^{\Sigma-1} \vert \mu\vert ^{\Sigma-1} e^{-\frac{\Vert \psi(\mathfrak{a}) + \psi(\mathfrak{b})\Vert ^2}{2}} \text{d} \mathfrak{a} \text{d} \mathfrak{b}
$$

With some effort, the integral over (λ, μ) against the weight function can be shown to satisfy

$$
\int_{\mathbb{R}}\int_{\mathbb{R}}|\lambda|^{\Sigma-1}|\mu|^{\Sigma-1}e^{-\frac{\|\lambda u_{1}\otimes\cdots\otimes u_{d}+\mu v_{1}\otimes\cdots\otimes v_{d}\|^2}{2}}\mathrm{d}\lambda\mathrm{d}\mu\geq \frac{C''}{\|u_{1}-v_{1}\|^{2\Sigma-1}}.
$$

Hence,

$$
\mathcal{I}_2 \geq C'C''\int_{(\mathfrak{a},\mathfrak{b})\in D(\varepsilon)}\frac{1}{\|\boldsymbol{u}_1-\boldsymbol{v}_1\|^{\Sigma-1}}\mathrm{d}\mathfrak{a}\,\mathrm{d}\mathfrak{b}.
$$

After some more work integrating out the spherical bands, we are left with

$$
\mathcal{I}_2 \geq C'C''C''' \int_{\bm{u}_1 \in \mathbb{S}^{n_1-1}} \int_{\bm{v}_1 \in \mathbb{S}^{n_1-1}, \|\bm{u}_1 - \bm{v}_1\| \leq \epsilon} \frac{1}{\|\bm{u}_1 - \bm{v}_1\|^{n_1}} \mathrm{d}\bm{u}_1 \mathrm{d}\bm{v}_1.
$$

The inner integral, after switching to polar coordinates, integrates to

$$
\int_0^{\epsilon} \frac{t^{n_1-2}}{t^{n_1}} \mathrm{d}t
$$

After some more work integrating out the spherical bands, we are left with

$$
\mathcal{I}_2 \geq C'C''C''' \int_{\bm{u}_1 \in \mathbb{S}^{n_1-1}} \int_{\bm{v}_1 \in \mathbb{S}^{n_1-1}, \|\bm{u}_1 - \bm{v}_1\| \leq \epsilon} \frac{1}{\|\bm{u}_1 - \bm{v}_1\|^{n_1}} \mathrm{d}\bm{u}_1 \mathrm{d}\bm{v}_1.
$$

The inner integral, after switching to polar coordinates, integrates to

$$
\int_0^{\epsilon} \frac{t^{n_1-2}}{t^{n_1}} dt = \infty.
$$

After some more work integrating out the spherical bands, we are left with

$$
\mathcal{I}_2 \geq C'C''C''' \int_{\bm{u}_1 \in \mathbb{S}^{n_1-1}} \int_{\bm{v}_1 \in \mathbb{S}^{n_1-1}, \|\bm{u}_1 - \bm{v}_1\| \leq \epsilon} \frac{1}{\|\bm{u}_1 - \bm{v}_1\|^{n_1}} \mathrm{d}\bm{u}_1 \mathrm{d}\bm{v}_1.
$$

The inner integral, after switching to polar coordinates, integrates to

$$
\int_0^{\epsilon} \frac{t^{n_1-2}}{t^{n_1}} dt = \infty.
$$

Consequently,

 $\mathcal{I}_2 = \infty$!