1	How to impact gluten protein network formation during wheat flour dough making			
2				
3	Nand Ooms*, Jan A. Delcour			
4	Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition			
5	Research Centre (LFoRCe), KU Leuven,			
6	Kasteelpark Arenberg 20 box 2463, B-3001 Heverlee, Belgium			
7				
8				
9	* Corresponding author.			
10	Nand Ooms			
11	Tel.: +32 16 37 20 39			
12	Fax: +32 16 32 19 97			
13	E-mail address: <u>nand.ooms@kuleuven.be</u>			
14				

16 ABSTRACT

Gluten proteins strongly affect the structure and texture of various wheat flour-based baked goods. During dough making, gluten proteins are the main determinants of dough properties. Be it for research purposes or as a way of controlling dough properties in an industrial environment, different approaches have been taken to alter gluten network structure and, thus, functionality. In this brief review, we summarize these strategies, considering both processing-based interventions to gluten network formation and some additives commonly used to steer gluten protein functionality at the dough level.

24

25 KEYWORDS

26 Gluten protein network, glutenin, gliadin, redox agents, enzymes, processing

28 1. INTRODUCTION

Wheat is grown on more land area than any other food crop and is the second most-produced cereal after maize (FAOSTAT, 2016). The visco-elastic dough making capability of its flour resides primarily in gluten, wheat's main storage protein [1]. Since the discovery of wheat gluten was reported by Beccari in 1728 [2], research on its structure, functionality and how to control these aspects has been ongoing.

34

35 2. THE GLUTEN NETWORK

Gluten makes up 80-85% of the total wheat flour protein [3] and consists of monomeric gliadins and polymeric glutenin proteins [4]. Gluten characterization is difficult, as the term 'gluten' groups a complex mixture of homologous proteins that vary widely in molecular mass and charge [2]. Nevertheless, many researchers have taken on this challenging task, thereby applying an extensive range of analytical techniques [5-8]. The results of their efforts have been thoroughly summarized and reviewed elsewhere [1, 2, 4, 9-11].

Gluten proteins determine the visco-elastic properties of wheat flour dough [4] as they are able to form a network upon hydrating and mixing wheat flour [12]. Gluten proteins consist of polymeric glutenin proteins and monomeric gliadins. Differences in the structures of glutenin and gliadin proteins provide them with different functionalities during dough formation. It is generally accepted that glutenin proteins build up the polymeric protein network that provides cohesiveness and elasticity to dough [13], whereas gliadins act as plasticizers of the glutenin network and contribute to dough viscosity and extensibility [1].

Gliadin proteins are a heterogeneous mixture of proteins with molecular masses of 30 to 75 kDa 49 [3, 10]. They are subdivided into α -, γ -and ω -gliadins. The α -and γ -gliadins contain cysteine 50 51 residues, which are all involved in intramolecular disulfide (SS) bonds at ambient conditions [1]. 52 ω -Gliadin lacks cysteine residues [3]. Gliadin's primary structure consists of a short N-terminal domain, a central repetitive domain containing mainly glutamine, proline and hydrophobic amino 53 acids and a non-repetitive C-terminal domain, which contains most of the cysteine residues, if 54 present [1]. The secondary structure of gliadins consists of predominantly β -turns in the N-55 terminal domain and α -helix and β -sheet structures in the C-terminal domain [4]. All gliadins are 56

57 assumed to in their native state be globular monomers [2]. Glutenins are the largest polymers found in nature. They have molecular masses ranging up to several tens of millions kDa. They 58 59 consist of glutenin subunits (GS) linked together by intermolecular SS bonds [10]. In addition, GS 60 also contain intramolecular SS bonds [1,3,4]. Typically, a distinction is made between high molecular mass (HMM-GS) and low molecular mass (LMM-GS) GS. As is the case for gliadin, the 61 62 primary structure of GS consists of an N-terminal and C-terminal non-repetitive domain enclosing 63 a repetitive central domain [13]. The hydrophilic central domain is rich in glutamine [10], whereas the hydrophobic N-and C-terminal domains contain most of the cysteine residues [1]. While the 64 secondary structure of HMM-GS shows a predominance of aperiodic and α -helix conformations 65 in both the N- and C-terminal domains [124], the central area shows a β -spiral structure [2]. 66 67 Although relatively little is known about the structures of LMM-GS, the N-terminal domain is thought to contain mainly β -turns, whereas a-helices are predominant in the C-terminal domain 68 69 [125].

Different types of reactions and interactions are crucial for the formation of a gluten network 70 upon dough mixing. Intermolecular disulfide (SS) bonds between glutenin polymers are key in 71 72 this respect. The oxidation of free thiol (SH) groups to SS bonds, which increases the molecular 73 weight of the glutenin aggregates, as well as SH-SS exchange reactions are of utmost importance 74 for building a three dimensional gluten network during mixing [4, 14]. SH-SS exchange reactions are initiated either by low molecular weight SH compounds or by free SH groups in glutenin 75 proteins [15]. Other covalent bonds have also been suggested to be important for gluten network 76 77 formation. Morel et al. (2002) found indications for the formation of isopeptide bonds during mixing. Nevertheless, they reasoned that their contribution to gluten network formation would 78 be negligible [16]. Tiley et al. (2001) claim that dityrosine linkages are also formed during dough 79 80 making. According to Hanft and Koehler (2005), it is unlikely for dityrosine to play an important 81 role in in wheat gluten structure, since only very a low amount of dityrosine is present in dough. Peña et al. (2006) confirm that the amount of crosslinking between tyrosine residues appears to 82 83 be small during bread making and of little importance compared to disulfide bond formation. The importance of non-covalent interactions has been established. The high levels of glutamine in 84 gluten proteins allow for intermolecular as well as intramolecular hydrogen bonds [10]. Although 85

86 they are much weaker than covalent bonds, their large number and their ability to interchange under stress renders them main determinants of the gluten network's properties [122]. Indeed, 87 the dough weakening effect of hydrogen bond breaking agents such as urea and the dough 88 89 strengthening effect of heavy water when compared with that of ordinary water illustrates the 90 importance of hydrogen bonds in the structure of the gluten network [4]. According to Sapirstein and Fu (2000) [123], as cited in [122], gliadin and glutenin from different flour samples differ in 91 92 the number of interacting hydrogen bonds. Therefore, the specific surface area of glutenin determines the rate of interactions and, thus, the mixing time required for full dough 93 development [123]. Hydrophobic bonds also contribute to gluten network structure [19]. They 94 95 result from interactions of non-polar groups in the presence of water. Their functionality in the 96 gluten network is likely similar to that of hydrogen bonds, although their overall contribution is thought to be smaller, as evidenced by the rheological effects of adding organic solvents to dough 97 98 systems [122]. Finally, although gluten proteins have a low charge density due to the relatively 99 low level of basic amino acids and the presence of the amide form of acidic amino acids [2], the importance of ionic interactions has nevertheless been established [20]. 100

101 Over the years, several models have been proposed to describe the gluten network's structure, 102 often focusing on explaining dough visco-elastic properties [3-9]. For an extensive overview of 103 these models, the interested reader is referred to the review papers by Bock and Seetharaman (2012) [2]• and Ortolan and Steel (2017) [124]•. One of the models commonly accepted is the 104 so-called 'loop-train model' proposed by Belton (1999) [47]. In this model, the HMM-GS are 105 106 represented by long chains that are comprised of zones dominated by polymer-polymer interactions (i.e. 'trains') and zones dominated by polymer-solvent interactions (i.e. 'loops'), both 107 of which are mainly hydrogen bonds. Hydration of the gluten network results in the formation of 108 109 more hydrated loop regions. Belton associates the train regions with the formation of β -sheets 110 and the formation of the loops with hydrated β -turn structures. Stretching of the gluten network would result (i) in deformation of the loop regions and (ii) in the trains being pulled apart. The 111 elongation of the chains results in a loss of entropy. When the extension is removed and the 112 polymers relax, the structure returns to the equilibrium of loops and trains. 113

115 3. IMPACTING GLUTEN NETWORK FORMATION

Multiple approaches have been taken to alter gluten network structure and, thus, functionality 116 117 during wheat flour dough making. Gluten protein functionality strongly depends on the specific 118 dough recipe, as water and other typical dough components such as salt significantly impact 119 gluten network formation. The different mechanical unit operations during dough making such 120 as mixing and sheeting determine the degree of gluten development. Furthermore, a range of 121 improving agents are commonly used in the baking industry. They allow better control of production processes, improve product quality and/or increase shelf-life. Redox agents and 122 enzymes are much used for altering gluten network formation. 123

In what follows, we briefly outline all strategies above. Where appropriate, the reader is referred
to more in-depth review papers on specific approaches.

126

127 **2.3.1 Influence of processing steps**

128 Flour treatments

129 Oxidizing agents can be added to flour in order to accelerate its natural maturation, i.e. 'flour bleaching'. One of the most commonly used oxidizing agents for bleaching is benzoyl peroxide 130 131 [21]. This component is assumed to exhibit its decolorizing action without influencing flour baking properties [22]. Other peroxides, such as acetone peroxide, are also used [23]. Where allowed, 132 chlorine gas can also be used for bleaching. The hypochlorite ion that is formed when chloride 133 134 gas reacts with water in the flour is a strong oxidizing agent. Chlorinated flour has exceptional cake-making properties, as its use in cake systems tends to prohibit collapse after baking [24] and 135 results in cakes with high volumes and uniform grain and good sensory properties [25]. Bosmans 136 et al. (2019) •• recently showed that gluten proteins lose part of their network forming 137 capabilities as a result of chlorination. Furthermore, chlorination also influences starch and lipid 138 functionality [24, 25]. Azodicarbonamide is another oxidizing agent that is commonly added to 139 140 flour as a bleaching agent, although, as is also the case for chlorine gas, its use is prohibited in 141 the European Union. This oxidant rapidly oxidizes free SH groups of flour proteins. It is therefore used as a dough improving agent during dough mixing (cfr. infra) [25]. 142

Flour may also be subjected to **heat treatment**. Like chlorinated flour application, heat treated flour use prevents collapse during baking of cake systems [26]. Although it is assumed that mainly starch properties are affected during heat treatment [27]•, it does affect gluten extensibility [28]. Van Steertegem *et al.* (2013) reported crosslinking of protein in flour particles as a result of flour heat treatment. They related this upfront polymerization to poor hydration and network formation during mixing. Nevertheless, the precise mechanisms by which heat treatment alters flour properties are still subject of debate.

151

152 **Dough formulation**

During dough mixing, flour particles are hydrated and sheared to such extent that they no longer exist as separate entities. As a result, gluten proteins form a continuous network. Dough mechanical behavior of course strongly depends on its **water** content [30].

156 Nowadays, the baking industry faces with the increasingly important consumer demand for salt 157 reduction. Based on the National Diet and Food Survey in the UK, cereals and cereal products have been estimated to contribute 35% of total sodium consumption [112]. However, salt 158 159 reduction may result in weaker gluten networks and impair dough handling characteristics [31]. 160 In this context, Lynch *et al.* [113] reported that omission of salt leads to a significant reduction in 161 dough and bread quality. However, reducing salt level from 1.2% to 0.3% did not significantly 162 affect the rheological properties and bread-making performances of wheat dough. Salt likely 163 shields charges on the gluten proteins, thus limiting electrostatic repulsion between gluten 164 polymers and allowing them to aggregate [12, 114]. Wellner et al. [114] reported an increase in 165 the level of intermolecular β -sheets in gluten proteins isolated from flour-water doughs 166 containing small amounts of table salt, compared to those of control flour-water dough. The presence of these structures alone may increase molecular rigidity and, as a consequence, dough 167 168 strength [115]. Increasing the level of table salt from 0.2 to 1.0 M did not induce any further 169 changes in secondary protein structure [114]. According to McCann and Day [32], the presence 170 of salt delays the formation of the gluten network. This has been attributed to a reduction of the 171 rate of gluten hydration. Finally, salt is thought to, to some degree, inhibit proteolytic enzymes

172 [12]. Although table salt is typically used in wheat bread making, it is of note that different salts may induce different gluten protein conformations, at least at higher concentrations. Indeed, at 173 174 low salt concentration (0.1 - 0.3 M), all ions have a similar effect on protein aggregation in dough 175 systems, most likely by limiting electrostatic repulsion between polymers, as described above 176 [116]. At higher salt concentrations (> 0.3 M) however, salt type and the different effect of 177 chaotropic and kosmotropic anions on water structure dictate protein aggregation [117]. Indeed, 178 at high salt concentrations, gluten protein extractability and aggregation depends on the anion type and follow the lyotropic anion (i.e. 'Hofmeister') series [116]. In this context, Wellner et al. 179 [114] reported different effects of increasing concentrations of sodium bromide and sodium 180 181 iodide on the equilibrium between β -turn and β -sheet structures than those observed for table salt. They ascribed these differences to the different chaotropic properties of the anions 182 released. 183

Yeast and, in particular, its metabolites produced during fermentation also impact the gluten
network. The effects on dough rheology of ethanol [33], succinic acid [34] and glycerol [35].
which are produced during fermentation, and of glutathione, which is released by yeast after cell
death [36]. (*cfr. infra*), have all been shown to be significant.

188 Although wheat gluten is the main (or only) network forming component in most traditional 189 wheat bread recipes, other wheat flour based dough systems may be more complex. For example, pasta dough, cookie dough, donut dough and (pre)dough for multiple types of pastry 190 products typically include proteins from other sources such as eggs and milk (powder). Some 191 192 basic work on co-protein network formation between gluten proteins and some common (globular) food proteins was carried out by Lambrecht *et al.* (2017). They reported synergistic co-193 protein effects (i.e. increased heat-induced polymerization of proteins mixtures in comparison 194 195 with the isolated proteins) in dispersions of isolated wheat gluten with S-ovalbumin, egg white, 196 whole egg, defatted egg yolk, bovine serum albumin, wheat albumin and wheat globulin. Soy glycinin did not partake in co-protein network formation with wheat gluten, whereas hen egg 197 lysozyme even resulted in antagonistic co-protein effects. They concluded that the level of 198 (accessible) free SH-groups and the surface hydrophobicity of unfolded globular proteins are the 199 200 main determinants of co-protein network formation with isolated gluten during heating in water.

201 In the context of complex food systems, co-protein network formation has been studied to some 202 extent in e.g. pound cake and noodles [for a recent review on the subject, the reader is referred 203 to Lambrecht et al. (2018)••]. Nevertheless, research on mixed protein network development 204 during bread dough mixing is limited. Egg yolk and egg white respectively increase and decrease wheat dough development time, strength and stability [37]. Inclusion of sodium caseinate or 205 206 hydrolyzed casein in a wheat flour dough recipe results in low proof times, high bread volume 207 and crumb softness [38]. Whey protein concentrates on the other hand have been reported to increase dough development time [39] and to increase proof time and decrease loaf volume [38]. 208 Soy products interfere with gluten formation, weaken dough strength and decrease its gas 209 210 retention capacity [40]. According to Pérez et al. (2008), soy and wheat proteins interact through 211 non-covalent interactions as well as through SS bond formation during dough mixing and resting. The dough weakening effect can thus be ascribed to SH-SS exchange reactions and the loss of 212 213 some gluten protein from the gluten network. Bonet et al. (2006) also reported that inclusion of 214 soy flour in wheat flour dough recipes significantly modifies the mixing characteristics, but concluded from capillary electrophoresis studies that interactions occurred mainly within 215 216 proteins from the same source. Nevertheless, the exact mechanisms by which mixed networks 217 may be formed at the bread dough level are not well documented.

218 Other typical bakery ingredients also impact gluten networks. The presence of **sugar** for example 219 has been associated with a reduction in bread dough consistency, increased stickiness and 220 improved extensibility. This has traditionally been linked to sugar's high affinity for water, leaving 221 less water available to hydrate gluten and starch [44]. Furthermore, sucrose containing solvents are less potent gluten plasticizers than pure water [118]. According to Uedaira and Uedaira 222 (1980) [119], sucrose solutions are less favorable solvents for aliphatic and aromatic amino acids 223 224 than pure water. It would thus require more energy for nonpolar side chains to be exposed in a 225 sucrose solution [119]. This implies that gluten protein conformation may be different in the 226 presence of sucrose/water than in water. In bakery products with high sucrose contents, such as 227 cookies [118] and cakes, the presence of sucrose is indeed known to increase the temperature necessary for protein cross-linking during baking. Shortening and other fat sources have been 228

suggested to lubricate the gluten proteins and limit their water uptake during pastry making [45,46].

231

232 Energy-input

Belton (2005) [47] subdivided dough formation in two, simultaneously occurring stages: a hydration stage and an energy input stage through deformation during **dough kneading**. In the second stage, depolymerization and (re)polymerization reactions take place [47, 48]. Mixing intensity and energy are critical parameters that have a large impact on final product properties. Both must be above a minimum critical level to develop the dough properly, the level varying with flour and mixer type [49]. Multiple researchers have examined the impact of mixing time and intensity on gluten protein network development [37, 49, 50].

A typical unit operation during industrial wheat flour dough making is passing dough (sheets) through a pair of cylindrical rolls, i.e. 'dough sheeting'. The pressure exerted by the sheeting rolls transfers energy to dough, resulting in dough strengthening [51]. In the case of laminated pastry products, which undergo multiple sheeting and folding steps, this additional energy input is anticipated for by working with under-mixed dough. Dough sheeting aligns the gluten network along the final direction of sheeting [51], which results in dough 'snapback' or 'elastic recoil. Some researchers have attempted to model this dough contraction behavior [52-54].

247 The input of mechanical energy should not exceed an optimal level. Indeed, when wheat flour dough mixing is continued beyond the optimum, dough breakdown takes place, during which the 248 249 proportion and the average molecular weight of large non-extractable polymeric protein 250 significantly decreases [55]. According to Danno and Hoseney [120], overmixing leads to breakdown of disulfide bonds, which would explain these observations. Skerritt et al. [121] 251 252 confirmed these findings, but state that the cleavage of SS bonds during overmixing is not a 253 random process. Based on sodium dodecyl sulfate polyacrylamide gel electrophoresis and reversed phase high performance gel electrophoresis experiments, they concluded that specific 254 255 HMM-GS are lost from the gluten network during dough breakdown, as are B-type LMM-GS. On 256 the other hand, the inclusion of C-type LMM-GS, which have a higher hydrophobicity, in the

257 gluten network increased. According to Bock and Seetharaman (2012), the Belton-model (cfr. supra) implicitly assumes that during prolonged dough mixing β -sheet structures (*i.e.* trains) 258 259 develop at the expense of β -turns (*i.e.* loops) or, presumably, all other secondary protein 260 conformations, and that β -sheets confer less elasticity than β -turns. Eventually, at a threshold ratio of β -sheet to β -turns, the dough would become resistant to further deformation and 261 prolonged mixing would result in breakdown of the gluten network. Whatever be the case, dough 262 263 breakdown and the mechanisms behind this phenomena during prolonged mixing are not fully understood. 264

265

266 **2.3.2 Use of redox agents**

267 Redox agents are frequently used in the bread-making industry to optimize gluten performance in different applications or for research purposes to selectively alter the gluten network and/or 268 269 study the resulting product properties. In general, addition of oxidizing agents (in appropriate 270 dosages) increases dough strength since they promote SS-bond formation within glutenin 271 polymers [56]. Reducing agents on the other hand, weaken wheat flour dough by reducing the molecular weight of glutenin polymers through SH-SS interactions [25]. As different components 272 273 are characterized by different reaction rates, the impact of seemingly similar agents on dough 274 properties is not always comparable. For example, potassium bromate ($KBrO_3$) is a slow acting 275 oxidant mostly active during fermentation [in the absence of molecular oxygen (O_2)] and baking 276 [57], whereas potassium iodate (KIO_3) is fast acting and mostly active during mixing [58]. 277 Furthermore, the working mechanism of certain redox agents such as ascorbic acid is more 278 complex and despite excellent research on the topic [59-61] still not completely understood. The 279 use of oxidants is more permitted in the United States but restricted in the European Union, 280 which permits only the use of ascorbic acid. In general, due to the great number and the 281 complexity of oxido-reduction reactions occurring during bread making, the effects of oxidative reagents are insufficiently understood. 282

283

In **Table 1**, an overview of some of the most commonly used redox agents in wheat flour dough making is given, along with some key references in which their mode of action is thoroughly examined, as these are outside of the scope of this article.

287

288 2.3.2 Use of enzymes

Since enzymes are (in most cases) fully denatured during baking and do not need to be labelled 289 [25], they provide a 'clean-label' alternative to chemical agents. Typically, redox enzymes 290 291 (oxidoreductases) in dough making are used to directly or indirectly crosslink gluten proteins through various covalent bonds, i.e. for strengthening the dough system [25]. Nevertheless, 292 293 appropriate use of (endo)peptidases, which hydrolyze gluten too some extent during dough 294 mixing and fermentation, may also improve bread crumb textural properties [62, 63]. The effects of peptidases strongly depend on the dough-making methods used, on flour quality and on the 295 296 presence of other functional ingredients [64]. They also serve as a useful tool to study gluten 297 protein functionality. In this context, Verbauwhede et al. (2018) •• recently examined the use of 298 aqualysin 1 from Thermus aquaticus, the hydrolyzing action of which is inhibited by wheat endogenous serin peptidase inhibitors during mixing and fermentation, but no longer during 299 300 baking. Multiple studies have focused on combinations of enzymes [65, 66]. It is indeed worth 301 noting that commercial enzyme-based dough improvers are hardly ever single enzyme 302 preparations. Besides the main enzyme activity, a range of other enzymes can be present, either 303 as natural side activities coming from the microorganism producing the main activity, or 304 deliberately added [64].

In **Table 2**, an overview of some of the most commonly used gluten-impacting enzymes in wheat flour dough making is given, along with some key references. For a more extensive review on enzyme use in wheat flour dough making, the reader is referred to Joye *et al.* (2009b) and Van Oort (2010).

309

310 2.3.2 Other additives

Some emulsifiers strengthen or stabilize dough systems, presumably at least in part through interaction with the gluten network [67]. Diacetyl tartaric esters of monodiglycerides and ethoxylated monoglycerides both exhibit excellent dough stabilizing properties. Although their exact working mechanism is unclear, they have been suggested to be able to form liquid lamellar films between gluten and starch, thereby improving the film forming properties of the gluten [68]. Sodium stearoyl lactylate can also strengthen dough [46] and presumably preferably interacts with or binds to gliadin proteins [37].

For a thorough review on the role of emulsifiers and other lipids in wheat flour dough making, the reader is referred to Pareyt *et al.* (2011).

320

321 4. CONCLUSIONS AND PERSPECTIVES

A lot of focus has been on the importance of SS bond formation during dough making. Redox agents and oxidoreductase enzymes are the most commonly used tools for altering the gluten network. Although SS bonds are of major importance, the contribution of non-covalent hydrogen bond and hydrophobic interactions is less well documented. Also, in spite of the large number of excellent studies dedicated to the topic, the exact working mechanism of certain bread improving agents, such as ascorbic acid, still remains unclear and deserves more attention.

All the above shows that small differences in the ingredient bill or dough making procedures may result in significantly altered gluten protein networks. In specific bakery products and industrial applications, learnings from (simplified) models, such as water-flour dough systems may thus not always (fully) apply. For research purposes, it is therefore of utmost importance to clearly specify dough formulations and mixing procedures, also when comparing results of different authors.

Finally, as this review points out, the amount of available literature on gluten proteins is somewhat overwhelming. Therefore, there is a need for integrating knowledge coming from different approaches (e.g. structural features of gluten proteins as investigated through proteomics-based approaches vs. empirical measurements of dough rheology in realistic applications) and for a regular review of the scientific literature on gluten, highlighting recent developments in the field.

339

340 Acknowledgements

- 341 This work is part of the Methusalem program 'Food for the Future' at KU Leuven. J.A. Delcour is
- 342 W.K. Kellogg Chair of Cereal Science and Nutrition at KU Leuven.

Table 1: An overview of chemical redox agents used in dough systems either as a tool for studying gluten

network formation or as an improving agent. Underlined references are review articles.

REDOX AGENT	APPLICATION	KEY REFERENCES
Molecular oxygen The most important oxidant in bread making. It is incorporated during dough mixing.	Flour-water dough Bread dough	Xu, 2001 [69] Hawthorn <i>et al.</i> , 1955 [70] Marston, 1986 [71] <u>Campbell, 2003</u> [72]
		Decamps et al., 2016 [73] ••
Potassium bromate <i>Slow acting oxidant, mainly active during fermentation and</i> <i>baking</i>	Hydrated gluten Bread dough	Lagrain <i>et al.</i> , 2006 Dong and Hoseney, 1995 [15] Mair <i>et al.</i> , 1979 [74] Lagrain <i>et al.</i> , 2007 [75] Joye <i>et al.</i> , 2009b [25]
Potassium iodate <i>lodates are strong oxidants and have a fast effect during dough</i> <i>mixing. lodate oxidizes free thiol groups and is itself reduced to</i> <i>iodide.</i>	Hydrated gluten Bread dough Cookie dough Laminated dough	Veraverbeke et al, 1999 [58] Lagrain <i>et al.</i> , 2006 Joye <i>et al.</i> , 2009b [25] Gaines, 1990 [76] Pareyt <i>et al.</i> , 2010 [77] Ooms <i>et al.</i> , 2017 [51]
Asorbic acid/dehydroascorbic acid Ascorbic acid is essentially a reducing agent, but in dough is converted to dehydroascorbic acid in the presence of molecular oxygen by endogenously present ascorbic acid oxidase. Dehydroascorbic acid can reduce glutathione, hence, causing dough strengthening. The exact mechanism is unclear.	Bread dough	Elkassabany and Hoseney, 1980 [78] <u>Stear, 1990 [79]</u> Nakamura <i>et al.</i> , 1997 [80] Every <i>et al.</i> , 1999 [59] <u>Wieser, 2003 [23]</u> <u>Grosch and Wieser, 1999 [60]</u> Joye <i>et al.</i> , 2009b [25]
Azodicarbonamide A fast acting oxidant that rapidly oxidizes free thiol groups and is itself reduced to biurea.	Flour-water dough Bread dough	Miller and Hoseney, 1999 [81] Yamada and Preston, 1992 [82] La <i>et al.</i> , 2004 [83] Yasui <i>et al.</i> , 2016 [84]
Calcium peroxide/acetone peroxide In presence of water peroxides releases hydrogen peroxide, which is presumably the active compound and strenghtens the gluten network through radical crosslinking reactions.	Bread dough	Tieckelmann and Steele, 1991 [85 <u>Wieser, 2003 [23]</u> Takasaki <i>et al.</i> , 2005 [86] Joye <i>et al.</i> , 2009b [25]
Glutathione A reducing agent containing a thiol group, which can easily be oxidised to protein bound glutathione. Often added in the form of inactive dry yeast.	Hydrated gluten Cookie dough Bread dough	Lagrain <i>et al.,</i> 2006 <u>Pareyt <i>et al.,</i> 2010 [77]</u> Lagrain <i>et al.,</i> 2007 Joye <i>et al.,</i> 2009a [87]
L-Cysteine A reducing agent. Its supplementation results in dough weakening, with decreases in the elastic and viscous properties, mixing time and tolerance to mixing.	Bread dough Laminated dough	Angioloni and Dalla Rosa, 2007 [88] Joye <i>et al.</i> , 2009a [87] Ooms <i>et al.</i> , 2017, 2018 [51, 89]
Sodium metabisulfite This reducing agent is hydrolysed by water to bisulfite, which reacts with protein disulfide groups by interchange, leaving a thiolsulfate ester on one protein. This ester is hydrolysed by water, yielding a free thiol group on the protein and a sulfate ion.	Cookie dough	Oliver <i>et al.,</i> 1995 [90] <u>Wieser, 2003 [23]</u> Pendersen <i>et al.,</i> 2005 [91]

Table 2: An overview of chemical redox agents used in dough systems either as tool for studying gluten
 network formation or as improving agent. Underlined references are review articles.

ENZYME	APPLICATION	KEY REFERENCES
Glucose oxidase [EC 1.1.3.4]	Bread dough	Bonet <i>et al.,</i> 2006 [92]
Specifically catalyzes the oxidation of C1 of 6-D-glucose,		Hanft <i>et al.</i> , 2006 [93]
producing hydrogen peroxide H ₂ O ₂ and D-glucono- δ -lactone.		<u>Bankar <i>et al.,</i> 2009 [</u> 94]
Hydrogen peroxide may indirectly oxidise the gluten thiol		Steffolani <i>et al.,</i> 2010 [95]
groups crosslinking the gluten proteins		Decamps et al, 2012a [96]
	Laminated dough	Rasiah <i>et al.,</i> 2005 [97]
Hexose oxidase [EC 1.1.3.5]	Bread dough	Poulsen and Hostrup, 1998 [98]
Catalyzes the oxidation of several mono- and oligosaccharides		Hanft and Koehler, 2005 [99]
to lactones and hydrogen peroxide, which is thought to be the		
active compound inducing the formation of disulfide bonds.		
Pyranose oxidase [EC 1.1.3.10]	Bread dough	Decamps et al, 2012b [100]
Catalyzes the oxidation of C2 or C3 of mono- and disaccharides		Decamps <i>et al.</i> , 2013 [101]
by molecular oxygen to the corresponding dicarbonyl		
derivatives and hydrogen peroxide		
Sulfhydryl oxidase [1.8.3.2]	Bread dough	Kaufman <i>et al.,</i> 1987 [102]
Catalyzes the formation of disulfide bonds from a variety of		<u>Van Oort, 2010 [64]</u>
thiol groups. However, its affinity for thiol groups in protein		Faccio <i>et al.,</i> 2012 [103]
chains seems limited.		
Transglutaminase [EC 2.3.2.13]	Bread dough	Gerrard <i>et al.,</i> 1998 [104]
Introduces covalent isopeptide bonds through catalyzation of		Bauer <i>et al.,</i> 2003 [105]
acyl-transfer reactions.		Caballero, 2007 [65]
		Steffolani <i>et al.,</i> 2010 [95]
		Kieliszek and Misiewicz, 2014 [111]•
	Laminated dough	Gerrard <i>et al.,</i> 2000 [106]
		Hozova <i>et al.,</i> 2002 [107]
		<u>Ooms et al., 2016 [108]</u>
Peptidases	Bread dough	Martínez-Anaya, 1996 [109]
Hydrolyze peptide bonds and, if active during mixing, lower		Harada <i>et al.,</i> 2000 [110]
dough strength. Enzymes with affinities for different amino-		<u>Van Oort, 2010 [64]</u>
acid sequences and with different optimal working conditions		
have been tested.		

351 **REFERENCES**

- Delcour, J.A., Joye, I.J., Pareyt, B., Wilderjans, E., Brijs, K., and Lagrain, B., *Wheat gluten functionality as a quality determinant in cereal-based food products.* Annual Review of
- 354 Food Science and Technology, 2012. **3**: p. 469-492.
- 355 2. •Bock, J. and Seetharaman, K., *Unfolding gluten: an overview of research on gluten.*356 Cereal Foods World, 2012. 57(5): p. 209-214.
- A brief review article outlining research focused on the gluten network and some
 perspectives in this field.
- 359 3. Lagrain, B., Brijs, K., and Delcour, J.A., Reaction Kinetics of Gliadin-Glutenin Cross-
- 360 Linking in Model Systems and in Bread Making. Journal of Agricultural and Food Chemistry,
- 361 2008. **56**(22): p. 10660-10666.
- 4. Wieser, H., *Chemistry of gluten proteins*. Food Microbiology, 2007. **24**(2): p. 115-119.
- 363 5. Woychik, J., Boundy, J.A., and Dimler, R., *Wheat gluten proteins, amino acid*364 *composition of proteins in wheat gluten.* Journal of Agricultural and Food Chemistry, 1961.
 365 9(4): p. 307-310.
- Rombouts, I., Lamberts, L., Celus, I., Lagrain, B., Brijs, K., and Delcour, J.A., *Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection.* Journal of Chromatography A, 2009. 1216(29):
 p. 5557-5562.
- 370 7. Mamone, G., Ferranti, P., Chianese, L., Scafuri, L., and Addeo, F., *Qualitative and*371 *quantitative analysis of wheat gluten proteins by liquid chromatography and electrospray mass*372 *spectrometry*. Rapid Communications in Mass Spectrometry, 2000. 14(10): p. 897-904.
- 8. Mamone, G., Caro, S.D., Luccia, A.D., Addeo, F., and Ferranti, P., *Proteomic-based analytical approach for the characterization of glutenin subunits in durum wheat*. Journal of
- 375 Mass Spectrometry, 2009. **44**(12): p. 1709-1723.
- 376 9. Anjum, F.M., Khan, M.R., Din, A., Saeed, M., Pasha, I., and Arshad, M.U., Wheat
- 377 gluten: high molecular weight glutenin subunits—structure, genetics, and relation to dough
- 378 *elasticity*. Journal of Food Science, 2007. **72**(3): p. R56-R63.
- 10. Gianibelli, M.C., Larroque, O.R., MacRitchie, F., and Wrigley, C.W., Biochemical,
- 380 genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal
- 381 Chemistry, 2001. **78**(6): p. 635-646.
- Weegels, P., Hamer, R., and Schofield, J., *Functional properties of wheat glutenin*.
 Journal of Cereal Science, 1996. 23(1): p. 1-17.

- Belcour, J.A. and Hoseney, R.C., *Principles of Cereal Science and Technology*. 2010,
 St. Paul, MN, USA: AACC International.
- 386 13. Veraverbeke, W.S. and Delcour, J.A., Wheat protein composition and properties of
- 387 *wheat glutenin in relation to breadmaking functionality.* Critical Reviews in Food Science and
- 388 Nutrition, 2002. **42**(3): p. 179-208.
- 389 14. Schofield, J., Bottomley, R., Timms, M., and Booth, M., The effect of heat on wheat
- gluten and the involvement of sulphydryl-disulphide interchange reactions. Journal of Cereal
 Science, 1983. 1(4): p. 241-253.
- 392 15. Dong, W. and Hoseney, R., *Effects of certain breadmaking oxidants and reducing*393 *agents on dough rheological properties.* Cereal chemistry, 1995. **72**(1): p. 58-63.
- Morel, M.-H., Redl, A., and Guilbert, S., *Mechanism of heat and shear mediated aggregation of wheat gluten protein upon mixing*. Biomacromolecules, 2002. 3(3): p. 488-497.
- 17. Peña, E., Bernardo, A., Soler, C., and Jouve, N., *Do tyrosine crosslinks contribute to*
- the formation of the gluten network in common wheat (Triticum aestivum L.) dough? Journal
 of Cereal Science, 2006. 44(2): p. 144-153.
- Tilley, K.A., Benjamin, R.E., Bagorogoza, K.E., Okot-Kotber, B.M., Prakash, O., and
 Kwen, H., *Tyrosine cross-links: molecular basis of gluten structure and function*. Journal of
 Agricultural and Food Chemistry, 2001. 49(5): p. 2627-2632.
- Weegels, P., De Groot, A., Verhoek, J., and Hamer, R., *Effects on gluten of heating at different moisture contents. II. Changes in physico-chemical properties and secondary structure.* Journal of Cereal Science, 1994. 19(1): p. 39-47.
- 405 20. Fu, B., Sapirstein, H., and Bushuk, W., *Salt-induced disaggregation/solubilization of*406 *gliadin and glutenin proteins in water*. Journal of Cereal Science, 1996. 24(3): p. 241-246.
- 407 21. Saiz, A., Manrique, G., and Fritz, R., Determination of benzoyl peroxide and benzoic
- *acid levels by HPLC during wheat flour bleaching process.* Journal of Agricultural and Food
 Chemistry, 2001. 49(1): p. 98-102.
- 410 22. Fennema, O.R. *Food additives*. In: Food Chemistry, 2nd edition, ed. O.R. Fennema.
 411 1985, Marcel Dekker: New York. 629-687.
- 412 23. Wieser, H. *The use of redox agents in breadmaking*. In: Breadmaking: Improving
 413 quality, ed. S.P. Cauvain. 2003, Woodhead Publishing Limited: Cambridge, UK. 424-446.
- 414 24. •Bosmans, G.M., Peene, L.J., Van Haesendonck, I., Brijs, K., and Delcour, J.A., Impact
- 415 of chlorine treatment on properties of wheat flour and its components in the presence of
- 416 *sucrose*. Food Chemistry, 2019. **274**: p. 434-443.

- Excellent research article re-examining the effect of flour chlorine treatment with modern
 techniques such as ¹H NMR.
- 419 25. Joye, I.J., Lagrain, B., and Delcour, J.A., Use of chemical redox agents and exogenous
- 420 enzymes to modify the protein network during breadmaking-A review. Journal of Cereal
- 421 Science, 2009b. **50**(1): p. 11-21.
- 422 26. Chesterton, A., Wilson, D.I., Sadd, P., and Moggridge, G.D., A novel laboratory scale
- 423 *method for studying heat treatment of cake flour.* Journal of Food Engineering, 2015. 144: p.
 424 36-44.
- 425 27. •Keppler, S., Bakalis, S., Leadley, C., Sahi, S., and Fryer, P., *Evaluation of dry heat*426 *treatment of soft wheat flour for the production of high ratio cakes.* Food Research
- 427 International, 2018. **107**: p. 360-370.
- 428 Solid research article examining the effect of heat treatment on a laboratory scale on 429 gluten protein functionality and its impact on high ratio cake properties.
- 430 28. Neill, G., Al-Muhtaseb, A.a.H., and Magee, T.R.A., *Optimisation of time/temperature*
- *treatment, for heat treated soft wheat flour.* Journal of Food Engineering, 2012. 113(3): p. 422426.
- 433 29. Van Steertegem, B., Pareyt, B., Slade, L., Levine, H., Brijs, K., and Delcour, J.A.,
- 434 Impact of heat treatment on wheat flour solvent retention capacity (SRC) profiles. Cereal
- 435 Chemistry, 2013. **90**(6): p. 608-610.
- 30. Belton, P., *New approaches to study the molecular basis of the mechanical properties of gluten.* Journal of Cereal Science, 2005. 41(2): p. 203-211.
- Belz, M.C.E., Ryan, L.A.M., and Arendt, E.K., *The Impact of Salt Reduction in Bread: A Review.* Critical reviews in food science and nutrition, 2012. 52(6): p. 514-524.
- 440 32. McCann, T.H. and Day, L., Effect of sodium chloride on gluten network formation,
- *dough microstructure and rheology in relation to breadmaking*. Journal of Cereal Science,
 2013. 57(3): p. 444-452.
- 443 33. Jayaram, V.B., Rezaei, M.N., Cuyvers, S., Verstrepen, K.J., Delcour, J.A., and Courtin,
- C.M., Ethanol at levels produced by Saccharomyces cerevisiae during wheat dough *fermentation has a strong impact on dough properties.* Journal of Agricultural and Food
 Chemistry, 2014a. 62(38): p. 9326-9335.
- 447 34. Jayaram, V.B., Cuyvers, S., Verstrepen, K.J., Delcour, J.A., and Courtin, C.M., Succinic
- 448 acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly
- 449 *impacts wheat bread dough properties.* Food Chemistry, 2014b. **151**: p. 421-428.

- 450 35. ••Meerts, M., Cervera, A.R., Struyf, N., Cardinaels, R., Courtin, C.M., and Moldenaers,
- P., The effects of yeast metabolites on the rheological behaviour of the dough matrix in *fermented wheat flour dough.* Journal of Cereal Science, 2018.
- 453 Solid research article exploring the rheological impact of yeast's main metabolites, using
- 454 (novel) fundamental rheological techniques.
- 455 36. •Verheyen, C., Albrecht, A., Herrmann, J., Strobl, M., Jekle, M., and Becker, T., *The*
- 456 *contribution of glutathione to the destabilizing effect of yeast on wheat dough.* Food Chemistry,
- 457 2015. **173**: p. 243-249.
- 458 Excellent research article adressing the large variety in glutathione content of different
- 459 (fresh and dried) commercial yeast samples and, as a consequence, their different impact
- 460 during bread making.
- 461 37. Van Steertegem, B., Pareyt, B., Brijs, K., and Delcour, J.A., Impact of mixing time and
- sodium stearoyl lactylate on gluten polymerization during baking of wheat flour dough. Food
- 463 Chemistry, 2013. **141**(4): p. 4179-4185.
- 464 38. Kenny, S., Wehrle, K., Stanton, C., and Arendt, E.K., Incorporation of dairy ingredients
- 465 *into wheat bread: effects on dough rheology and bread quality.* European Food Research and
- 466 Technology, 2000. **210**(6): p. 391-396.
- 467 39. Ammar, A.S., Salem, S.A., and Badr, F.H., *Rheological properties of wheat flour dough*468 *as affected by addition of whey and soy proteins*. Pakistan Journal of Nutrition, 2011. 10(4): p.
 469 302-306.
- 470 40. Ribotta, P.D., Arnulphi, S.A., León, A.E., and Añón, M.C., Effect of soybean addition
- 471 *on the rheological properties and breadmaking quality of wheat flour.* Journal of the Science
- 472 of Food and Agriculture, 2005. **85**(11): p. 1889-1896.
- 473 41. Perez, G.T., Ribotta, P.D., Steffolani, M.E., and León, A.E., *Effect of soybean proteins*
- 474 on gluten depolymerization during mixing and resting. Journal of the Science of Food and
- 475 Agriculture, 2008. **88**(3): p. 455-463.
- 476 42. Bonet, A., Blaszczak, W., and Rosell, C.M., Formation of homopolymers and
- 477 heteropolymers between wheat flour and several protein sources by transglutaminase-
- 478 *catalyzed cross-linking*. Cereal Chemistry, 2006. **83**(6): p. 655-662.
- 479 43. ••Lambrecht, M.A., Deleu, L.J., Rombouts, I., and Delcour, J.A., *Heat-induced network*
- 480 formation between proteins of different sources in model systems, wheat-based noodles and
- 481 *pound cakes.* Food Hydrocolloids, 2018. **79**: p. 352-370.
- 482 Review discussing the importance of heat-induced crosslinks between proteins of different
- 483 sources on product quality.

- 484 44. Salvador, A., Sanz, T., and Fiszman, S.M., *Dynamic rheological characteristics of*485 *wheat flour-water doughs. Effect of adding NaCl, sucrose and yeast.* Food Hydrocolloids,
 486 2006. 20(6): p. 780-786.
- 487 45. Cauvain, S.P. and Young, L.S., *Baked Products Science, Technology and Practice*.
 488 2006, Oxford, UK: Blackwell Publishing Ltd.
- 489 46. Pareyt, B., Finnie, S.M., Putseys, J.A., and Delcour, J.A., *Lipids in bread making:*490 *Sources, interactions, and impact on bread quality.* Journal of Cereal Science, 2011. 54(3): p.
 491 266-279.
- 492 47. Belton, P.S., *Mini Review: On the Elasticity of Wheat Gluten*. Journal of Cereal Science,
 493 1999. 29(2): p. 103-107.
- 494 48. Weegels, P.L., Hamer, R.J., and Schofield, J.D., *Depolymerisation and Re-*495 *polymerisation of Wheat Glutenin During Dough Processing. II. Changes in Composition.*496 Journal of Cereal Science, 1997. 25(2): p. 155-163.
- 497 49. Angioloni, A. and Dalla Rosa, M., *Dough thermo-mechanical properties: influence of*498 *sodium chloride, mixing time and equipment.* Journal of Cereal Science, 2005. 41(3): p. 327499 331.
- 50. Rouillé, J., Le Bail, A., and Courcoux, P., *Influence of formulation and mixing*501 *conditions on breadmaking qualities of French frozen dough*. Journal of Food Engineering,
 502 2000. 43(4): p. 197-203.
- 503 51. Ooms, N., Pareyt, B., Jansens, K.J.A., Reyniers, S., Brijs, K., and Delcour, J.A., The

504 *impact of redox agents on further dough development, relaxation and elastic recoil during*

- *lamination and fermentation of multi-layered pastry dough.* Journal of Cereal Science, 2017.
- 506 **75**: p. 84-91.
- 507 52. Engmann, J., Peck, M., and Wilson, D., *An experimental and theoretical investigation*508 *of bread dough sheeting*. Food and Bioproducts Processing, 2005. 83(3): p. 175-184.
- 509 53. Qi, F., Dai, S.-C., Newberry, M.P., Love, R.J., and Tanner, R.I., *A simple approach to* 510 *predicting dough sheeting thickness.* Journal of Cereal Science, 2008. **47**(3): p. 489-495.
- 51. Xiao, W., Charalambides, M.N., and Williams, J.G., *Sheeting of wheat flour dough*.
 512 International Journal of Food Science & Technology, 2007. 42(6): p. 699-707.
- 513 55. Kuktaite, R., Larsson, H. and Johansson, E. Variation in protein composition of wheat
- flour and its relationship to dough mixing behaviour. Journal of Cereal Science, 2004. **40**(1),
- 515 p.31-39.

- 516 56. Lagrain, B., Brijs, K., and Delcour, J.A., *Impact of redox agents on the physico-*517 *chemistry of wheat gluten proteins during hydrothermal treatment.* Journal of Cereal Science, 518 2006. **44**(1): p. 49-53.
- 519 57. Cauvain, S.P., *Technology of Bread Making. Third Edition.* 2015, Witney, UK.: 520 Springer.
- 521 58. Veraverbeke, W.S., Courtin, C.M., Verbruggen, I.M., and Delcour, J.A., *Factors*522 *Governing Levels and Composition of the Sodium Dodecyl Sulphate-Unextractable Glutenin*
- *Polymers During Straight Dough Breadmaking*. Journal of Cereal Science, 1999. 29(2): p. 129138.
- 525 59. Every, D., Simmons, L., Sutton, K., and Ross, M., Studies on the mechanism of the
- 526 ascorbic acid improver effect on bread using flour fractionation and reconstitution methods.
- 527 Journal of Cereal Science, 1999. **30**(2): p. 147-158.
- 528 60. Grosch, W. and Wieser, H., *Redox reactions in wheat dough as affected by ascorbic*529 *acid.* Journal of Cereal Science, 1999. 29(1): p. 1-16.
- 530 61. Koehler, P., Concentrations of low and high molecular weight thiols in wheat dough as
- 531 affected by different concentrations of ascorbic acid. Journal of Agricultural and Food
- 532 Chemistry, 2003. **51**(17): p. 4948-4953.
- 533 62. ••Verbauwhede, A.E., Lambrecht, M.A., Fierens, E., Hermans, S., Shegay, O., Brijs,
- 534 K., and Delcour, J.A., *Thermo-reversible inhibition makes aqualysin 1 from Thermus aquaticus*
- a potent tool for studying the contribution of the wheat gluten network to the crumb texture of
- 536 *fresh bread*. Food Chemistry, 2018. **264**: p. 118-125.
- Research article showing the limited impact of gluten network alterations through use of
 a peptidase during baking on bread crumb texture.
- 539 63. Indrani, D., Prabhasankar, P., Rajiv, J., and Rao, G.V., Scanning electron microscopy,
- 540 rheological characteristics, and bread-baking performance of wheat flour dough as affected by
- 541 *enzymes.* Journal of Food Science, 2003. **68**(9): p. 2804-2809.
- 542 64. Van Oort, M. *Enzymes in bread making*. In: Enzymes in food technology. Second
- edition, ed. R.J. Whitehurst and M. Van Oort. 2010, Blackwell Publishing Ltd.: West Sussex,
- 544 United Kingdom.
- 545 65. Caballero, P.A., Gómez, M., and Rosell, C.M., Improvement of dough rheology, bread
- 546 *quality and bread shelf-life by enzymes combination*. Journal of Food Engineering, 2007. **81**(1):
- 547 p. 42-53.

- 548 66. Yang, T., Bai, Y., Wu, F., Yang, N., Zhang, Y., Bashari, M., Jin, Z., and Xu, X.,
 549 *Combined effects of glucose oxidase, papain and xylanase on browning inhibition and*550 *characteristics of fresh whole wheat dough.* Journal of Cereal Science, 2014. **60**(1): p. 249-254.
- 67. Goesaert, H., Brijs, K., Veraverbeke, W., Courtin, C., Gebruers, K., and Delcour, J., *Wheat flour constituents: how they impact bread quality, and how to impact their functionality.*
- 553 Trends in Food Science & Technology, 2005. **16**(1): p. 12-30.
- 554 68. Stampfli, L. and Nersten, B., *Emulsifiers in bread making*. Food Chemistry, 1995.
 555 52(4): p. 353-360.
- 556 69. Xu, F., *Adsorption of oxygen gas by hydrated wheat flour*. LWT-Food Science and 557 Technology, 2001. **34**(2): p. 66-70.
- 558 70. Hawthorn, J. and Todd, J., *Some effects of oxygen on the mixing of bread doughs*.
 559 Journal of the Science of Food and Agriculture, 1955. 6(9): p. 501-511.
- 560 71. Marston, P., *Dough development for breadmaking under controlled atmospheres.*561 Journal of Cereal Science, 1986. 4(4): p. 335-344.
- 562 72. Campbell, G.M. *Bread aeration*. In: Bread Making: Improving Quality, ed. S.P.
 563 Cauvain. 2003, Woodhead Publishing Ltd: Cambridge, UK.
- 564 73. ••Decamps, K., Joye, I.J., De Vos, D.E., Courtin, C.M., and Delcour, J.A., *Molecular*
- 565 oxygen and reactive oxygen species in bread-making processes: scarce, but nevertheless
- *important.* Critical Reviews in Food Science and Nutrition, 2016. **56**(5): p. 722-736.
- Thorough review article on the importance of molecular oxygen and other reactive oxygen
 species as oxidizing agents during bread making.
- 569 74. Mair, G. and Grosch, W., *Changes in glutathione content (reduced and oxidised form)*
- 570 and the effect of ascorbic acid and potassium bromate on glutathione oxidation during dough
- 571 *mixing*. Journal of the Science of Food and Agriculture, 1979. **30**(9): p. 914-920.
- 572 75. Lagrain, B., Thewissen, B.G., Brijs, K., and Delcour, J.A., Impact of redox agents on
- 573 the extractability of gluten proteins during bread making. Journal of Agricultural and Food
- 574 Chemistry, 2007. **55**(13): p. 5320-5325.
- 575 76. Gaines, C.S., *Influence of chemical and physical modification of soft wheat protein on*576 sugar-snap cookie dough consistency, cookie size, and hardness. Cereal Chemistry, 1990.
 577 67(1): p. 73-77.
- 578 77. Pareyt, B., Van Steertegem, B., Brijs, K., Lagrain, B., and Delcour, J.A., *The impact of*
- *redox agents on sugar-snap cookie making.* Journal of Cereal Science, 2010. **52**(2): p. 192-199.
- 580 78. Elkassabany, M. and Hoseney, R., Ascorbic acid as an oxidant in wheat flour dough. II.
- 581 *Rheological effects*. Cereal Chemistry, 1980. **57**(2): p. 88-91.

- 582 79. Stear, C.A., *Handbook of Breadmaking Technology*. 1990, Essex, UK: Elsevier science
 583 publishers Ltd.
- 80. Nakamura, M. and Kurata, T., *Effect of L-ascorbic acid on the rheological properties*of wheat flour-water dough. Cereal Chemistry, 1997. 74(5): p. 647-650.
- 586 81. Miller, K. and Hoseney, R., *Effect of oxidation on the dynamic rheological properties*587 *of wheat flour-water doughs*. Cereal chemistry, 1999. **76**(1): p. 100-104.
- S88 82. Yamada, Y. and Preston, K., *Effects of individual oxidants on oven rise and bread properties of Canadian short process bread*. Journal of Cereal Science, 1992. 15(3): p. 237251.
- 591 83. La, I.-J., Lee, M.-C., Park, H.-D., and Kim, K.-P., *Effects of azodicarbonamide on the*
- 592 *rheology of wheat flour dough and the quality characteristics of bread.* Journal of the Korean

593 Society of Food Science and Nutrition, 2004. **33**(9): p. 1566-1572.

- 594 84. Yasui, A., Oishi, M., Hayafuji, C., Kobayashi, C., Shindo, T., Ozawa, H., and Nakazato,
- 595 M., *Analysis of Azodicarbonamide in Wheat Flour and Prepared Flour Mixes*. Shokuhin 596 eiseigaku zasshi. Journal of the Food Hygienic Society of Japan, 2016. **57**(5): p. 133-138.
- 597 85. Tieckelmann, R. and Steele, R., *Higher-assay grade of calcium peroxide improves*598 *properties of dough.* Food Technology, 1991. 45: p. 106–112.
- Takasaki, S., Kato, Y., Murata, M., Homma, S., and Kawakishi, S., *Effects of peroxidase and hydrogen peroxide on the dityrosine formation and the mixing characteristics of wheat*-
- flour dough. Bioscience, Biotechnology, and Biochemistry, 2005. 69(9): p. 1686-1692.
- 87. Joye, I.J., Lagrain, B., and Delcour, J.A., *Endogenous redox agents and enzymes that affect protein network formation during breadmaking–A review*. Journal of Cereal Science,
 2009a. 50(1): p. 1-10.
- 605 88. Angioloni, A. and Dalla Rosa, M., *Effects of cysteine and mixing conditions on* 606 *white/whole dough rheological properties.* Journal of food engineering, 2007. **80**(1): p. 18-23.
- 607 89. Ooms, N., Jansens, K.J.A., Pareyt, B., Reyniers, S., Brijs, K., and Delcour, J.A., *The*608 *impact of disulfide bond dynamics in wheat gluten protein on the development of fermented*
- 609 *pastry crumb*. Food Chemistry, 2018. **242**: p. 68-74.
- 610 90. Oliver, G., Thacker, D., and Wheeler, R.J., Semi-sweet biscuits: 1. The influence of
- 611 sodium metabisulphite on dough rheology and baking performance. Journal of the Science of
- 612 Food and Agriculture, 1995. **69**(2): p. 141-150.
- 613 91. Pedersen, L., Kaack, K., Bergsøe, M.N., and Adler-Nissen, J., Effects of chemical and
- 614 *enzymatic modification on dough rheology and biscuit characteristics.* Journal of Food Science,
- 615 2005. **70**(2): p. E152-E158.

- 616 92. Bonet, A., Rosell, C.M., Caballero, P.A., Gómez, M., Pérez-Munuera, I., and Lluch,
- M.A., *Glucose oxidase effect on dough rheology and bread quality: a study from macroscopic to molecular level.* Food Chemistry, 2006. **99**(2): p. 408-415.
- 619 93. Hanft, F. and Koehler, P., *Studies on the effect of glucose oxidase in bread making*.
 620 Journal of the Science of Food and Agriculture, 2006. 86(11): p. 1699-1704.
- 94. Bankar, S.B., Bule, M.V., Singhal, R.S., and Ananthanarayan, L., *Glucose oxidase—an overview*. Biotechnology Advances, 2009. 27(4): p. 489-501.
- 623 95. Steffolani, M.E., Ribotta, P.D., Pérez, G.T., and León, A.E., Effect of glucose oxidase,
- 624 transglutaminase, and pentosanase on wheat proteins: Relationship with dough properties and
- *bread-making quality.* Journal of Cereal Science, 2010. **51**(3): p. 366-373.
- 626 96. Decamps, K., Joye, I.J., Haltrich, D., Nicolas, J., Courtin, C.M., and Delcour, J.A.,
- 627 Biochemical characteristics of Trametes multicolor pyranose oxidase and Aspergillus niger
- 628 glucose oxidase and implications for their functionality in wheat flour dough. Food Chemistry,
- 629 2012a. **131**(4): p. 1485-1492.
- 630 97. Rasiah, I., Sutton, K., Low, F., Lin, H.-M., and Gerrard, J., Crosslinking of wheat dough
- 631 proteins by glucose oxidase and the resulting effects on bread and croissants. Food Chemistry,
- 632 2005. **89**(3): p. 325-332.
- 98. Poulsen, C. and Hostrup, P.B., *Purification and characterization of a hexose oxidase*with excellent strengthening effects in bread. Cereal Chemistry, 1998. **75**(1): p. 51-57.
- 635 99. Hanft, F. and Koehler, P., *Quantitation of dityrosine in wheat flour and dough by liquid*
- *chromatography- tandem mass spectrometry*. Journal of Agricultural and Food Chemistry,
 2005. 53(7): p. 2418-2423.
- 638 100. Decamps, K., Joye, I.J., Courtin, C.M., and Delcour, J.A., *Glucose and pyranose*639 *oxidase improve bread dough stability*. Journal of Cereal Science, 2012. 55(3): p. 380-384.
- 640 101. Decamps, K., Joye, I.J., Rakotozafy, L., Nicolas, J., Courtin, C.M., and Delcour, J.A.,
- 641 The bread dough stability improving effect of pyranose oxidase from Trametes multicolor and
- 642 glucose oxidase from Aspergillus niger: unraveling the molecular mechanism. Journal of
- 643 Agricultural and Food Chemistry, 2013. **61**(32): p. 7848-7854.
- Kaufman, S. and Fennema, O., *Evaluation of sulfhydryl oxidase as a strengthening agent for wheat flour dough.* Cereal Chemistry, 1987. 64(3): p. 172-176.
- 646 103. Faccio, G., Flander, L., Buchert, J., Saloheimo, M., and Nordlund, E., Sulfhydryl
- 647 *oxidase enhances the effects of ascorbic acid in wheat dough.* Journal of Cereal Science, 2012.
- 648 **55**(1): p. 37-43.

- 649 104. Gerrard, J., Fayle, S., Wilson, A., Newberry, M., Ross, M., and Kavale, S., *Dough*650 *properties and crumb strength of white pan bread as affected by microbial transglutaminase.*
- 651 Journal of Food Science, 1998. **63**(3): p. 472-475.
- 105. Bauer, N., Koehler, P., Wieser, H., and Schieberle, P., Studies on effects of microbial
- 653 transglutaminase on gluten proteins of wheat. II. Rheological properties. Cereal Chemistry,
- 654 2003. **80**(6): p. 787-790.
- 655 106. Gerrard, J., Newberry, M., Ross, M., Wilson, A., Fayle, S., and Kavale, S., Pastry lift
- and croissant volume as affected by microbial transglutaminase. Journal of Food Science,
 2000. 65(2): p. 312-314.
- 658 107. Hozova, B., Jancovicova, J., Dodok, L., Buchtova, V., and Staruch, L., Use of
- transglutaminase for improvement of quality of pastry produced by frozen-dough technology.
- 660 Czech Journal of Food Sciences, 2002. **20**(6): p. 215-222.
- 661 108. Ooms, N., Pareyt, B., Brijs, K., and Delcour, J.A., Ingredient functionality in
- 662 multilayered dough-margarine systems and the resultant pastry products: a review. Critical
- 663 Reviews in Food Science & Nutrition, 2016. **56**(13): p. 2101-2114.
- Martínez-Anaya, M.A., *Enzymes and bread flavor*. Journal of Agricultural and Food
 Chemistry, 1996. 44(9): p. 2469-2480.
- 666 110. Harada, O., Lysenko, E., and Preston, K., Effects of commercial hydrolytic enzyme
- 667 *additives on Canadian short process bread properties and processing characteristics.* Cereal
- 668 Chemistry, 2000. **77**(1): p. 70-76.
- 669 111. •Kieliszek, M. and Misiewicz, A. *Microbial transglutaminase and its application in the*670 *food industry. A review.* Folia Microbiologica, 2014. **59**(3), p.241-250.
- Excellent review article on the many uses of transglutaminase in the food industry, also
 focussing on its use in bakery applications.
- 673 112. EFSA. Opinion of the scientific panel on dietetic products, nutrition and allergies on a
- 674 request from the commission related to the tolerable upper intake level of sodium. The EFSA
- 675 Journal, 2005. **209**, p.1–26.
- 676 113. Lynch, E.J., Dal Bello, F., Sheehan, E.M., Cashman, K.D. and Arendt, E.K.
- *Fundamental studies on the reduction of salt on dough and bread characteristics.* Food
 Research International, 2009. 42(7), p.885-891.
- 679 114. Wellner, N., Bianchini, D., Mills, E.C. and Belton, P.S. Effect of selected Hofmeister
- 680 anions on the secondary structure and dynamics of wheat prolamins in gluten. Cereal
- 681 Chemistry, 2003. **80**(5), p.596-600.

- Rombouts, I., Jansens, K.J., Lagrain, B., Delcour, J.A. and Zhu, K.X. *The impact of salt and alkali on gluten polymerization and quality of fresh wheat noodles*. Journal of Cereal
 Science, 2014. **60**(3), p.507-513.
- He, H., Roach, R.R. and Hoseney, R.C. *Effect of nonchaotropic salts on flour bread- making properties.* Cereal Chemistry, 1992. 69(4), p.366-371.
- 687 117. Melnyk, J.P., Dreisoerner, J., Bonomi, F., Marcone, M.F. and Seetharaman, K. Effect of
- 688 the Hofmeister series on gluten aggregation measured using a high shear-based technique.
- 689 Food Research International, 2011. **44**(4), p.893-896.
- Pareyt, B., Brijs, K. and Delcour, J.A. Sugar-snap cookie dough setting: the impact of
 sucrose on gluten functionality. Journal of Agricultural and Food Chemistry, 2009. 57(17),
 p.7814-7818.
- 119. Uedaira, H. and Uedaira, H. *The effect of sugars on the thermal denaturation of lysozyme*. Bulletin of the Chemical Society of Japan, 1980. 53(9), p.2451-2455.
- Danno, G., and R. C. Hoseney. *Effects of dough mixing and rheologically active compounds on relative viscosity of wheat proteins*. Cereal Chemistry, 1982. **59**(3), p.196-198.
- Skerritt, J.H., Hac, L., Lindsay, M.P. and Bekes, F. *Depolymerization of the glutenin macropolymer during mixing: II. Differences in retention of specific glutenin subunits.* Cereal
 Chemistry, 1999. **76**(3), p.402-409.
- Wrigley, C.W., Békés, F. and Bushuk, W. *Gluten: A balance of gliadin and glutenin. Gliadin and glutenin. The unique balance of wheat quality.* 2006. AACC International Press,
 St Paul, p.3-32.
- 123. Sapirstein, H.D. and Fu, B.X. Evidence for varying interaction of gliadin and glutenin
 proteins as an explanation for differences in dough strength of different wheats. In: Wheat
 gluten. Proceedings of the 7th International Workshop Gluten. 2000. Royal Society of
 Chemistry, Bristol, UK. p. 425-429.
- 707 124. Ortolan, F. and Steel, C.J. *Protein characteristics that affect the quality of vital wheat*708 *gluten to be used in baking: A review*. Comprehensive Reviews in Food Science and Food
 709 Safety, 2017. 16(3), p.369-381.

- 710 125. D'Ovidio, R. and Masci, S. *The low-molecular-weight glutenin subunits of wheat gluten*.
- 711 Journal of Cereal Science, 2004. **39**(3), p.321-339.
- 712 126. Li, W., Dobraszczyk, B.J., Dias, A. and Gil, A.M. Polymer conformation structure of
- wheat proteins and gluten subfractions revealed by ATR-FTIR. Cereal Chemistry, 2006. 83(4),
- 714 p.407-410.
- 127. Lambrecht, M.A., Rombouts, I., De Ketelaere, B. and Delcour, J.A. Prediction of heat-
- 716 *induced polymerization of different globular food proteins in mixtures with wheat gluten.* Food
- 717 Chemistry, 2017. **221**, p.1158-1167.