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ABSTRACT 54 

 55 

BACKGROUND: Identification of endometrial carcinoma (EC) patients at high risk of 56 

recurrence is lacking. In this study, the prognostic role of hypoxia and angiogenesis was 57 

investigated in EC patients.  58 

METHODS: Tumor slides from EC patients were stained by immunofluorescence for CAIX 59 

as hypoxic marker and CD34 for assessment of microvessel density (MVD). CAIX-60 

expression was determined in epithelial tumor cells, with a cut-off of 1%. MVD was assessed 61 

according to the Weidner method. Correlations with disease-specific survival (DSS), disease-62 

free survival (DFS) and distant disease-free survival (DDFS) were calculated using Kaplan-63 

Meier curves and Cox regression analysis.  64 

RESULTS: Sixty-three (16.4%) of 385 ECs showed positive CAIX-expression with high 65 

vascular density. These ECs had a reduced DSS compared to tumors with either hypoxia or 66 

high vascular density (log-rank p=0.002). Multivariable analysis showed that hypoxic tumors 67 

with high vascular density had a reduced DSS (hazard ratio [HR] 3.71, p=0.002), DDFS (HR 68 

2.68, p=0.009) and a trend for reduced DFS (HR 1.87, p=0.054).    69 

CONCLUSIONS: This study has shown that adverse outcome in hypoxic ECs is seen in the 70 

presence of high vascular density, suggesting an important role of angiogenesis in the 71 

metastatic process of hypoxic EC. Differential adjuvant treatment might be indicated for these 72 

patients.  73 

  74 



BACKGROUND 75 

 76 

Most endometrial carcinoma (EC) patients present with early-stage disease and have a 77 

favorable outcome. Nevertheless, 15% of all patients suffer from recurrent disease and 78 

subsequently have a poor outcome 1-3. Approximately half of these recurrences occur in 79 

patients primarily diagnosed with low risk EC 1,4. Improved identification of patients at high 80 

risk for recurrence is crucial to prevent both over- and undertreatment. 81 

Hypoxia is known to be an important feature of aggressive EC and drives metastatic potential 82 

5-8. When solid tumors outgrow their vasculature beyond the size of 0.1 mm³, hypoxia may 83 

occur 9. As a response to chronic hypoxia, tumor cells will activate genes associated with 84 

more aggressive phenotype and resistance to chemotherapy and radiotherapy 10. Hypoxia 85 

inducible factor 1 (HIF-1), formed after heterodimerization of its subunits HIF-1α and HIF-86 

1β, plays a key role in this process 11,12. HIF-1 activates downstream genes that enhance cell 87 

survival by maintaining intracellular pH, stimulating angiogenesis to increase oxygen delivery 88 

and switching to anaerobic glycolysis 12,13. More specifically, an important downstream target 89 

is carbonic anhydrase 9 (CA9), whose encoded protein, carbonic anhydrase IX (CAIX), 90 

regulates intracellular pH by converting carbon dioxide to carbonic acid 14. By adaptation of 91 

tumor cells to a hostile microenvironment, tumor proliferation can commence even in hypoxic 92 

areas 15. Also in normoxic conditions, HIF-1 can be activated, however downstream activation 93 

is present in lesser extent 16,17 In this perspective CAIX-expression, one of the key effector 94 

proteins of HIF-1, has been shown to be more specifically related to hypoxia and poor 95 

outcome 18.  96 

Next to maintenance of intracellular pH, stimulation of angiogenesis is an important response 97 

to hypoxia. Vascular endothelial growth factor (VEGF), another downstream target of HIF-1, 98 

is also correlated with hypoxia and angiogenesis in several cancer types, including EC 19-22. 99 

Angiogenesis can be assessed by microvessel density (MVD) and is prognostically associated 100 



with deep myometrial invasion (MI), lymphovascular space invasion (LVSI) and poor overall 101 

survival in EC 23. Although earlier studies suggest correlation between hypoxia, angiogenesis 102 

and poor outcome, the prognostic value has not yet been studied before 5,6. Therefore, we 103 

have investigated the prognostic value of hypoxia and angiogenesis in EC, assessed with  104 

CAIX-expression and MVD.  105 

 106 

  107 



METHODS 108 

 109 

Patients 110 

Data and tumor slides were collected previously for a study analyzing the value of L1CAM 111 

expression in ECs, which included ECs from 11 collaborating European Network for 112 

Individualized Treatment of Endometrial Cancer (ENITEC) centers 24,25. Only cases 113 

diagnosed by an expert gynecological pathologist, with complete data on treatment and 114 

pathological examination and at least 36 months of follow-up were included. Cases with a 115 

non-endometrioid component were categorized as non-endometrioid. The 1199 cases included 116 

in the original study were randomly selected using SPSS version 22 (SPSS IBM, New York, 117 

NY) resulting in a database of 403 patients for the present study. These cases were not 118 

statistically different from the original cases for the most important baseline characteristics. 119 

 120 

Tissue and staining 121 

Four μm sections, derived from formalin-fixed, paraffin-embedded ECs were used to 122 

visualize CAIX and blood vessels. Sections were mounted on Superfrost slides (Menzel-123 

Gläser). Slides were deparaffinated in Histochoise (VWR H103-4L) and rehydrated (graded 124 

ethanol: 100%-96%-70% & de-ionized water). Next, citrate buffer antigen retrieval was 125 

performed for 30 minutes (Target retrieval solution 10x pH 6 citrate, Dako Cytomation, 96 126 

⁰C). Prior to incubation with the primary antibodies sections were blocked with 5% normal 127 

goat serum (Jackson ImmunoResearch) in Primary Antibody Diluent (PAD, BIORAD 128 

BUF014), 30 minutes at room temperature. Thereafter sections were co-stained for CAIX 129 

(Novus Biologicals NB100-417, 1:100) and vessels (CD34, ABCAM ab8536, 1:300), 60 130 

minutes at 370C. Secondary incubation was performed using CyTM3 Fab Fragment Goat Anti-131 

Rabbit IgG (H+L) polyclonal IgG (Jackson ImmunoResearch 111-167-003) for CAIX and 132 



CF®488a Goat anti-Mouse IgG (H+L), F(ab’)2 fragment polyclonal IgG (Biotium CF488A) 133 

for the vessels, 60 minutes at 370C. All antibodies were diluted in PAD. In between stainings, 134 

sections were rinsed with PBS (JT Baker 4391.9010). DAPI (Santa Cruz Biotechnology AB-135 

17.0097) was used as a counterstain to stain all nuclei and finally, the sections were mounted 136 

with Fluoromount W (Serva 21634.01). Hematoxylin and eosin (H&E) staining was used for 137 

morphological evaluation. CAIX-expression was scored as the fraction of epithelial tumor 138 

cells with positive membranous staining.  139 

 140 

Image analysis 141 

Tumor slides were analyzed using a digital image analysis system after scanning of the whole 142 

slides with the Axio Imager D2 microscope (Carl Zeiss, GmbH, Oberkochen, Germany) using 143 

a Prior lumen 200 metal halide lamp (Prior Scientific, Rockland, USA), Axiocam 503 mono 144 

16-bit camera (1936 x 1460 pixel, Carl Zeiss, GmbH) and a computer-controlled motorized 145 

stage (Carl Zeiss, GmbH) directed by Zen Pro software (Carl Zeiss, GmbH) 26. Each slide was 146 

scanned for three signals: DAPI (all nuclei), Alexa488 (CD34) and Cy3 (CAIX), by means of 147 

a 10X objective using standardized shutter times for each signal (1ms, 25ms and 50ms, 148 

respectively). After scanning, grey-scale images of all three recorded signals were used for 149 

analysis.  150 

For analysis of CAIX staining, only membranous expression on epithelial tumor cells was 151 

analyzed. Areas of necrosis, large vessels and tumor stroma, determined using hematoxylin- 152 

and eosin-stained adjacent tumor slides, were therefore manually excluded from the analysis 153 

(i-Vision for Mac; BioVision Technologies, Exton, PA, USA). Next, thresholds for 154 

segmentation of the fluorescent signals were interactively set above the background staining 155 

for each individual marker and adjusted for each sample in order to optimize the signal to 156 

background ratio using ImageJ software (Wayne Rasband, National Institute of Mental 157 



Health, National Institutes of Health). An interactively set threshold  limits inter sample 158 

variability by correction for differences in immunofluorescence staining intensity 26,27. The 159 

resulting binary images were used to calculate the fraction of CAIX (fCAIX) relative to the 160 

total tumor area. To minimize bias of non-specific staining, only positive signals exceeding 5 161 

pixels were included. 162 

The MVD was measured according to the Weidner method 28. In short, surrounding epithelial 163 

tumor cells three areas with the highest density of vessels were selected by the assessor 164 

(M.A.) using a 200X magnification. To correct for objects that exceed the image borders, only 165 

objects exceeding the left and upper border were included. To minimize bias of non-specific 166 

staining, only positive signals exceeding 2 pixels were included. 167 

CAIX-expression was considered positive when the fCAIX was above 1% 29,30. The MVD 168 

was dichotomized over the median. A representative example of CAIX and MVD staining is 169 

shown in Figure 1. 170 

 171 

Statistical analyses 172 

Clinicopathological differences between subgroups were compared with the 2 and Fisher’s 173 

exact tests for categorical data and the Mann-Whitney U-test for continuous variables. 174 

Kaplan-Meier curves were constructed for DSS, DFS and DDFS. The association between 175 

CAIX and MVD and disease-specific survival (DSS), disease-free survival (DFS) and distant-176 

disease free survival (DDFS) was determined using Cox regression analysis. DSS was 177 

calculated from the date of primary treatment to the date of death caused by the disease or, for 178 

surviving patients, to the date of the last follow-up. DFS and DDFS were defined as the length 179 

of follow-up, after completion of the primary treatment, during which women survived 180 

without any clinical sign of (distant) disease recurrence. Distant recurrence included 181 

metastases in distant organs and para-aortic lymph nodes. Features identified by univariable 182 



regression analysis with p<0.20, were used for multivariable regression analysis. LVSI was 183 

coded as negative in case of missing data (n=108) since only substantial LVSI was recently 184 

reported as relevant for prognosis of EC. If LVSI was not reported in the pathological report, 185 

it was therefore assumed that LVSI was absent 31,32. P-values less than 0.05 were considered 186 

to indicate a significant difference. SPSS version 25 (SPSS IBM, New York, NY, USA) 187 

statistical software was used to perform the statistical analyses. 188 

189 



RESULTS 190 

 191 

Patients 192 

After staining for CAIX and CD34, 18 of the 403 patients were excluded due to insufficient 193 

tumor tissue (n=9) and excess of non-specific background staining (n=9). Clinicopathological 194 

characteristics of the 385 patients included for analysis are shown in Table 1. Overall, the 195 

median age was 64 years and the median follow-up time was 58 months. Of all patients alive 196 

at the end of follow-up, 99% had a follow-up of at least 36 months. A total of 67 patients 197 

(17.4%) were diagnosed with high-grade EC, including 13 NEECs (3.4%). In total, 106 (27%) 198 

EC patients had positive CAIX-expression.Forty-seven patients (12.2%) recurred and 21 199 

patients (5.5%) died due to the disease. Of all the patients with recurrence, 14 (3.6%) had a 200 

local recurrence, 16 (4.2%) a regional recurrence and 31 (8.1%) a distant recurrence. 201 

 202 

CAIX-expression and microvessel density 203 

A total of 63 carcinomas (16.4%) showed a positive membranous epithelial CAIX-expression 204 

and high degrees of vascular density, defined as a MVD above the median (Table 1). CAIX-205 

expression with high vascular density was correlated with non-endometrioid histology (7.9% 206 

vs. 2.5% p = 0.028), but not with other clinicopathological features. Patients with CAIX-207 

positive ECs and high vascular density experienced more recurrences (22.2% vs. 10.2% p = 208 

0.008), specifically more distant recurrences (19.0% vs. 5.9% p < 0.001) as well as higher 209 

overall mortality (22.2% vs. 11.8%, p = 0.027) and EC-related mortality (17.5% vs. 3.7%, p < 210 

0.001) (Table 1).  211 

Figure 2 shows that CAIX-expression with high vascular density was associated with a worse 212 

DSS compared to CAIX-expression with low vascular density and negative CAIX-expression 213 

(p = 0.002). Interestingly, CAIX-positive ECs with low vascular density had a similar 214 



outcome as CAIX-negative ECs. Univariable Cox regression analysis revealed that age, 215 

CAIX-expression with high vascular density, MI, FIGO-stage, grade and LVSI were 216 

significantly associated with DSS (Figure 3). In multivariable analysis, high age, CAIX-217 

expression with high vascular density and tumor grade 3 remained significantly associated 218 

with reduced DSS, with CAIX&MVD as the most significant parameter (hazard ratio [HR] 219 

3.71, 95%-CI 1.59 – 8.63, p=0.002).  220 

Multivariable analysis showed that age, FIGO stage and LVSI were significantly associated 221 

with DFS. CAIX-expression with high vascular density was nearly significant (HR 1.87, 222 

95%-CI 0.99 – 3.55, p = 0.054, Figure 4). Multivariable analysis for DDFS showed that 223 

LVSI and CAIX-expression with high vascular density were significantly associated with an 224 

reduced DDFS (CAIX&MVD: HR 2.68, 95%-CI 1.27 – 5.65, p = 0.009, Figure 5). 225 

 226 

Individual contribution of CAIX and MVD 227 

Positive CAIX-expression was associated with high tumor grade, non-endometrioid histology, 228 

higher median MVD and treatment with radiotherapy. In multivariable analysis CAIX and 229 

grade were significantly associated with DSS (HR 2.45, 95%-CI 1.05-5.73, p=0.039) 230 

(Supplementary Table 1 and 2). High MVD was correlated with deep MI, but not with other 231 

clinicopathological factors. In multivariable analysis, high MVD remained an independent 232 

predictor of reduced DSS (HR 2.92, 95%-CI 1.13 – 7.54, p=0.027) (Supplementary Table 3 233 

and 4). Continuous scoring of CAIX-expression showed a significant correlation with DSS as 234 

well (data not shown). 235 

 236 

 237 

 238 

 239 



DISCUSSION 240 

 241 

In the present study we have investigated the prognostic value of angiogenesis and hypoxia,  242 

assessed with MVD and CAIX-expression. We hypothesized that angiogenesis would 243 

facilitate hematogenous spread of hypoxic tumor cells with subsequent poor clinical outcome. 244 

Additionally, we assumed that this would specifically be facilitated in hypoxic ECs, because 245 

of activation of intracellular pathways that induce an aggressive and metastatic phenotype. 246 

We have shown that CAIX-expression with high vascular density is associated with reduced 247 

disease-specific survival and distant disease-free survival. Interestingly, CAIX-positive ECs 248 

with low vascular density had a similar outcome as CAIX-negative ECs. Finally, 249 

multivariable analyses for CAIX-expression and vascular density showed that both were 250 

independent prognostic markers as well. 251 

This is the largest study to date studying CAIX in EC. In contrast to previous studies in EC, 252 

we did find significant correlations between  CAIX-expression and poor outcome, especially 253 

in case of high vascular density. Seeber et al. included 93 patients and found CAIX-254 

expression in 76% of ECs 29. In this study, no correlation between CAIX-expression and 255 

outcome was found; however small sample size and different cut-off value (all degrees of 256 

positive staining were regarded as positive) could explain why no correlation was found. 257 

Similarly, Pijnenborg et al. investigated CAIX-expression in 59 ECs and did not find a 258 

correlation 22. Again, possibly this study was underpowered due to a limited sample size and 259 

low numbers of distant recurrences. Also, differences in study design (case-control study) 260 

hamper valid comparison with our results. In other cancer types, including breast carcinoma, 261 

hepatocellular carcinoma, cervical carcinoma and renal cell carcinoma,  CAIX-expression is 262 

associated with poor prognosis 33-37. More specifically, increased distant failure was seen in 263 

several solid tumor types with positive CAIX-expression 37,38. 264 



The metastatic process is a complex step-wise process, including acquisition of a aggressive 265 

phenotype, invasion in surrounding tissues and blood vessels, survival in the circulation with 266 

subsequent extravasation and colonization in new organs 39. Hypoxia and subsequent 267 

neoangiogenesis will intervene with several steps of this process, including promoting tumor 268 

cell survival by acquisition of a malignant phenotype and increased invasion in blood vessels 269 

9. 270 

A recent meta-analysis has shown that high MVD was associated with several poor prognostic 271 

variables, including deep MI, positive LVSI and poor outcome in EC, although heterogeneity 272 

due to differences in used antibodies and cut-off values hampers interpretation of these results 273 

23. Biologically, intratumoral neoangiogenesis in response to hypoxia will promote the 274 

formation of vasculature with high degrees of permeability and potential for rapid growth 40. 275 

Our hypothesis that CAIX-expression with high degrees of vascular density would be 276 

associated with unfavourable prognostic features and poor outcome was based both on the 277 

facilitation of hematogenous spread in areas with high angiogenesis, and the aggressive 278 

biological behaviour of tumor cells after hypoxia 41,42. HIF-1α is stabilized and accumulates 279 

under hypoxia, and activates transcription of numerous genes involved in angiogenesis, 280 

proliferation, and pH regulation (VEGF, CAIX, GLUT-1) 9. Our hypothesis was supported by 281 

the fact that ECs with positive CAIX-expression and high vascular density had a decreased 282 

DSS compared to ECs with only one or none of both features. This observation supports the 283 

complex interplay underlying the metastatic processes. The observation that CAIX-positive 284 

ECs with high vascular density did not have more lymph node metastasis or local recurrences, 285 

but instead have more distant recurrences, could support the role of angiogenesis in the 286 

hematogenous rather than the lymphogenic metastatic process. 287 

The obvious strengths of this study are the inclusion of a large and representative cohort of 288 

EC patients within the ENITEC network and the objective and reproducible measurement of 289 



CAIX and MVD using digital imaging analyses. However there are some limitations that need 290 

to be addressed. Due to the retrospective nature of the study, there were missing values, 291 

specifically for LVSI and lymph node metastasis. Substantial LVSI is a stronger predictor for 292 

prognosis of EC compared to moderate LVSI. Also, LVSI is not routinely reported in the 293 

pathologic report at all centers. Therefore we assumed that if substantial LVSI was present it 294 

was reported and if LVSI was not reported no substantial LVSI was present 31. Missing cases 295 

were therefore coded as negative for LVSI. Separate analyses of patients with available LVSI 296 

status did not alter the results of the primary outcome (data not shown). Another general 297 

limitation in interpretation of CAIX and MVD is the lack of standardized criteria in current 298 

literature, which hampers comparison of previous studies and this study 29,30. However, the 299 

applied digital techniques in this study enable objective and reproducible analyses without the 300 

need for extensive pathological expertise. With the integration of digital pathology into 301 

clinical practice, comparison of future studies with our results might be easier 43,44. Although 302 

widely used to quantify MVD, CD34 is known to also identify lymph vessels and stem cell 303 

populations, which theoretically could have led to an overestimation of our results. On the 304 

other hand, other antibodies, e.g. CD31, also carry the risk of aspecific staining. Compared to 305 

CD31, CD34-staining is known to have stronger reactivity with endothelial cells, resulting in 306 

a lower risk of staining failure 45. Finally, generalizability to non-endometrioid subtypes can 307 

be questioned, as they comprise only 3.4% of the entire cohort. More research focused on this 308 

specific subgroup could help to strengthen these results. 309 

This study identifies a group of patients with a poor DSS and DDFS based on CAIX and 310 

MVD. Given the increased risk of distant metastases, differential adjuvant treatment for these 311 

ECs could be explored either in the form of chemotherapy or, in the future, targeted therapies 312 

directed against angiogenesis. Because of the focal character of CAIX-expression in the tumor 313 

tissue, performing the analysis on preoperative biopsies might be challenging, but 314 



visualization of hypoxia and angiogenesis on FDG-PET/CT scan and MRI could be an 315 

alternative, as Berg et al. showed recently 5.  316 

 317 

In summary, we have found that CAIX-expression and high vascular density are prognostic 318 

markers for decreased survival in endometrial carcinoma. Combining these two markers 319 

revealed that ECs with positive CAIX-expression and high vascular density have an impaired 320 

outcome compared to ECs that have only one or none of both features. These patients 321 

experienced more distant recurrences, and therefore differential adjuvant treatment for these 322 

tumors should be explored. 323 
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FIGURE LEGENDS 510 

Figure 1. Example of CAIX and CD34 staining in endometrial cancer. (A) Nuclear DAPI 511 

staining (blue) for visualization of tumor nuclei. (B) CAIX-staining (green) adjusted for total 512 

tumor area, meaning that only epithelial tumor cells were included in the analysis: other 513 

tissue, including stroma, necrosis, vasculature has manually been removed and is colored 514 

black by the analysis software (see ‘Methods’ section). (C) CD34-staining of vasculature (red) 515 

with three hotspots according to the Weidner method, marked with the interrupted lines. (D) 516 

Combined CAIX-staining and CD34-staining. Panels E, F, G and H represent representative 517 

high-magnification images of the boxed areas in A, B, C and D, respectively. Scale bar  = 0.5 518 

mm. 519 

Figure 2. Disease-specific survival (DSS) by CAIX-expression combined with degree of 520 

angiogenesis. Log-rank test was used to compare groups. 521 

Figure 3. Univariable and multivariable Cox regression analysis of clinicopathological 522 

parameters including CAIX combined with vascular density for DSS. The Hazard Ratios with 523 

95%-confidence intervals are depicted by the black line. All risk factors significantly 524 

associated with DSS in univariable analysis were included in the multivariable Cox regression 525 

analysis, depicted by the grey lines. 526 

Figure 4. Univariable and multivariable Cox regression analysis of clinicopathological 527 

parameters including CAIX combined with vascular density for disease-free survival (DFS). 528 

All risk factors significantly associated with DFS in univariable analysis were included in the 529 

multivariable Cox regression analysis, depicted by the grey lines. 530 

Figure 5. Univariable and multivariable Cox regression analysis of clinicopathological 531 

parameters including CAIX combined with vascular density for distant disease-free survival 532 

(DDFS). All risk factors significantly associated with DDFS in univariable analysis were 533 

included in the multivariable Cox regression analysis, depicted by the grey lines. 534 


