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Abstract 

Previous studies have identified a collection of brain areas that show neural selectivity for the 

distinction between human-to-human and human-to-object interactions, including regions 

implicated in sensory and social processing. It remains largely unknown, however, how the 

functional communication between these areas changes with the type of interaction. 

Combining a generalized psychophysiological interaction (gPPI) analysis and independent 

component analysis (ICA), the current study sought to identify the context-sensitive 

modulation of the functional network architecture during touch observation. Thirty-seven 

participants watched 75 video clips displaying social and non-social touch events during a 

functional imaging scan. A gPPI analysis of pre-defined regions of interest revealed that 

social-cognitive brain regions show enhanced interregional coupling during social touch 

observation, both among social-cognitive brain regions and between social-cognitive regions 

and sensory regions. Conversely, during non-social touch observation, a significantly stronger 

coupling among brain areas within the system that processes the unimodal sensory 

information was observed. At the level of large-scale brain networks extracted with ICA, 

stronger connectivity between 11 pairs of networks, including default mode networks, was 

observed during social touch observation, while only three pairs of networks showed stronger 

connectivity during non-social touch observation. The current study identifies the presence of 

context-dependent changes in functional brain architecture based on whether the touch 

recipient is a person or an object, highlighting an increased exchange of neural information 

for social processing.   

Keywords 

social touch observation; social cognition; functional connectivity; generalized 
psychophysiological interaction (gPPI) analysis; independent component analysis (ICA) 
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FC, functional connectivity; gPPI, generalized psychophysiological interaction; IC, 
independent component; ICA, independent component analysis; MDL, minimum description 
length; PO, parietal operculum; Precu, precuneus; PCA, principal components analysis 
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1. Introduction 

The sense of touch enables us to efficiently interact with both social and physical aspects of 

the environments. While the biological motion involved in touching behaviors in both 

situations may be similar, the goal and meaning of the touch are highly dependent on the 

touch recipient, such as whether it is a person or an object. In the former situation, we 

communicate emotion through touch (Hertenstein, Holmes, Mccullough, & Keltner, 2009; 

Hertenstein, Keltner, App, Bulleit, & Jaskolka, 2006), while in the latter situation we explore, 

recognize, and manipulate objects (Klatzky, Lederman, & Metzger, 1985). For instance, we 

express our emotion by stroking the arm of a loved one, while we test the texture of fabric by 

stroking the surface with our hands. Therefore, predicting and attributing meaning to touch 

may begin with identifying whether the touch is used in a social or non-social context.  

The underlying neurophysiological mechanisms supporting these two contrasting 

functional roles of the sense of touch have been well documented, including segregated neural 

pathways that connect the periphery and the brain (Johansson, Trulsson, Olsson, & Westberg, 

1988; Johnson, 2001; McGlone, Wessberg, & Olausson, 2014; Moehring, Halder, Seal, & 

Stucky, 2018; Vallbo, Olausson, Wessberg, & Norrsell, 1993). 

Neuroimaging studies have also confirmed marked differences in the neural 

mechanisms underlying visual perception of social vs. non-social touch (Blakemore, Bristow, 

Bird, Frith, & Ward, 2005; Lee Masson, Van De Plas, Daniels, & Op de Beeck, 2018; 

Morrison, Bjornsdotter, & Olausson, 2011). In particular, the observation of social touch 

interactions, in contrast to non-social touch, elicits stronger neural activations and more 

informative multi-variate representations in the somatosensory cortex (Blakemore et al., 2005; 

Lee Masson et al., 2018; Morrison et al., 2011) and the brain regions implicated in social 

cognition, including the temporoparietal junction (TPJ) and medial prefrontal cortex (MPFC) 

(Lee Masson et al., 2018; Sliwa & Freiwald, 2017). In contrast, the observation of object-
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oriented touch elicits relatively stronger activation in object processing areas, such as fusiform 

gyrus (Lee Masson et al., 2018). 

To date, it remains unclear how social vs. non-social aspects of touch events 

dynamically reorganize the functional architecture of the brain since the aforementioned 

studies have focused on localizing a series of brain regions showing either increased 

activation or enhanced representational information in response to observed touch. However, 

complex cognitive functions, including social cognition, cannot be achieved by one specific 

brain region that processes information in isolation from other brain regions. Instead, it has 

long been suggested that cognition is the result of dynamic integration and coordination of the 

collective brain activity across several regions (Shine et al., 2019; Tononi & Edelman, 1998). 

The present study sought to characterize the functional relevance of alterations in the 

brain network architecture during the observation of social and non-social touch by 

employing a multi-method approach. First, we took a theory-driven approach by first 

selecting brain regions of interest (ROI) thought to be involved in the processing of visually 

presented touch events and sought to investigate the functional communication between them. 

Second, to complement this theory-driven approach, we also performed a data-driven, model-

free, multivariate independent component analysis (ICA) to extract the brain networks 

processing visually presented touch events with a blind source separation technique (Vince D. 

Calhoun, Liu, & Adalı, 2009; Mckeown et al., 1998). Finally, we assess context-dependent 

changes in regional and network level functional connectivity (FC) with a generalized 

psychophysiological interaction (gPPI) analysis (McLaren, Ries, Xu, & Johnson, 2012).  

Interpreting the affective state of two people exchanging touch requires social 

cognition such as theory of mind (ToM). Numerous neuroimaging studies have shown that 

TPJ and MPFC are consistently activated whenever people perform all sorts of tasks requiring 

mental state reasoning (for review, Schurz, Radua, Aichhorn, Richlan, & Perner, 2014). In 
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addition to those two core social brain regions implicated in ToM, precuneus (precu), middle 

temporal gyrus (MTG), and superior temporal gyrus (STG) are also consistently activated 

during three types of ToM tasks, the false-belief task, the emotion vs. physical pain stories 

task, and the passive observation of a movie depicting another person's experiences (Jacoby, 

Bruneau, Koster-Hale, & Saxe, 2016). Based on the involvement of these brain regions in 

mental state reasoning and previous findings on social interaction processing (Lee Masson et 

al., 2018; Sliwa & Freiwald, 2017; Wurm, Caramazza, & Lingnau, 2017), we hypothesize that 

the functional communication among aforementioned social-cognitive brain regions/networks, 

implicated in ToM, would be enhanced during the observation of social touch as compared to 

non-social touch. Furthermore, given the involvement of the somatosensory mirror system in 

social touch processing (Keysers, Kaas, & Gazzola, 2010), we hypothesized that the 

somatosensory cortex, which is involved in self-experienced touch processing, would show 

increased FC with social-cognitive brain regions when subjects viewed social touch 

interactions. We also hypothesize enhanced functional coupling among visual brain 

regions/networks during the observation of non-social human-object interactions (Chao, 

Haxby, & Martin, 1999; Mechelli, Sartori, Orlandi, & Price, 2006). 

At the network level, given that the social brain network, including the default mode 

network (DMN), has been resolved through data-driven ICA approach in a previous study 

(Mars, Neubert, et al., 2012; McCormick, van Hoorn, Cohen, & Telzer, 2018), we expect 

those networks to be extracted and to communicate more with other sensory networks during 

social touch observation. 

2. Materials and Methods 

2. 1. Participants 

MRI scans were collected for 37 participants (28 males; mean age = 25 years, range = 19 – 

38). The full dataset comprises a reanalysis geared towards FC of data that were previously 
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analyzed with multivariate pattern analysis (MVPA) (21 participants from Lee Masson et al., 

2018,  and the 16 other neurotypical participants from Lee Masson, Pillet, Amelynck, Van De 

Plas, Hendriks, Op de Beeck, et al., 2019). All participants had normal or corrected-to-normal 

vision and had no previous psychiatric nor neurological history. All participants provided 

written informed consent before the experiment. The study was approved by the Medical 

Ethical Committee of KU Leuven (S53768 and S59577). Since we analyzed existing data, the 

sample sizes in our analyses were identical to that of the original source studies. With respect 

to the secondary analyses, we report all data exclusions (if any), all inclusion/exclusion 

criteria, whether inclusion/exclusion criteria were established prior to secondary data analysis, 

all manipulations, and all measures that were included the reanalysis. 

2.2. Stimuli 

We used a set of stimuli created and validated in a previous study (Lee Masson & Op de 

Beeck, 2018). The set consists of 39 video clips displaying an interpersonal touch scene 

(social touch) and 36 video clips displaying a person manipulating an object (non-social touch) 

(Fig. 1).  

Fig. 1. Example snapshots of the social and non-social stimuli. Images displaying interpersonal touch events 
are shown in an orange-colored box. Non-social touch events, displaying different interactions with various 
objects, are shown in a light blue-colored box. The complete set of video materials can be found at 
https://osf.io/8j74m/. 

We intentionally matched the body movements across the social and the non-social touch 

scenes (e.g., hugging a person vs. carrying a box) to avoid that this variable could induce 

differences in the strength of FC between the two conditions. By doing so, the recipient (a 

person vs. an object) of the touch becomes the only element that differs between the two 

conditions. Details about stimulus creation and validation can be found in Lee Masson & Op 

de Beeck (2018). Stimuli are available online as dynamic video clips (https://osf.io/8j74m/). 

2.3. MRI data acquisition  
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MRI data were obtained on a research-dedicated 3T Philips scanner with a 32-channel coil at 

the University Hospitals Leuven. For the functional data, whole brain images (37 axial slices 

with voxel size 2.7 × 2.7 × 3 mm3 without a gap, and without fully covering cerebellum) were 

acquired with echo planar (EPI) T2∗-weighted sequences with the following acquisition 

parameters: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle (FA) = 90°, 

field of view (FOV) = 216 × 216 mm, and in-plane matrix = 80 × 80. Each run comprised of 

239 volumes. The T1-weighted anatomical images were acquired with a magnetization 

prepared rapid gradient echo (MP-RAGE) sequence, with 0.98 ×  0.98 × 1.2 mm3 resolution 

(182 axial slices, FOV = 250 x 250 mm, TR = 9.6 ms, TE = 4.6 ms, FA = 8°, in-plane 

matrix = 256 × 256 mm). 

2.4. Visual fMRI experiment 

During the scan sessions, participants watched video clips and responded whenever they 

detected the touch initiator wearing a sweatshirt of a pre-instructed color (black vs. grey). 

This task assured that participants paid attention to the video clips. This orthogonal task was 

designed to keep participants from falling asleep. Notably, we designed our task in this way to 

investigate spontaneous stimulus-related modulation of FC during the implicit processing of 

observed social vs. non-social touch. All the videos (N = 75) were presented in random order 

once per run in an event-related design (number of runs = 6 or 7, about 50 mins of scanning, 

mean number of runs = 6.4 after discarding some runs with excessive head motion). Each trial 

consists of a video presentation (3s) and an inter-stimulus interval (ISI, 3s) during which a 

participant performed the task by pressing a button. The total duration of each run took 7.8 

min: 3 blocks within the run x (baseline displaying a fixation cross for 6s + 25 trial per block 

x (video presentation for 3s + 3s ISI)). To relieve the participant’s fatigue, after each run, they 

were encouraged to take a short break in the scanner before performing the next run. 

Participants were able to pay attention up until the end, given that task performance of the last 
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run was 97.2 (the group averaged median). All the videos were projected on a screen behind 

the scanner and viewed through a mirror mounted on the head coil. The videos were presented 

and the responses were recorded by Psychophysics Toolbox Version 3.0.12 (PTB-3) (Kleiner 

et al., 2007) in Matlab (R2015a, The Mathworks, Natick, MA). Presentation codes are 

available online (https://osf.io/hpwjx/). 

2.5. Identifying brain regions (ROIs) processing observed touch 

ROIs, known to be involved in observed touch processing, were selected and defined based 

on the group-level results of a previous study with a combination of functional and anatomical 

criteria (Lee Masson et al., 2018). This includes visual (Thompson & Baccus, 2012; 

Vangeneugden, Peelen, Tadin, & Battelli, 2014), social (Jacoby et al., 2016), and 

somatosensory regions (Ebisch et al., 2008; Meyer, Kaplan, Essex, Damasio, & Damasio, 

2011; Rolls et al., 2003; F. W. Smith & Goodale, 2015): Brodmann area (BA) 17, 18, 19, 37, 

V5, MTG, STG, TPJ, Precu, MPFC, BA3, 1, 2, and parietal operculum (PO). As such, we 

have 14 ROIs categorized into putative visual, social-cognition, and somatosensory networks 

based on the function and anatomical location of each ROI (Fig. 2). Notably, in this study, we 

assigned ROIs to the putative network based on their primary role reported in the literature 

(e.g., despite involvement of the somatosensory cortex in social processing — such as the 

processing of somatosensory experiences of others — BA3, 1, 2 are assigned to the 

somatosensory network as their primary role is to process tactile information).  

 Fig. 2. A visual depiction of the selected ROIs. The red mark in the brain image indicates the selected areas of 
each functionally-defined ROI. BA = Brodmann Area, MTG = Middle Temporal Gyrus, STG = Superior 
Temporal Gyrus, TPJ = Temporo-Parietal Junction, Precu = Precuneus, dmPFC = dorsal medial PreFrontal 
Cortex. PO = Parietal Operculum.  

Methods to define these ROIs were exactly the same as in our previous report (Lee 

Masson et al., 2018). Here we again provide full details on the analysis steps implemented 

specifically for ROI selection. To select voxels within the most relevant anatomical 

boundaries, anatomical masks were obtained from various sources: the PickAtlas software 
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(Maldjian, Laurienti, Kraft, & Burdette, 2003) for  most of the ROIs, the SPM Anatomy 

toolbox (Eickhoff et al., 2005) for V5 and PO (OP1 (Eickhoff, Schleicher, Zilles, & Amunts, 

2006)), and the parcellation atlas (Mars, Sallet, et al., 2012) for TPJ. Within each anatomical 

mask, we selected the voxels that were activated by the most relevant functional contrast at 

the group level with the statistical threshold P uncorrected < 0.001. Details are the following: we 

used both the visual fMRI experiment for ROIs belonging to either the visual network or the 

social-cognition network and the separate functional touch localizer run for ROIs belonging to 

the somatosensory network. During the separate touch localizer run, participants received 

rubber band snapping (at a distance of about 8cm) and brush-stroke with the velocity of 

5 cm/s on the ventral surface of the right and left forearms while lying in the scanner. To fit 

the general linear model (GLM) to the aforementioned functional data, first, we preprocessed 

all functional images with the statistical parametric mapping (SPM 12) toolbox. Functional 

images were 1) corrected for slice timing differences, 2) re-aligned to the mean image of the 

first run, 3) normalized by warping them to a Montreal Neurological Institute (MNI) space 

with a re-sampling size of 2 x 2 × 2 mm, 4) spatially smoothed using Gaussian kernels with an 

8 mm full-width at half maxima (FWHM). For the first-level analysis, a standard GLM was 

fitted to the preprocessed functional data. All regressors of experimental conditions (social, 

non-social touch videos, and baseline for visual fMRI experiment and brush-stroke and rubber 

band snapping for a touch localizer run) were modeled as either delta functions matching the 

onset time of each regressor (duration = 0, an event-related design, visual fMRI experiment) 

or boxcar functions (duration = 10s, block design, the touch localizer run). Each function was 

convolved with a canonical hemodynamic response function. A temporal high-pass filter 

(1/128 Hz) was used. 6 Motion parameters were included in all GLMs as nuisance covariates. 

Brain activation evoked by all touch videos and fixation cross were contrasted for the visual 

fMRI experiment, and brain activation evoked by receiving touch and rest were contrasted for 
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the touch localizer run. Lastly, standard random-effect group-level analyses were conducted 

to identify significantly activated voxels in the aforementioned contrasts in the whole brain. 

This group activation was used to select the voxels within an anatomical mask. Table S1 

illustrates statistical and spatial information about the obtained clusters for each ROI. Lastly, 

to ensure the independence of the BOLD signals in each ROI, we removed overlapping voxels 

among neighboring ROIs, similarly to our previous study (Lee Masson et al., 2018). ROIs 

were converted into binary masks for further analysis. This procedure is identified as step 1 in 

Fig. 3.  

Fig. 3. A schematic figure showing an overview of the workflow (see Methods for more details). Step1: 
Each ROI, except somatosensory areas, was defined by selecting voxels located within the anatomical mask that 
showed stronger univariate activation during the observation of touch as compared to the observation of the 
fixation cross. The somatosensory areas were defined by selecting voxels located within the anatomical mask 
that showed stronger activation during actual touch stimulation as compared to rest. Notably, spheres were used 
for visualization purposes. Refer to Fig. 2. for the actual voxel clusters that make up each ROI. Step2: an ICA 
approach groups every voxel in the whole-brain into a functional unit, called an independent component (IC), 
based on the similarity of the features in BOLD time-course across voxels, yielding a group spatial map and 
time-course of each IC. Each group spatial map was labeled with an appropriate network descriptor based on the 
result of spatial correlation with the template, such as the DMN and visual network. Subsequently, temporal 
regression was performed to compute the degree of synchronization (reflected in ICA_β) between the time-
course of the network and the stimulus events for each task condition, social, non-social, and baseline. In the end, 
the networks showing differences (reflected in F and P-FDR, the 4th and 5th columns in Table 2) in the degree of 
synchronization depending on task condition were selected to further investigate network-level connectivity.  
Step3: The average time-course was extracted and then a PPI regressor was generated for each seed region 
(ROI/network) by combining psychological and physiological regressors. This PPI regressor was included in the 
model explaining the time-course of each target region (ROI/network) to identify the strength of the functional 
relationship (reflected in gPPI_β) between a seed and a target region for each task condition. Step4: A paired t-
test was used to determine significantly stronger FC between each pair of ROIs/networks for the contrast of 
social vs. non-social touch. 

2.6. Identifying networks processing observed touch 

2.6.1. Independent component analysis 

ROI-to-ROI FC analysis may not provide a complete picture of how the entire brain networks 

communicate in a task-dependent manner as the selection of the ROIs depends on a priori 

knowledge and assumptions. To comprehensively characterize network communication in the 

entire brain, in addition to ROI-to-ROI FC analysis, we also adopted a data-driven 

multivariate approach. In particular, ICA (Vince D. Calhoun et al., 2009; Mckeown et al., 

1998) decomposes mixed signals in the whole brain into maximally independent components 

(ICs) each of which explains unique variance of fMRI data. We applied spatial ICA, 
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implemented in the Group ICA Toolbox (http:/mialab.mrn.org/software/, GIFT version 3.0b), 

to the preprocessed fMRI data (i.e., slice-time corrected, realigned, normalized, and smoothed 

data using an 8mm Gaussian kernel) to identify groups of brain regions having temporally 

coherent BOLD signal fluctuations during the observation of touch.  

First, similarly to previous studies (Cisler et al., 2013; Jarrahi et al., 2015; Thye, 

Ammons, Murdaugh, & Kana, 2018), the dimensions of fMRI data were reduced, and the 

number of ICs required to fully describe the total variance of data was estimated using a 

minimum description length (MDL) criterion (Li, Adalı, & Calhoun, 2007). The optimal 

number of ICs was estimated to be 25. Next, data reduction was performed twice at the 

individual and group level using standard principal components analysis (PCA), followed by 

an independent component estimation using the Infomax ICA algorithm (Bell & Sejnowski, 

1995). The Infomax ICA was repeated ten times using the ICASSO toolbox implemented in 

GIFT to extract the most stable 25 ICs at the group level. According to the results of an 

estimated quality index from the ICASSO, which ranges from 0 to 1 (values approaching 1 

imply reliable extraction of the component; values approaching 0 imply a randomly produced, 

unreliable component), all 25 ICs were reliable (quality index values > 0.9). To compute the 

individual participant’s ICs, we performed GICA back-reconstruction on the group ICs using 

parameters of PCA compression and projection (Calhoun, Adali, Pearlson, & Pekar, 2001). 

Resulting spatial images and time-courses were converted to z-scores. Here, the resulting z-

score of each voxel reflects its contribution to the time-course of each IC. Individuals’ back 

reconstructed, and then z-score converted ICs were then used to compute a group mean spatial 

map and a group mean time-course of each IC.  

2.6.2. Identifying the task-relevant networks from ICs 

The analysis pipeline mentioned below is illustrated in step 2 of Fig. 3.  
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Spatial components: Following previous studies (Xu et al., 2013; Zhang & Li, 2012), we 

performed spatial sorting, implemented in GIFT, to discard noise-related ICs. We computed 

the spatial correlation between a group-level spatial t-map of each IC (thresholded at z-score > 

3) and probabilistic maps of the grey matter (GM), white matter (WM), and cerebrospinal 

fluid (CSF) provided with SPM12. The voxels that make up each IC should be predominantly 

located in the GM. Accordingly, the ICs whose group-level spatial map contain a large 

number of voxels located in WM and CSF, most likely represent physiological noise. Among 

the 25 ICs, 7 ICs which either related to CSF (coefficient of determination (r2) > 0.05) or did 

not relate to GM (r2 < 0.001) were removed. None of the ICs were spatially correlated with 

WM. Based on visual inspection, two additional ICs consisting of voxels located in the 

cerebellum (N = 1) or around the edges of the brain (N = 1) were additionally excluded from 

further analysis. We excluded ICs composed of the cerebellum because the cerebellum was 

not completely covered during the scan due to the short TR. Using the same methods, we 

labeled the remaining 16 ICs with functional or regional descriptors (e.g., DMN or visual 

network). In particular, each IC was correlated with the Resting State Networks templates (S. 

M. Smith et al., 2009) available in GIFT, and the label of the template with the maximal 

correlation value was assigned to the IC. From this point forward, we will refer to the ICs as 

“networks” and we will designate particular ICs/networks by referring to its label (e.g., DMN).  

Temporal components: Similarly to how we functionally defined ROIs, rather than selecting 

all 16 networks, we first verified whether BOLD signal fluctuations of each network respond 

differently to task and baseline conditions. To do this we assessed task-related modulation 

over time-courses of the remaining 16 networks using the temporal sorting feature 

implemented in GIFT (for a similar approach, see Assaf et al., 2009; Jarrahi et al., 2015; Ye et 

al., 2012).  
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The temporal sorting function performs a multiple regression analysis to find the 

association between BOLD signal fluctuations of each network and the reference time-courses 

of the three regressors (i.e., social touch, non-social touch, and baseline condition displaying a 

fixation cross), and measures the degree to which the onset of stimulus presentation modulates 

the time-course of each network during the task and baseline. Consequently, for each 

individual, a set of 16 beta coefficients (ICA_β) is obtained for each of the three task 

regressors, which indicate to what extent the task regressor is associated with a particular 

network. Next, a group-level mean ICA_β-value is computed to indicate to what extent the 

time-course of each network is engaged during the social, non-social, and baseline conditions 

at the group level.  

For each network, a within-subjects ANOVA was performed to determine the main 

effect of conditions on the ICA_β-values (the false discovery rate (FDR)-corrected for type-1 

errors). Afterward, using a one sample t-test, group-level spatial maps of each network that 

showed task-related engagement were thresholded at P FWE < 0.001 and converted into binary 

maps for further analysis. 

2.7. Functional Connectivity Analyses 

2.7.1. Pre-processing 

With the SPM 12 toolbox the following preprocessing steps were carried out: (1) functional 

images were corrected for slice timing differences; (2) realigned to the mean image of the first 

run; (3) the anatomical image was co-registered to functional images; (4) segmented to GM, 

WM, and cerebrospinal fluid; and then (5) the functional images and segmented GM, WM, 

and CSF images were normalized to the MNI template with the voxels resliced to 2 x 2 x 2. 

We did not smooth the images (Alakörkkö, Saarimäki, Glerean, Saramäki, & Korhonen, 

2017). The subsequent procedures were performed with the CONN (CONN 17) toolbox 

(Whitfield-Gabrieli & Nieto-Castanon, 2012). 
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Prior to the first-level estimation of FC, we removed the artifacts from the fMRI data 

using the component-based noise correction method (CompCor), as implemented in the 

CONN toolbox. Specifically, we estimated outlying volumes based on the motion (subject-

motion threshold = 0.9 mm) and global signal (z-value threshold = 5) deviations using an 

Artifact Detection and Repair toolbox, as implemented in the CONN toolbox. This variable 

was used for scrubbing during the de-noising step. This de-noising step also includes 

regressing out: (1) 10 principal components of the WM and CSF signal from the data 

calculated with PCA; (2) head motion-related artifacts by using six head motion parameters 

and their first derivatives; and (3) task-related BOLD signals by performing linear de-trending. 

Bandpass-filtering was performed to remove slowly fluctuating signal (0.008 Hz) such as 

scanner drift.  

2.7.2. Generalized psychophysiological interaction analyses 

We examined how brain regions interact in a task-dependent manner, using a gPPI analysis 

implemented in CONN toolbox (McLaren et al., 2012). PPI analysis is a type of task-based 

FC analysis that identifies voxels/ROIs of which the BOLD response time course (change in 

neural activity over time) is more related to that of a seed region in a given psychological 

context. Unlike the standard PPI analysis that includes contrast information when forming a 

psychological regressor, the gPPI approach convolves the BOLD signal with the canonical 

hemodynamic response function for each condition before making the contrast, forming a 

separate psychological regressor for each condition. This approach has been known to 

improve the fit of the regression model for event-related fMRI data (McLaren et al., 2012).  

The following description is shown in step 3 of Fig. 3. First, we extracted an averaged 

BOLD time-course across selected voxels for each ROI/network and used it as a physiological 

regressor. For a subject-level analysis, we generated a PPI regressor for each condition by 

calculating the element-by-element product between psychological and physiological 
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regressors. Second, we computed how strongly the time-course of one ROI/network is 

correlated with the PPI regressor of another. Unlike correlational analysis, gPPI is based on 

multiple regression, thereby generating different β values when the seed and target regions are 

reversed. This pair-wise computation was made for every possible pair-wise combination of 

selected ROIs/networks to measure task-dependent changes in FC for each participant. Third, 

results were converted to z-scores using the Fisher’s z-transformation before calculating a 

group-level averaged FC. We conducted a random-effects analysis across participants to 

measure the differences in FC between social and non-social conditions at the group-level. 

Statistical inferences were made using a one-sample paired t-test comparing ROI/network 

connectivity for the social vs. non-social condition. We corrected for the rate of type1 errors 

with the FDR at the analysis-level (the number of tests performed; that is, each possible pair 

combination of ROIs/network) instead of the ROI/network-level (the number of 

ROIs/networks selected).  

All the data necessary to replicate the results of this study are contained in Open 

Science Framework (https://osf.io/hpwjx/).  

3. Results 

3.1. Task-dependent changes in ROI-to-ROI connectivity  

We sought to examine changes in FC among the key brain regions involved in processing 

visually presented touch events, i.e., brain areas that are part of the visual, somatosensory, or 

social-cognitive brain networks. The results of the gPPI analysis demonstrated that task-

dependent changes in inter-regional functional coupling among ROIs did indeed take place, as 

a function of whether participants watched human-human or human-object interactions.  

Overall, as illustrated in Fig. 4 (red vs. blue lines) and Table 1 (orange vs. sky-blue at 

the 5th column), enhanced connectivity strength among ROI-pairs was more extensively found 

during the observation of social touch compared to non-social touch (number of ROI-pairs 
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showing increased FC strength during social touch observation = 23; during non-social touch 

observation = 7, the 5th column of Table 1). This finding is consistent with our previous study 

demonstrating stronger neural activation in a wide range of brain areas during the observation 

of social touch compared to non-social touch (Lee Masson et al., 2018). 

Table 1. Detailed statistical results of the ROI-to-ROI FC for the contrast of social > non-social touch 
observation. The color of the cells in the first and second columns illustrate to which network each ROI 
theoretically belongs: the visual network is colored in green, the social-cognition network in pink, and the 
somatosensory network in red. The 5th column indicates whether the FC is increased during the observation of 
social (in orange) or non-social touch (in sky-blue). B = FC among ROIs belonging to different networks, i.e., 
between-networks, W = FC among ROIs belonging to the same network, i.e., within-networks 
 

Seed Target T Statistics P-FDR FC 

BA17 
TPJ 4.11 0.004 Social (B) 
STG 3.09 0.031 Social (B) 

BA18 
BA19 -3.62 0.001 Non (W) 
TPJ 2.94 0.006 Social (B) 

BA19     

BA37 

STG 5.86 0.000 Social (B) 
TPJ 5.55 0.000 Social (B) 

MTG 4.15 0.004 Social (B) 
V5 3.27 0.023 Social (W) 

V5 

STG 4.25 0.003 Social (B) 
BA19 -3.93 0.005 Non (W) 
BA37 -3.27 0.023 Non (W) 
MTG 3.07 0.031 Social (B) 

MTG 

STG 6.02 0.000 Social (W) 
BA19 -5.96 0.000 Non (B) 
TPJ 4.92 0.001 Social (W) 

BA37 -4.04 0.004 Non (B) 
PO -2.98 0.036 Non (B) 

STG 
MTG 3.89 0.000 Social (W) 
V5 3.05 0.004 Social (B) 

TPJ 

MTG 5.36 0.000 Social (W) 
STG 5.02 0.000 Social (W) 
BA17 3.75 0.008 Social (B) 
BA37 3.11 0.031 Social (B) 

Precu 
STG 4.04 0.004 Social (W) 
TPJ 3.20 0.026 Social (W) 

MTG 2.91 0.041 Social (W) 
MPFG     
BA3     
BA1 BA18 2.83 0.045 Social (B) 

BA2 
STG 3.12 0.031 Social (B) 
Precu 2.87 0.043 Social (B) 

PO BA2 3.47 0.015 Non (W) 

 

Fig. 4. Differences in the ROI-to-ROI FC for the social vs. non-social touch contrast. Illustrated are pairs of 
regions that demonstrated increased connectivity for the observation of social touch relative to non-social touch 
(red lines) and increased connectivity for non-social touch (blue lines). The color of the line connecting the two 
ROIs and the square box next to each ROI represents the ROI-to-ROI connectivity value, reflected in the t-value. 
The red mark in the brain image indicates the location of each ROI. T = t value from a one sample paired t-test, P 
FDR corrected < 0.05  
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More specifically, as hypothesized, watching a social touch scene, in contrast to a non-

social touch scene, induces enhanced functional coupling between ROIs within the social-

cognition system (e.g., increased FC among MTG, STG, TPJ, and Precu; Fig. 4 and Table 1). 

Given that mentalizing the states of others (i.e., emotional states of a touch initiator and a 

recipient in this context) is a core part of social cognition, we expected to observe this 

increased connectivity among the social brain areas during social touch observation. 

The increase of the strength in FC occurred not only between social brain areas but 

also between social brain areas and other areas processing more basic sensory information. In 

particular, enhanced connectivity strength was observed between the social brain areas and 

the brain areas that process visual information (e.g., TPJ was strongly connected to BA17, 

BA18, and BA37; STG was strongly connected to BA17, BA37, and V5) or somatosensory 

information (STG and Precu were strongly connected to BA2). 

Conversely, in the case of non-social touch scenes displaying human-object 

interactions, our results revealed significantly greater connectivity between ROI-pairs within 

the same sensory networks: enhanced functional couplings between ROIs within the visual 

(e.g., BA18 and V5 more strongly connected to BA19) or somatosensory networks (i.e., PO 

more strongly connected to BA2).  

MTG, sensitive to moving human body and tool stimuli (Beauchamp, Lee, Haxby, & 

Martin, 2003), showed extensive task-dependent alterations in functional relationships with 

other brain regions. Specifically, social touch observation evoked significantly greater 

connectivity between MTG and other social brain areas while non-social observation evoked 

significantly greater connectivity between MTG and other sensory areas. For example, MTG 

is more strongly connected to high-level visual (BA19 and BA37) and somatosensory areas 

(PO). Detailed statistical information for these results is provided in Table 1. 

3.2. Identifying the task-relevant networks and characterizing connectivity 
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3.2.1 The task-relevant networks revealed by a data-driven multivariate ICA approach 

Prior to evaluating task-dependent changes in network-to-network connectivity, we first 

extracted networks using a data-driven multivariate ICA on the whole-brain fMRI data, which 

resulted in 25 networks. Among these, 8 networks were found to be related to noise and one 

network was located in the cerebellum. The remaining 16 networks were labeled, and as 

hypothesized, this ICA approach yielded four DMNs and 12 other networks comprising one 

visual, two sensorimotor, two precuneus, two executive control, one auditory, one language, 

and one salience network, as well as an unlabeled network consisting of the bilateral anterior 

temporal lobe, and another unlabeled network consisting of the bilateral insular cortex 

(Component description, Table 2). As mentioned in the method section 2.6.2, we selected the 

networks based on whether the degree of temporal network synchronization with the task, 

represented by ICA_β-values, varied across task conditions.  

Table 2. Detailed statistical results of the within-subjects ANOVA on the ICA_β-values (driven from the 
temporal sorting procedure) of social, non-social, and baseline conditions. Additionally, the labels for each 
component are listed next to the component number, and the correlation (R) values between the selected template 
providing the label and the group spatial map of each component were also listed. N = network. 

Component 
number Component description R-value F Statistics P-FDR 

IC1 Ventral DMN (N1) 0.26/0.18 3.97 0.027 
IC2 Visual Network (N2) 0.17 167.82 0.000 
IC3 Sensorimotor Network (N3) 0.21 8.70 0.000 
IC4 Precuneus Network (N4) 0.25 7.25 0.002 
IC5 Right Executive Control Network 0.20 1.97 0.17 
IC6 Auditory Network (N5) 0.27 11.73 0.000 
IC7 Left Executive Control Network 0.19 1.16 0.32 
IC8 Dorsal DMN (N6) 0.38 7.63 0.001 
IC9 Sensorimotor Network (N7) 0.24 26.70 0.000 
IC10 Noise  
IC11 Noise    
IC12 Dorsal DMN (N8) 0.26 83.39 0.000 
IC13 Noise    
IC14 Dorsal DMN (N9) 0.29/0.18 25.70 0.000 
IC15 Precuneus Network (N10) 0.25 101.21 0.000 
IC16 Noise    
IC17 Noise    
IC18 Language Network (N11) 0.18 42.44 0.000 
IC19 Noise    
IC20 Anterior Salience Network (N12) 0.20 13.32 0.000 

IC21 
No label found, bilateral anterior 
temporal lobe 

 1.74 0.19 

IC22 Noise    
IC23 Noise    
IC24 No label found (N13), bilateral insula  4.83 0.01 
IC25 Cerebellum 0.23   
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According to the results of a within-subjects ANOVA test, 13 of the 16 networks 

showed a significant effect of task (i.e., social, non-social, and baseline) on the degree of 

synchronization between time-course fluctuations of the network and the task events (the last 

column in Table 2). According to post hoc t-tests, these task effects are mainly driven by the 

contrast with the baseline condition. By taking the temporal sorting approach, task-related 

networks could be functionally defined in the same manner as the functional ROIs (i.e., touch 

> baseline). The networks that differentially synchronize with the task conditions included 

four DMNs, two sensorimotor, two precuneus, a visual, an auditory, a language, a salience, 

and an unlabeled network consisting mainly of the bilateral insular cortex. Fig. 5 illustrates 

the group spatial maps of these 13 networks. Table S2 contains descriptions of the implicated 

brain regions and the list of peak MNI coordinates of these networks.  

Fig. 5. Visualization of 13 networks with their labels. The red mark in the brain image displays voxels relevant 
to each network revealed by an ICA approach. These networks were included for further gPPI analysis. 

3.2.2. Task-dependent changes in network-to-network connectivity  

A model-free multivariate ICA approach permitted us to extract 13 networks whose 

degree of synchronization with the task event was differentially determined by task condition. 

To complement the results of the ROI-to-ROI connectivity analysis, we examined the task-

dependent changes in connectivity among these 13 identified networks (Fig. 5). At the 

network level, ICA-gPPI results revealed enhanced functional coupling in 11 pairs of 

networks (red lines in Fig. 6 and Table 3) during the observation of social touch as compared 

to non-social touch. Three DMNs (N1, 6 and 9) showed enhanced functional coupling with 

other networks during the observation of social touch, suggesting that these networks share 

significantly much more social information with other networks than non-social information.  

Table 3 Detailed statistical results of the network-to-network FC for the contrast of social > non-social 
touch observation. The 5th column indicates whether the strength of FC is increased during the observation of 
social or non-social touch. The visual network is colored in green, the DMN in pink, and the somatosensory 
network in red. 

Seed Target T Statistics P-FDR FC 
N1 (DMN) N11 (Language) 3.03 0.04 Social  
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N2 (Visual)     
N3 (Sensorimotor) N4 (Precu) 3.09 0.04 Social 

N4 (Precu) 
N5 (Auditory) 3.41 0.03 Social  
N2 (Visual) -3.24 0.03 Non 

N5 (Auditory) 
N4 (Precu) 3.99 0.01 Social  
N9 (DMN) 3.08 0.04 Social 

N7 (Sensorimotor) -3.05 0.04 Non 
N6 (DMN) N5 (Auditory) 3.41 0.03 Social 

N7 (Sensorimotor) N9 (DMN) 3.25 0.03 Social  
N8 (DMN)     

N9 (DMN) 
N5 (Auditory) 4.88 0.003 Social  

N11 (Language) 4.17 0.01 Social  
N13 (No Label, insula) 3.35 0.03 Social  

N10 (Precu) N4 (Precu) 4.03 0.01 Social  

N11 (Language) 
N9 (DMN) 3.52 0.03 Social  

N3 (Sensorimotor) -3.31 0.03 Non 

N12 (Salience) 
N4 (Precu) 3.41 0.03 Social 

N11 (Language) 3.11 0.04 Social 
N13 (No Label, insula) N9 (DMN) 2.95 0.046 Social 

 

Fig. 6. Differences in FC between each pair of networks for the social vs. non-social touch contrast. 
Illustrated are pairs of networks that demonstrated increased strength of connectivity for the observation of social 
touch relative to non-social touch (red lines) and increased strength of connectivity for non-social touch (blue 
lines). The color of the line connecting the networks and the square box next to each network represents the 
connectivity value, reflected in the t-value. DMN = default mode network, Precu = Precuneus, N = network, T = 
t value from a one sample t-test, P FDR corrected < 0.05 

For the opposite contrast, only three pairs of networks (blue lines in Fig. 6) showed 

increased connectivity. No DMN networks were part of these pairs showing stronger FC 

during the observation of non-social touch. The statistical details are provided in Table 3. 

4. Discussion 

The present study investigated the functional relevance of alterations in the brain network 

architecture during the observation of social (human-to-human) and non-social (human-to-

object) interactions. Adapting both theory- and data-driven approaches, we were able to 

characterize how two different types of task — understanding the meaning of human-to-

human interaction vs. human-to-object manipulation — modulate the neural functional 

architecture both at the level of individual brain regions and at the large-scale network level.  

4.1. Increased connectivity within the social cognitive system during human-to-human 

social touch observation 

With a hypothesis-driven, ROI-based analysis, we found increased connectivity within a set 

of brain areas previously identified as the social-cognitive system active during the 
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observation of social touch relative to non-social touch. These results extend the findings of 

our previous MPVA study investigating neural representations underlying the understanding 

of others' social touch interactions, revealing the importance of communication between 

biological motion selective areas (MTG and STG) and perceived valence selective areas (TPJ 

and Precu) (Lee Masson et al., 2018).  

The role of the temporal and parietal cortex in social perception and cognition has 

been extensively documented, including its involvement in biological motion perception 

(Allison, Puce, & McCarthy, 2000), action understanding (Deen, Koldewyn, Kanwisher, & 

Saxe, 2015; Pelphrey, Morris, & McCarthy, 2004), and inferring mental states of others 

(Ciaramidaro et al., 2007; Jacoby et al., 2016; Saxe & Kanwisher, 2003). Nevertheless, task-

induced changes in their functional relationships have only recently begun to be explored 

(McCormick et al., 2018). Our finding of increased interregional communication within the 

social-cognitive system during social touch observation extends previous research that 

showed strong functional relationships among social brain regions, including STS, TPJ, Precu, 

during a social evaluation task (McCormick et al., 2018). 

Previous studies investigating the neural basis of social understanding of others have 

consistently reported strong activation in MPFC during tasks requiring inferring other's 

emotions and intentions, self-other distinctions, or judging other's behavior (W. Li, Mai, & 

Liu, 2014; Lieberman, 2007; Van Overwalle, 2009). However, similar to our previous MVPA 

findings that did not reveal neural selectivity for socio-affective characteristics of observed 

touch in the MPFC (Lee Masson et al., 2018), we did not observe increased functional 

communication of MPFC with other brain regions during social touch observation.  

To provide a complete picture of how the entire brain networks communicate in a 

task-dependent manner and to complement the results revealed by the ROI-based approach, 

we extracted 13 task-related networks using a data-driven ICA method. Among them, four 
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networks were identified as the DMN. According to review studies (W. Li et al., 2014; Mars, 

Neubert, et al., 2012), key nodes of the DMN mainly include the medial posterior cortex, 

MPFC, and TPJ. Similarly, two DMNs identified in the current study include the MPFC, 

whereas the other two DMNs mainly cover the medial posterior cortex (Table S2). The 

network-level connectivity analysis revealed increased functional connections between the 

DMN (N6), consisting of Precu and the MPFC, and the auditory network (N5) during social 

touch observation. Despite its label, the auditory network includes brain regions involved in 

social (i.e., Precu) and emotional (insula) processing (Fig. 5). Except for one aforementioned 

functional connection of DMN (N6), the current study does not provide evidence of increased 

communication of MPFC during social touch observation. As discussed in our previous 

MPVA study (Lee Masson et al., 2018), performing an orthogonal task requiring color 

identification of the shirt of the touch initiator may not require the extensive involvement of 

the MPFC, which is specialized in more elaborative, effortful social processing (W. Li et al., 

2014).  

 Two other DMNs, mainly consisting of voxels located in the medial posterior cortex, 

showed increased functional couplings with another network (i.e., Language Network) 

containing voxels located in the STG. The current study demonstrates that a data-driven ICA 

method can be used to cluster a collection of brain regions that make up the DMNs during the 

passive touch observation. Similar to ROI-based FC analysis, we observed that DMNs 

communicate with other networks containing social brain areas during social information 

processing. 

4.2. Increased connectivity between the social cognitive system and the sensory system 

during human-to-human social touch observation 

Observing social touch increases interactions between the social cognitive system and other 

basic sensory systems, both at the level of brain regions and large-scale networks. Firstly, the 
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social-cognitive system (STG, and TPJ) communicates more with areas involved both in low- 

(BA17 and 18) and high-level visual processing (BA37 and V5). A possible interpretation of 

these results is that the social and visual systems work in concert to extract socially relevant 

information from visually presented bodily movements of the two interacting people shown in 

the social touch scene.  

Secondly, enhanced functional coupling with the social cognitive system (STG and 

Precu) was observed in the somatosensory area (BA2), a key node of the somatosensory 

mirror system (Keysers & Gazzola, 2009; Keysers et al., 2010). Likewise, the ICA approach 

revealed increased connectivity between the DMN (N9) and the sensorimotor network (N7) 

consisting of the bilateral postcentral gyrus.  

The ability to map another person's somatosensory experience to the self, quantified 

by the level of neural activation in the somatosensory area, has been related to ToM and 

empathy mechanisms (Giummarra et al., 2015; Peled-Avron, Levy-Gigi, Richter-Levin, 

Korem, & Shamay-Tsoory, 2016; Schaefer, Heinze, & Rotte, 2012). In a similar vein, the 

somatosensory cortex, activated when receiving actual touch, has been found to exhibit neural 

selectivity for the perceived socio-affective meaning of observed touch (Lee Masson et al., 

2018). Furthermore, perturbing this area by means of brain stimulation decreases an 

individual's prosocial behavior (Gallo et al., 2018). Given this converging evidence of the 

crucial role of the somatosensory system in higher-level social processing, enhanced 

communication between the social cognitive and somatosensory systems during social touch 

observation can be interpreted as facilitating our ability to understand other people’s 

emotional states by directly mapping bodily experiences of others to the self. Our findings are 

also in line with previous studies demonstrating functional communication between nodes in 

the mirroring and the mentalizing systems when representing observed actions as socio-

emotional expressions (Spunt & Lieberman, 2012).  
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Finally, in addition to the DMNs, we were able to characterize FC patterns across 

different networks using a data-driven ICA approach. As indicated in the results section, we 

observed much more communication between networks implicated in different cognitive 

functions during social touch observation. In particular, we observed both the salience 

network (N12) and the network (N13) composed of the insula showing increased connectivity 

with other networks. Given the role of the insula in socio-emotional processing (Uddin, 2016), 

this increase implies enhanced integration of visually presented social touch information with 

internal emotional representations. With the same gPPI method, a previous study has 

demonstrated increased FC between the insula and the anterior cingulate cortex (ACC), which 

compose the salience network, when touching a human hand (social touch) as compared to 

touching a mannequin hand (non-social touch) (Scalabrini et al., 2019). These findings 

suggest that the salience network may function as a domain-general neural system processing 

social touch information in cooperation with other networks. 

4.3. Increased connectivity within the same sensory systems during human-to-object 

non-social touch observation 

Visual scenes depicting object manipulation elicited more interregional communication 

between areas located in the same sensory system (FC between BA 18 and BA 19 in the 

visual system; FC of BA19 and BA37 with V5 in the visual system; and FC between BA 2 

and PO in the somatosensory system). Given the role of the visual cortex in recognizing a 

manipulable object, these findings are very likely driven by the presence of inanimate objects 

in the non-social touch condition scene (Chao et al., 1999; Haxby et al., 1991). Likewise, the 

increased connectivity between BA2 and PO, which are part of the somatosensory system, can 

be explained by considering that both brain regions play a crucial role in tactile object 

recognition (Reed, Shoham, & Halgren, 2004) and both brain regions show increased neural 

activation while observing human hands engaged in object manipulation (Meyer et al., 2011).  
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4.4. Converging evidence from ROI-based and ICA-based measures of the context-

sensitive modulation of the connectivity 

In general, the results obtained using both methods showed similar context-sensitive 

modulation of the functional network architecture during the touch observation. Specifically, 

both revealed that functional couplings between brain regions and between networks occurred 

more strongly during the social touch observation as compared to non-social touch. Taking 

both approaches, we have observed converging evidence for increased communication 

between the brain regions/networks, implicated in social processing, and other sensory 

areas/networks. Our findings imply that the processing of human-to-human social interactions 

may be facilitated through larger-scale brain communication. 

Notably, some discrepancies were observed between the results derived from both 

methodologies. For example, unlike an ROI-based FC approach (null results discussed in 

supplementary materials), ICA-based measures of FC revealed context-dependent changes in 

functional communication between the salient networks, mainly consisting of the insula, and 

other networks (e.g., DMN). Similar discrepancies were observed between the two 

methodologies for the connectivity of the network, containing MPFC, with another network. 

Based on our findings, these two approaches appear to be complementary. The ROI approach 

provides information about connectivity between individual brain regions. The ICA-based FC 

approach seems to help find additional evidence at the network level that could not be found 

with the ROI-based approach. Thus, the ICA-based FC approach may be a useful tool for 

comprehensively characterizing network communication in the entire brain while offering the 

benefits of blind source separation and dimensionality reduction. Our findings are consistent 

with the previous study showing high similarities (though not identical) between the 

connectivity maps obtained during the visuo-motor task using two methodologies (Joel, Caffo, 

Van Zijl, & Pekar, 2011).  
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4.5. How our findings relate to understanding others 

Social perception, action recognition, and the theory of mind are representative examples of 

social information processing (Yang, Rosenblau, Keifer, & Pelphrey, 2015). These social 

cognitive abilities enable us to understand another person's emotions, intentions, and mental 

states based on behavioral cues expressed during social interactions such as facial expressions, 

body gestures, and reciprocal touch. The present study has demonstrated that understanding 

others who are engaging in reciprocal touch is achieved through the engagement of various 

neural systems and the enhanced communication between them. Importantly, our study 

provides evidence that during the observation of other people's touch actions, extensive 

changes occur in the functional structure of the brain, depending on whether the recipient is a 

person or an object. Our findings suggest that the flexibility in context-dependent modulation 

of brain communication may be the underlying neural mechanism of social cognitive ability 

that enables us to understand others.  

4.6. Limitations and directions for future research 

In this study, we adopted both a theory-driven ROI-based and data-driven ICA-based 

approach. As described in the Materials and Methods section, ROI selection was already 

made when designing our previous multivariate pattern analysis study (Lee Masson et al., 

2018). The advantage of selecting the same ROIs is that it facilitates comparisons among our 

publications using the same experimental design analyzed with different neuroimaging 

methods. Moreover, a hypothesis-driven ROI approach increases the study's sensitivity and 

reduces the problems of multiple comparisons. Disadvantages of the ROI approach, such as 

missing out some brain regions, are remediated by the data-driven multivariate ICA-based 

approach. However, although the ICA approach offers the benefits of dimensionality 

reduction and blind source separation, increasing the study's sensitivity, this approach may not 
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fully replace a whole brain-level ROI analysis. Thus, future studies could consider different 

types of FC analysis, such as whole-brain ROIs and seed-based FC analysis. 

The current study raises further questions that will require future research. The 

directionality of the information flow remains to be investigated using a neuroimaging 

method with a finer temporal resolution to clarify whether the interaction is the results of top-

down or bottom-up modulation. It is also necessary to clarify how connectivity patterns 

change over time in order to understand a dynamic structure of neural model supporting social 

touch perception. For example, implementing a Granger causality approach to data obtained 

with magnetoencephalography (MEG) can aid in answering these questions.  

5. Conclusion 

The present study provides novel and rich evidence that the observation of human-to-human 

social touch interactions, relative to non-social touch, elicits much more information exchange 

among key brain regions and networks. Furthermore, our findings support and extend an 

existing integrative neural model of social cognition (Bohl & van den Bos, 2012; Yang et al., 

2015) by characterizing how strongly the somatosensory mirror network is connected to 

regions and networks implicated in social cognition and social perception. Lastly, the current 

study emphasizes the advantages of a task-based connectivity approach in revealing the 

context-sensitive modulation in neural functional architecture, which cannot be answered by a 

task-free resting state approach. 
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