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Abstract

We consider a recursion formula for multi-dimensional powers of a finite set of matrices, which can be interpreted as a natural
generalization of the celebrated Cayley-Hamilton theorem, and we show how it allows to solve an algebraic decision problem
on a semigroup of matrices, which bears similarities to the observability problem of a switched linear system. This problem
appears in the computation of the H2 norm of a stable system described by a class of linear time-invariant delay differential
equations (DDAEs) with multiple delays. The H2 norm of a DDAE may not be finite even if there are seemingly no direct
feedthrough terms. We show that necessary and sufficient conditions for a finite H2 norm consist of an infinite number of linear
equations to be satisfied, inducing the algebraic decision problem, and that using the generalized Cayley-Hamilton theorem
checking these conditions can be turned into a check of a finite number of equations. We conclude with some comments on
the computation of the H2 norm whenever it is finite and by stating an open problem.

Key words: Decision problem on semigroup of matrices; Cayley-Hamilton theorem; time-delay systems; H2 norm.

1 Introduction

Finitely generated semigroups of matrices play an im-
portant role in systems and control. These are (often in-
finite) sets of matrices, which consist of all the arbitrary
products of matrices that are taken from a finite set of
matrices of the same dimension. Given such a finite set of
matrices (the generators), many different questions can
be asked about the set that they generate. As a natural
example, let us consider a discrete-time switched sys-
tem: given a setM = {A1, . . . , Am} ⊂ Rn×n, the corre-
sponding switched system is described by the following
equation:

x(k + 1) = Aσ(k)x(k), σ(k) ∈ {1, . . . ,m}.

That is, such a system has linear dynamics, but the ma-
trix applied to the system is not uniquely defined, and
may take at every time k an arbitrary value in the setM.

? This paper was not presented at any IFAC meeting.
Email addresses: m.galvarez@outlook.com (Marco A.

Gomez), raphael.jungers@uclouvain.be (Raphaël M.
Jungers), Wim.Michiels@cs.kuleuven.be (Wim Michiels).

A natural question for a control theorist is whether such
a system has bounded trajectories, whatever switching
sequence occurs? The question can be translated into a
property of the semigroup of matrices generated byM :
are all the products in the semigroup bounded by a con-
stant K? This question is algorithmically undecidable
as proved by Blondel and Tsitsiklis [2]. In fact, many
simply-looking problems become very hard to solve when
asked on a semigroup of matrices. The mortality problem
is another striking example: given a finitely generated
semigroup (described by its generators), is the zero ma-
trix a member of the semigroup? Several other problems
in control theory reduce to a problem on semigroups
of matrices. Interestingly, continuous-time switched sys-
tems are also ruled by properties of the semigroup gen-
erated by their matrices, while the connection is less ev-
ident than for discrete time (see [1] for a celebrated re-
sult connecting stability properties of a continuous-time
switched system with the Lie Algebra generated by the
corresponding set of matrices). Other applications in-
volving semigroups of matrices include consensus prob-
lems [11] or variable delays in wireless control networks
[13]. Even though many natural problems become very
hard when more than one matrix is involved in the dy-
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namics, in some situations an efficient algorithm can be
found. This is famously the case of deciding consensus
for a system of multi-agents communicating on time-
varying topologies (see [3] and references therein for a
survey of results on this problem).

In this paper, we consider a problem originating from de-
lay differential algebraic equations (DDAEs), and show
how it leads to an algorithmic decision problem on a
semigroup of matrices, which can be stated as follows.
Consider a set of generators M = {A1, . . . , Am} ⊂
Rn×n, and matrices B ∈ Rn×nb , C ∈ Rnc×n. Define the
matrix polynomial

P k1,...,km(A1, . . . , Am) := A1Pk1−1,k2,...,km(A1, . . . , Am)
+A2Pk1,k2−1,...,km

(A1, . . . , Am) + . . .+
+AmPk1,k2,...,km−1(A1, . . . , Am)

for any kj ∈ Z+, j = 1, . . . ,m, P0,...,0(A1, . . . , Am) :=
I, and Pk1,...,km

(A1, . . . , Am) := 0 if any kj ∈ Z−−,
j = 1, . . . ,m. Here, Z+ and Z−− denote the set of
nonnegative integers including zero, and negative inte-
gers, respectively. We notice that Pk1,...,km(A1, . . . , Am),
kj ∈ Z+, is a matrix polynomial of degree κ = k1 +
. . . + km in m variables, which consist of the sum of
all monomials of order kj in Aj , j = 1, . . . ,m, and the
number of monomials for a given m-tuple (k1, . . . , km)
is (k1+...+km)!

k1!···km! . We address the following problem:

Problem 1 Find a finite test for determining that the
following condition holds:

CPk1,...,km
(A1, . . . , Am)B = 0, ∀kj ∈ Z+, j = 1, . . . ,m,

(1)
whereB ∈ Rn×nb andC ∈ Rnc×n are different from zero.

For instance, in the case m = 2, condition (1) takes the
form

CP0,0B = CB = 0,
CP1,0B = CA1B = 0, CP0,1B = CA2B = 0,
CP2,0B = CA2

1B = 0, CP1,1B = C (A1A2 +A2A1)B = 0,
CP0,2B = CA2

2B = 0, CP3,0B = CA3
1B = 0,

CP2,1B = C(A2
1A2 +A1A2A1 +A2A

2
1)B = 0, . . .

(2)
We note that problem can also be stated as follows:
is there a set of indices k1, . . . , km ∈ Z+, such that
CPk1,...,kmB 6= 0? While, to the best of our understand-
ing, nothing could indicate a priori that the problem is
efficiently tractable, we show that one can indeed pro-
vide an efficient, polynomial time, algorithm.

The classic Cayley-Hamilton theorem (CH theorem from
now on) establishes that every square matrix A ∈ Rn×n
satisfies its own characteristic equation, i.e. p(A) = 0,

where p(x) := det(xI−A). An implication of this is that
every power k > n of matrix A can be expressed as a
linear combination of Ak, k = 1, . . . , n − 1. The classic
CH theorem is useful if only one matrix A1 is considered
in Problem 1, i.e. m = 1. For this case, condition (1)
reduces to

CAk1
1 B = 0, ∀k1 ∈ Z+, (3)

and by the CH theorem a finite test for determining that
(3) holds is that CAk1

1 B = 0 for k1 = 0, 1, . . . , n− 1.
Although condition (1) involves products of the form

CAkjB = 0, j = 1, . . . ,m, (4)

for any k ∈ Z+, the reasoning for the case m = 1 cannot
be applied, as shown in the next example.

Example 1 Consider m = 2 and matrices

A1 =


1 1 0
1 1 0
1 1 1

 , A2 =


1 0 0
1 1 1
1 1 1

 ,

BT =
(

0 0 1
)
, C =

(
1 0 0

)
.

One can check by direct calculation that

CAk1B = 0, and CAk2B = 0,

for k = 0, 1, 2, therefore, by the CH theorem equation (4)
holds for j = 1, 2, for all k ∈ Z+. However,

C (A1A2 +A2A1)B 6= 0.

The cornerstone of our solution to Problem 1 is the m-
dimensional CH theorem. Several “generalizations” of
the classic CH theorem have been introduced in the last
few decades, most of them aiming at studying mD sys-
tems ([7], [21], [19]). See also [14], [23], [15], and the ref-
erences therein. The m-dimensional CH theorem that
we present is a natural extension of the two-dimensional
case introduced in [7] in the study of 2D systems, and of
Theorem 2 in paper [15], which is devoted to the analysis
of fractional systems. It is a generalization of the classic
one in the sense that it presents a recursion formula for
m-tuple powers of a block matrix. A similar generaliza-
tion is presented in [21], requiring the definition of input
and output of mD systems. Here, we avoid such defini-
tions by using the ideas introduced by [22]. An appropri-
ate construction of a block matrix consisting of matrices
Aj , j = 1 . . . ,m, allows us to use the m-dimensional CH
theorem to express any matrix polynomial of the form
Pk1...,km

(A1, . . . , Am) of degree κ > mn as a linear com-
bination of matrix polynomials of the same class of de-
gree κ < mn. This fact enables us to solve Problem 1,
since we can test condition (1) by uniquely testing the
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products corresponding to matrix polynomials of order
κ < mn.

Problem 1 is motivated by determining the conditions
under which the transfer matrix of a difference equation
with multiple delays is zero, which is related with theH2
norm analysis of DDAEs. TheH2 norm is widely used as
a performance index in the field of automatic control [24],
and it has been object of study for time-delay systems in
recent years (see [12], [20], [8] and the references therein).
However, up to the best of the author’s knowledge, there
are no results addressing the analysis of the H2 norm
of differential algebraic equations with multiple delays,
despite its practical and theoretical relevance.

In contrast with the H2 norm of other classes of time-
delay systems, the H2 norm of DDAE might be infinite
even if the system has no seemingly feedthrough term
or is stable (see [4], [9], for the one delay case). Solving
Problem 1 allows us to provide a finite test for determin-
ing the finiteness of theH2 norm of differential algebraic
equations with multiple delays.

The paper is organized as follows. In Section 2, we ex-
plain the motivation and background of Problem 1, and
in Section 3, we introduce the m-dimensional CH the-
orem. The solution of Problem 1 is presented in Sec-
tion 4. Moreover, we provide a more efficient algorithm
in the case in which all the parameters are nonnegative.
In Section 5, we show the link between Problem 1 and
the finiteness analysis of the H2 norm of DDAE, leading
to a tractable test for finiteness. We end the contribu-
tion with some final comments.

We adopt the following notation. The symbol Z denotes
the set of integer numbers. The sets of real and positive
real numbers including the zero are denoted by R and
R+, respectively. The sum over all indexes (k1, . . . , km)
such that k := (k1, . . . , km) ∈ Ω, for a given set Ω, is
denoted by

∑
k∈Ω

. Multiple sums with the same lower limit

i and upper limit j of the form
j∑

k1=i
· · ·

j∑
km=i

are denoted

by
j∑

k1,...,km=i
for shortness.

2 Background and motivation of the problem

Consider system

x(t) =
m∑
j=1

Ajx(t− hj) +Bu(t), t > 0,

y(t) =Cx(t),
(5)

where 0 < h1 < . . . < hm are the delays and matri-
ces A1, . . . , Am, B and C as previously given. The de-
lays might be rationally dependent or rationally inde-
pendent. We say that hj , j = 1, . . . ,m, are rationally
dependent delays if there exists a m-tuple (c1, . . . , cm) ∈
Zm \ {~0} such that

m∑
j=1

cjhj = 0. (6)

If such m-tuple does no exist, then hj , j = 1, . . . ,m, are
rationally independent delays, i.e. the only solution of
(6) is (c1, . . . , cm) = ~0.
The impulse response in the frequency domain of system
(5) is given by the transfer matrix

Ga(s) := C

I − m∑
j=1

Aje
−shj

−1

B, s ∈ C. (7)

Determining whether Ga is zero is closely related with
the analysis of the H2 norm of DDAE. More precisely,
for given matrices Aj , B and C,Ga(s) ≡ 0 is a necessary
and sufficient condition for the finiteness of theH2 norm
of DDAE with multiple delays (this is formally proved in
Section 5). In what follows, we establish a link between
condition (1) and the condition under which Ga(s) ≡ 0.
By considering the unit impulse in the input u(t) in sys-
tem (5), one obtains in the output

y(t) = C

∞∑
k1,...,km=0

Pk1,...,km
(A1, . . . , Am)·

· δ (t− k1h1 − . . .− kmhm)B, (8)

where kj ∈ Z+, j = 1, . . . ,m, and δ(t) is the Kro-
necker delta function (see Figure 1 for the sake of illus-
tration). If the delays hj , j = 1, . . . ,m, are rationally in-

Fig. 1. Behavior of (8) on t ∈ [0, h1 + h2] considering two
delays. The values of Pk1,k2 (A1, A2) in the figure are as
follows: P00 = I, P1,0 = A1, P2,0 = A2

1, P01 = A2 and
P1,1 = A1A2 + A2A1.

dependent, then it is not possible that for any m-tuples
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(k1, . . . , km) ∈ Zm+ and (k∗1 , . . . , k∗m) ∈ Zm+ such that
(k1, . . . , km) 6= (k?1 , . . . , k?m) the equality

k1h1 + . . .+ kmhm = k∗1h1 + . . .+ k∗mhm (9)

holds. Hence, it follows from (8) that the impulse re-
sponse of system (5) is determined by a sequence of prod-
ucts of the form

CPk1,...,km(A1, . . . , Am)B, kj ∈ Z+, j = 1, . . . ,m,

and condition (1) is necessary and sufficient for
Ga(s) ≡ 0.
In the case of rationally dependent delays only the
sufficiency direction holds, i.e. condition (1) implies
that Ga(s) = 0, but not the necessity. Indeed, in this
case there exist two m-tuples (k1, . . . , km) ∈ Zm+ and
(k∗1 , . . . , k∗m) ∈ Zm+ whose elements are not all zero
such that (k1, . . . , km) 6= (k∗1 , . . . , k∗m) and (9) holds.
From (8), this implies that the output of system (5) at
t = k1h1+. . .+kmhm contains at least terms of the form

CPk1,...,km
(A1, . . . , Am)B + CPk∗

1 ,...,k
∗
m

(A1, . . . , Am)B,

whose zero sum does not imply in general that each term
is zero.
Thus, from the previous arguments, we arrive at the next
proposition.

Proposition 1 The following statements hold:

(1) If the delays hj, j = 1, . . . ,m, are rationally depen-
dent, then condition (1) is sufficient for Ga(s) ≡ 0.

(2) If the delays hj, j = 1, . . . ,m, are rationally inde-
pendent then condition (1) is necessary and suffi-
cient for Ga(s) ≡ 0.

The set of rationally independent delays is dense in Rm+ ,
and in applications, model parameters are always sub-
ject to perturbations. If the delays correspond to inde-
pendent parameters, it is natural to take into account
small perturbations and test the most stringent crite-
rion, corresponding to rationally independent delays.
Hence, this criterion is necessary and sufficient if small
delay perturbations are taken into account.
Sometimes delays might be rationally dependent as a re-
sult of mathematical modeling, e.g. when they depend
on a smaller number of independent physical parame-
ters, as in the case (h1, h2, h3) = (r1, r2, r1 + r2) with r1
and r2 the physical parameters. In such a case, it might
not be possible to obtain rationally independent delays
by perturbing the physical parameters. In general, if the
delays h1, . . . , hm are rationally dependent, there always
exist a smaller number p of rationally independent num-
bers (r1, . . . , rp) and a matrix R ∈ Zm×p+ of full column

rank such that [17]


h1
...
hm

 = R


r1
...
rp

 .

With the following example we show how a delay-
difference equation with rationally dependent delays can
always be transformed into a delay-difference equation
with rationally independent delay.

Example 2 Consider system (5) with delays (h1, h2, h3) =
(r1, r2, r1 + r2). We have that

Bu(s) =
(
I −A1e

−sr1 −A2e
−sr2 −A3e

−s(r1+r2)
)
x(s),

y(s) = Cx(s).
(10)

By using the change of variables

x1(s) = x(s), x2(s) = e−sr2x(s),

we rewrite (10) as

(
B

0

)
u(s) =

=
(
x1(s)
x2(s)

)
−

(
A1e

−sr1 +A2e
−sr2 A3e

−sr1

e−sr2I 0

)(
x1(s)
x2(s)

)
,

y(s) =
(
C 0

)(x1(s)
x2(s)

)
.

(11)

From (11), we obtain a transfer matrix of the form (7)
which corresponds to the delay-difference equation

xl(t) =
(
A1 A3

0 0

)
xl(t− h1)

+
(
A2 0
I 0

)
xl(t− h2) +

(
B

0

)
u(t),

y(t) =
(
C 0

)
xl(t).
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3 The m-dimensional CH theorem

In this section, we introduce the m-dimensional CH the-
orem. In order to do so, we consider the block matrix

D =


D11 . . . D1m

...
...

Dm1 . . . Dmm

 ∈ Rmn×mn, (12)

where Dij ∈ Rn×n, and inspired by [7, 15], we introduce
the next definition.

Definition 2 Consider matrices

D[1,0,...,0] :=


D11 . . . D1m

0
0

 , . . . ,

D[0,0,...,1] :=


0
0

Dm1 . . . Dmm

 .

Them-tuple power ofD, denoted byD[k1,...,km], is defined
as

D[k1,...,km] :=D[1,...,0]D[k1−1,...,km]+
+ . . .+D[0,...,1]D[k1,...,km−1],

(13)

where kj ∈ Z+, j = 1, . . . ,m, D[0,...,0] := I, and
D[k1,...,km] := 0 if any kj ∈ Z−−.

The following lemma, which relates a power of the block
matrix D with a power in the sense of the previous def-
inition, is key in the deduction of the main theorem of
this section.

Lemma 3 The equality

Dj =
∑
k∈Ωj

D[k1,...,km] (14)

holds for any j ∈ Z+, where k := (k1, . . . , km) and Ωj :=
{k ∈ Zm :

∑m
i=1 ki = j} .

PROOF. From (13), we have that for any q ∈ Z+∑
k∈Ωq

D[k1,...,km] = D[1,0,...,0]
∑
k∈Ωq

D[k1−1,...,km]

+D[0,1,...,0]
∑
k∈Ωq

D[k1,k2−1...,km] + . . .+

+D[0,0,...,1]
∑
k∈Ωq

D[k1,...,km−1].

Notice that the function mapping (k1, . . . , km) into
(k1 − 1, . . . , km) is a bijection from Zm to Zm, and
(k1, . . . , km) ∈ Ωq if and only if (k1 − 1, k2, . . . , km) ∈
Ωq−1. The same holds for (k1, k2 − 1, . . . , km) ∈ Ωq−1,
and so on. Then, by considering the change of vari-
able (l1, . . . , lm) = (k1 − 1, k2, . . . , km) in the first sum,
(l1, . . . , lm) = (k1, k2 − 2, . . . , km) in the second one,
and so on, and since D[l1,...,lm] = 0 if any li is negative,
the previous expression can be written as∑
k∈Ωq

D[k1,...,km] = D[1,0,...,0]
∑

l∈Ωq−1

D[l1,...,lm]+

+D[0,1,...,0]
∑

l∈Ωq−1

D[l1,l2...,lm] + . . .+

+D[0,0,...,1]
∑

l∈Ωq−1

D[l1,...,lm] =

=
(
D[1,0,...,0] + . . .+D[0,0,...,1]

) ∑
l∈Ωq−1

D[l1,...,lm] =

= D
∑

l∈Ωq−1

D[l1,...,lm], (15)

and the result directly follows by induction.

We are now in position to introduce the m-dimensional
CH theorem. It is a generalization of the standard CH
theorem in the sense that any m-tuple power of the ma-
trix D as in Definition 2 such that k1 + . . .+ km > mn
can be expressed as a linear combination ofm-tuple pow-
ers satisfying k1 + . . . + km < mn via a recursion for-
mula (see [7] for the case m = 2). For the case where
k1 = k2 = · · · = km = n the recursion formula reduces
to the formula in Theorem 2 of [15]. The presented proof
is inspired by [22], and unlike the approach used in [21],
the proof presented here does not require the concept of
input nor output of any m-dimensional system.

Theorem 4 Given a block matrix D ∈ Rmn×mn, parti-
tioned as in (12), there exist ak1,...,km

∈ R such that

D[n+p1,...,n+pm] = −
n∑

k1,...,km=0
k 6=(n,...,n)

ak1,...,km
D[k1+p1,...,km+pm]

(16)

holds for any (p1, . . . , pm) ∈ Zm satisfying
m∑
i=1

pi > 0.

PROOF. We consider the function

f(x1, . . . , xm) := det



x1I . . . 0

. . .

0 . . . xmI

−D
 .
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We have

f(x1, . . . , xm) =
n∑

l1,...,lm=0
al1,...,lmx

l1
1 . . . x

lm
m ,

where an,...,n = 1, and

g(x) = det (xI −D) =
mn∑
j=0

ajx
j .

One observes that

f(x, . . . , x) = g(x),

which implies that

aj =
∑
l∈Ωj

al1,...,lm , j = 1 . . . ,mn, (17)

where al1,...,lm = 0 whenever any li > n, or any li < 0,
i = 1, . . . ,m. By the classic CH theorem, we have that

mn∑
j=0

ajD
j = 0.

Then, by substituting (17) in the previous expression
and using (14), we obtain

mn∑
j=0

∑
l∈Ωj

∑
k∈Ωj

al1,...,lmD
[k1,...,km] = 0, (18)

where k = (k1, . . . , km) and l = (l1, . . . , lm). Notice that
the coefficients al1,...,lm are of degree n− li, i = 1, . . . ,m,
in elements of the ith block row of D, i.e. in elements of
D[1,...,0], D[0,1...,0], . . ., D[0,...,1]. Similarly, observe that
D[k1,...,km] are homogeneous polynomials of degree ki in
elements of the ith block row of D. Hence, the left hand
side of (18) is a sum of monomials of degree n− li + ki,
i = 1, . . . ,m, in elements of the ith block row of D.
Restricting (18) to the terms of order n, i.e. ki = li,
i = 1, . . . ,m, with k ∈ Ωj , we obtain

mn∑
j=0

∑
k∈Ωj

ak1,...,km
D[k1,...,km] = 0. (19)

A slightly different proof of (19) can be found in [15].
The above argument are however instrumental for the
case where (p1, . . . , p0) 6= (0, . . . , 0), addressed in what
follows.

Take now any (p1, . . . , pm) ∈ Zm satisfying the restric-

tion
m∑
i=1

pi = 0. Restricting (18) to the terms of degree

n + pi in the ith block row of D, i = 1, . . . ,m, we have
that ki = li + pi, i = 1, . . . ,m, with k ∈ Ωj , and get

mn∑
j=0

∑
k∈Ωj

ak1,...,km
D[k1+p1,...,km+pm] = 0. (20)

Thus, since an,...,n = 1, by (19) and (20), we have that

D[n+p1,...,n+pm] = −
n∑

k1,...,km=0
k 6=(n,...,n)

ak1,...,km
D[k1+p1,...,km+pm]

(21)
holds for all (p1, . . . , pm) ∈ Ω0. Then, by using the fact
that

mn∑
j=0

∑
k∈Ωj

ak1,...,kmD
[k1+p1,...,km+pm] =

= D[1,...,0]
mn∑
j=0

∑
k∈Ωj

ak1,...,kmD
[k1+p1−1,...,km+pm]+

+ . . .+D[0,...,1]
mn∑
j=0

∑
k∈Ωj

ak1,...,kmD
[k1+p1,...,km+pm−1],

we obtain by induction that (21) holds for any

(p1, . . . , pm) ∈ Zm such that
m∑
i=1

pi > 0.

4 Solution of Problem 1

Let us consider the block matrix

A =


A1 . . . A1

A2 . . . A2
...

...
Am . . . Am

 ∈ Rmn×mn,

which contains m matrices Aj in the jth block row. The
solution to Problem 1, provided in the next theorem, fol-
lows from Theorem 4 and a relation between the powers
of matrix A in the sense of Definition 2, and polynomials
of the form Pk1,...,km

(A1, . . . , Am).

Theorem 5 Condition (1), i.e.CPk1,...,km(A1, . . . , Am)B =
0 for all (k1, . . . , km) ∈ Zm+ , is satisfied if and only if

CPk1,...,km
(A1, . . . , Am)B = 0, (22)

for all (k1, . . . , km) ∈ Zm such that
∑m
j=1 kj < mn.
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PROOF. The necessity is obvious. Let us prove the
sufficiency. It follows by induction that the equality

Pk1,...,km
(A1, . . . , Am) = 1

m
ImA[k1,...,km]ITm, (23)

is satisfied for any (k1, . . . , km) ∈ Zm, where matrix Im ∈
Rn×mn denotes a block matrix whose columns are m
identity matrices of dimension n, i.e. Im :=

(
I . . . I

)
.

By Theorem 4, we have that the block matrix A satisfies

1
m
CImA[l1,...,lm]ITmB =

= − 1
m
CIm

n∑
k1,...,km=0
k 6=(n,...,n)

ak1,...,km
A[k1+l1−n,...,km+lm−n]ITmB

for any l := (l1, . . . , lm) ∈ Zm such that l1 + . . .+ lm >
mn. Consider l ∈ Ωmn, and notice that k1 + . . .+ km <
mn implies that the sum of the indexes of the m-tuple
power of matrix A on the right hand side of the previous
expression is less than mn, i.e

m∑
j=1

(kj + lj − n) < mn.

Hence, by condition (22) and equation (23), we get

CPl1,...,lm(A1, . . . , Am)B =

= 1
m
CImA[l1,...,lm]ITmB = 0, ∀l ∈ Ωmn.

Consider now l ∈ Ωmn+1, then by the same arguments
and using previous equation, we obtain that

CPl1,...,lm(A1, . . . , Am)B =

= 1
m
CImA[l1,...,lm]ITmB = 0, ∀l ∈ Ωmn+1.

Thus, it follows by induction that

CPl1,...,lm(A1, . . . , Am)B = 0 ∀lj ∈ Z+, j = 1, . . . ,m.

The number of products of the form (22) that one has
to test in Theorem 5 is

1 +
mn−1∑
j=1

(j +m− 1)!
(m− 1)!j! . (24)

One observes that it increases as the number m does.
The numerical complexity in the test can be considerably
reduced for the particular case in which all the elements
of the matrices are nonnegative. This is shown in the
next theorem.

Theorem 6 Consider matrices A1, . . . , Am ∈ Rn×n+ ,
B ∈ Rn×nb

+ and C ∈ Rnc×n
+ . The following statements

are equivalent:

(1) There exists kj ∈ Z+, j = 1, . . . ,m, such that

CPk1,...,km
(A1, . . . , Am)B 6= 0. (25)

(2) There exists k̂ ∈ Z+ such that

C(A1 + . . .+Am)k̂B 6= 0. (26)

Moreover, the latter condition can be checked in
O(n2) operations, and if it holds, we have k̂ = k1 +
. . .+ km 6 n.

PROOF. Item 1 ⇒ Item 2. Suppose that (25) holds.
This implies that one of the terms of

CPk1,...,km
(A1, . . . , Am)B,

denoted byCMk1,...,km
(A1, . . . , Am)B, must be different

from zero. Now, by using the fact that

(A1 + . . .+Am)q =
∑
l∈Ωq

Pl1,...,lm(A1, . . . , Am)

for any q ∈ Z+, and that all the elements in the sum are
nonnegative,

C (A1 + . . .+Am)k1+...+km B =
= C

∑
l∈Ωk1+...+km

Pl1,...,lm(A1, . . . , Am)B

> CMk1,...,km
(A1, . . . , Am)B, (27)

where A > B denotes the entry-wise inequality. This
concludes the first part of the proof.

Item 2 ⇒ Item 1. For the reverse implication, ob-
serve that the sum in equation (27) is made of non-
negative terms, and thus it is nonzero if and only
if one of the terms is nonzero. Let this term be
CMk∗

1 ,...,k
∗
m

(A1, . . . , Am)B, of order k∗j ∈ Z+ in Aj .
We have that (25) holds with these values of k∗j ,
j = 1, . . . ,m, which concludes the reverse direction.

Condition (26) can be checked efficiently as follows:
First, construct the directed graph on n vertices corre-
sponding to the matrix A1 + A2 + · · · + Am. It is easy
to see that condition (26) holds if and only if this graph
admits a path from a vertex vi to a vertex vj such that
Cei and BT ej are both different from zero. This can be
easily verified by performing a breadth-first search in
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the graph. The length of such a path would be smaller
than n (since there are n vertices in the graph) and
would provide constructively a corresponding product
such that CAσ1 . . . Aσ(k∗

1 +···+k∗
m)B 6= 0. The indices

σ1, . . . , σ(k∗
1 +···+k∗

m) of this product can be obtained by
labeling the edges of the graph depending on which
matrix has the corresponding entry different from zero
(i.e., give label k to the edge from node i to node j if
the matrix Ak has a nonzero (i, j)-entry), and defining
σ as the sequence of labels in the obtained path.

5 Analysis of the finiteness ofH2 norm of DDAE

We consider system

E
d

dt
x̃(t) =

m∑
j=0

Ãj x̃(t− hj) + B̃u(t), t > 0,

y(t) = C̃x̃(t),
(28)

where h0 = 0, x̃(t) ∈ Rñ, matrix E ∈ Rñ×ñ is possibly
singular with rankE = r, Ãj ∈ Rñ×ñ, j = 0, . . . ,m, B̃ ∈
Rñ×nb , and C̃ ∈ Rnc×ñ. Systems of the form (28) are
amenable for modeling interconnected systems, which
allows one to describe linear time invariant retarded and
neutral systems with delays in states, inputs and out-
puts, and systems with a nontrivial feedthrough (see
[10, 18]).

A problem that arises in the study of the H2 norm of
system (28) is that it might be infinite even if the system
is stable (see [4] and [9] for the one delay case). This can
be seen from the fact that this class of systems might
hide nontrivial feedthrough terms, as shown in the next
example.

Example 3 Consider matrices

E =
(
I 0
0 0

)
, Ã0 =

(
H0 0
0 −I

)
, Ã1 =

(
H1 0
0 0

)
,

B̃ =
(
B

I

)
, C̃ =

(
C1 D

)
,

where matrices H0, H1, B, C1 and D are of appropri-
ate dimensions. For these matrices, considering x̃ =(
xT1 xT2

)T
, system (28) can be written as

ẋ1(t) =H0x1(t) +H1x1(t− h) +Bu(t), t > 0
y(t) =C1x1(t) +Du(t),

where one can observe that there is a feedthrough term
from u to y.

In this section, we provide conditions for the finiteness
of theH2 norm based on the results presented in Section
4. We first provide some basic facts concerning system
(28), and then address the finiteness analysis of the H2
norm.

5.1 Basic facts

Consider matrices
(
U1 U2

)
and

(
V1 V2

)
, which are the

left and right factor of the Singular Value Decomposi-
tion of matrix E, respectively, where U1 ∈ Rn×r, U2 ∈
Rn×n−r, V1 ∈ Rn×r, and V2 ∈ Rn×n−r. We consider the
following assumption.

Assumption 7 Matrix UT2 Ã0V2 is nonsingular.

This assumption implies that the differentiation index is
one (semi-explicit DDAE), and guarantees well posed-
ness of the equation ([5], [16]). The change of coordinates

x̃(t) =
(
V1 V2

)(x1(t)
x(t)

)
, x1(t) ∈ Rr, x(t) ∈ Rñ−r,

and premultipication of (28) by
(
U1 U2

)T
allows us to

rewrite system (28) as coupled delay differential equa-
tions and delay difference equation:

Ẽ
d

dt
x1(t) =

m∑
j=0

A
(11)
j x1(t− hi)

+
m∑
j=0

A
(12)
j x(t− hj) +B1u(t)

x(t) =
m∑
j=0

A
(21)
j x1(t− hj)

+
m∑
j=1

Ajx(t− hj) +Bu(t)

y(t) =C1x1(t) + Cx(t),

(29)

where we have assumed without loss of generality that
UT2 Ã0V2 = −I (otherwise it can be achieved by another
transformation), Ẽ = UT1 EV1,

A
(11)
j =UT1 ÃjV1, A

(12)
j = UT1 ÃjV2,

A
(21)
j =UT2 ÃjV1, Aj = UT2 ÃjV2,

j = 0, . . . ,m, and

B1 = UT1 B̃, B = UT2 B̃, C1 = C̃V1, C = C̃V2.

Existence and uniqueness of solutions, and stability
properties of system (29) are discussed in [5] and [16].
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5.2 Finiteness of the H2 norm

The H2 norm of an exponentially stable system (29) is
defined by

‖G‖H2 :=

√
1

2π

∫ ∞
−∞

Tr(G∗(iω)G(iω))dω, (30)

where G is the transfer matrix of system (29), given by

G(s) :=
(
C1 C

)
·

·

(
sẼ −

∑m
j=0A

(11)
j e−shj −

∑m
j=0A

(12)
j e−shj

−
∑m
j=0A

(21)
j e−shj I −

∑m
j=1Aje

−shj

)−1(
B1

B

)
.

We notice that the transfer matrix G is the same as the
transfer matrix C̃

(
sE −

∑m
j=0 Ãje

−shj

)−1
B̃ of system

(28). Hence, when we refer to the H2 norm of system
(29), we equivalently refer to theH2 norm of system (28).
For x1(t) ≡ 0, one observes that (29) reduces to (5) with
transfer matrix Ga in (7). We have the following result.

Theorem 8 Let system (29) be exponentially stable.
The H2 norm of system (29) is finite if and only if
Ga(s) ≡ 0.

PROOF. Let us introduce the matrix

Gb(s) :=
(
C1 C

)(F−1(s) G12
b (s)

G21
b (s) G22

b (s)

)(
B1

B

)
,

where

F (s) :=sẼ −A11(s) +A12(s)A−1
22 (s)A21(s),

G12
b (s) :=− F−1(s)A12(s)A22(s),

G21
b (s) :=−A−1

22 (s)A21(s)F−1(s),
G22
b (s) :=A−1

22 (s)A21(s)F−1(s)A12(s)A−1
22 (s),

with

A11(s) :=
m∑
j=0

A
(11)
j e−shj , A12(s) :=

m∑
j=0

A
(12)
k e−shj ,

A21(s) :=
m∑
j=0

A
(11)
j e−shj , A22(s) := −I +

m∑
j=1

Aje
−shj .

By applying the formula of block matrix inversion, we
have that

G(iω) = Gb(iω)−Ga(iω), ω ∈ R.

As the transfer matrix Gb is strictly proper and ‖Ga‖H2
is either zero or infinite, it follows from the previous
expression that ‖G‖H2 is finite if and only if Ga(s) ≡ 0.

Now, a test for determining the finiteness of (30) can be
directly deduced from the results previously presented
in Section 2 and Section 4. More precisely, combining
Proposition 1 with Theorem 5 leads to the following re-
sult.

Corollary 9 Let system (29) be exponentially stable.
The following statements hold:

(1) If the delays hj, j = 1, . . . ,m, are rationally depen-
dent, then ‖G‖H2 is finite if (22) is satisfied.

(2) If the delays hj, j = 1, . . . ,m, are rationally inde-
pendent, then ‖G‖H2 is finite if and only if (22) is
satisfied.

Remark 1 In the context of the finiteness check of the
H2 norm of DDAE (28), Equation (5) corresponds to the
(delay) difference part, which boils down to the algebraic
constraints in the delay-free case. (D)DAEs are mainly
applied in modeling interconnected systems, where the al-
gebraic equations describe the interconnections (e.g. u1 =
y1, u2 = −y2 for a feedback interconnection of two sub-
systems with inputs u1, u2 and outputs y1, y2). For such
systems the dimensions of matrices Ai, i = 1, . . . ,m,
are determined by the number of inputs and outputs. For
high-dimensional control systems, the number of state
variables is typically large, while the number of inputs and
outputs is still limited. In addition, not all delays in (28)
might be effectively present in (5), i.e. some of the matri-
ces Ai might be equal to zero, because only delayed terms
related to direct paths from inputs to outputs, that form
cycles (e.g. a control loop) are present. Hence, for the
application to H2 norm analysis, both the dimensions of
matrices Ai and the number of delays in (5) are expected
to be very small, even for high-dimensional systems.

6 Closing remarks

We solved Problem 1 by using the m-dimensional CH
theorem, which is a generalization of the classic one in
the sense of a recursion formula for m-tuple powers of
a block matrix. It enabled us to present a finite test to
determine whether the H2 norm of differential algebraic
equations with multiple delays is finite.
A direction of future research consists of improving the
performance of our algorithm. Indeed, checking condi-
tions in Theorem 5 by brute force requires checking a
number of equalities equal to (24). See also Remark 1
about the computational feasibility of the test.
Another direction includes the computation of the H2
norm of system (29) whenever it is finite. We note that
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if condition (22) is strengthened to CMB = 0 for any
monomial M in (A1, . . . , Am), then there exists a simi-
larity transformation such that

(
{Aj}mj=1, B, C

)
→{(Aj1 0

Aj2 Aj3

)}m
j=1

,

(
0
Bc

)
,
(
Cu 0

) ,

which allows us to transform system (29) to a neutral
type system and use standard tools for H2 norm com-
putation. Hence, the focus point of research is the gap
between (22) and the strengthened condition.
Finally, although Problem 1 is motivated by theH2 norm
analysis of DDAEs, we believe that the presented results
might be of interest in addressing a wider class of prob-
lems. For instance, the class of products in matrix poly-
nomials of the form Pk1,...,km(A1, . . . , Am) also appears
in the Rn-controllability and Rn-observability analysis
of retarded type systems (see, for instance, Chapter 2 in
[6]).

References

[1] A. A Agrachev and D. Liberzon. Lie-algebraic sta-
bility criteria for switched systems. SIAM Journal
on Control and Optimization, 40(1):253–269, 2001.

[2] V. D. Blondel and J. N. Tsitsiklis. The boundedness
of all products of a pair of matrices is undecidable.
Systems & Control Letters, 41(2):135–140, 2000.

[3] P-Y Chevalier, J. M. Hendrickx, and R. M. Jungers.
Efficient algorithms for the consensus decision prob-
lem. SIAM Journal on Control and Optimization,
53(5):3104–3119, 2015.

[4] A. V. Egorov and W. Michiels. A connection be-
tween strangeness-free delay differential-algebraic
and neutral type systems. In Proceedings of the 20th
IFAC World Congress, pages 1308–1313, Toulouse,
France, 2017.

[5] E. Fridman. Stability of linear descriptor systems
with delay: a Lyapunov-based approach. Journal
of Mathematical Analysis and Applications, 273:24–
44, 2002.

[6] E. Fridman. Introduction to time-delay systems:
analysis and control. Birkhauser, 2014.

[7] D. D. Givone and R. P. Roesser. Minimization
of multidimensional linear iterative circuits. IEEE
Trans. on Computers, C-22(7):673–678, 1973.

[8] M. A. Gomez, A. V. Egorov, S. Mondié, and
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