Elsevier Editorial System(tm) for Lithos Manuscript Draft

Manuscript Number:

Title: Multiple pulses, magma mixing and genesis of the giant Allard Lake ilmenite deposit, Quebec

Article Type: Research Paper

Keywords: Grenville; Lac Tio; Titanium ores; Cumulates; Sapphirine

Corresponding Author: Mr. Bernard Charlier,

Corresponding Author's Institution: University of Liège

First Author: Bernard Charlier

Order of Authors: Bernard Charlier; Olivier Namur; Simon Malpas; Cédric de Marneffe; Jean-Clair Duchesne; Jacqueline Vander Auwera; Olivier Bolle

Abstract: The late-Proterozoic Allard Lake ilmenite deposit is located in the Havre-Saint-Pierre anorthosite complex, part of the allochtonous polycyclic belt of the Grenville Province. Presently the world's largest Fe-Ti oxide deposit, it contributes 21% of world ilmenite production with a pre-mining amount in excess of 200 Mt at grades over 60 wt.% hemo-ilmenite. The main ore body is a 10°-dipping ovoid, measuring 1.03 x 1.10 km by 100-300 m-thick. Two smaller bodies are separated by faults and anorthosite. The ore is an ilmenite-rich norite (or ilmenitite) made up of hemo-ilmenite (Hem22.6-29.4, 66.2 wt.% on average), andesine plagioclase (An45-50), aluminous spinel and locally orthopyroxene. Whole-rock compositions are controlled by the relative proportion of ilmenite, plagioclase ± orthopyroxene which supports the cumulate origin of the deposit. Ore-forming processes are further constrained by normal and reverse fractionation trends of Cr in cumulus ilmenite that reveal multiple pulses of undifferentiated magma and alternating periods of fractional crystallization and magma mixing. Mixing of magmas produced an hybrid located in the stability field of ilmenite that results in periodic crystallization of ilmenite as the sole liquidus mineral. The absence of correlation between ilmenite composition in adjacent drill-cores favours an emplacement by injection of new batches of magma that carry already crystallized ilmenite crystals. The unsystematic differentiation trends in the Allard Lake deposit, arising from a succession of new magma pulses, hybridisation, and the fractionation of hemo-ilmenite alone or in cotectic plagioclase-hemo-ilmenite cumulates suggest that the deposit was a magma conduit. This dynamic emplacement mechanism associated with continuous accumulation of Fe-Ti oxides and possibly plagioclase buoyancy in a fractionating ferrobasalt explains the formation of the huge concentrations of hemo-ilmenite. The occurrence of sapphirine associated with aluminous spinel and high-alumina orthopyroxene (7.6-9.1 wt.% Al2O3) with no plagioclase exsolution supports the role of a retrograde metamorphic overprint during the synchronous Ottawan orogeny, which is also responsible for strong textural equilibration and external granule exsolution of aluminous spinel due to a slow cooling path.

¹ Multiple pulses, magma mixing and genesis of the giant

2 Allard Lake ilmenite deposit, Quebec

3	
4	
5	
6	Bernard Charlier*, Olivier Namur, Simon Malpas, Cédric de Marneffe, Jean-Clair Duchesne,
7	Jacqueline Vander Auwera, Olivier Bolle
8	
9	
10	Department of Geology, University of Liège, 4000 Sart Tilman, Belgium
11	
12	
13	*Corresponding author.
14	Tel: +32-4-3662250; Fax: +32-4-3662029
15	E-mail address: b.charlier@ulg.ac.be (B. Charlier).
16	
17	
18	Submitted to LITHOS
19	

20 Abstract

21 The late-Proterozoic Allard Lake ilmenite deposit is located in the Havre-Saint-Pierre 22 anorthosite complex, part of the allochtonous polycyclic belt of the Grenville Province. 23 Presently the world's largest Fe-Ti oxide deposit, it contributes 21% of world ilmenite 24 production with a pre-mining amount in excess of 200 Mt at grades over 60 wt.% hemo-25 ilmenite. The main ore body is a 10°-dipping ovoid, measuring 1.03 x 1.10 km by 100-300 mthick. Two smaller bodies are separated by faults and anorthosite. The ore is an ilmenite-rich 26 27 norite (or ilmenitite) made up of hemo-ilmenite (Hem_{22.6-29.4}, 66.2 wt.% on average), andesine 28 plagioclase (An₄₅₋₅₀), aluminous spinel and locally orthopyroxene. Whole-rock compositions 29 are controlled by the relative proportion of ilmenite, plagioclase \pm orthopyroxene which 30 supports the cumulate origin of the deposit. Ore-forming processes are further constrained by 31 normal and reverse fractionation trends of Cr in cumulus ilmenite that reveal multiple pulses 32 of undifferentiated magma and alternating periods of fractional crystallization and magma 33 mixing. Mixing of magmas produced an hybrid located in the stability field of ilmenite that 34 results in periodic crystallization of ilmenite as the sole liquidus mineral. The absence of 35 correlation between ilmenite composition in adjacent drill-cores favours an emplacement by 36 injection of new batches of magma that carry already crystallized ilmenite crystals. The 37 unsystematic differentiation trends in the Allard Lake deposit, arising from a succession of 38 new magma pulses, hybridisation, and the fractionation of hemo-ilmenite alone or in cotectic 39 plagioclase-hemo-ilmenite cumulates suggest that the deposit was a magma conduit. This 40 dynamic emplacement mechanism associated with continuous accumulation of Fe-Ti oxides 41 and possibly plagioclase buoyancy in a fractionating ferrobasalt explains the formation of the 42 huge concentrations of hemo-ilmenite. The occurrence of sapphirine associated with 43 aluminous spinel and high-alumina orthopyroxene (7.6-9.1 wt.% Al₂O₃) with no plagioclase exsolution supports the role of a retrograde metamorphic overprint during the synchronous 44

45 Ottawan orogeny, which is also responsible for strong textural equilibration and external46 granule exsolution of aluminous spinel due to a slow cooling path.

47

48 *Keywords*: Grenville; Lac Tio; Titanium ores; Cumulates; Sapphirine

- 49
- 50

51 1. Introduction

52 An ilmenite deposit (50.67°N, 63.67°W) was discovered in June 1946 in the Allard 53 Lake area near a small lake named Lac Tio, by means of the first aeromagnetic survey for ore exploration (Bourret, 1949). It is located 43 km northeast of Havre-Saint-Pierre in Quebec. 54 55 Following two years of intensive drilling by Kennco Explorations, it has been continuously 56 exploited since 1951 as an open-pit mine. Presently, it is the world's largest hard-rock 57 ilmenite deposit and contributes 21% of world ilmenite production. The hemo-ilmenite ore 58 body has also been intensively studied for its large remanent magnetic anomaly (Hargraves, 59 1959; Carmichael, 1959; McEnroe et al., 2007).

60 The Allard Lake ilmenite deposit is situated in the Havre-Saint-Pierre anorthosite 61 complex that is part of the AMCG (Anorthosite-Mangerite-Charnockite-(rapakivi)Granite) suites of the Grenville Province where many occurrences of Fe-Ti-P ores have been described 62 63 (Dymek and Owens, 2001; Hébert et al., 2005; Morisset et al., submitted). This deposit has 64 usually been considered as an enormous droplet of immiscible Fe-Ti-enriched liquid separated from the residual liquid after the crystallization of the andesine anorthosite 65 66 (Hammond, 1952; Lister, 1966), a mechanism that has also been proposed for other Fe-Ti 67 deposits (Bateman, 1951; Philpotts, 1967; Kolker, 1982; Force, 1991; Zhou et al., 2005). This 68 model, however, comes up against the inefficiency of an immiscible process to produce 69 monomineralic rocks and evidence for the possible early saturation of Fe-Ti oxides (e.g.

70	Duchesne, 1999; Charlier et al., 2006; Pang et al., 2008, 2009). Moreover, specific
71	experiments on Fe-Ti magma immiscibility (Lindsley, 2003) have even concluded that Fe-Ti
72	oxide melts do not exist. However, the detailed mechanisms for the formation of huge amount
73	of monomineralic ilmenite ore remain uncertain. Plagioclase buoyancy has been invoked in
74	the Tellnes ilmenite deposit (SW Norway; Charlier et al., 2007) and the Grader layered
75	intrusion (Canada; Charlier et al., 2008) to explain the discrepancy between calculated
76	cotectic proportion of ilmenite (around 15-20 wt.%) and the actual higher proportion of
77	ilmenite in the cumulates. However, in these occurrences, the concentration of ilmenite only
78	ever reaches higher proportions than 50 wt.% locally in thin layers, while the Allard Lake
79	deposit contains more than 100 Mt of ore with > 75 wt.% hemo-ilmenite.
80	Chemical analyses on new samples from the Allard Lake deposit and an extensive
81	mining database are used in this contribution to understand the crystallization processes that
82	has led to the formation of huge amounts of ilmenite. Complex variations of ilmenite
83	composition in drill-core depth variations are described and evidence the relative role of
84	fractional crystallization, multiple pulses of undifferentiated melts and magma mixing. By
85	analogy with models proposed for the formation of chromitite (Irvine, 1975, 1977), the
86	crystallization of ilmenite as the sole liquidus minerals is discussed. Finally, following a
87	recent estimation of slow cooling rate of the anorthosite and associated rocks (Morisset et al.,
88	2009), we describe postcumulus processes and a metamorphic overprint that substantially
89	modified primary igneous textures and liquidus compositions.
90	
91	2. Geological setting

92 The Havre-Saint-Pierre anorthosite complex is part of the late-Mesoproterozoic
93 Grenville Province of North America that extends on 1600 x 350 km along the southeastern
94 margin of the Canadian Shield (e.g. Davidson, 1995, 2008). Rivers et al. (1989) have divided

95	the Grenville Province into three orogen-parallel belts: the parautochtonous belt, the
96	allochthonous polycyclic belt and the allochthonous monocyclic belt. These three belts are
97	limited by two principal boundaries, namely the Grenville Front and the Allochton Boundary
98	Thrust (Fig. 1). The allochthonous belts have also been grouped into different tectonic units
99	on the basis of their Ottawan (1080-1020 Ma; Rivers, 1997) metamorphic signatures (Rivers,
100	2008). The allochthonous polycyclic belt contains many AMCG suites which have been
101	emplaced in three different pulses, dated around 1160-1140 Ma, 1082-1050 Ma and 1020-
102	1010 Ma (Higgins and van Breemen, 1996; Corrigan and van Breemen, 1997). The
103	Grenvillian orogenic belt of Laurentia is correlated with the Sveconorwegian orogenic belt of
104	the Baltic shield (Rivers et al., 1989; Romer, 1996; Rivers and Corrigan, 2000).
105	Among the AMCG suites, the composite Havre-Saint-Pierre anorthosite crops out
106	along the lower northern shore of the Saint Lawrence estuary. It covers an area of 20.000 km ²
107	and is made up of several anorthositic lobes separated by monzonitic, mangeritic to
108	charnockitic envelopes (Fig. 2; Wodicka et al., 2003). The Allard Lake anorthosite, in which
109	the ilmenite deposit was emplaced, has been dated at ca. 1061 Ma (U-Pb on zircon; Morisset
110	et al., 2009), which is the same age as that of the small neighbouring Rivière au Tonnerre
111	anorthosite, dated at 1062 ± 4 Ma (U-Pb on zircon; van Breemen and Higgins, 1993). These
112	ages are coeval with the second stage of the Grenville metamorphism of the Ottawan orogeny
113	(1080-1020 Ma; Rivers, 1997, 2008; Rivers et al., 2002). Dating of the mangeritic envelope
114	of the Allard anorthosite from the Magpie river area gives an older age of 1126 +7/-6 Ma (U-
115	Pb on zircon; Emslie and Hunt, 1990). The Havre-Saint-Pierre complex is probably correlated
116	with other anorthositic suites of Chateau-Richer, St-Urbain, Mattawa and Labrieville (Fig. 1;
117	Owens et al., 1994; Owens and Dymek, 2001, 2005; Morisset et al. 2009).
118	The Allard anorthosite displays a dome structure surrounded by a continuous jotunitic
119	to mangeritic margin of 1-10 km (Hocq, 1982). Rocks display microscope evidence of ductile

120 deformation (undulatory extinction of plagioclase) and dynamic recrystallization. Lithologies 121 are essentially constituted by coarse-grained hololeucocratic andesine anorthosite with 122 plagioclase An₃₇₋₄₉, Or₃₋₇, 1000-1200 ppm Sr and 200-500 ppm Ba (Hargraves, 1962; Dymek, 123 2001) that contains less than 5% of orthopyroxene, ilmenite \pm clinopyroxene. Rocks may be 124 equigranular (ca. 5 mm-2 cm) but some rocks contain large plagioclase phenocrysts of 20 cm 125 long. Norites and even leuconorites are rare and represent less than 1% of the outcropping 126 surface. Sheets and layers of oxide-rich (gabbro-)norites are common (Hargraves, 1962). 127 Enclaves of labradoritic anorthosites (An₆₆₋₇₄, 350-550 ppm Sr, <50-100 ppm Ba) occur in the 128 western part of the anorthosite (Hocq, 1982; Dymek, 2001). Olivine has been described in 129 labradoritic gabbros (Hocq, 1982) and garnet-bearing anorthosites occur at the west of the 130 Magpie lake (Sharma and Franconi, 1975). All these characteristics together with the local 131 occurrence of high-alumina orthopyroxene are typical features of massif-types anorthosites emplaced through polybaric crystallization (Emslie, 1985; Charlier et al., submitted). 132

133

134 3. Sampling and analytical methods

135 An extensive mining database of 172643 samples from 236 drill-cores has been used to draw the morphology of the deposit. The density (g/cm^3) of these samples has been 136 137 determined by weighing the dry sample in air and then in water, following Archimedes' 138 principle. Among these samples, 3923 rocks have been analysed for whole-rock composition 139 by the mining company using XRF method. Each sample represents a 3 m portion of a split 140 drill core. A few samples represent shorter sections (1-2 m). Seven cores have been selected 141 for detailed discussion and are reported in Fig. 3. New samples were also collected along 3 142 cores (labelled T873; T875 and N10) and fifteen samples have been selected in the open-pit 143 (Fig. 3).

Ilmenite concentrates (60-150 μm), using heavy liquids (bromoform and Clerici's
solution) and a Frantz isodynamic magnetic separator, were analysed for major elements (Si,
Ti, Al, Fe, Mn, Mg) by XRF on lithium-borate fused glass, and for trace elements (V, Cr, Zn,
Zr, Nb) on pressed powder pellets following the method of Duchesne and Bologne (2009).
Plagioclase grains (60-150 μm), separated by using flotation in bromoform and magnetic
separation, were analysed for major elements by XRF on lithium-borate fused glass and for Sr
and Ba by XRF on pressed powder pellets.

Microprobe analyses of orthopyroxene and aluminous spinel were performed using the CAMECA SX50 of the Bochum University (Germany). An accelerating voltage of 15 kV and a beam current of 15 nA were used. Chemical analyses were corrected with the ZAF software. The following standards were used: pyrope for Mg and Al; andradite for Si, Fe and Ca; spessartine for Al and Mn; rutile for Ti; jadeite for Na; ZnO for Zn; Cr₂O₃ for Cr and V metal for V.

157

158 4. Morphology and petrography of the deposit

159 The Allard Lake ore body may be subdivided into three different units (Fig. 3), namely 160 the Main Deposit, Cliff and North-West. The main deposit has a oval outcrop measuring 1100 161 x 1030 m. The thickness ranges from 100 to 300 m and the ore body is dipping 10-15° to the 162 east. The remaining tonnage is estimated at 125 Mt with an estimated 120 Mt already mined. 163 The Cliff ore body has an ellipsoidal shape in map view and lies along the west side of the 164 main body from which it is separated by anorthosite. The contacts at the base of the ore body 165 with the host anorthosite is sharp and undulating. The Cliff ore reserves are estimated at 8.4 166 Mt. The North-West ore body is a 100 to 60 m-thick layer, representing 5 Mt of ore reserve. 167 The ore is a coarse-grained (5-20 mm) ilmenite-rich norite or ilmenitite, essentially 168 made of tabular crystals of hemo-ilmenite (66.2 wt.% on average) and plagioclase.

169 Histograms of the distribution of ilmenite proportions show that 50% of the samples contain 170 more than 76.3 wt.% (Fig. 4). Samples with less than 65 wt.% ilmenite are equally 171 represented. This is much more than the Tellnes ilmenite deposit (40 wt.% ilmenite on 172 average: Charlier et al., 2006). Typical accessory minerals include aluminous spinel, 173 orthopyroxene and Ti-phlogopite. Minor amounts of disseminated sulfides (pyrite, pyrrhotite, 174 chalcopyrite, millerite and Co-Ni sulfides) are present. Primary magnetite is absent in the ore; 175 the most common magnetite is secondary in origin and together with rutile and anatase results 176 from late-stage alteration of hemo-ilmenite. Calcite and gypsum occur locally as alteration 177 products in veinlets.

178 Several groups of rocks have been distinguished among the samples based on the 179 presence and relative proportions of plagioclase, ilmenite and orthopyroxene: anorthosite 180 (>90% plagioclase; Fig. 5a-b), ilmenite-norite (<90% plagioclase, ilmenite), norite (<90% plagioclase, ilmenite, >2% orthopyroxene; Fig. 5c), opx-ilmenitite (>70% ilmenite. 181 182 plagioclase, >2% orthopyroxene) and ilmenitite (>70% ilmenite, plagioclase; Fig. 5d). Two 183 types of anorthosite occur: the host Havre-Saint-Pierre anorthosite and anorthositic layers and 184 lenticular beds in the massive ore. Both types are petrographically very similar and only 185 distinguished on their location. Norites occur in association with both types of anorthosites. 186 In the Allard deposit, ilmenite grains display 120° triple junctions (Fig. 5d) typical of 187 an annealing texture resulting from static recrystallization. They contain two generations of 188 lenses of exsolved hematite with less than 50% hematite exsolution and are thus referred to as 189 hemo-ilmenite (Fig. 5e). Exsolved hematite from grain to grain commonly display a preferred 190 orientation, implying that the lattice of ilmenite grains had a similar orientation before the 191 exsolution process. Twinning in ilmenite and equant ilmenite grains included in plagioclase

are locally observed. Ilmenite may be rimmed by a thin zircon corona (Fig. 5f; Morisset and

193 Scoates, 2008) and baddeleyite locally occur as small euhedral grains included in ilmenite.

Hemo-ilmenite microstructures and the implications for magnetic properties are detailed inMcEnroe et al. (2007).

Large grains of aluminous spinel are present at the margin of ilmenite crystals and are interpreted as representing external granule exsolution. Aluminous spinel also occurs as exsolved lenses or small granules in ilmenite. A noticeable decrease in the amount of hematite lamellae in ilmenite is observed close to the exsolved aluminous spinel (Fig. 5e) which implies a subsolidus reaction.

Prismatic orthopyroxene (1-4 mm) occurs in a few samples. It commonly contains
Schiller lamellae (hemo-ilmenite) and may include ilmenite grains (Fig. 6a). Rare
symplectitic intergrowths of orthopyroxene and aluminous spinel have been detected (Fig.
6b). Sapphirine has been observed in three thin sections out of a hundred (Fig. 6c-d) and is
usually in contact with orthopyroxene and aluminous spinel. Clinopyroxene, locally
containing small core of orthopyroxene, is the main Fe-Mg silicate in anorthosites.

208 5. Mineral chemistry

209 *5.1. Ilmenite*

210 Separated ilmenites have been analysed for major and some trace elements (Table 1). 211 The hematite content varies between Hem_{22.6} and Hem_{29.4}. Cr ranges from 450 to 2277 ppm 212 and has a poor positive correlation with V (1793-2365 ppm) (see later in Fig. 13). MgO (1.59-213 3.22 wt.%) is positively correlated with Al₂O₃ (0.36-1.95 wt.\%) and Zn (27-218 ppm). This is 214 interpreted to result from variable spinel content in ilmenite and/or from separation of spinel 215 from ilmenite during the mineral separation process. Zr in ilmenite span a large range from 22 216 to 1261 ppm. This is most probably related to the amount of zircon exsolved from ilmenite. 217 Ilmenite composition displays irregular patterns with drill-core depth variations (Fig. 218 7). The trends in each drill-cores are characterized by abrupt shifts for all the elements. Both

normal trends (decreasing content of compatible elements with decreasing depth) and reverse
trends (increasing content of compatible elements with decreasing depth) are observed.

221

222 5.2. Plagioclase

223 The range of plagioclase compositions in the Allard Lake deposit and in the 224 surrounding Allard anorthosite is clearly andesinic (Fig. 8; Table 2). Plagioclase compositions 225 in the ilmenite deposit vary from An_{50.6} to An_{41.7} and Or_{0.4} to Or_{6.5}. Sr varies from 851 to 1518 226 ppm and Ba, from 101 to 461 ppm. These compositions are close to the plagioclase 227 composition in the Havre-Saint-Pierre anorthosite: An49.0-45.4, Or3.6-7.1, Sr 962-1212 ppm and 228 Ba 196-437 ppm. Moreover, anorthositic rocks in the Allard deposit display a similar range: 229 An_{51.0-43.7}, Or_{6.3-5.1}, Sr 1111-1165 ppm and Ba 194-398 ppm, and thus cannot be distinguished 230 from plagioclase of the host Havre-Saint-Pierre anorthosite. 231 Histograms of the distribution of plagioclase composition for each petrographic type

232 (Fig. 8) show that plagioclase in ilmenitite and opx-ilmenitite (ilmenite-rich rocks) have a

significant lower Or content compared to plagioclase from anorthosite and norite

234 (plagioclase-rich rocks).

235

236 *5.3. Aluminous spinel*

Average compositions for aluminous spinel have X_{spinel} ranging from 0.564 to 0.628 (Table 3). The MnO content is low (0.05-0.06 wt.%) while the ZnO content is relatively high from 1.12 to 2.02 wt.% ($X_{gahnite} = 0.020$ -0.038). Detailed profiles across spinel grains reveal significant zonings (Fig. 9), particularly for Mg/Fe proportions and for the Cr₂O₃ content. Single grains have a higher $X_{hercynite}$ and lower Cr₂O₃ contents in the core and X_{spinel} and Cr₂O₃ enrichments towards the margin. ZnO is also higher at the margin while no systematic variations for the MnO content have been observed. 244

245 5.4. Pyroxenes

246 The composition of orthopyroxene ranges from Ens_{75.7} to Ens_{58.4} (Table 4). The Al₂O₃ content of orthopyroxene spans a wide range from 1.48 to 9.08 wt. % and two groups may be 247 248 distinguished: low-alumina (1.48-3.09 wt.%) and high-Wo (0.6-1.5 mol%) orthopyroxenes on 249 one hand and high-alumina (7.62-9.08 wt.%) and low-Wo (0.1-0.3 mol%) orthopyroxenes on 250 the other hand. The latter group of orthopyroxene occurs in samples in which sapphirine was 251 detected. Contrarily to high-alumina orthopryxene megacrysts (Emslie, 1975; Longhi et al., 252 1993; Charlier et al., submitted) interpreted to have crystallized under high pressure (11-13 253 kbar), Al-rich orthopyroxene from the Allard deposit does not contain plagioclase 254 exsolutions. MnO (0.17-0.84 wt.%) has a clear negative correlation with Mg# (Fig. 10). The 255 Mg# of clinopyroxene ranges from 77.6 to 72.9 (Table 4). 256 257 5.5. Sapphirine 258 Sapphirine composition has been recalculated according to the scheme of Owen & Greenough (1991). The analysed sapphirines are markedly magnesian (Mg/(Mg+Fe²⁺)=0.83). 259 The calculated $Fe^{3+}/(Fe^{2+}+Fe^{3+})$ ratios are 0.33-0.35. Cr_2O_3 has not been analysed but reach 260 261 0.50 wt.% in similar occurrences (Morisset et al., submitted). 262 6. Whole-rock composition 263 264 Whole-rock analyses are plotted in major element binary diagrams (Fig. 11). TiO₂ and Al₂O₃ have been chosen as the variation index, as they are essentially correlated with the 265

266 modal abundance of ilmenite and plagioclase, respectively. Compositional ranges of

267 plagioclase, ilmenite and the two groups of orthopyroxene are also plotted.

268	Whole-rock compositions display a large range: TiO ₂ 0.61-41.71 wt.%; Fe ₂ O _{3tot} 0-
269	66.30 wt.%; Al ₂ O ₃ 0-26.23 wt.%; CaO 0-10.33 wt.%; MgO 0.01-7.48 wt.%. It is obvious that
270	the bulk composition is essentially controlled by the relative proportion of ilmenite and
271	plagioclase as demonstrated by a linear trend between ilmenite and plagioclase composition in
272	a TiO ₂ vs. Al ₂ O ₃ diagram (Fig. 11). When MgO is plotted as a function of Al ₂ O ₃ or TiO ₂ , a
273	minority of samples define a trend to orthopyroxene composition. Anecdotally, some samples
274	display a significant CaO-enrichment (CaO vs. Al ₂ O ₃ diagram; Fig. 11) which is related to the
275	presence of late calcite and gypsum veins in some rocks.

276

277 7. Discussion

278 7.1. Evidence for magma mixing

279 Because of the high value of D_{Cr}^{Ilm} (e.g. Klemme et al., 2006), the Cr content of 280 ilmenite is a good indicator of primitive magma replenishment, since it should abruptly 281 increase after a new injection of undifferentiated melt. Although major and trace element 282 compositions of whole-rocks reflect the modal mineralogy of the samples, the Cr/TiO₂ ratio 283 may be considered as a proxy for the Cr content of the ilmenite, because Cr is exclusively 284 contained in ilmenite and aluminous spinel that result from exsolution from ilmenite. Using 285 the average TiO₂ content of ilmenite $(37.71 \pm 0.75 \text{ wt.}\%)$; Table 1), the Cr content of ilmenite 286 (Cr_{ilm}) may be calculated from whole-rock composition (Cr_{WR}) using the equation: 287 Cr_{ilm}=Cr_{WR}* TiO_{2ilm} / TiO_{2WR}

In accordance with the measured composition of ilmenite (Fig. 7), the calculated Cr concentration of ilmenite in 8 drill-cores also display large variations (Fig. 12). Normal (decreasing Cr content) and reverse (increasing Cr content) trends alternate at a scale lower than 10 m, which implies crystallization of ilmenite from continuously changing melt

composition as a result of three processes: (1) crystal fractionation (normal trends), (2) new
primitive magma emplacement and (3) progressive magma hybridisation. Even if the shifts to
more primitive compositions are locally abrupt, which suggests crystallization of ilmenite
from a new undifferentiated melt composition (possibly without mixing), many reverse trends
are outlined by a sequence of samples that become Cr-richer, which implies progressive
hybridisation of the melt.

It is also noticeable that no correlation can be done between drill-cores that are spatially very close (e.g. Ti05-14, T39 and AC-25 which are less than 100 m away; Fig. 12). This might favour an emplacement by injection of new batches of magma carrying already crystallized ilmenite crystals, a mechanism similar to that proposed by Mondal and Mathez (2007) for the formation of UG2 chromitite layer in the Bushveld Complex. This mechanism is not incompatible with the crystallization of ilmenite from a magma that become progressively more primitive due to mixing with undifferentiated magma.

305

306 *7.2. Magma mixing and ilmenite stability: a view from chromitites*

307 Magma mixing producing a hybrid located in the stability field of chromite, which 308 becomes the only liquidus mineral, has been proposed to explain the origin of chromitite 309 layers in magma chambers (Irvine, 1975, 1977). Mixing occurs either between the resident 310 fractionated magma and a new primitive one, or by contamination of the resident magma by a 311 siliceous component. This mechanism has been corroborated by many other studies (e.g. 312 Roeder and Reynolds, 1991; Campbell and Murck, 1993; Kinnaird et al., 2002) that have 313 provided supporting evidence from mineral compositions, modal proportions, fluid dynamics, 314 experimental studies and isotopic ratios.

315 Cotectic crystallization of chromite with olivine (or orthopyroxene) associated with 316 gravitational sorting has been excluded on the basis of textural relationships and because of

317 inconsistencies with the Cr budget (Eales and Reynolds, 1986). Indeed, the cotectic 318 proportion of chromite and olivine can vary because of the curved-shape of the olivine-319 chromite cotectic but remains lower than 2:98 (Irvine, 1977). Consequently, the counterpart 320 olivine cumulate pile would be at least 50 m thick for a chromitite layer 1 m thick, a 321 proportion which is not observed. Moreover, because of the low solubility of Cr in basic 322 magma (ca. 1000 ppm; Barnes, 1986; Murck and Campbell, 1986), the required liquid 323 thickness of the parental liquid would be unrealistically high. Mass balance considerations 324 thus require that chromite was the only liquidus mineral, at least for a while.

325 Phase diagrams for plagioclase-ilmenite saturated liquids are poorly constrained. 326 Nevertheless, plagioclase and ilmenite are known to crystallize as the first liquidus phases in 327 several intrusion: Bjerkreim-Sokndal (SW Norway) and Grader layered intrusions (Wilson et 328 al, 1996; Charlier et al., 2008) and the Tellnes ilmenite deposit (Charlier et al., 2006) are the 329 most obvious examples. Calculations of the cotectic proportions of ilmenite in ferrobasalts led 330 to values of 17.5 wt.% in the Tellnes ilmenite deposit (SW Norway; Charlier et al., 2007) and 331 to 21 wt.% in the Grader layered intrusion (Charlier et al., 2008). These values, in accordance 332 with experimental works on ferrobasalts (Toplis and Carroll, 1995), are low compared to the 333 modal proportions observed in these two intrusions. However, the presented arguments 334 against magma mixing and in favour of continuous fractional crystallization are based on the 335 continuous and systematic cryptic layering of cumulus phases, successfully modelled by 336 simple Rayleigh fractionation. Thus, the invoked mechanism for ilmenite enrichment was 337 thus simply flotation of plagioclase.

In the Allard Lake deposit, even if ilmenite enrichment due to plagioclase flotation cannot be ruled out, it is evident that it is not solely associated with continuous fractional crystallization. As previously discussed, magma mixing is evidenced by reverse trends (Fig. 12). This is also shown in Fig. 13, where the evolution of Cr in ilmenite as a function of V

342 does not display a single trend. Ilmenite compositions are spread between two differentiation 343 trends: fractionation of pure ilmenite and of a plagioclase-ilmenite cotectic proportion. Two 344 plausible cotectic fraction of ilmenite ($X_{ilm} = 0.21$ and 0.16) are displayed, in accordance with the range of values calculated from natural and experimental works (Toplis and Carroll, 1995; 345 346 Charlier et al., 2007, 2008). It is highly probable that the plagioclase-ilmenite cotectic is 347 curved and that mixing of two magmas lying on the cotectic will produce an hybrid located in 348 the stability field of ilmenite, that will crystallize alone until the liquid joins the cotectic. 349 However, the paucity of rocks with cotectic proportions of ilmenite and plagioclase (15-25 350 wt.% ilmenite and 85-75 wt.% plagioclase) leads to suggest that the liquid did not follow the 351 cotectic during significant periods of fractionation, in accordance with the multiple magma 352 mixing events recorded by ilmenite compositions. Moreover, further ilmenite enrichment 353 might also result from plagioclase flotation, even if no direct evidence of plagioclase 354 accumulation at the top of the intrusion has been observed. Plagioclase from the Allard Lake 355 ilmenite deposit has the same composition than the plagioclase from host Havre-Saint-Pierre 356 anorthosite. Thus the floated cumulates would be indistinguishable from the enclosing 357 anorthosite.

358

359 7.3. Conduit or layered intrusion?

The Allard Lake deposit occurs as a huge mass of massive ilmenite, with minor norites. Some layering occurs close to the margin with the host anorthosite, but these layers cannot be traced along significant distances. Lateral correlations of the composition of ilmenite, i.e. same Cr content in ilmenite and similar evolutional trends with drill-cores depth, are impossible even where an orientation plane is revealed by the occurrence of fine anorthosite layers. These unsystematic stratigraphical variations contrast with the Grader

layered intrusion that displays continuous evolution of liquidus phase compositions and a 366 367 sandwich horizon where the upper and lower solidification fronts met (Charlier et al., 2008). 368 The occurrence of multiple magma mixing events further supports the view that the 369 Allard Lake deposit should not be regarded as a slowly cooled magma chamber but rather as a 370 magma conduit in which ilmenite accumulates. We moreover suggest that the Allard Lake 371 deposit might also be the conduit system of the 4-5 km diameter Grader layered intrusion, 372 which is situated less than 2 km away from the Allard Lake mine. The base of Grader is 373 highly similar to the Allard Lake deposit with a disturbed Cr evolution in ilmenite in its 25 m-374 thick basal massive ilmenite-rich portion (Charlier et al., 2008). There, ilmenite contains 800-900 ppm Cr and is more evolved compared to primitive ilmenite in Allard Lake (ca. 2400 375 376 ppm Cr), but corresponds to the most abundant values of the deposit (Fig. 14). The Grader 377 layered intrusion reaches more evolved composition with apatite, magnetite and 378 clinopyroxene as liquidus phases, not observed in the Allard Lake deposit. 379 Such a dynamic environment of emplacement has also been documented for major Ni-380 Cu sulfide deposits such as Noril'sk, Jinchuan and Voisey's Bay (e.g. Li and Naldrett, 1999; 381 Maier et al., 2001; De Waal et al., 2004; Li et al., 2004). In the Allard Lake deposit, the 382 potential for ilmenite ore formation in a conduit system is enhanced by the injection of 383 multiple pulses of undifferentiated magma that may crystallize large amount of ilmenite. This 384 mechanism is also convenient to explain the absence of evolved cumulates or residual liquids. 385

386 7.4. Postcumulus processes and metamorphic overprint

387 The Allard anorthosite has been dated at ca. 1061 Ma (U-Pb on zircon; Morisset et al., 388 2009), which is synchronous with the second stage of the Grenville metamorphism of the 389 Ottawan orogeny (1080-1020 Ma; Rivers, 1997, 2008; Rivers et al., 2002). Moreover, U-Pb 390 dating on metamorphic minerals from the Havre-Saint-Pierre complex reveals a metamorphic

391 phase around 1062 Ma and monazites in paragneiss have been dated between 1063 and 1047 392 Ma (Wodicka et al., 2003). The similarity of the ages for the crystallization of the Havre-393 Saint-Pierre anorthosite and the Ottawan metamorphic peak is consistent with the very low 394 cooling rates estimated for the anorthosite (3-4°C/m.y.r.; Morisset et al., 2009). Based on their 395 Ottawan metamorphic signature, the tectonic unit that includes the Havre-Saint-Pierre 396 anorthosite complex has been included in the allochtonous medium-low pressure belt of the 397 Grenville orogen, characterized by penetrative metamorphism under a relatively high 398 geothermal gradient followed by slow cooling (Rivers, 2008).

399 During the slow cooling of the Havre-Saint-Pierre anorthosite complex, textural 400 equilibration of the Allard ore has occurred and ilmenite has recrystallized as coarse 401 polygonal grains. This example of textural coarsening (e.g. Higgins, 1993) is supported by the 402 smaller size of ilmenite grains when included in silicates and preserved from recrystallization. 403 Aluminous spinel has also exsolved and migrated to grains boundaries during recrystallization 404 to form large external granules. These exsolutions have continued reequilibrating with 405 adjacent ilmenite grain, as shown by the zoning of aluminous spinel grain that have Fe-rich 406 cores and Mg-rich rims (Fig. 9).

407 Moreover, in the Allard Lake deposit, two types of orthopyroxene have been 408 described: (1) primary magmatic low-alumina orthopyroxene, common in the anorthosite and 409 some ores, and (2) high-alumina orthopyroxene always associated with sapphirine and spinel, 410 detected only in a few samples. Sapphirine-bearing rocks in the Havre-Saint-Pierre 411 anorthosite have also been described in an ilmenite-rich dyke close to the Big Island lake 412 (Bergeron, 1986; Morisset et al., submitted). These rocks also contains large amount of rutile 413 (up to 15 wt.%) some spinel and corundum. The sapphirine-rutile-ilmenite rocks of the 414 Havre-Saint-Pierre anorthosite are similar to those described in the St-Urbain anorthosite 415 (Warren, 1912; Dymek, 1984; Morisset et al., submitted). High-alumina orthopyroxene and

416 sapphirine are interpreted as resulting from subsolidus reaction during slow cooling of low-417 alumina orthopyroxene with spinel previously exsolved from ilmenite.

418

419 8. Conclusions

420 The genesis of world-class deposits including Fe-Ti oxide ore deposits is a 421 combination of particular processes that give rise to unique economic concentrations of ore-422 minerals. Although the petrogenesis and emplacement of massif-type anorthosites that host 423 Fe-Ti oxide ore deposits have been investigated for decades, the early saturation of ilmenite in 424 andesine anorthosite (after plagioclase and before ferromagnesian silicates) has only been recognized recently. While immiscibility was experimentally discarded to produce pure 425 426 ilmenite ore (Lindsley, 2003), early saturation of ilmenite associated with plagioclase 427 flotation in a dense ferrobasaltic melt, such as in the Tellnes deposit (Charlier et al., 2007), is 428 nevertheless not sufficient to explain the formation of the huge amount of massive ilmenite in 429 the Allard Lake deposit. Our new data on ilmenite and whole-rock compositions from this 430 deposit that are presented here demonstrate intermittent crystallization of ilmenite as the 431 unique liquidus phase and its accumulation in a conduit system. The crystallization of 432 ilmenite alone results from magma mixing that produces hybrid melts located in the stability 433 field of ilmenite. These processes satisfactorily explain the geochemical features of the Allard 434 deposit: small scale normal and reverse trends of compatible element as well as lack of lateral 435 correlations for ilmenite composition.

436

437 Acknowledgements

438 Rio Tinto Iron and Titanium is gratefully acknowledged for permission to access to the

database and to publish the new data. Martin Sauvé and Tommy are thanked for their

- 440 assistance during fieldwork. G Bologne and HJ Bernhardt supervised XRF and microprobe
- 441 analyses respectively. Comments by Kerry Stanaway have been greatly appreciated.

- 443 References
- 444 Andersen, D.J., Lindsley, D.H., Davidson, P.M., 1993. QUIIF: a PASCAL program to assess
- 445 equilibria among Fe-Mg-Ti oxides, pyroxenes, olivine, and quartz. Computers &
- 446 Geosciences 19, 1333-1350.
- 447 Barnes, S.J., 1986. The distribution of chromium among orthopyroxene, spinel and silicate
- 448 liquid at atmospheric pressure. Geochimica et Cosmochimica Acta 50, 1889-1909.
- Bateman, A.M., 1951. The formation of late magmatic oxide ores. Economic Geology 46,
 450 404-426.
- 451 Bergeron, M.B., 1986. Minéralogie et géochimie de la suite anorthositique de la région du
- 452 Lac Allard, Québec: Evolution des membres mafiques et origine des gîtes massifs
- d'ilménite, PhD Thesis, University of Montreal, 480 pp.
- Bourret, W., 1949. Aeromagnetic survey of the Allard Lake district, Quebec. Economic
 Geology 44, 732-740.
- 456 Campbell, I.H., Murck, B.W., 1993. Petrology of the G and H chromitite zones in the
- 457 Mountain View area of the Stillwater Complex, Montana. Journal of Petrology 34, 291-458 316.
- 459 Carmichael, C.M., 1959. Remanent magnetism of the Allard Lake ilmenites. Nature 183,
 460 1239-1241.
- 461 Charlier, B., Duchesne, J.-C., Vander Auwera, J., 2006. Magma chamber processes in the
- 462 Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation
 463 of Fe-Ti ores in massif-type anorthosites. Chemical Geology 234, 264-290.
- 464 Charlier, B., Skår, Ø., Korneliussen, A., Duchesne, J.-C., Vander Auwera, J., 2007. Ilmenite
- 465 composition in the Tellnes Fe-Ti deposit, SW Norway: fractional crystallization,

466 postcumulus evolution and ilmenite-zircon relation. Contributions to Mineralogy and
467 Petrology 154, 119-134.

- 468 Charlier, B., Sakoma, E., Sauvé, M., Stanaway, K., Vander Auwera, J., Duchesne, J.-C., 469 2008. The Grader layered intrusion (Havre-Saint-Pierre Anorthosite, Quebec) and genesis of nelsonite and other Fe-Ti-P ores. Lithos 101, 359-378. 470 471 Charlier, B., Namur, O., Duchesne, J.-C., Wiszniewska, J., Parecki, A., Vander Auwera, J., 472 2009. Cumulate origin and polybaric crystallization of Fe-Ti oxide ores in the Suwalki 473 anorthosite, Northeastern Poland. Economic Geology 104, 205-221. 474 Charlier, B., Storme, J.-Y., Maquil, R., Vander Auwera, J., Longhi, J., Duchesne, J.-C., 475 submitted. Continuous polybaric fractional crystallization of high-alumina basalt parental 476 magmas in the Egersund-Ogna massif-type anorthosite (Rogaland, SW Norway): 477 constraints from plagioclase and high-alumina orthopyroxene megacrysts. 478 Corrigan, D., van Breemen, O., 1997. U-Pb age constraints for the lithotectonic evolution of 479 the Grenville Province along the Mauricie transect, Quebec. Canadian Journal of Earth 480 Sciences 34, 299-316. 481 Corriveau, L., Perreault, S., Davidson, A., 2007. Prospective metallogenic settings of the 482 Grenville Province. In: Goodfellow, W.D. (Ed.), Mineral deposits of Canada: A synthesis 483 of major deposit-types, district metallogeny, the evolution of geological provinces, and
 - 484 exploration methods. Geological Survey of Canada, Mineral Deposits Division, Special
 - 485 Publication, pp. 819-847.
 - 486 Davidson, A., 1995. A review of the Grenville orogen in its North American type area.
 - 487 Journal of Australian Geology and Geophysics 16, 3-24.
 - 488 Davidson, A., 2008. Late Paleoproterozoic to mid-Neoproterozoic history of northern
 - 489 Laurentia: An overview of central Rodinia. Precambrian Research 160, 5-22.

- De Waal, S.A., Xu, Z., Li, C., Mouri, H., 2004. Emplacement of viscous mushes in the
 Jinchuan ultramafic intrusion, western China. Canadian Mineralogist 42, 371-392.
- 492 Duchesne, J.C., 1999. Fe-Ti deposits in Rogaland anorthosites (South Norway): geochemical
 493 characteristics and problems of interpretation. Mineralium Deposita 34, 182-198.
- 494 Duchesne, J.C., Bologne, G., 2009. XRF major and trace element determination in Fe-Ti
- 495 oxide minerals. Geologica Belgica 12, 205-212.
- 496 Dymek, R.F., 1984. Sapphirine of possible igneous origin from the St-Urbain anorthosite
 497 massif, Quebec. EOS 65, 295.
- 498 Dymek, R.F., 2001. Observations on the Allard Lake anorthosite, Grenville Provine, Quebec,
- and implications for petrogenesis of the CRUML belt of massif anorthosites. Geological
 Society of America Abstracts with Programs 33, 57.
- 501 Dymek, R.F., Owens, B.E., 2001. Petrogenesis of apatite-rich rocks (nelsonites and oxide502 apatite gabbronorites) associated with massif anorthosites. Economic Geology 96, 797503 815.
- Eales, H.V., Reynolds, I.M., 1986. Cryptic variations within chromites of the Upper Critical
 Zone, Northwestern Bushveld Complex. Economic Geology 81, 1056-1066.
- 506 Emslie, R.F., 1975. Pyroxene megacrysts from anorthositic rocks: a new clue to the sources
 507 and evolution of the parent magmas. Canadian Mineralogist 13, 138-145.
- 508 Emslie, R.F., 1985. Proterozoic anorthosite massifs. In: Tobi, A.C., Touret, J.L.R. (Eds), The
- 509 Deep Proterozoic Crust in the North Atlantic Provinces. Dordrecht, Reidel, pp. 39-60.
- 510 Emslie, R.F., Hunt, P.A., 1990. Ages and petrogenetic significance of igneous mangerite
- 511 charnockite suites associated with massif anorthosites, Grenville Province. Journal of
- 512 Geology 98, 213-231.

- Force, E.R., 1991. Geology of Titanium-Mineral Deposits, US Geological Survey Special
 Paper, 112 pp.
- 515 Hammond, P., 1952. Allard Lake ilmenite deposits. Economic Geology 47, 634-649.
- 516 Hargraves, R.B., 1959. Magnetic anisotropy and remanent magnetization in hemo-ilmenite
- 517 from ore deposits of Allard Lake, Quebec. Journal of Geophysical Research 64, 1565-

518 1573.

- 519 Hargraves, R.B., 1962. Petrology of the Allard Lake anorthosite suite, Quebec. In: Engel, A.
- 520 E.J., James, H.L., Leonard, B.F. (Eds), Petrologic studies: a volume to honor A.F.
- 521 Buddington. Geological Society of America, Denver, pp. 163-189.
- 522 Hébert, C., Cadieux, A.-M., van Breemen, O., 2005. Temporal evolution and nature of Ti-Fe-
- 523 P mineralization in the anorthosite-mangerite-charnockite-granite (AMCG) suites of the
- 524 south-central Grenville Province, Saguenay Lac St. Jean area, Quebec, Canada.
- 525 Canadian Journal of Earth Sciences 42, 1865-1880.
- 526 Higgins, M.D., 1998. Origin of anorthosite by textural coarsening: Quantitative measurements
- of a natural sequence of textural development. Journal of Petrology 39, 1307-1323.
- 528 Higgins, M.D., van Breemen, O., 1996. Three generations of Anorthosite-Mangerite-

529 Charnockite-Granite magmatism, contact metamorphism and tectonism in the Saguenay-

- 530 Lac-St-Jean region, Grenville Province, Canada. Precambrian Research 79, 347-362.
- Hocq, M., 1982. Région du Lac Allard. Ministère de l'Energie et Ressources, Québec DPV894, 99 pp.
- 533 Irvine, T.N., 1975. Crystallization sequences in the Muskox intrusion and other layered

534 intrusions - II. Origin of chromitite layers and similar deposits of other magmatic ores.

535 Geochimica et Cosmochimica Acta 39, 991-1020.

- Irvine, T.N., 1977. Origin of chromitite layers in the Muskox intrusion and other stratiform
 intrusions: a new interpretation. Geology 5, 273-277.
- 538 Kinnaird, J.A., Kruger, F.J., Nex, P.A.M., Cawthorn, R.G., 2002. Chromitite formation a
- key to understanding processes of platinum enrichment. Transactions of the Institution ofMining and Metallurgy 111, 23-35.
- 541 Klemme, S., Gunther, D., Hametner, K., Prowatke, S., Zack, T., 2006. The partitioning of
- 542 trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with
- 543 implications for the early differentiation of the moon. Chemical Geology 234, 251-263.
- 544 Kolker, A., 1982. Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite)
- 545 deposits and evaluation of the liquid immiscibility hypothesis. Economic Geology 77,546 1146-1148.
- 547 Li, C., Naldrett, A.J., 1999. Geology and petrology of the Voisey's Bay intrusion: reaction of
 548 olivine with sulfide and silicate liquids. Lithos 47, 1-31.
- 549 Li, C.S., Xu, Z.H., de Waal, S.A., Ripley, E.M., Maier, W.D., 2004. Compositional variations
- of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: implications for ore
 genesis. Mineralium Deposita 39, 159-172.
- Lindsley, D.H., 2003. Do Fe-Ti oxide magmas exist? Geology: Yes; Experiments: No!
 Norges Geologiske Undersøkelse Special Publication 9, 34-35.
- Lister, G.F., 1966. The composition and origin of selected iron-titanium deposits. Economic
 Geology 61, 275-310.
- 556 Longhi, J., Vander Auwera, J., Fram, M., Monthieth, J.N., 1993. Pressure effects, kinetics and
- rheology of anorthositic and related magmas. American Mineralogist 78, 1016-1030.

558	Maier, W.D., Li, C., De Waal, S.A., 2001. Why are there no major Ni-Cu sulfide deposits in
559	large layered mafic-ultramafic intrusions? Canadian Mineralogist 39, 547-556.
560	McEnroe, S.A., Robinson, P., Langenhorst, F., Frandsen, C., Terry, M.P., Boffa Ballaran, T.,
561	2007. Magnetization of exsolution intergrowths of hematite and ilmenite: Mineral
562	chemistry, phase relations, and magnetic properties of hemo-ilmenite ores with micron- to
563	nanometer-scale lamellae from Allard Lake, Quebec. Journal of Geophysical Research
564	112, B10103.
565	Mondal, S.K., Mathez, E.A., 2007. Origin of the UG2 chromitite layer, Bushveld Complex.
566	Journal of Petrology 48, 495-510.
567	Morisset, CE., Scoates, J.S., 2008. Origin of zircon rims around ilmenite in mafic plutonic
568	rocks of Proterozoic anorthosite suites. Canadian Mineralogist 46, 289-304.
569	Morisset, CE., Scoates, J.S., Weis, D., Friedman, R.M., 2009. U-Pb and ⁴⁰ Ar/ ³⁹ Ar
570	geochronology of the Saint-Urbain and Lac Allard (Havre-Saint-Pierre) anorthosites and
571	their associated Fe-Ti oxide ores, Québec: Evidence for emplacement and slow cooling
572	during the collisional Ottawan orogeny in the Grenville Province. Precambrian Research
573	174, 95-116.

574 Morisset, C.-E., Scoates, J.S., Weis, D., Sauvé, M., Stanaway, K., submitted. Rutile-bearing
575 ilmenite deposits associated with Proterozoic massifs of the Grenville Province (Québec).
576 Canadian Mineralogist.

577 Murck, B.W., Campbell, I.H., 1986. The effects of temperature, oxygen fugacity and melt
578 composition on the behaviour of chromium in basic and ultrabasic melts. Geochimica et

579 Cosmochimica Acta 50, 1871-1887.

- 580 Owen, J.V., Greenough, J.D., 1991. An empirical sapphirine-spinel Mg-Fe exchange
- thermometer and its application to high grade xenoliths in the Popes Harbour dyke, Nova
- 582 Scotia, Canada. Lithos 26, 317-332.
- 583 Owens, B.E., Dymek, R.F., 2001. Petrogenesis of the Labrieville alkalic anorthosite massif,
- 584 Grenville Province, Quebec. Journal of Petrology 42, 1519-1546.
- 585 Owens, B.E., Dymek, R.F., 2005. Rediscovery of the Mattawa anorthosite massif, Grenville
 586 Province, Quebec. Canadian Journal of Earth Sciences 42, 1699-1718.
- 587 Owens, B.E., Dymek, R.F., Tucker, R.D., Brannon, J.C., Podosek, F.A., 1994. Age and
- 588 radiogenic isotopic composition of a late- to posttectonic anorthosite in the Grenville
- 589 Province the Labrieville massif, Quebec. Lithos 31, 189-206.
- 590 Pang, K.-N., Li, C., Zhou, M.-F., Ripley, E., 2008. Abundant Fe-Ti oxide inclusions in olivine
- from the Panzhihua and Hongge layered intrusions, SW China: evidence for early
- saturation of Fe-Ti oxides in ferrobasaltic magma. Contributions to Mineralogy and
- 593 Petrology 156, 307-321.
- 594 Pang, K.-N., Li, C., Zhou, M.-F., Ripley, E.M., 2009. Mineral compositional constraints on
- 595 petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic
 596 intrusion, SW China. Lithos 110, 199-214.
- 597 Philpotts, A.R., 1967. Origin of certain iron-titanium oxide and apatite rocks. Economic
 598 Geology 62, 303-315.
- Rivers, T., 1997. Lithotectonic elements of the Grenville Province: review and tectonic
 implications. Precambrian Research 86, 117-154.
- 601 Rivers, T., 2008. Assembly and preservation of lower, mid, and upper orogenic crust in the
- 602 Grenville Province Implications for the evolution of large hot long-duration orogens.
- 603 Precambrian Research 167, 237-259.

- Rivers, T., Corrigan, D., 2000. Convergent margin on southeastern Laurentia during the
 Mesoproterozoic: tectonic implications. Canadian Journal of Earth Sciences 37, 359-383.
- Rivers, T., Martignole, J., Gower, C.F., Davidson, A., 1989. New tectonic divisions of the
 Grenville Province, southeastern Canadian Shield. Tectonics 8, 63-84.
- Rivers, T., Ketchum, J., Indares, A., Hynes, A., 2002. The High Pressure belt in the Grenville
- 609 Province: architecture, timing, and exhumation. Canadian Journal of Earth Sciences 39,610 867-893.
- Roeder, P.L., Reynolds, I.M., 1991. Crystallization of chromite and chromium solubility in
 basaltic melts. Journal of Petrology 32, 909-934.
- Romer, R.L., 1996. Contiguous Laurentia and Baltica before the Grenvillian-Sveconorwegian
 orogeny? Terra Nova 8, 173-181.
- 615 Sharma, K.N.M., Franconi, A., 1975. Magpie, Saint-Jean, Romaine Rivers area (Grenville
- 616 1970). Québec Ministère des Ressources Naturelles Geological Report 163, 73 pp.
- Toplis, M.J., Carroll, M.R., 1995. An experimental study of the influence of oxygen fugacity
- on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic
- 619 systems. Journal of Petrology 36, 1137-1170.
- van Breemen, O., Higgins, M.D., 1993. U-Pb zircon age of the southwest lobe of the Havre-
- 621 Saint-Pierre Anorthosite Complex, Grenville Province, Canada. Canadian Journal of Earth
- 622 Sciences 30, 1453-1457.
- 623 Warren, C.H., 1912. The ilmenite rock near St. Urbain: a new occurrence of rutile and
- 624 sapphirine. American Journal of Science 33, 263-277.

- 625 Wilson, J.R., Robins, B., Nielsen, F.M., Duchesne, J.C., Vander Auwera, J., 1996. The
- 626 Bjerkreim-Sokndal layered intrusion, Southwest Norway. In: Cawthorn, R.G. (Ed),

627 Layered Intrusions. Elsevier, Amsterdam, pp. 231-255.

- 628 Wodicka, N., David, J., Parent, M., Gobeil, A., Verpaelst, P., 2003. Géochronologie U-Pb et
- 629 Pb-Pb de la région de Sept-Îles Natashquan, Province de Grenville, Moyenne-Côte-
- 630 Nord. In: Brisebois, D. and Clark, T. (Editors) Géologie et Ressources minérales de la
- 631 partie est de la Province de Grenville. Ministère des Ressources naturelles de la Faune et
- 632 des Parcs, Québec, DV 2002-03, pp. 59-117.
- 633 Zhou, M.-F., Robinson, P.T., Lesher, C.M., Keays, R.R., Zhang, C.-J., Malpas, J., 2005.
- 634 Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered
- 635 intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. Journal of
 636 Petrology 46, 2253-2280.

638 Figure captions

639

640

641	subdivisions into parautochtonous and allochtonous belts (after Rivers et al., 1989; Davidson,
642	1995; Wodicka et al., 2003; Corriveau et al., 2007) and the major Proterozoic pre-Grenvillian
643	and Grenvillian anorthosite-mangerite-charnockite-granite suites.
644	
645	Fig. 2. Geological map of the Havre-Saint-Pierre anorthosite complex (after Wodicka et al.,
646	2003), with location of the Allard Lake deposit and the Grader layered intrusion. Numbers 1
647	and 2 are locations of samples for geochronology, in the Rivière au Tonnerre anorthosite and
648	in the Magpie River monzonitic envelope respectively.
649	
650	Fig. 3. Detailed views of the Allard Lake deposit. (a) Contour map of the deposit with
651	location of samples TL (stars) and of drill-cores (black circles are drill-cores sampled for
652	plagioclase and ilmenite separation and grey squares are mining drill-cores used for whole-
653	rock analyses; Coordinates are UTM - Nad 83, Zone 20N); (b) Aerial picture of the deposit
654	showing the open-pit in 2008; (c-d) 3D modelling of the morphology of the deposit using
655	172643 mining ore samples (GOCAD software). Colour scale is for the depth.
656	
657	Fig. 4. Histograms of the ilmenite proportion in the Allard Lake ilmenite deposit (n=172643)
658	compared to that in the Tellnes deposit (n=94; data from Charlier et al., 2006).
659	
660	Fig. 5. Photomicrographs of the main rock types and ilmenite textures in the Allard Lake
661	deposit. (a) Typical anorthosite with statically recrystallized plagioclase displaying 120° triple
662	junction (cross-polarized transmitted light, N10-152); (b) Moderately recrystallized

Fig. 1. Simplified geological map of the Grenville Province showing the geological

663 anorthosite showing abundant orthoclase needles at the margin of plagioclase laths and interstitial quartz (cross-polarized transmitted light, T875-297); (c) Norite (transmitted light, 664 665 T875-66); (d) Ilmenitite with polygonized ilmenite grains (reflected light, T873-178); (e) 666 Small aluminous spinel granule in hemo-ilmenite; note the decreasing amount of hematite 667 lamellae close to spinel (reflected and transmitted lights, T873-224); (f) Hemo-ilmenite grain 668 in contact with plagioclase, with a zircon corona (backscattered electron images, T873-219). Abbreviations: Pl = plagioclase, Ilm = ilmenite, Hem = hematite, Opx = orthopyroxene, Sp = 669 670 aluminous spinel, Zrn = zircon.

671

672 Fig. 6. Photomicrographs of the main textures of orthopyroxene and sapphirine in the Allard 673 Lake ilmenite deposit. (a) Orthopyroxene with Schiller-type exsolution and included grains of 674 hemo-ilmenite (reflected and transmitted light, T873-133); (b) Symplectitic intergrowth of high-alumina orthopyroxene and vermicular aluminous spinel (reflected and transmitted light, 675 676 T873-291); (c) Small sapphirine grain at the contact between ilmenite and orthopyroxene 677 (transmitted light, T873-268); (d) Sapphirine grain at the junction between orthopyroxene and 678 aluminous spinel (reflected and transmitted lights, T873-68). Same abbreviations as in Fig. 5; 679 Spr = sapphirine.

680

Fig. 7. Stratigraphic variation of ilmenite composition and ilmenite proportion in holes T873,
T875 and N10 (see location on Fig. 3).

683

Fig. 8. Histograms of the composition of plagioclase for the contents of anorthite, orthoclase,Sr and Ba. Data for different rock types are stacked.

Fig. 9. Compositional profiles for $X_{hercynite}$ and Cr_2O_3 across aluminous spinel in sample T873-296. The distance scale is from an arbitrary starting point and only relative distances have any significance.

690

Fig. 10. Enstatite (100[Mg/(Mg+Fe+Ca)]) and Wollastonite (100[Ca/(Mg+Fe+Ca)]) as a
function of Al₂O₃ in orthopyroxene.

693

Fig. 11. Binary major elements variation diagrams of whole-rocks from the Allard Lake
ilmenite deposit. The compositional ranges of main minerals are represented by a elliptic area
or indicated by an arrow (plag = plagioclase, ilm = ilmenite, opx = orthopyroxene). Note that
both high- and low-alumina orthopyroxenes are plotted.

698

Fig. 12. Calculated Cr concentration in ilmenite (ppm) in selected holes of the Allard Lake
ilmenite deposit. The calculation is based on whole-rock TiO₂ and Cr contents and an average
TiO₂ content in ilmenite of 37.71 wt.%.

702

Fig. 13. Cr (ppm) as a function of V (ppm) in ilmenite from the Allard Lake ilmenite deposit

with Rayleigh fractional crystallization models for $X_{ilm}=1$ (fractionation of ilmenite alone)

and for X_{ilm}=0.21 and 0.16 (fractionation of a cotectic ilmenite-plagioclase cumulate) using a

starting composition of ilmenite with Cr=2415 ppm and V=2380 ppm. Note the values for the

707 fraction of residual liquid on crystallization paths. Partition coefficients from Charlier et al.

708 (2008). Black symbols represent ilmenite composition from mineral separates and grey points

are calculated ilmenite compositions from the whole-rock mining database.

- Fig. 14. Histograms of the Cr content in ilmenite (ppm) in the Allard Lake ilmenite deposit
- 712 compared to that in the Grader layered intrusion (data from Charlier et al., 2008).

Figure8

Calculated Cr (ppm) in ilmenite

Table 1	lveen	fsenara	ted ilm	enite from	n the A	llard lak	e ilmen	ite deno	zit									
Sample	Ilm prop	TiO ₂	Al ₂ O ₃	Fe ₂ O _{3tot}	Fe ₂ O ₃	FeO	MgO	Total	Xgeik	Xpyr	Xhem	Xilm	V	Cr	Zn	Mn	Zr	Nb
	1 1																	
T873-50	91	37.81	1.26	61.58	29.57	28.80	2.83	100.27	0.105	0.003	0.276	0.616	1924	1036	122	1189	274	31
T873-60	94	37.73	1.34	61.61	29.28	29.09	2.63	100.07	0.098	0.003	0.274	0.625	1963	924	139	1162	776	21
T873-68	95	37.48	0.72	60.77	28.91	28.67	2.74	98.52	0.103	0.003	0.275	0.618	1895	883	90	1152	243	26
T873-79	92	37.28	1.29	61.84	30.64	28.08	2.97	100.26	0.110	0.003	0.286	0.601	2043	763	132	1159	195	33
T873-88	91	36.64	1.68	62.36	31.58	27.70	2.86	100.46	0.105	0.003	0.294	0.597	1859	829	194	1168	659	32
T873-98	86	36.77	1.45	61.99	30.64	28.21	2.64	99.71	0.098	0.003	0.288	0.611	1975	970	134	1177	183	33
T873-115	94	38.90	1.21	59.41	26.74	29.40	3.04	99.29	0.113	0.003	0.251	0.632	2282	2277	103	1206	281	27
T873-133	73	38.41	0.60	61.52	28.16	30.01	2.44	99.62	0.091	0.004	0.266	0.639	2136	2025	85	1352	24	29
T873-146	64	36.92	0.74	62.61	30.48	28.91	2.32	99.37	0.087	0.003	0.289	0.621	1898	1320	60	1131	188	36
T873-178	94	37.20	1.34	61.93	29.95	28.77	2.54	99.80	0.095	0.003	0.282	0.621	1963	1093	148	1156	371	29
T873-186	71	38.93	0.83	60.62	27.21	30.06	2.69	99.72	0.100	0.003	0.256	0.641	2098	450	65	1190	66	29
T873-194	91	36.85	1.54	61.90	30.29	28.45	2.54	99.67	0.095	0.003	0.285	0.617	2004	937	130	1201	255	32
T873-202	87	38.08	0.45	61.92	28.91	29.71	2.46	99.61	0.092	0.003	0.273	0.631	2084	1321	28	1198	296	33
T873-210	96	37.28	1.38	61.85	30.07	28.59	2.68	100.00	0.099	0.003	0.282	0.616	1970	1099	132	1164	334	28
T873-219	87	37.32	1.59	61.27	29.49	28.59	2.70	99.69	0.100	0.003	0.277	0.620	2090	1110	134	1139	422	36
T873-230	94	37.40	1.66	60.74	29.22	28.36	2.87	99.51	0.107	0.003	0.274	0.616	1984	650	167	1178	214	28
T873-242	90	37.23	1.61	61.86	30.11	28.57	2.67	100.19	0.099	0.003	0.281	0.617	1901	858	155	1164	642	22
T873-249	95	36.74	1.62	61.71	30.76	27.85	2.83	99.80	0.105	0.003	0.288	0.604	1862	601	182	1120	771	33
T873-259	92	37.77	1.31	61.37	29.38	28.78	2.82	100.06	0.104	0.003	0.275	0.618	1986	615	132	1161	56	33
T873-268	57	40.29	0.92	59.17	23.97	31.67	2.46	99.31	0.092	0.004	0.226	0.678	2149	845	46	1321	23	34
T873-276	93	36.64	1.94	61.56	30.88	27.61	2.91	99.98	0.108	0.003	0.288	0.601	1870	1500	218	1150	636	30
T873-283	91	36.81	1.57	61.22	30.17	27.94	2.81	99.30	0.105	0.003	0.284	0.608	1912	1226	163	1143	1261	23
T873-291	86	37.17	1.15	60.38	28.55	28.64	2.60	98.11	0.098	0.003	0.273	0.625	1946	1246	106	1184	1016	26
T873-296	93	38.87	0.76	61.74	26.24	31.94	1.59	99.40	0.060	0.004	0.250	0.687	2216	572	94	1306	22	33
T873-301	88	37.13	1.95	61.19	29.43	28.58	2.62	99.71	0.097	0.003	0.276	0.624	1983	847	160	1111	469	31
T873-307	94	37.31	1.42	61.45	29.42	28.82	2.57	99.54	0.096	0.003	0.277	0.624	2020	1218	153	1168	978	24
T873-314	94	37.65	1.37	61.27	28.98	29.05	2.61	99.66	0.097	0.003	0.272	0.627	2050	1144	170	1179	246	27
18/3-320	76	38.14	0.49	62.69	29.60	29.78	2.45	100.46	0.091	0.003	0.278	0.628	1948	778	35	1166	273	34
1875-4	93	37.81	1.17	61.25	29.22	28.82	2.82	99.84	0.105	0.003	0.274	0.618	1891	995	96	1143	139	29
18/5-14	93	37.98	1.52	61.09	29.09	28.80	2.92	100.31	0.108	0.003	0.271	0.618	1916	918	134	1125	390	29
18/5-25 T075-25	93	37.21	1.74	61.53	30.33	28.08	2.93	100.29	0.108	0.003	0.282	0.606	18//	8/0	185	1230	457	30
18/5-35	86	38.28	1.10	60.66	27.76	29.61	2.61	99.36	0.098	0.003	0.262	0.637	2211	885	111	1215	1//	32
18/3-43 T075 52	90	37.10	1.29	62.30	20.26	28.20	2.84	100.45	0.105	0.003	0.289	0.603	1927	811	01	1120	207	29
18/3-33 T075 62	95	30.32	0.90	61.97	20.20	28.45	2.38	98.01	0.090	0.003	0.290	0.611	1/93	904	120	1149	288	20
T075-05	95	37.20	1.50	60.27	20.51	20.42	2.17	100.12	0.105	0.003	0.264	0.612	2024	602	129	1106	150	24
T075 07	09	37.93	0.06	62.12	20.17	20.34	2.13	100.12	0.110	0.003	0.207	0.015	2034	1102	165	1190	254	24
T875 06	95	37.49	1.50	60.01	27.68	20.01	2.07	00.15	0.099	0.003	0.265	0.613	2072	1742	128	1212	163	33 26
T875 105	01	37.58	1.59	61.17	27.08	29.09	2.77	100.14	0.105	0.003	0.201	0.614	2303	1076	138	11215	222	20
T875-116	70	38.64	0.43	59.79	29.33	30.12	2.51	98.02	0.005	0.003	0.270	0.649	2210	1070	30	1120	153	25
T875 124	02	37.04	0.45	62.17	20.32	20.12	2.51	98.02	0.095	0.003	0.233	0.627	1004	1072	101	1155	250	23
T875-131	90	38.13	1.22	60.88	29.80	29.13	2.55	99.41	0.088	0.003	0.262	0.639	1994	846	126	1373	230 436	31
T875-130	85	38.64	1.22	60.04	26.64	30.06	2.52	99.40	0.094	0.004	0.252	0.650	2131	030	104	1266	279	30
N10-15	79	38.83	0.82	59.95	26.59	30.02	2.54	08.03	0.100	0.003	0.252	0.645	1958	1517	70	1110	240	28
N10-74	91	38.08	1 51	60.62	28.59	28.90	2.07	99.93	0.108	0.003	0.252	0.622	2158	1649	147	1088	298	30
N10-23	01	38.80	1.51	59.04	26.91	20.00	3.22	90.36	0.120	0.003	0.251	0.626	2150	1710	172	1084	220	22
N10-42	84	37.76	0.86	61 56	28.55	29.01	2 30	99.17	0.086	0.003	0.271	0.639	1944	1553	69	1176	525	33
N10-52	91	37.75	1.32	61.46	29.23	29.00	2.69	99.99	0.100	0.003	0.274	0.623	1984	1099	120	1137	369	27
N10-60	90	37.58	1.35	61 48	29.36	28 90	2.66	99.85	0.099	0.003	0.275	0.622	1925	1012	113	1171	375	36
N10-67	93	37.91	1.53	61.49	28.99	29.24	2.63	100.30	0.097	0.003	0.271	0.629	2210	1540	148	1208	483	27

Major elements in weight percent, FeO and Fe₂O₃ recalculated from Fe₂O_{3tot} by charge balance; molar fractions of geikielite (MgTiO₃), pyrophanite (MnTiO₃), hematite (Fe₂O₃) and ilmenite (FeTiO₃) (Xgeik, Xpyr, Xhem, Xilm) calculated following QUILF algorithm (Andersen et al., 1993); trace elements in parts per million (ppm)

Table 2 Major and trace element compositions of separated plagioclase from the Allard lake ilmenite deposit and the host Havre-Saint-Pierre
anorthosite (XRF analyses)

anorthosite	e (XRF an	alyses)												
Sample	Ilm prop	Rock type	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	Na ₂ O	K ₂ O	Total	An	Or	Ba	Sr
T873-16	33	opx-norite	56.27	0.06	26.89	0.31	9.33	5.32	0.92	99.30	49.2	5.5	402	1176
T873-31	44	norite	56.19	0.08	26.77	0.41	9.09	5.21	1.08	99.13	49.1	6.5	409	1161
T873-50	91	ilmenitite	55.41	0.09	26.78	0.45	10.19	5.83	0.20	99.40	49.1	1.1	286	1138
T873-79	92	ilmenitite	56.57	0.15	26.37	0.63	8.60	6.40	0.26	99.81	42.6	1.5		
T873-99	86	ilmenitite	56.10	0.11	26.99	0.60	9.18	5.92	0.26	99.71	46.1	1.5	283	1131
T873-101	17	opx-norite	56.38	0.06	26.81	0.40	9.29	5.24	0.79	99.23	49.5	4.8	341	1135
T873-125	8	opx-norite	56.98	0.06	26.73	0.34	9.03	5.33	1.02	99.66	48.4	6.1	461	1331
T873-133	73	opx-ilmenitite	56.06	0.10	26.99	0.38	9.31	5.47	0.45	99.14	48.5	2.7	336	1518
T873-146	64	norite	56.37	0.09	27.02	0.27	9.27	5.26	0.84	99.39	49.3	5.1	394	1193
T873-157	6	Allard anorthosite	56.79	0.06	26.11	0.70	8.98	5.41	1.04	99.64	47.8	6.2	275	1111
T873-166	5	Allard anorthosite	56.90	0.06	26.61	0.41	9.02	5.37	0.84	99.39	48.1	5.1	367	1125
T873-186	71	ilmenitite	55.90	0.10	27.18	0.32	9.49	5.30	0.67	99.12	49.7	4.0	319	1201
T873-190	5	Allard anorthosite	56.69	0.08	26.57	0.39	9.20	5.16	0.94	99.15	49.6	5.7	398	1165
T873-194	91	ilmenitite	56.39	0.13	27.15	0.37	9.31	5.87	0.22	99.71	46.7	1.3	331	1181
T873-202	87	ilmenitite	56.08	0.10	27.13	0.36	9.23	5.87	0.19	99.22	46.5	1.1	307	1324
T873-220	87	ilmenitite	56.02	0.10	27.00	0.33	9.21	5.81	0.19	98.99	46.7	1.1	313	1291
T873-242	90	ilmenitite	55.99	0.12	26.98	0.37	9.36	5.93	0.14	99.17	46.6	0.8		
18/3-259	92	ilmenitite	56.02	0.14	26.81	0.42	9.77	5.96	0.14	99.56	47.5	0.8		
T873-268	57	opx-norite	55.89	0.10	27.46	0.25	9.59	5.65	0.25	99.40	48.4	1.5	270	1264
T873-283	91	ilmenitite	56.14	0.14	26.90	0.41	9.24	6.06	0.07	99.20	45.7	0.4		
T873-291	86	opx-ilmenitite	56.67	0.10	27.15	0.36	9.20	5.97	0.08	99.67	46.0	0.5		
T873-296	93	ilmenitite	56.24	0.11	27.11	0.35	9.63	5.93	0.07	99.80	47.3	0.4		
T873-301	88	opx-ilmenitite	56.20	0.10	27.30	0.37	9.43	5.86	0.06	99.49	47.1	0.4	246	1366
18/3-316	3	Allard anorthosite	56.45	0.04	26.84	0.29	8.52	5.43	1.04	98.91	46.4	6.3	194	1148
18/3-320	76	opx-ilmenitite	57.00	0.06	26.71	0.32	8.75	6.01	0.31	99.36	44.6	1.8	198	1163
18/3-321	38	opx-norite	57.96	0.05	25.74	0.55	8.11	5.93	0.52	99.15	43.0	3.2	101	1056
18/3-322	4	HSP anorthosite	56.74	0.03	26.83	0.22	9.09	5.58	0.78	99.30	47.4	4.6	246	1139
18/5-25	93	ilmenitite	57.16	0.11	25.73	0.55	8.33	6.44	0.18	99.27	41.7	1.1		
18/5-35	86	ilmenitite	56.28	0.10	27.17	0.26	9.25	5.88	0.17	99.45	46.5	1.0	278	1204
18/5-66	16	norite	56.90	0.07	26.92	0.29	9.28	5.25	0.83	99.62	49.4	5.0	346	1203
18/5-/9	89	limenitite	56.48	0.12	27.03	0.48	9.17	6.02	0.13	99.61	45.7	0.8	234	851
18/5-91	0	Allard anorthosite	56.89	0.07	26.74	0.40	9.33	4.95	1.01	99.52	51.0	6.2	386	1151
18/5-96	86	ilmenitite	56.02	0.09	27.52	0.36	9.67	5.68	0.19	99.87	48.5	1.1	181	11/4
18/5-106	91	ilmenitite	56.02	0.12	27.22	0.38	9.45	5.81	0.09	99.44	47.3	0.5	184	1184
18/5-116	/9	ilmenitite	56.40	0.08	27.05	0.32	9.35	5.64	0.38	99.39	4/.8	2.3	251	1045
18/5-140	0	HSP anorthosite	56.91	0.04	26.63	0.46	8.52	5.67	0.95	99.54	45.4	5.7	43/	1026
18/5-150	0	HSP anorthosite	57.01	0.03	26.61	0.30	8.69	5.67	0.89	99.33	45.9	5.5	284	1125
18/3-103	0	HSP anorthosite	57.50	0.03	20.03	0.28	8.70	5.67	0.27	99.70	45.9	0.1	200	1155
N10-0	88 70	ilmenitite	55.47	0.12	27.55	0.30	9.00	5.52	0.27	99.08	49.2	1.0	280	1280
N10-13	01	ilmonitito	55.09	0.11	27.00	0.32	9.64	5.50	0.45	99.00	19.7	2.0	200	1295
N10-24 N10-22	91	ilmonitito	55.51	0.11	27.35	0.31	9.67	5.02	0.25	99.40	48.7	1.5	283	1202
N10-33	91	ilmonitito	55.51	0.15	27.20	0.39	0.54	5.70	0.15	99.55	49.1	0.7	270	11//
N10-42	04	ilmonitito	55.67	0.12	27.02	0.40	9.54	5.70	0.27	99.59	4/./	1.0	250	1107
N10-54	2	Allard anorthosite	56.97	0.12	27.07	0.54	8.10	5.76	0.14	99.01	40.1	5.0	310	1124
N10-60	90	ilmenitite	55.08	0.12	26.77	0.53	10.14	5.84	0.21	99.11	49.0	12	510	1121
N10-67	93	ilmenitite	55.00	0.12	26.75	0.34	9.88	5.98	0.13	99.31	47.7	0.7	220	1301
N10-72	89	ilmenitite	56.46	0.10	27.36	0.28	9.48	5.84	0.15	99.97	47.3	0.7	269	1255
N10-75	0	HSP anorthosite	56.76	0.05	26.76	0.31	9.51	5.68	0.77	99.94	48.1	4.4	250	1233
N10-106	0	HSP anorthosite	55.90	0.03	26.70	0.24	10.01	5.00	0.65	99.07	49.0	3.6	213	1164
N10-152	0	HSP anorthosite	56.81	0.03	26.72	0.24	9.41	5 57	0.63	99.53	48.3	3.7	237	1055
TL05	Ő	HSP anorthosite	56.39	0.04	26.89	0.33	9.16	5 57	0.72	99.14	47.6	43	244	1181
TL09	Ő	HSP anorthosite	56 70	0.04	26.62	0.38	8 62	5 44	1.18	99.28	46.7	7.1	262	986
TL16	0	HSP anorthosite	56.58	0.05	26.66	0.39	8.75	5.58	1.06	99.28	46.4	63	298	1167
TL19	5	opx-norite	56 30	0.05	27.02	0.51	9.43	5 29	0.84	99.60	49.6	5.0	348	1060
TL20	2	opx-norite	56.15	0.05	26.94	0.53	9.26	5 29	0.93	99.43	49.2	5.6	377	1000
TL21	0	HSP anorthosite	56.42	0.05	26.78	0.23	9.41	5.59	0.66	99.18	48.2	3.9	213	962
TL22	0	HSP anorthosite	56.58	0.03	26 90	0.31	9,20	5.54	0.70	99 33	47.9	4 2	235	1083
TL23	0	HSP anorthosite	56 76	0.03	27.03	0.25	9.32	5.52	0.62	99.59	48 3	3 7	206	1027
TL24	0	HSP anorthosite	56.94	0.03	26.78	0.24	9.14	5.55	0.67	99.41	47.6	4.0	196	1121
TL25	0	HSP anorthosite	56.82	0.03	26.70	0.27	9.13	5.62	0.64	99.26	47.3	3.8	272	1055
TL26	0	HSP anorthosite	56.90	0.03	26.87	0.27	9.01	5.65	0.70	99.51	46.8	4.2	221	1098
TL31	0	HSP anorthosite	56.73	0.05	26.83	0.27	9.25	5.49	0.62	99.29	48.2	3.7	230	1182
TL35	10	HSP anorthosite	57.02	0.21	26.68	0.27	9.09	5.50	0.81	99.77	47.7	4.8	391	1142
TL36	4	opx-norite	56.57	0.04	26.84	0.38	9.15	5.56	0.78	99.61	47.6	4.6	335	1121
TL37	0	HSP anorthosite	56.92	0.07	26.45	0.30	8.93	5.56	0.74	99.06	47.0	4.4	287	1134

An = 100 [Ca/(Ca+Na)]; Or = 100 [K/(Ca+Na+K)]; Sr and Ba in ppm

Table 3

Microprobe	e analy	ses of alui	minous spinel	from the	e Allard	Lake Ilr	nenite d	eposit								
Sample	n	Ilm prop	Rock type	TiO ₂	Al ₂ O ₃	FeO	MgO	MnO	Cr ₂ O ₃	ZnO	V_2O_3	Total	Xherc	Xspinel	Xgal	Xgah
T873-68	12	95	ilmenitite	0.01	62.87	16.67	17.10	0.06	0.71	1.48	0.05	98.94	0.344	0.628	0.001	0.027
T873-133	11	73	opx-ilmenitite	0.04	60.02	17.99	15.39	0.05	3.63	2.02	0.07	99.21	0.381	0.580	0.001	0.038
T873-268	11	57	opx-norite	0.04	61.42	20.07	15.44	0.06	0.92	1.26	0.07	99.28	0.412	0.564	0.001	0.023
T873-291	14	86	opx-ilmenitite	0.02	62.59	18.52	15.83	0.06	0.88	1.14	0.06	99.10	0.387	0.590	0.001	0.021
T873-296	84	93	ilmenitite	0.04	62.07	18.57	16.32	0.06	1.05	1.12	0.06	99.29	0.381	0.597	0.001	0.020

Xherc, Xspinel, Xgal and Xgah are molar fractions of hercynite (FeAl₂O₄), spinel (MgAl₂O₄), galaxite (MnAl₂O₄) and gahnite (ZnAl₂O₄) respectively; n is the number of microprobe analyses.

Table 4
Microprobe analyses of orthopyroxene, clinopyroxene and sapphirine from the Allard Lake ilmenite deposit and the host Havre-Saint-Pierre
anorthosite

Sample	n	Ilm prop	Rock type	SiO ₂	TiO ₂	Al_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	Total	Mg#	En	Fs	Wo
Orthopyroxen	е															
T873-68	15	95	ilmenitite	50.39	0.15	7.77	14.85	0.18	26.04	0.03	0.03	99.44	75.8	75.7	24.2	0.1
T873-101	22	17	opx-norite	52.61	0.14	1.53	20.47	0.33	23.28	0.72	0.02	99.10	67.0	66.0	32.5	1.5
T873-125	21	8	opx-norite	52.88	0.13	1.81	19.72	0.31	23.89	0.69	0.02	99.45	68.4	67.4	31.2	1.4
T873-133	14	73	opx-ilmenitite	52.56	0.17	3.09	16.98	0.24	25.73	0.46	0.02	99.25	73.0	72.3	26.8	0.9
T873-190	21	5	Allard anorthosite	51.18	0.13	2.87	22.71	0.44	21.74	0.29	0.02	99.38	63.0	62.7	36.7	0.6
T873-268	10	57	opx-norite	49.02	0.16	9.08	16.94	0.19	23.99	0.05	0.03	99.46	71.6	71.5	28.3	0.1
T873-291	17	86	opx-ilmenitite	49.94	0.15	8.36	16.13	0.18	24.80	0.06	0.01	99.63	73.3	73.2	26.7	0.1
T873-296	20	93	ilmenitite	49.82	0.18	8.46	15.33	0.17	25.45	0.09	0.02	99.52	74.7	74.6	25.2	0.2
T875-87	12	95	ilmenitite	50.42	0.20	7.62	15.84	0.19	26.01	0.14	0.02	100.44	74.5	74.3	25.4	0.3
N10-75	10	0	HSP anorthosite	53.01	0.14	1.50	21.12	0.59	23.40	0.57	0.01	100.34	66.4	65.6	33.2	1.1
TL19	13	5	opx-norite	53.08	0.22	1.66	19.92	0.35	24.06	0.71	0.02	100.02	68.3	67.3	31.3	1.4
TL20	19	2	opx-norite	52.60	0.17	1.48	21.16	0.39	22.98	0.59	0.02	99.39	65.9	65.1	33.7	1.2
TL31	10	0	HSP anorthosite	51.61	0.21	1.54	24.83	0.84	20.14	0.54	0.02	99.73	59.1	58.4	40.4	1.1
TL36	25	4	opx-norite	52.65	0.15	1.60	20.73	0.32	23.14	0.66	0.02	99.27	66.6	65.6	33.0	1.4
Clinopyroxene	,															
T873-166	21	5	Allard anorthosite	50.80	0.58	2.81	8.71	0.20	13.22	22.55	0.47	99.34	73.0	38.5	14.2	47.2
N10-75	6	0	HSP anorthosite	52.21	0.29	2.10	7.36	0.23	14.28	23.47	0.35	100.29	77.6	40.5	11.7	47.8
N10-152	10	0	HSP anorthosite	51.72	0.33	2.30	8.51	0.33	13.27	22.98	0.47	99.91	73.5	38.4	13.8	47.8
TL20	12	2	opx-norite	51.17	0.57	2.83	8.71	0.18	13.56	21.89	0.47	99.38	73.5	39.7	14.3	46.0
TL31	20	0	HSP anorthosite	51.28	0.44	2.87	8.69	0.26	13.12	22.50	0.49	99.65	72.9	38.4	14.3	47.3
Sapphirine																
T873-68	4	95	ilmenitite	12.70	0.06	59.68	9.17	0.07	16.14	0.01	0.01	97.89				
T873-268	18	57	opx-norite	11.96	0.09	61.62	8.60	0.05	15.90	0.01	0.00	98.23				

 $Mg\#=100 \ [Mg/(Mg+Fe)]; \ En=100 \ [Mg/(Mg+Fe+Ca)]; \ Fs=100 \ [Fe/(Mg+Fe+Ca)]; \ Wo=100 \ [Ca/(Mg+Fe+Ca)]; \ Wo=100 \ [Ca/(Mg+Fe+Ca)]; \ Wo=100 \ [Ca/(Mg+Fe+Ca)]; \ Wo=100 \ [Mg/(Mg+Fe+Ca)]; \ Wo$