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Abstract—Analysis of complex data is still a challenge in
medical image analysis. Due to the heterogeneous information
that can be extracted from magnetic resonance imaging (MRI) it
can be difficult to fuse such data in a proper way. One interesting
case is given by the analysis of diffusion imaging (DI) data.
DI techniques give an important variety of information about
the status of microstructure in the brain. This is interesting
information to use especially in longitudinal setting where the
temporal evolution of the pathology is an important added value.

In this paper, we propose a new tensor-based framework
capable to detect longitudinal changes appearing in DI data in
multiple sclerosis (MS) patients. We focus our attention to the
analysis of longitudinal changes occurring along different white
matter (WM) fiber-bundles. Our main goal is to detect which
subset of fibers (within a bundle) and which sections of these
fibers contain “pathological” longitudinal changes. The frame-
work consists of three main parts: i) preprocessing of longitudinal
diffusion acquisitions and WM fiber-bundles extraction, ii) data
tensorization and rank selection, iii) application of a parallelized
constrained tensor factorization algorithm to detect longitudinal
“pathological” changes.

The proposed method was applied on simulated longitudinal
variations and on real MS data. High level of accuracy and
precision were obtained in the detection of small longitudinal
changes along the WM fiber-bundles.

Index Terms—Multiple Sclerosis, Tensor Factorization, Diffu-
sion Imaging, Longitudinal Analysis, Tractography.

I. INTRODUCTION

Magnetic resonance imaging (MRI) is becoming the refer-
ence technique to assess brain related pathology. The evolution
of fast magnetic acquisition techniques, allowed to use MRI
to perform short term longitudinal follow-up of single patients
in order to assess the pathological course.
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Among all the available MRI biomarkers, diffusion tensor
imaging (DTI) or, in general, diffusion imaging (DI), is one of
the most interesting techniques to analyze structural changes
in the brain. More in detail, in the last decade, different
papers showed how image biomarkers derived from DI are
sensible for the characterization of brain pathologies like brain
tumors and multiple sclerosis (MS) [5], [11]. Moreover, DI
was successfully applied in longitudinal follow-up of brain
related pathology showing a good capability to enhance the
presence of small longitudinal variations occurring in white
matter (WM). These results are encouraging in exploiting DI
in follow-up of relapsing remitting (RR) MS patients where
small longitudinal changes occur in WM during the evolution
of the pathology.

Main challenge in DI analysis is derived from the large
number of information that is possible to derive. Indeed DI
provides both structural and quantitative information. The
former can be derived from the application of a tractography
algorithm that allows to reconstruct the architecture of WM
fibers. The latter is obtained by using a specific model to
analyze diffusion like DTI. This information allows to obtain
quantitative measures helpful to assess the properties of the
tissue. If in this setting longitudinal information is added, it is
quite easy to see how the corresponding data analysis problem
starts to become quite complex.

Recently, different efforts were made in order to perform
such complex analysis. In [6], the authors showed a method to
analyze longitudinal changes in WM. Main limitation of this
method is related to its capability to perform a longitudinal
analysis restricted to two time-points. Moreover, it can not
take into account multiparametric data at the same time.
In our previous works, we overcome the limitation of this
method [19], [17], [20]. In particular, in [20] we developed a
method based on non-negative matrix factorization to perform
longitudinal analysis in MS patients in cross-sections of the
WM fiber-bundle. Since the major constraint in using a matrix
factorization is given by the fixed number of the dimensions,
this method was applied only to one specific cross-section
of the bundle at time. As a result, only local information
contained in a specific cross-section was taken into account
during the analysis, ignoring the information available along
different fibers within the bundle.

In the last years, tensor factorization techniques [16]
emerged as a convincing tool to perform data fusion. More in
detail, their capability to analyze data, that can be represented
using more than two dimensions, made them a perfect tool
easy to use in scenarios where more than two dimensions are
needed to represent the data.
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In this paper, we propose a new tensor-based framework to
analyze longitudinal changes in MS patients occurring along
WM fiber-bundles. Our main goal is to detect which subset of
fibers within a WM fiber-bundle and which sections of those
fibers contain “pathological” longitudinal changes and which
are the time-points affected by those changes. We developed a
complete fully automated pipeline to register and extract WM
fiber-bundles from MRI data and analyze them using tensor
factorization. Moreover, in order to optimize the computational
time needed to perform the tensor factorization, we developed
a parallel pipeline to perform such analysis.

This paper is structured as follows. In Section II, we provide
a detailed description of the processing pipeline used in this
work to extract WM fiber-bundles and register longitudinal
data. In Section III, we describe how our problem to analyze
longitudinal changes in WM fiber-bundle can be formalized
using tensors. In Section IV we show how to speed-up the
proposed framework using parallel programming. In Section
V, we present our experimental campaign. In Section VI we
show our results. In Section VII we discuss the performances,
benefits and limitations of our method. Finally, in Section VIII,
we draw our conclusions.

II. OUR DATA PROCESSING

Before describing or data processing pipeline, we need to
state some assumptions made in this paper. More in detail,
we assume that each patient has longitudinal MRI acquisition.
In general, we denote with s the number of acquisitions for
a single patient. Moreover, for each patient we assume that
diffusion data are available at each time-point.

A. Data registration

As first step, each of the s time-points (T1 . . . Ts) of DTI
longitudinal acquisitions, are processed. Eddy current correc-
tion [9] was first applied on the diffusion volumes using the
b0 volume (b = 0s.mm−2) as reference. Tensor model was
then computed using the FDT module of FSL [9]. In order
to minimize any bias introduced by the registration process,
the longitudinal data were co-registered using the diffusion
tensor based method described in [10]. More in details, the
following steps were performed: i) generation of a patient-
specific template obtained from longitudinal diffusion tensor
images, ii) co-registration of the resulting template to the
Illinois Institute of Technology (IIT) atlas [22], and iii) co-
registration of each time-point data into the IIT atlas space
by applying the previously obtained transformations to the
initial longitudinal data. After the co-registration the obtained
tensor image was used to compute, for each time-point,
8 diffusion metric maps: fractional anisotropy (FA), mean
diffusivity (MD), Compositional Kullback-Leibler Anisotropy
(KLA), Angular Anisotropy (AA) [14], radial diffusivity (λr)
and the three eigenvalues of the diffusion tensor (λ1, λ2, λ3).

B. Fiber-bundle extraction

The fiber orientation density (FOD) information contained
in the IIT Atlas were used in order to perform a probabilistic

streamline tractography using MRTrix [21]. From the obtained
tractography, the algorithm described in [18], coupled with the
regions of interest (ROI) contained in the JHU atlas [7], was
applied in order to extract the fiber-bundles. In order to analyze
fiber-bundles an additional step is needed. Indeed, the output of
the tractography could not be directly used for the analysis of
the fiber-bundle since the number of points used to reconstruct
the fibers varies. Moreover, start and end point of each fiber
are not consistent within the same fiber-bundle. Fibers could
start randomly from the two extremities of the bundle. In order
to overcome those problems part of the pipeline described in
[19] was applied to process the fiber-bundle. As first step we
define common start/end points of each fiber within the bundle.
A classical K-Means algorithm [13] is performed to generate
two different clusters, R1 for the starting points and R2 for
the ending points. Fiber points are then reordered from R1 to
R2 and fibers that did not link the two clusters (broken fibers)
are automatically removed. As final post-processing step each
fiber is resampled with the same number q = 100 of points
(also called nodes or cross-sections).

C. Fiber-bundle formalization

After the post-processing we can formalize the extracted
fiber-bundle as set F = {f1, f2, . . . , fv} composed of v fibers
fj = {p1p1p1, . . . , pqpqpq} where pipipi = (xi, yi, zi) | 1 ≤ i ≤ q.
The coordinate pipipi is used to extract the voxel’s value of
one of the six diffusion maps (FA(pipipi) in case of FA) in
the corresponding location of fj . With this formalization it
is possible to analyze the signal along each fiber within the
bundle. For instance, the FA signal profile along a fiber fj ∈ F
can be regrouped in the set Ej = {FA(p1p1p1), . . . , FA(pqpqpq)}.
This subdivision is graphically described in Figure 1. A
common way to represent the signal profile along the whole
fiber-bundle is to average all the signal profiles along each
fiber fj ∈ F . The global profile is then expressed using mean
and standard deviation of the signal along the fiber bundle as
presented in Figure 1.

Similarly, taking all the cross-sections ppp with the index i in
each fiber f ∈ F it is possible to analyze the global diffusion
values in a particular cross-section of F . More in detail we can
collect all the FA values belonging to a given cross-section of
F defining the following set: Si = {FA(pipipi) | pipipi ∈ f ∀ f ∈ F}
where i is the fixed index representing the cross-section to
analyze.
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Figure 1. A) Original fiber-bundle F . B) A single fiber fj ∈ F . C) FA
signal along each fiber fj ∈ F . D) Mean FA signal (black line) with standard
deviation (coloured band) representing the global signal profile along F .

III. FIBER-BUNDLE AS TENSOR

Before the introduction of our tensor-based formalism we
need to define the notation used in this paper. More in detail,
if not clearly stated, we will use the notation described in
[12]. We denote with lower case letters e.g. a scalar values,
with bold lower case letters e.g. aaa 1-dimensional vectors, with
boldface uppercase letter e.g. AAA matrices and with boldface
Euler script letters AAA tensors.

In this work we describe a new method to analyze longitu-
dinal changes visible along WM fiber-bundles using a tensor-
based model. In Figure 2 we show the model of our tensor
to describe the signal along a given fiber-bundle. The third-
order tensor TTT ∈ Rv×q×m is generated by concatenating all the
longitudinal features extrapolated along all the fibers within a
bundle.

More in detail, let z be the number of features we want
to extrapolate along the fiber-bundle and let s be the number
of acquired time-points. Since we have multiple features and
multiple time-points, we define with Mij 1 ≤ i ≤ z, 1 ≤
j ≤ s the i− th feature extrapolated at the j − th time-point.
Using this information the tensor TTT ∈ Rv×q×m, with m =
s ∗ z, is built. In Figure 3 we show a graphical representation
describing how the z features of each time-point are stacked
in the 3rd mode of the tensor TTT.

Figure 2. Tensorization of longitudinal diffusion features along a fiber-bundle
(cortico-spinal tract in this case).
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Figure 3. Representation of the 3rd mode of the tensor TTT

This tensor-based representation gives us the possibility to
analyze, in this one structure, local and global aspects of a
fiber-bundle.

A. Tensor factorization using canonical polyadic decomposi-
tion

The canonical polyadic decomposition (CPD) decomposi-
tion factorizes a tensor into a sum of rank-one tensors. For
example, given a third-order tensor XXX ∈ Rv×q×m we wish to
decompose it as:

XXX =
R∑
r=1

ararar ◦ brbrbr ◦ crcrcr +EEE (1)

where R is a positive integer, ararar ∈ Rv, brbrbr ∈ Rq, crcrcr ∈
Rm ∀ 1 ≤ r ≤ R are the mode-1, mode-2 and mode-3
vectors respectively and EEE ∈ Rv×q×m is the residual tensor.
The symbol “◦” represents the outer product.

The rank of a tensor XXX, denoted rank(XXX), is defined as the
smallest number of rank-one tensors that generate XXX as their
sum. In other words, this is the smallest number of components
in an exact CP decomposition, where “exact” means that there
is equality in equation 1 with residual tensor EEE set to zero. An
exact CP decomposition with R = rank(XXX) components is
called the canonical polyadic decomposition (CPD).

The CPD problem can be formalized as follows:

min
X̂XX

‖XXX−X̂XX‖F with X̂XX =
R∑
r=1

ararar ◦brbrbr ◦crcrcr = JAAA;BBB;CCCK (2)

In our specific case, since non-negative values are present
in the analysis, we imposed a non-negativity constraint to the
factorization. More in detail, in order to factorize our tensor,
the following optimization problem is solved.

min
A≥0,B≥0,C≥0A≥0,B≥0,C≥0A≥0,B≥0,C≥0

‖TTT −AAA ◦BBB ◦CCC‖ (3)

The formulation of the tensor factorization using CPD is
graphically described in Figure 4.

According to the tensorization process previously described,
the factor matrix AAA ∈ Rv×R stacks in its columns all
vectors ar describing the contribution of each fiber during
the factorization. Similarly, the factor matrix BBB ∈ Rq×R
stacks all the br and contains the contribution of each fiber-
bundle, and finally the factor matrix CCC ∈ Rm×R, stacking
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TTT ≈

c1c1c1
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a1a1a1
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bRbRbR
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Figure 4. Canonical polyadic decomposition

all cr, contains the contribution of each feature extracted in
a specific time-point. We used the information contained in
the AAA (fibers information) and BBB (cross-sectional information)
factor matrices in order to discriminate fibers and cross-
sections affected by longitudinal changes. The factor matrix
CCC is used to identify which are, among the R sources,
the ones containing “pathological” longitudinal changes. The
idea behind the automatic selection of the sources containing
information about the longitudinal “pathological” changes is
described in Section III-C.

B. Rank estimation for factorization

An important issue in tensor factorization is the estimation
of the rank for the CPD factorization of a tensor TTT. The
literature on estimation of decomposition rank from the tensor
is limited. Tensorlab package [23] has a method rankest, which
estimates the rank based on the L-curve of the number of rank-
one terms in a CPD [3]. This approach allows to obtain the
minimum number of component to get the best fit. In a real
case scenario, this method can overestimate the real rank of
the data. Indeed, the estimated rank tends to be larger than the
real rank of components present in the image, due to noise or
biological variations. In this work, since the proposed method
is capable to automatically identify which are the sources of
interest, (as we will describe in Section III-C), we use rankest
function to estimate the rank of the factorization. We prefer
to overestimate the real rank by using the rankest function, in
order to avoid loss of information after the factorization.

C. Detection of longitudinal changes from tensor factorization

In order to detect the sources containing the changes gen-
erated by longitudinal variations, we generalize the method
we previously proposed in [20]. In our previous work [20],
we introduced a model to detect longitudinal changes in
sources obtained by factorizing data using a non-negative
matrix factorization (NMF). Here we generalize the previous
model to the tensor case where each component to analyze is
represented by a one dimensional vector.

After the factorization of the tensor TTT in R components, we
obtained the vectors ararar ∈ Rv, brbrbr ∈ Rq, crcrcr ∈ Rm ∀ 1 ≤ r ≤ R.
In order to detect if a component i 1 ≤ i ≤ R captures
abnormal changes contained in certain features in specific
time-points its vector cicici is used. We recall that the vector cicici
contains the information of all the z features extracted in the
s time-points as follows:

cicici = [ci1, · · · , ciz︸ ︷︷ ︸
T1

, · · · , cis∗z−z, · · · , cis∗z︸ ︷︷ ︸
Ts

]

In this vector, each block of z consecutive elements repre-
sents the contribution of each diffusion feature, extracted in a
specific time-point Ti. Starting from the vector cicici the goal is to
detect if the i−th components contains longitudinal variations.
More in detail, we say that a longitudinal variation appears in
the i− th component if longitudinal variations are present in
all the diffusion metrics belonging to certain time points of Ti.
We define these “changed time points” as outliers. In order to
clarify this concept, we report in Figure 5 a graphical example
of outliers contained in component vector cicici. In the rest of this
section we will show how we can: i) detect the outliers in the
component vector cicici, ii) exploit the information derived from
the outlier analysis in order to extract fibers and cross-sections
affected by longitudinal pathological changes.

Since the tensor factorization generates R components, this
check is performed for all cicici 1 ≤ i ≤ R. Detection of
outliers was performed using a density-based local outliers
(LOF) algorithm [2].
The LOF algorithm allows to detect outliers by computing the
LOF value for each element. The LOF value of each object
represents the degree of the object to be an outlier compared to
the other elements in the cluster. This value strongly depends
on a single parameter MinPts, which represents the number
of nearest neighbours used in defining the local neighborhood
of the object [2]. The main problem related to the LOF is
the difficulty to interpret resulting LOF scores since there are
no clear rules that define when a point is an outlier. In order
to properly detect the outliers, this value should be carefully
selected for the specific dataset. A value is defined as “outlier”
if and only if the LOF value is greater than a fixed threshold
value ω.

In order to use the LOF algorithm to detect if cicici contains
outlying time-points, we represent this vector as a matrix
defined as follow:

ĈîCîCi =

 ci1 . . . ciz T1

...
. . .

...
...

cis∗z−z . . . cis∗z Ts

the matrix ĈîCîCi ∈ Rs×z is the matrix representation of the
original vector cicici where each of the s rows represents a time-
point defined by its diffusion features.
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Figure 5. Graphical example showing a plot of a component vector cicici
with s = 5 and z = 4. The vector contains outliers values from ci5
to ci12 corresponding to time-point 2 and time-point 3. Detection of those
outliers time-points allows to understand if the i− th component “captures”
longitudinal alterations. Moreover outlier detection in cicici allows to detect time-
points containing longitudinal pathological changes.

The matrix ĈîCîCi can now be used by the LOF algorithm
in order to detect if outlying time-points are present in the
corresponding i− th component.

As a result of the application of the LOF algorithm on
the matrix ĈîCîCi a vector lilili ∈ Rs is generated. This vector
contains real values lij 1 ≤ j ≤ s representing the LOF value
corresponding to the j − th row of the matrix ĈîCîCi. The LOF
value of each row in ĈîCîCi allows us to understand if a specific
time-point in the i− th component is an outlier. Or, in other
words, this value allows to detect if the i − th component
of the tensor factorization captures “longitudinal pathological
variations” appearing in the follow-up. We say that the i− th
component of the factorization contains pathological longitu-
dinal changes if the following condition holds:

∃ lij ∈ lilili | lij > ω, 1 ≤ j ≤ s (4)

where ω is the LOF threshold that allows to define whether
an element is an outlier or not. By applying this procedure to
each component it is possible to obtain two types of informa-
tion: i) the components who “capture” the longitudinal patho-
logical changes and ii) the time-points where the pathological
longitudinal changes appear. This procedure is summarized
in Algorithm 1. In detail, the algorithm take the component
vectors c1c1c1, . . . , cscscs generated from the tensor factorization and
the LOF threshold ω. The algorithm applies the LOF algorithm
to each matrix representation of the component vector in order
to detect which components and which time-points contain
longitudinal changes. The algorithm stores all the time-points
and the components containing the longitudinal changes in the
sets U and Y respectively.

The information derived from the proposed algorithm can
be used in order to detect which fibers (represented by the
component matrix AAA) and which cross-sections (represented
by the component BBB) are affected by longitudinal pathological
changes.

More in detail, in order to verify whether a fiber fi presents
longitudinal changes the following condition is checked. Let
ay[i] be the i−th element of the component vector ayayay obtained
from the tensor factorization and let Y be the set containing

Algorithm 1: ALGORITHM FOR DETECTION OF COMPO-
NENTS AND TIME-POINTS AFFECTED BY LONGITUDINAL
CHANGES

CMPTPDET (c1c1c1, . . . , cRcRcR, ω);
Input : the component vectors c1c1c1, . . . , cRcRcR obtained from the tensor

factorization
a positive real value ω > 0 representing the LOF threshold

Output: a set Y with the components detected as containing longitudinal
changes
a set U containing the time-points affected by the longitudinal changes

begin
Y ← ∅;
U ← ∅;
foreach i ∈ {1, . . . , R} do

ĈîCîCi = RESHAPE(cicici);
lilili = LOF(ĈîCîCi);
foreach j ∈ 1, . . . , s do

if lij > ω then
U ← U ∪ j;

end
end
Y ← Y ∪ i;

end
return Y , U

end

the components detected as “outliers” by the LOF algorithm.
We say that fi is affected by longitudinal pathological changes
if the following condition holds:

∃y ∈ Y | ay[i] > ar[i]∀1 ≤ r ≤ R, r 6= y (5)

Roughly speaking, this condition checks whether the fiber fi
has its maximal contribution in one of the components detected
as “outliers” by the LOF algorithm.

Similarly, in order to check if a specific cross-section
j (1 ≤ j ≤ q) of the fiber-bundle is affected by longitudinal
changes, the following condition is also checked. Let by[j] be
the j − th element of the component vector bybyby obtained from
the tensor factorization and let Y be the set containing the
components detected as “outliers” by the LOF algorithm. We
say that the cross-section j is affected by longitudinal changes
if the following condition holds:

∃y ∈ Y | by[j] > br[j]∀1 ≤ r ≤ R, r 6= y (6)

Like for the fibers, this condition checks whether the cross-
section j has its maximal contribution in one of the compo-
nents detected as “outliers” by the LOF algorithm.

The procedures used for the detection of all the fibers
and cross-sections affected by the longitudinal changes are
described in Algorithm 2 and Algorithm 3 respectively. Both
the algorithms check, for each fiber and cross-section, whether
the conditions defined in equation 5 and 6 are satisfied. The
algorithms store all the fibers and the cross-section detected
as containing the pathological longitudinal changes in the sets
P and H respectively.
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Algorithm 2: ALGORITHM FOR DETECTION OF FIBERS
AFFECTED BY LONGITUDINAL CHANGES

FIBDET (a1a1a1, . . . ,aRaRaR, Y, v);
Input : the component vectors a1a1a1, . . . , aRaRaR obtained from the tensor

factorization
the set Y with the components detected as containing longitudinal

changes by Algorithm 1
number of fibers v

Output: A set P with the fibers containing longitudinal pathological changes
begin

H ← ∅;
foreach i ∈ {1, . . . , q} do

if ∃y ∈ Y | ay[i] > ak[i]∀1 ≤ k ≤ R, k 6= y then
P ← P ∪ i

end
end
return P

end

Algorithm 3: ALGORITHM FOR DETECTION CROSS-
SECTION AFFECTED BY LONGITUDINAL CHANGES

CSDET (b1b1b1, . . . , bRbRbR, Y, q);
Input : the component vectors b1b1b1, . . . , bRbRbR obtained from the tensor

factorization
the set Y with the components detected as containing longitudinal

changes by Algorithm 1
number of cross-sections q

Output: A set H with the cross-sections containing longitudinal pathological
changes

begin
H ← ∅;
foreach i ∈ {1, . . . , q} do

if ∃y ∈ Y | by[i] > bk[i]∀1 ≤ k ≤ R, k 6= y then
H ← H ∪ i

end
end
return H

end

IV. PARALLEL IMPLEMENTATION OF THE PROPOSED
METHOD

In order to reduce the computation time needed to per-
form the factorization of the fiber-bundle, we parallelized the
algorithm according to the “divide et impera” programming
paradigm. Instead of computing the CPD and LOF on the
whole fiber-bundle, we split the fiber-bundle in small subsets
of fibers. In order to split the whole fiber-bundle in K different
sub fiber-bundles, for each pair of fibers fa, fb ∈ F we
compute the Minimum Average Direct Flip (MDF) metric [4].
The MDF metric computes the distance between two fibers
composed by q points according to the following equations:

ddirect(fa, fb) = d(fa, fb) =
1

q

q∑
i=1

‖paip
a
ip
a
i − pbip

b
ip
b
i‖ (7)

dflipped(fa, fb) = d(fa, f
#
b ) = d(f#

a , fb) (8)
MDF (fa, fb) = min(ddirect(fa, fb), dflipped(fa, fb)) (9)

where ‖paipaipai −pbipbipbi‖ represents the Euclidean distance between
the i − th point of fa and fb. In equation 8, f#

a denotes
the flipped version of fa, e.g. fa = {p1p1p1, p2p2p2, . . . , pqpqpq}, f#

a =
{pqpqpq, pq−1pq−1pq−1, . . . , p1p1p1}. The MDF distance is a metric on the space
of fibers, it respects the triangle inequality and it is fast to
compute [4].

Let v the total number of fibers, we can compute the MDF
distance for each pair of fibers building the positive symmetric
matrix MMM ∈ Rv×v where mij ∈ MMM represents the MDF

Algorithm 4: ALGORITHM FOR CLUSTER GENERATION

WMCL (F,K);
Input : a set F = {f1, f2, . . . , fv} of fibers

a positive integer K > 1 representing the number of clusters to generate
Output: a set Cl = {F1, F2, . . . , FK} of clusters
begin

M ← zeros(v, v);
foreach pair (fi, fj ) s.t. fi ∈ F, fj ∈ F do

M [i, j] = MDF (fi, fj);
end
Cl = KMedoids(F,M,K);
return Cl

end

distance computed between the fibers fi and fj . The matrixMMM
is then used as distance matrix for the K-medoids clustering
algorithm in order to generate a set Cl = {F1, F2, . . . , FK} of
K clusters (Algorithm 4). In our prospective, a cluster Fi ∈ Cl
represents a sub fiber-bundle generated from the original fiber-
bundle F such that

⋃K
i=1 Fi = F .

After their computation, each sub fiber-bundle is assigned to
a different processor in order to perform the sub fiber-bundle
analysis. In this analysis, each processor, independently, com-
putes the CPD for the assigned sub-bundle. The results of this
factorization are then used to detect the time points, the fibers
and the cross-sections affected by the longitudinal pathological
changes using Algorithm 1, Algorithm 2 and Algorithm 3
respectively. The results obtained by each processor are finally
merged into different synchronized shared variables (Algo-
rithm 5). At the end of this process the algorithm will generate
three sets U , P and H representing the time points, the fibers
and the cross-sections affected by pathological longitudinal
changes respectively.

The parallel execution of the algorithm could be graphically
represented as a diagram (Figure 6). Each branch represents
the computation flow independently executed by each of the K
processors. At the end of the parallel execution, each processor
adds its local solution to the complete solution set.

Algorithm 5: PARALLEL ALGORITHM FOR WM ANAL-
YSIS USING TENSOR FACTORIZATION

WMTF (F, ω,K, v, q);
Input : F set containing all the fibers of a bundle, ω LOF threshold parameter,

K number of parallel processors, v total number of fibers, q total
number of cross-sections

Output: U set containing the time-points affected by the longitudinal changes
P set of fibers containing longitudinal changes
H set of cross-section containing longitudinal changes.

U ← ∅;
P ← ∅;
H ← ∅;
F1, . . . , FK ← WMCL(F,K);
foreach F

′
∈ {F1, . . . , FK} do

StartNewProcess;
TTT ← GenTensor(F

′
);

R← rankest(TTT);
a1a1a1, . . . ,aRaRaR, b1b1b1, . . . , bRbRbR, c1c1c1, . . . , cRcRcR ← min

ar≥0,br≥0,cr≥0ar≥0,br≥0,cr≥0ar≥0,br≥0,cr≥0,
1≤r≤R

‖TTT −
∑R
r=1 ararar ◦ brbrbr ◦ crcrcr‖;

Y, U
′
← CMPTPDET(c1c1c1, . . . , cRcRcR, ω);

synchronized;
U ← U ∪ U

′
;

P ← P ∪ FIBDET(a1a1a1, . . . ,aRaRaR, Y, v);
H ← H ∪ CSDET(b1b1b1, . . . , bRbRbR, Y, q);
EndOfProcess;

end
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1 K

min
A≥0,B≥0,C≥0A≥0,B≥0,C≥0A≥0,B≥0,C≥0

‖TTT −AAA ◦BBB ◦CCC‖ . . . . . . . . . min
A≥0,B≥0,C≥0A≥0,B≥0,C≥0A≥0,B≥0,C≥0

‖TTT −AAA ◦BBB ◦CCC‖

LOF LOF

(U1, P 1, H1) (UK , PK , HK)

(U,P,H)

Figure 6. Graphical representation of parallel execution of the proposed algorithm

V. EXPERIMENTS

A. Subjects

Four relapsing-remitting (RR) MS patients (3 women and 1
man, mean (± SD) age: 36.8 ± 9.5 years; median disease du-
ration: 4.24y; max 16.5 y) (median Expanded Disability Status
Scale (EDSS)=2.5, range=[0; 4]) and one healthy control (HC)
subject (age: 24 years) were included in this study. Inclusion
criteria specified that studied patients were diagnosed as RR
MS if they present at least one new Gadolinium-enhancing
lesion during the six months preceding study enrolment. All
patients had stopped their treatment for at least one year and
have not started any during the study period. In order to
limit the nephrogenic damage risks associated to Gadolinium
injection, creatinine clearance was checked every 2 weeks
after inclusion. A clearance higher than 60ml/min was an
exclusion criterion. This study was approved by the local
ethics committee (CPP Sud-Est IV) and the French national
agency for medicine and health products safety (ANSM).
Written informed consent was obtained from all patients and
the control subject prior to study initiation.

B. MRI protocol

All subjects underwent a weekly examination for a period
of two months (8 time-points from T1 to T8). MRI protocol
included a DTI and a FLAIR acquisition, that were performed
on a 3T Philips Achieva system (Philips Healthcare, Best,
The Netherlands) with a 16-channels head-coil. The DTI
image set consisted of the acquisition of 60 contiguous 2mm-
thick slices parallel to the bi-commissural plane (AC-PC),
and were acquired using a 2D Echo-Planar Imaging (EPI)
sequence (TE/TR = 60/8210 ms, FOV = 224x224x120 mm)
with 32 gradient directions (b = 1000s.mm−2). The nominal
voxel size at acquisition (2x2x2 mm) was interpolated to
0.875x0.875x2 mm after reconstruction. The FLAIR Vista 3D
sequence (TE/TR/TI = 356/8000/2400 ms, FOV=180x250x250
mm) consisted of the acquisition of 576 slices of 0.43 mm
thickness.

C. Experiments on simulated longitudinal Variations

As described in [17], a simulation study was performed in
order to quantify the performances of the proposed method.
More in details, 100 different longitudinal variations were
simulated on the diffusion map of a control subject. All the
variations were generated along 10 different fiber-bundles,
namely, left and right cortico-spinal tract, inferior-fronto occip-
ital fasciculi, cingulum, and forceps major and minor of corpus
callosum. In order to simulate the longitudinal variations on
diffuse data, the method we proposed in [20], and described in
the Appendix, was used. More in detail, we randomly selected
several cross-sections and fibers within a specific bundle.
For each voxel belonging to these regions, a generalized
Gaussian probability density function (GGPDF) with param-
eters µη, αη, βη, µρ, αρ, βρ (see the Appendix for a complete
explanation of those parameters) randomly chosen were used
to simulate the longitudinal changes. Three different tests
were performed: i) detection of fibers containing longitudinal
changes, ii) detection of cross-sections affected by longitudinal
alterations and iii) identification of abnormal time-points.

Performance measurements used in this work are based on
the analysis of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) instances classified
during the testing phase. Performances of longitudinal vari-
ations were evaluated using accuracy (Ac), precision (Pr)
and sensitivity (Se) respectively defined as: Ac = TP+TN

P+N ,
Pr = TP

TP+FP and Se = TP
TP+FN . Since multiple tests were

performed, mean and standard deviation of accuracy, precision
and sensitivity (Ac±σAc, Pr±σPr, Se±σSe) were computed.

Best parameter values for MinPts and ω were obtained
trough grid-search. More in details, we selected a range of
values for both parameters and we took the couple with the
highest performance. MinPts values range from 1 to 8 (the
total number of time-points) and the ω interval was given by
{2, 4, 6, 8, 10, 12}.

Generalization of the performances was obtained using a
two parts validation method. In the first part, the grid-search,
previously described, was performed on simulated variations.
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In the second part, the method was applied on a new set of
simulated variations using the best parameters discovered in
the first step.

Moreover, in order to show the improvement obtained using
tensor factorization, we compared the proposed method with
our previous NMF-based method [20]. Since the algorithm
proposed in [20] allows just a local cross-sectional analysis of
the fiber-bundle, we compared the capability of the two meth-
ods to identify only cross-sections and time-points affected by
longitudinal pathological changes.

D. Experiments on real MS follow-up data

Four RR MS patients (see section V-A) were selected due
to the presence of visible longitudinal alterations assessed
by our neuroradiologist (FC). DTI data of each patient were
processed using our proposed pipeline described in section
II and III. Among the 20 fiber-bundles (contained in the
JHU atlas), the Cortico-Spinal Tract (CST), fronto-occipital
fasciculus (IFOF) and superior longitudinal fasciculus (SLF)
were selected because of the presence of longitudinal MS
alterations.

VI. RESULTS

A. Detection of affected fibers, cross-sections and time-points
on simulated data

Performances obtained for the detection, in simulated data,
of affected fibers within a bundle are reported in table I. The
table reports the value of accuracy, precision and sensitivity
obtained in the task of the extraction of fibers affected by
longitudinal changes. The tests were performed using different
diffusion features. Best results were obtained with using as
diffusion features 〈λ2, λ3〉 with an accuracy, precision and sen-
sitivity respectively of 0.97, 0.79 and 0.40. Satisfying results
were also obtained using 〈λ2, λ3, FA,MD〉 and 〈λ2, λ3, FA〉
having respectively an accuracy of 0.77 and 0.79, a precision
of 0.73 and 0.76 and a sensitivity of 0.20 and 0.23. Worst
results were obtained using 〈KLA,AA〉 and 〈KLA,FA,AA〉
having respectively an accuracy of 0.71 and 0.77, a precision
of 0.69 and 0.69 and a sensitivity of 0.16 and 0.15.

Performances obtained in the detection of affected cross-
sections within a bundle are reported in table II. Like the
previous case, globally, the best results were achieved using
〈λ2, λ3〉 as feature set with an accuracy, precision and sensitiv-
ity respectively of 0.63, 0.98 and 0.95. The features set com-
posed by 〈λ2, λ3, FA〉 show low values in terms of accuracy
(0.40) and sensitivity (0.56) but the highest level of precision
(1.00). Like for the tests performed for the detection of fibers
affected by longitudinal changes, worst results were achieved
by the features set 〈KLA,AA〉 and 〈KLA,FA,AA〉. More-
over, in table II, we show the performances obtained with the
tensor-based and NMF methods to detect cross-sections, of
a fiber-bundle, affected by pathological longitudinal changes.
From the table it is possible to see how the NMF method
method always outperforms tensor factorization in accuracy.
More in detail, NMF reaches the best accuracy (0.74) with
〈λ2, λ3, FA〉 and 〈λ2, λ3, FA,MD〉. Similar results are vis-
ible in sensitivity, indeed NMF always outperforms tensor

factorization except for the feature set 〈λ2, λ3〉 where tensor
factorization reaches the best performance. Contrarily, for
the accuracy, the tensor factorization outperforms, in all the
different diffusion features used, the NMF method.

Performances obtained in the detection of time-points af-
fected by longitudinal changes are reported in table III.
Best results were achieved using 〈λ2, λ3〉 as features with
an accuracy, precision and sensitivity respectively of 0.84,
0.93 and 0.96. Contrary to the previous case, the second
best features set is 〈λ2, λ3, FA,MD〉 having accuracy, pre-
cision and sensitivity respectively of 0.73, 0.87 and 0.81. In
this case 〈λ2, λ3, FA〉 globally shows results comparable to
〈KLA,AA〉 and 〈KLA,FA,AA〉. The largest difference is in
the accuracy who reaches 0.60 for 〈λ2, λ3, FA〉 and 0.50 for
both 〈KLA,AA〉 and 〈KLA,FA,AA〉. Moreover, as addi-
tional experiment, in table III we compared the performances
in detection of time-points affected by longitudinal changes
obtained using the proposed tensor factorization algorithm
with the NMF method. From the table it is possible to
see how the proposed tensor factorization algorithm always
outperforms the NMF method in all the performance mea-
surements and in all the combination of features used in the
experiment. Regarding the parameters used to perform the
analysis used by the tensor factorization algorithm, the best
results were achieved with MinPts = 3 and ω = 8. Accuracy
performances with different values of MinPts and ω are
reported in Table IV.

Table I
RESULTS OF MEAN AND STANDARD DEVIATION (IN PARENTHESIS) OF

ACCURACY, PRECISION AND SENSITIVITY FOR DETECTION OF
LONGITUDINAL AFFECTED FIBERS USING DIFFERENT COMBINATION OF

DIFFUSION PARAMETERS.

Accuracy Precision Sensitivity
λ2,λ3 0.97 (0.06) 0.79 (0.08) 0.40 (0.11)

λ2,λ3, FA 0.77 (0.29) 0.73 (0.11) 0.20 (0.02)
λ2,λ3, FA, MD 0.79 (0.32) 0.76 (0.15) 0.23 (0.05)

KLA,AA 0.71 (0.23) 0.69 (0.13) 0.16 (0.01)
KLA,FA,AA 0.77 (0.20) 0.66 (0.15) 0.15 (0.04)

Table II
RESULTS OBTAINED USING TENSOR AND NON-NEGATIVE MATRIX

FACTORIZATION. RESULTS ARE REPORTED WITH MEAN AND STANDARD
DEVIATION (IN PARENTHESIS) OF ACCURACY, PRECISION AND

SENSITIVITY FOR DETECTION OF LONGITUDINAL AFFECTED
CROSS-SECTIONS USING DIFFERENT COMBINATION OF DIFFUSION

PARAMETERS.

Tensor Factorization Non-Negative Matrix Factorization
Accuracy Precision Sensitivity Accuracy Precision Sensitivity

λ2,λ3 0.63 (0.10) 0.98 (0.02) 0.95 (0.15) 0.65 (0.12) 0.60 (0.08) 0.92 (0.10)
λ2,λ3, FA 0.40 (0.12) 1.00 (0.01) 0.56 (0.12) 0.74 (0.11)0.74 (0.11)0.74 (0.11) 0.68 (0.04) 0.90 (0.09)

λ2,λ3, FA, MD 0.47 (0.13) 0.97 (0.03) 0.74 (0.23) 0.74 (0.08)0.74 (0.08)0.74 (0.08) 0.68 (0.12) 0.89 (0.11)
KLA,AA 0.30 (0.10) 0.96 (0.03) 0.64 (0.30) 0.59 (0.07) 0.55 (0.12) 0.91 (0.10)

KLA,FA,AA 0.32 (0.12) 0.96 (0.03) 0.63 (0.28) 0.56 (0.11) 0.53 (0.09) 0.85 (0.05)

Table III
RESULTS OBTAINED USING TENSOR AND NON-NEGATIVE MATRIX

FACTORIZATION. RESULTS ARE REPORTED WITH MEAN AND STANDARD
DEVIATION (IN PARENTHESIS) OF ACCURACY, PRECISION AND

SENSITIVITY FOR DETECTION OF LONGITUDINAL AFFECTED TIME-POINTS
USING DIFFERENT COMBINATION OF DIFFUSION PARAMETERS.

Tensor Factorization Non-Negative Matrix Factorization
Accuracy Precision Sensitivity Accuracy Precision Sensitivity

λ2,λ3 0.84 (0.12) 0.93 (0.09) 0.96 (0.13) 0.72 (0.30) 0.86 (0.18) 0.78 (0.31)
λ2,λ3, FA 0.60 (0.20) 0.76 (0.10) 0.54 (0.16) 0.57 (0.36) 0.75 (0.17) 0.53 (0.35)

λ2,λ3, FA, MD 0.73 (0.30) 0.87 (0.18) 0.81 (0.32) 0.67 (0.36) 0.84 (0.18) 0.78 (0.33)
KLA,AA 0.50 (0.30) 0.71 (0.21) 0.82 (0.30) 0.50 (0.36) 0.67 (0.19) 0.56 (0.37)

KLA,FA,AA 0.50 (0.32) 0.74 (0.19) 0.75 (0.20) 0.50 (0.36) 0.66 (0.19) 0.57 (0.34)
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B. Evaluation of parallel implementation
In order to underline the difference between serial and

parallel implementation, we show the computational time
obtained by using the two implementations. More in detail, the
implementations were run 10 times on the same task and the
computational time (in terms of mean and standard deviation)
were measured. For the parallel implementation the same tasks
were executed with different parallel processors (2 ≤ K ≤ 7).
Results in terms of execution time are reported in Figure 7.
Since the serial execution time does not depend on the number
of parallel process it is always stable. An important decrease
in computational time is already clearly visible starting with
K = 2 where the serial implementation takes 899.8 ± 14.0
seconds while the parallel one takes 550.3±10.3 seconds. We
define with speed-up factor the ratio between the mean com-
putational time of the serial implementation and the parallel
implementation. Already with K = 2, the speed-up factor, is
1.63. Moreover, it is possible to see how by increasing the
number of processors the computational time decreases. The
minimum and maximum speed-up factors are 1.63 and 2.6
reached for K = 2 and K = 4 respectively. Results show
how the improvement in computational performance is clear
using the parallel implementation.

Figure 7. Mean and standard deviation, computed from the 10 different
runs, of the computation time for Serial (4 ± ) and Parallel (∗ ± )
implementations.

C. Detection of affected fibers, cross-sections and time-points
on real data

The proposed method was also tested on real data. Based
on the results obtained in the previous sections, MinPts =
3, ω = 8 and K = 4 were selected as parameters and a feature
vector composed by 〈λ2, λ3〉 (M = 2) was used.

Results of application on MS real data are illustrated in
Figure 8. In all the figures, the mean FA signal profile along the
fibers, within the bundle, detected by our method as affected
by longitudinal variations are reported. Time-points detected as
containing longitudinal changes are reported with the symbol
“*” in the name. Cross-sections detected as affected by those
changes are underlined with black lines.

In Figure 8 A and Figure 8 B we reported the FA signal
profile of two different MS subjects. The signal profile refers

to the CST in the subset of fibers detected as containing
longitudinal pathological changes. It is possible to see how
in those subsets of fibers, in the time-points and in the cross-
sections detected as longitudinal changed, the FA signal goes
down due to the presence of small longitudinal MS alterations.

Same behaviour is also visible in the other two MS subjects
reported in Figure 8 C and Figure 8 D respectively. The former
represents the IFOF In the cross-sections and in the time-
points identified by our method, longitudinal changes in FA
are visible. More in detail, the FA signal goes down in the
detected cross-sections due to the presence of MS lesions. In
Figure 8 D, we reported the SLF. Like for the other fiber-
bundles, in the subset of fibers and cross-sections identified
as affected by longitudinal changes, alterations in FA signal
profile are visible.

VII. DISCUSSION

In this work we described a new tensor-based method
to automatically analyze longitudinal changes in WM fiber-
bundles of MS patients. More in detail, we provided a com-
plete pipeline capable to automatically extract fiber-bundles
and register longitudinal data to a common template. As major
message, we formalized the problem using a tensor-based
formalism to detect local scale longitudinal variations caused
by rapid inflammatory processes in MS patients.

Moreover, we improved the computational speed of our
method by providing a parallel implementation of the algo-
rithm. We used the “divide-et-impera” paradigm to subdivide
the main problem in sub-problems. We then merged the sub-
solutions of each sub-problem into an unique final solution.
In order to perform a better parallelization, we split the fiber-
bundle in small sub-bundles using a modified version of K-
medoids. As first step, a global distance matrix, based on
the MDF metric, was computed between each pair of fibers
within a bundle. The obtained matrix was then used as distance
matrix for the K-medoids algorithm. The tensor decomposition
pipeline was then applied independently to the data extracted
in each sub-bundle. The results obtained by the factorization
in each sub-problem were then merged in an unique solution.
The decrease in computation time, between serial and parallel
implementation, is well described in the test we made (Section
VI-B). In particular using 4 parallel processors (K = 4) we
got a speed-up factor of 2.6 (from 899.8 seconds to 342.2
seconds). It should be noted that the number K of parallel
processors mainly depends on two factors: i) the number of
parallel processors available on the machine used to run the
algorithm, ii) the number of fibers within the bundle. Indeed, if
K is large (thus the value V v

K W is small) the number of fibers
in each process could not be enough to compute an accurate
tensor decomposition.

Results on simulated data, generated using GGPDF [20],
show the capability of our method to detect and delineate
the presence of longitudinal changes in both fibers and cross-
sections of WM fiber-bundles. The experiment section (Section
V) was also enriched by the analysis of the features used
to compute the factorization of the longitudinal data. The
diffusion features used to perform the analysis play also an
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important role on the final results. Best results were obtained
using 〈λ2, λ3〉 as features. The introduction of other diffusion
parameters does not drastically improve the performances.

As final experimental step, the proposed method was applied
to real MS patients showing its capability to detect and
delineate time-points, fibers and cross-sections identified, by
the neuroradiologist, as affected by longitudinal changes. With
these experiments, we showed that also on real data it is pos-
sible to identify regions containing longitudinal pathological
changes. This gave us the possibility to extract two types of
information: i) segmentation of the regions (fibers and cross-
sections) affected by the longitudinal variations and ii) the
delineation of the time-points affected by the longitudinal
variations. Detection of longitudinal changes were validated
by our neuroradiologist (FC).

An important limitation is derived by the low performances,
in terms of sensitivity, obtained in the extraction of the fibers
affected by longitudinal changes. The low performances could
be explained by the CPD model we applied to perform the
factorization. Indeed, CPD uses only rank-1 terms to factorize
the tensor. With this restriction, representation of biological
variations typical of MRI data could not be perfectly estimated.
It is important to observe that, in our reference context,
Precision should be privileged over Sensitivity because the
number of fibers generated by tractography algorithms usually
does not reflect the number of real fibers of a human brain.

Another crucial point of investigation is related to the rank
selection. Indeed, in this work we used a “brute force” way
to compute the rank using the rankest function provided in
Tensorlab [23]. This process usually tends to overestimate
the real number of components and, as results, noise or data
variability can be modelled by the factorization. The main
consequence related to this overestimation is a decrease in per-
formances obtained in detection of “pathological” components.
Other approaches, based on hyper-parameter optimization,
such as the Tree-of-Parzen-Estimators (TPE) algorithm [1],
can also be used to find the optimal rank thereby reducing
the computational time. This problem points out that further
improvements are expected by developing a problem-specific
rank estimator. This is part of future work.

Moreover, it should be noted that the proposed method
was applied only on a few real-life MS patients recording. A
more extensive study including more large-scale experiments
on larger patient databases is need to obtain more solid
conclusions. As future work, we plan to test our method also
on a larger dataset with more patients and with a longer time
interval between two scans.

Since the proposed method is completely unsupervised and
model-free, it is capable to perform the analysis also including
more time points or modalities. Indeed, since the values
acquired in a new time-point are simply stacked in the 3rd

mode of the tensor, no modification is needed in the algorithm.
Furthermore, this framework is easy to extend, features derived
from other modalities (like T1, T2, etc...) can be concatenated
in the 3rd mode of the tensor (as described in Figure 3) without
requiring additional work.

The proposed method can be seen as a general framework
capable to extend our previous method based on the NMF

[20]. Indeed, due to the capability of the tensor to represent
high dimensional data, fiber-bundles can be analyzed glob-
ally without generating a local view (like in cross-sectional
analysis). In the comparison we performed with the NMF
method, we saw that the better performances, in cross-section
analysis, were obtained by the NMF method compared to
the tensor factorization. These results are due to the local
analysis performed by NMF. Indeed, this method analyzes
each cross-section independently performing a specific local
analysis focused on cross-section. In the comparison of the
performances obtained in time-point detection, the proposed
tensor factorization algorithm outperformed the NMF algo-
rithm. This shows how analysis of multiple information at
the same time, really helps to improve the detection of small
longitudinal changes in WM fiber-bundles.

Moreover, compared to [19], [17], [6], the proposed method
allows to i) analyze multiple DTI features taking into account
more than 2 time-points ii) delineate regions, fibers and detect
time-points affected by longitudinal changes.

VIII. CONCLUSION

In this work, we proposed a new tensor-based framework
for the analysis of longitudinal changes occurring along WM
fiber-bundles. We described how constrained tensor factoriza-
tion is a potential tool to analyze multi-dimensional data that
can not be fully described using a simple matrix representa-
tion.

In order to reach our goal, two main challenges related to
tensor factorization were analyzed and solved, namely rank
selection and computational time for the factorization. The
former was solved by estimating L-curve error of the CPD with
increasing number of rank-one terms. The latter was improved
by splitting the problem in sub-tasks using the “divide et
impera” paradigm.

The method was tested and validated on simulated data
and real data. Moreover the performances obtained with the
proposed method were also compared with the NMF-based
method proposed in [20]. We generated simulated data using
our previously proposed simulation paradigm [20]. For the real
data, we used a dataset containing MS subjects affected by
small longitudinal changes visible in a short (weekly) interval.
According to the results obtained in this work, the method
we proposed will offer a valuable tool for longitudinal data
analysis in neurodegenerative diseases.

Multiple future improvements of the proposed method are
planned. First of all, we will improve the validation set by
adding multimodal data. Indeed, we plan to apply the NTF
algorithm on datasets containing different MRI modalities like
MRS, T2, T1, etc.. We also plan to improve the detection of
cross-sections affected by longitudinal changes by introducing
regularization for the component matrix representing cross-
sections. Moreover, as we reported in Section VII, CPD could
be too restrictive for some applications as it does not model all
variability in the data [8]. We plan to increase the performance,
especially for the cross-section component, using block term
decomposition (BTD) instead of CPD. Indeed, using a BTD
model, it is possible to model the variability on the data by
performing a so-called rank (Lr, Lr, 1) BTD [8].
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Figure 8. Mean FA signal profile of A) cortico-spinal tract Subject 1, B) cortico-spinal tract Subject 2, C) fronto-occipital fasciculus Subject 3 and D) superior
longitudinal fasciculus of Subject 4 along the subset of fibers identified by our method as affected by longitudinal changes. Time-points detected as containing
longitudinal changes, detected by our method, contain the symbol “*” in the name. Cross-sections detected as affected by longitudinal pathological changes
are underlined with black lines.
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APPENDIX

A. Longitudinal Variations Simulator (LVS)

In this section we briefly describe the model we used to
generated longitudinal variations introduced in [20].

The model assumes that in different time-points new varia-
tions appear in the image. Each of those variations can change
both shape and voxel values.

We consider that the variation takes a spherical shape of
radius η that could change on time. Moreover, we assume
that diffusion values of voxels belonging to this region could
change during the longitudinal evolution of a factor ρ, called
reduction coefficient. This coefficient ρ is used to change the
voxel’s diffusion values inside the spherical region in a given
time-point according to the following equations:
λ∗2 = λ2 + ρ ∗ (λ1 − λ2) λ∗3 = λ3 + ρ ∗ (λ1 − λ3)

with 0 ≤ ρ ≤ 1. FA, MD, and other tensor metrics are
then recomputed in the given time-point using λ1 and the new
λ∗2, λ

∗
3 values. The proposed LVS model could be summarized

using the parametric function S defined as:

S :

{
η(t) = G(t, µη, αη, βη)

ρ(t) = G(t, µρ, αρ, βρ)

the function G is the generalized Gaussian probabil-
ity density function (GGPDF) defined as: G(x, µ, α, β) =

β
2αΓ( 1

β )
e−(

|x−µ|
α )β

where x, µ, α, β ∈ R with α, β ≥ 0 and Γ denotes
the gamma function. This particular distribution includes the
normal Gaussian distribution (N) when β = 2 (with mean µ
and variance α2

2 ) and it includes also the Laplace distribution
when β = 1.

B. Parameter selection for MinPts and ω

In order to describe how ω and MinPts parameters can
affect the performances of the proposed method, we reported
in table IV how accuracy performances change for detection
of longitudinal affected fibers using 〈λ2, λ3〉 as diffusion
parameters.

The best results are obtained when both MinPts and ω
parameters have values in range 1 ≤ MinPts ≤ 3 ∧ 6 ≤
ω ≤ 10. Values outside this range show low level of accuracy.
More in details, large values of MinPts degrade the accuracy
too much and are therefore not recommended.

Table IV
MEAN ACCURACY FOR DETECTION OF LONGITUDINAL AFFECTED FIBERS

USING λ2, λ3 AS DIFFUSION PARAMETERS.

PPPPPPω
MinPts 1 2 3 4 5 6 7 8

2 0.59 0.62 0.70 0.80 0.65 0.60 0.50 0.33
4 0.66 0.72 0.75 0.81 0.72 0.66 0.60 0.50
6 0.70 0.87 0.82 0.90 0.77 0.70 0.60 0.55
8 0.80 0.90 0.97 0.94 0.91 0.80 0.68 0.60
10 0.77 0.80 0.91 0.85 0.75 0.70 0.61 0.52
12 0.76 0.77 0.84 0.86 0.76 0.65 0.58 0.40
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