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Abstract
To predict ground-borne vibration due to railway traffic, accurate computational models are required. Since these models
generally require a substantial computational effort, much research focused on developing computationally efficient
methods by either exploiting the regularity of the problem geometry in the direction along the track or assuming a
simplified track structure. This paper presents a track modelling approach based on a wave analysis technique for multi-
coupled periodic structures. The track and part of the soil are modelled with finite elements, while a perfectly matched
layer absorbs waves travelling in the semi-infinite soil. A case study is presented investigating a track with transition
zone between ballasted and slab track. The track model is verified by comparison with a periodic track model using
the Floquet transform. The train-track interaction force and free field vibration are computed for transition zones with
gradual and sudden stiffness increase, respectively. It is found that, at higher train speeds, it is more important to have
a more gradual stiffness increase in the transition zone.
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Introduction

Railway construction in densely populated urban areas
has increased the awareness of human discomfort due to
railway induced noise and vibration. Accurate numerical
models are required to assess noise and vibration
problems and to facilitate performance based design
of new railway lines1,2. Railway induced noise and
vibration are generated by a combination of quasi-
static and dynamic axle loads. The dynamic component
is caused by several excitation mechanisms, such as
wheel and track unevenness, impact excitation due to
rail joints and wheel flats, and parametric excitation
due to stiffness variations in the longitudinal track
direction2–4.

Several numerical models are currently available to
predict ground-borne noise and vibration. The largest
flexibility in modelling track and soil is obtained by
three-dimensional (3D) coupled finite element-boundary
element (FE-BE) models5–7. However, these models
require extensive modelling effort and computation
time. Many authors therefore exploit the regularity of
the track geometry to develop simplified track models
that are computationally more efficient.

In a so-called 2.5D FE-BE approach, the track is
assumed to be invariant in the longitudinal direction.
A Fourier transformation of the longitudinal coordinate
facilitates an efficient solution in the frequency-
wavenumber domain. Only a two-dimensional (2D) cross
section of the track has to be meshed, allowing for a
detailed representation of the cross sectional geometry.
This 2.5D approach is used to study vibrations induced
by wheel and track unevenness and has been developed
for tracks at grade8–10 as well as in tunnels9–12.
However, these models cannot take into account

parametric excitation as arising, for example, from the
periodic rail support in ballasted tracks. Furthermore,
the loads transferred by the sleepers to the ballast are
distributed along the track resulting in an incorrect
stress distribution under the sleepers.

Alternatively, the track can be assumed to be periodic
and a Floquet transformation13,14 enables a solution
based on the discretization of a single 3D periodic
cell. This approach allows to account for parametric
excitation due to the periodic rail support by sleepers,
but cannot be used to model other sources of track
stiffness variations, such as hanging sleepers, transition
zones or spatial variations of the subgrade stiffness.
Arlaud et al.15,16 developed a similar model, where
the track is divided into periodic cells of which the
modes are computed, thus significantly reducing the
number of degrees of freedom compared to a 3D finite
element model. This model can be used to account
for other sources of track stiffness variations as well,
but this reduces the computational efficiency. It is very
efficient to predict the response of the track or receivers
close to the track, but less suited for the prediction of
the response at larger distances from the track, since
the soil domain is modelled with fixed boundaries and
therefore no absorption of waves is accounted for at
these boundaries.

For the study of dynamic train-track interaction,
more simplified track models have been developed17

where the soil is modelled by a series of masses, springs
and dampers. These models do not allow to compute
the vibration transfer to the free field. Therefore, they
are often used in two-step approaches in which the
train-track interaction problem is solved first and the
vibration transfer is considered in the second step18,19.
An important disadvantage is the need for two different
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track models, which can introduce modelling errors.
For the study of transition zones, simplified train-track
interaction models calibrated with field measurements
are also used20,21.

This paper presents a general two-step train-track-
soil coupling algorithm. The advantage of the algorithm
is that no assumption is made on the track geometry;
it can either be invariant or completely irregular in
the longitudinal direction. Also, a novel track modelling
approach based on a wave analysis technique for multi-
coupled periodic structures22 is presented. The track
and part of the soil are modelled with finite elements
and wave reflection on the boundaries of the soil domain
is avoided by means of a perfectly matched layer23.
The advantage of this technique is that it allows to
model any kind of track stiffness variation while it is
computationally much more efficient than a full 3D
model. The first section describes the two-step coupling
algorithm and the track model based on wave analysis
for multi-coupled periodic structures. Next, this track
model is used in a case study of a track with transition
zone between ballasted and slab track. The proposed
track modelling approach is verified by comparing the
vertical rail receptance and track-free field mobility for
this model and a periodic model based on the Floquet
transform. The train-track interaction force and free
field vibration are computed for transition zones with
gradual and sudden stiffness increase, respectively.

Methodology

Train-track-soil coupling algorithm

In this subsection, a general two-step algorithm to solve
the train-track-soil interaction problem is presented.
First, the train-track interaction problem is solved in
the time domain to predict the axle loads. Next, these
axle loads are used to predict the free field vibrations in
the frequency domain.

In the first step of the algorithm, the train-track
interaction problem is solved by an iterative sequential
Dirichlet-Neumann algorithm24 in the time domain
(figure 1). Continuity of displacements and equilibrium
of forces are enforced at the wheel-rail contact points.
The equations are solved for the train and track
separately until convergence is reached.

Figure 1. Step 1: train-track coupling in the time domain.
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with Newmark parameters α and δ and time step
∆t. The matrices Kv, Cv and Mv are the stiffness,
damping and mass matrices of the train, respectively.
The vector uv(t) = {ub(t); ua(t)} contains the degrees
of freedom of the train, with ua(t) the vertical
displacements of the wheel-rail contact points and ub(t)
the remaining degrees of freedom. The vector Fv(t) =
{0; g(t)} contains the axle loads g(t) between the wheels
and rails. A Dirichlet boundary condition is used for the
train, imposing the axle displacements ua(t) to compute
the axle loads g(t).

For the track, a Neumann boundary condition is used.
The vertical track displacements ut(x, t) are calculated
as the convolution of the time history of the na axle
loads gk(t) and transfer functions hzz(xk(τ),x′, t− τ)
relating the displacement at x′ in the direction ez at
time t− τ due to a unit load applied at xk(τ) in the
direction ez at time 0:

ut(x
′, t) =

na∑
k=1

t∫
0

hzz(xk(τ),x′, t− τ)gk(τ)dτ. (2)

Only vertical interaction forces between the train and
the track are considered in equation (2). The transfer
functions hzz(xk(τ),x′, t− τ) are computed by means
of a track model. The time-dependent positions of the
axles are denoted by xk(τ) = {xk0, yk0 + vτ, zk0}T, with

{xk0, yk0, zk0}T the initial position of axle k and v the
train speed.

The train axles are in perfect contact with the track.
Accounting for the combined wheel and rail unevenness
uw/r(t), the following expression holds for each axle k 25:

uak(t) = utk(t) + uw/rk(t), (3)

where utk(t) is the vertical displacement of the track
at the position of the k-th axle and uw/rk(t) is the
unevenness perceived by this axle.

The train-track interaction problem is solved by
means of an iterative sequential Dirichlet-Neumann
algorithm that proceeds as follows for every time t =
nt∆t. First it is assumed that üak(t) = üak(t−∆t)
for each axle k and the axle displacements uak(t) are
calculated with Newmark’s method:

uak(t) = uak(t−∆t) + u̇ak(t−∆t)∆t+(
1

2
− α

)
üak(t−∆t)∆t2 + αüak(t)∆t2

= uak(t−∆t) + u̇ak(t−∆t)∆t+

1

2
üak(t)∆t2. (4)
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Next, the following steps are repeated for every iteration
n until convergence is achieved for every axle k at this
time step t:

1. Knowing the axle displacements unak(t), equation
(1) is used to compute the displacements unb(t)
and the axle loads gn(t).

2. Compute the vertical track displacement unt (x′, t)
from equation (2) in the discrete time domain:

unt (x′, t) = unt (x′, nt∆t) '
na∑
k=1

nt∑
j=0

hzz(xk(j∆t),x′, (nt − j)∆t)gk(j∆t)∆t. (5)

All axle loads gk(j∆t) for j < nt are known, while
gk(nt∆t) are the axle loads gn(t) obtained in
step 1. Evaluating equation (5) yields the track
displacements untk(t) at each axle k.

3. From untk(t), the axle displacements un+1
ak,unrelaxed(t)

are computed with equation (3). A relaxation
technique26 is used to calculate relaxed values for
un+1

a (t):

un+1
a (t) = λn(t)un+1

a,unrelaxed(t)

+ (1− λn(t))una (t). (6)

The relaxation parameter λn(t) is defined as:

λn(t) = −λn−1(t)
(rn(t)− rn−1(t))Trn−1(t)

||rn(t)− rn−1(t)| |2
, (7)

with the residual rn(t) defined as:

rn(t) = una (t)− un+1
a,unrelaxed(t). (8)

The iteration procedure is terminated if the following
convergence criterion with accuracy ε holds for every
axle k: ∣∣∣∣un+1

ak (t)− unak(t)

un+1
ak (t)

∣∣∣∣ < ε. (9)

An accuracy of 10−10 is used. The algorithm
converges on average after 3 or 4 iterations for a train
axle or train car model, respectively.

In the second step of the train-track-soil coupling
algorithm, the axle loads g(t) are used to compute
the displacements at the track-soil interface. Next, the
tractions at this interface are computed and a boundary
element model of the soil is used to obtain the vibrations
in the free field (figure 2). The axle load distribution on
the track is collected in the body force ρbz(x, t) as27:

ρbz(x, t) =

na∑
k=1

δ(x− xk0)δ(y − yk0 − vt)δ(z − zk0)gk(t).

(10)

The body force ρbz(x, t) is transformed to the
frequency domain and applied on the track domain Ωt

to predict the displacements ûtsi(x
′, ω) at the track-soil

ρb̂z(x, ω)

ûts(x, ω)

t̂ts(x, ω)

ûr(x, ω)

Figure 2. Step 2: propagation of waves from track to free
field.

interface:

ûtsi(x
′, ω) =

∫
Ωt

ĥzi(x,x
′, ω)ρb̂z(x, ω)dΩt, (11)

where ĥzi(x,x
′, ω) are the transfer functions that relate

the displacement at point x′ on the track-soil interface
in the direction ei to a load in point x on the track in
the direction ez

1.
If the soil is modelled as a horizontally layered

halfspace and is therefore invariant in the longitudinal
track direction, the free field vibration can be computed
with a 2.5D boundary element model of the soil
based on the dynamic representation theorem of
elastodynamics28. As a result, the periodic model with
PML is not needed in this step and the free field
vibrations can be computed at much larger distances
from the track than the width of the FE model used in
step 1. The displacements at the track-soil interface are
transformed to the wavenumber domain by means of a
Fourier transform:

ũts(ky, ω) =

∫ ∞
−∞

ûts(y, ω)e+ikyydy. (12)

The displacements ũts(ky, ω) are used to compute the
tractions t̃ts(ky, ω) at the track-soil interface using the
boundary element equations9:

t̃ts(ky, ω) = Ũ−1(ky, ω)
(
T̃(ky, ω) + I

)
ũts(ky, ω),

(13)
with Ũ(ky, ω) and T̃(ky, ω) the boundary element
system matrices. The free field vibrations ũr(ky, ω) are
computed:

ũr(ky, ω) = Ũr(ky, ω)t̃ts(ky, ω)− T̃r(ky, ω)ũts(ky, ω),
(14)

with Ũr(ky, ω) and T̃r(ky, ω) the boundary element
transfer matrices. The free field vibrations in the spatial
domain are calculated by an inverse Fourier transform:

ũr(y, ω) =
1

2π

∫ ∞
−∞

ũr(ky, ω)e−ikyydky. (15)
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The advantage of the coupling algorithm is that
no assumption is made on the track geometry. Any
track geometry can be modelled, as long as a track
model is available to compute the transfer functions
hzz(x,x

′, t) and ĥzi(x,x
′, ω) in equations (5) and (11).

In the following subsection, the computation of these
transfer functions is discussed for a track with varying
characteristics in the longitudinal direction, e.g. a track
with transition zone.

Track model based on wave analysis of
multi-coupled periodic structures

In this subsection, the computation of the transfer
functions hzz(x,x

′, t) and ĥzi(x,x
′, ω) is discussed.

These transfer functions can be computed by means of
a 3D finite element-boundary element (FE-BE) model,
modelling the superstructure by finite elements and the
semi-infinite soil domain by boundary elements. In order
to reduce the computation time, the track geometry
can be assumed to be periodic in the longitudinal
direction ey and a Floquet transform can be used13,14.
This approach is computationally very efficient, but
does not allow to consider a track with varying
stiffness in the longitudinal direction such as tracks with
transition zones, hanging sleepers or spatial variations
of the ballast and subgrade stiffness. Therefore, an
alternative approach is presented, based on the wave
analysis technique for multi-coupled periodic structures
developed by Mead22, where the track is modeled as
a series of cells. The advantage of this approach is
that it can take into account track geometry changes
in the longitudinal direction, unlike a periodic or 2.5D
model, while the number of degrees of freedom never
exceeds the number of degrees of freedom of one
cell. Therefore, this approach significantly reduces the
memory requirements compared to a 3D FE-BE model.

Consider a track divided into M parts with different
properties (figure 3), with a central region of M − 2
parts and semi-infinite series of cells extending infinitely
to the left (part 1) and to the right (part M). Each part
j of the track consists of Nj periodic cells with length
Lj . The parts are separated by M − 1 interfaces.

When the track is excited by a force F applied on a
cell of part j, the forced vibration in the entire track
structure can be studied by investigating the free wave
propagation in all cells left and right from the excited
cell.

The dynamic stiffness matrix of one cell is calculated
as:

S = K + iωC− ω2M, (16)

with K, C and M the stiffness, damping and mass
matrix of the cell. The displacement and force vectors u
and F of each cell are partitioned into three parts: the
nodes on the left boundary, the interior nodes and the
nodes on the right boundary, referred to by the indices L,
I and R, respectively. These vectors are related through
the dynamic stiffness matrix S of the cell:SLL SLI SLR

SIL SII SIR

SRL SRI SRR

uL

uI

uR

 =

FL

FI

FR

 . (17)

Consider an infinite series of this cell with a free wave
traveling through cell k on which no external force is
applied (figure 4). After condensation of the interior
degrees of freedom, the following equation holds:[

S̃LL S̃LR

S̃RL S̃RR

]{
uLk

uRk

}
=

{
FLk

FRk

}
, (18)

where a tilde indicates a matrix after condensation of
the interior degrees of freedom.

The displacements and forces at the left-hand side of
cells k and k + 1 are related by the propagation constant
µ of the free wave:

uLk+1 = e−µuLk, (19)

FLk+1 = e−µFLk. (20)

At the interface between cells k and k + 1, continuity
of displacements is enforced. Combining this with
equation (19) yields a relationship between the
displacements at the left- and right-hand side of cell k:

uRk = uLk+1 = e−µuLk. (21)

Similarly, a relationship between the forces at the left-
and right-hand side of cell k is obtained after enforcing
equilibrium of forces at the interface between cells k and
k + 1:

FRk = −FLk+1 = −e−µFLk. (22)

Inserting equations (18) into equation (22) yields:

S̃RLuLk + S̃RRuRk = −e−µ(S̃LLuLk + S̃LRuRk). (23)

For each cell type, the free wave eigenvectors and
propagation constants are found from the following
generalized eigenvalue problem, obtained by combining
equations (21) and (23):[

S̃RL S̃RR

0 I

]{
uLk

uRk

}
= e−µ

[
−S̃LL −S̃LR

I 0

]{
uLk

uRk

}
.

(24)
Both sides of equation (24) are multiplied by the

inverse of the matrix at the right-hand side of this
equation. Using the properties of a block matrix, this
results in:[

0 I

−S̃−1
LRS̃RL −S̃−1

LR(S̃LL + S̃RR)

]{
uLk

uRk

}
= e−µ

{
uLk

uRk

}
.

(25)
If needed, the condition of the coefficient matrix

in this equation can be improved by multiplying
the unit matrix with an appropriate integer number.
Alternatively, the following polynomial eigenvalue
problem can be solved to obtain the free wave
eigenvectors and propagation constants:

(S̃RL + e−µ(S̃LL + S̃RR) + e−2µS̃LR)uLk = 0. (26)

At the boundary between any two cells, nc degrees of
freedom exist. Therefore, nc free waves can propagate
in both directions, each wave characterized by its
wave eigenvector and propagation constant µ. The
complex propagation constants are found from the

Prepared using sagej.cls



Germonpré et al. 5

∞ ∞

F

1 MjA jB jC2 M − 1... ...

1 2 j − 1 j M − 2 M − 1

Figure 3. Track consisting of M types of track structure, separated by M − 1 interfaces, and partition of part j.

F̂Rk−1 F̂Lk F̂Rk F̂Lk+1

ûRk−1 ûLk ûRk ûLk+1

k

Figure 4. Displacements and forces on cell k.

eigenvalues e−µ of equation (25). Propagation constants
with positive real part belong to the positive-going
waves, while those with negative real part belong to
the negative-going waves. Each propagation constant
µ is associated with a normalized eigenvector ψ and
a normalized force vector ρ. The force vectors are
calculated by inserting equation (21) into equation (18):

ρ = [S̃LL + S̃LRe
−µ]ψ (27)

for positive-going waves, and

ρ = [S̃RR + S̃RLe
µ]ψ (28)

for negative-going waves. For each cell type j, the
vectors ψ and ρ are collected in the matrices Ψj

p and Rj
p

for positive-going waves and Ψj
n and Rj

n for negative-
going waves. In free vibration, the displacements and
forces at the interface between two cells of type j are
always a linear combination of the eigenmodes Ψj

p and

Ψj
n and forces Rj

p and Rj
n, respectively.

In the track structure shown in figure 3, part 1 consists
of a semi-infinite series of cells extending infinitely to
the left. All the waves in this part are negative-going.
At the right-hand side of part 1, the displacements u1

R

and forces F1
R are decomposed into linear combinations

of the eigenmodes Ψ1
n and forces R1

n, respectively:

u1
R = Ψ1

nα
1
n, (29)

F1
R = R1

nα
1
n, (30)

with α1
n the modal coordinates of the negative-going

waves in part 1. Eliminating α1
n from equations (29)

and (30) results in the following expression:

F1
R = R1

n(Ψ1
n)−1u1

R = S1
Ru1

R, (31)

with S1
R the dynamic stiffness matrix of the semi-infinite

part 1. This procedure can be repeated for the semi-
infinite part M of the track:

FM
L = RM

p (ΨM
p )−1uM

L = SM
L uM

L , (32)

with SM
L the dynamic stiffness matrix of part M .

In parts j from 2 to M − 1, both positive-
and negative-going waves propagate. The forces and
displacements at the left- and right-hand side of part j
can be written as:{

ujL
ujR

}
=

[
Ψj

p Ψj
ne
Njµ

j
n

Ψj
pe
−Njµ

j
p Ψj

n

]{
αjp
αjn

}
, (33)

{
FjL
FjR

}
=

[
Rj

p −Rj
ne
Njµ

j
n

−Rj
pe
−Njµ

j
p Rj

n

]{
αjp
αjn

}
. (34)

Eliminating the modal coordinates αjp and αjn from
equations (33) and (34) yields:{

FjL
FjR

}
=

[
Rj

p −Rj
ne
Njµ

j
n

−Rj
pe
−Njµ

j
p Rj

n

]
[

Ψj
p Ψj

ne
Njµ

j
n

Ψj
pe
−Njµ

j
p Ψj

n

]−1{
ujL
ujR

}
=

[
S̃jLL S̃jLR

S̃jRL S̃jRR

]{
ujL
ujR

}
, (35)

with S̃j the dynamic stiffness matrix of part j after
condensation of the degrees of freedom that do not
belong to the left-hand or right-hand boundary of this
part of the track.

When a force F is applied on one of the cells of
part j, this part of the track is split into three sub-parts
(figure 3): the cell on which the force is applied (part
jB), the cells of part j left of this cell (part jA) and the
cells of part j right of this cell (part jC). Part jA or jC
is not present when the force is on the first or last cell
of part j, respectively. Dynamic stiffness matrices S̃jA

and S̃jC can be computed with equation (35), using NjA

cells in part jA and NjC cells in part jC instead of Nj .
If the force is applied on a cell of part 1, this part is split
into the semi-infinite part 1A and the finite parts 1B and
1C. Similarly, if a force is applied on a cell of part M,
this part is split into the finite parts MA and MB and
the semi-infinite part MC.

Assembling the stiffness matrices of the different
parts of the track, imposing continuity of displacements
and equilibrium of forces at the interfaces,
results in the following system of equations:
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. . .

S̃j−1
RR + S̃jALL S̃jALR

S̃jARL S̃jARR + SjBLL SjBLI SjBLR

SjBIL SjBII SjBIR

SjBRL SjBRI SjBRR + S̃jCLL S̃jCLR

S̃jCRL S̃jCRR + S̃j+1
LL

. . .





...
uj−1

ujBL

ujBI

ujBR

uj
...


=



...
0
0
F
0
0
...


, (36)

with ujBL , ujBI and ujBR the displacements at the
left, interior and right of part jB and u1 to uM−1

the displacements of interfaces 1 to M − 1. The forces
and displacements inside each part of the track can
be calculated from the modal coordinates in that part,
using equations (29) and (33). In the particular case
when the force is applied on the first cell of part j,
part jA does not exist and uj−1 = ujBL . The matrix S̃j−1

RR

is then added directly to SjBLL in equation (36). Similarly,
if the force is applied on the last cell of part j, part jC
does not exist, uj = ujBR and the matrix S̃j+1

LL is added

directly to SjBRR.
The force F is subsequently applied on the different

parts of the track. When the force is moving on part j,
only the matrices S̃jA and S̃jC change. This is exploited
by performing a Gaussian elimination on the left-hand
side of part j until interface j − 1 by means of the
following recursive relation:

SlR = S̃lRR − S̃lRL(Sl−1
R + S̃lLL)−1S̃lLR, (37)

with l = 2 to j − 1, resulting in the stiffness matrix
Sj−1

R . Similarly, Gaussian elimination is performed on
the right-hand side of part j until interface j by means
of the following recursive relation:

SlL = S̃lLL − S̃lLR(Sl+1
L + S̃lRR)−1S̃lRL, (38)

with l = M − 1 to j + 1, resulting in the stiffness matrix
Sj+1

L . A similar Gaussian elimination is then performed
for each cell of part j until the left and right boundary
of part jB using the matrices S̃jA and S̃jC.

Next, the force enters part j + 1. At the left side
of this part, the stiffness matrix SjR is obtained
by Gaussian elimination until interface j using
equation (37) with l = j. At the right side, the stiffness
matrix Sj+2

L is obtained by a back substitution until
interface j + 1:

SlL = S̃l−1
RL (S̃l−1

LL − Sl−1
L )−1S̃l−1

LR − S̃l−1
RR , (39)

with l = j + 2. Alternatively, the results SlL with l =
j + 2 to M from recursion (38) can be stored to use
afterwards when the force moves from left to right.

Since it is not possible to use the wave analysis
approach with boundary elements, part of the soil
underneath the track is modelled with quadratic finite
elements. At the edge of the soil domain, a perfectly
matched layer (PML)23 is placed to absorb waves
travelling in the x- and z-direction (figure 5). The
element size of the soil is chosen such that the distance
between two nodes is always smaller than one eighth of

the wavelength in the soil for each frequency, both in the
regular soil domain and in the PML. The depth of the
regular soil domain is at least equal to two wavelengths
in the soil, while the width is chosen such that the
distance between the ballast and the PML is at least
one wavelength.

x

y

z

Figure 5. Model of one cell with perfectly matched layer.

To absorb the waves travelling towards the edges of
the soil domain, stretched coordinates are considered for
the nodes inside the PML. If s denotes the coordinate in
a direction normal to the interface between the physical
domain and the PML located at s0, the stretched
coordinate s̃ is defined as29,30:

s̃ = s0 +

∫ s

s0

λs(s)ds. (40)

The stretching functions λs(s) are complex to cause
an artificially high attenuation of waves. These functions
are defined as29,31–33:

λs(s) = 1 + f e
s (s)− if

p
s (s)

a0
. (41)

The dimensionless frequency a0 is defined as a0 =
ωLPML/Cs, with LPML the thickness of the PML
layer and Cs the shear wave velocity of the soil.
The attenuation functions f e

s (s) and fp
s (s) attenuate

evanescent and propagating waves in the s-direction,
respectively. In order to obtain a non-reflective interface,
they are equal to zero on the interface between the
physical domain and the PML. Basu and Chopra32

suggest linear attenuation functions f e
s (s) and fp

s (s):

f e
s (s) = f e

s0

s

LPML
(42)

fp
s (s) = fp

s0

s

LPML
. (43)
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The parameters f e
s0 and fp

s0 can be chosen to adjust
the amount of attenuation inside the PML.

Case study: transition zone

The track model based on a wave analysis technique
for multi-coupled periodic structures is used to model
a transition zone between a ballasted track and a
slab track. Slab tracks are often used on bridges and
in tunnels, due to their structural and operational
advantages over ballasted tracks34,35. This case study
is derived from Galv́ın et al.6. Since a slab track
has higher stiffness than a ballasted track, the
transition between both track systems must be carefully
designed to obtain a gradual change in track stiffness.
The longitudinal geometry of a transition zone with
gradually increasing stiffness is shown in figure 6. Four
parts can be distinguished: the ballasted track, the
transition ballasted track, the transition slab track and
the slab track. Therefore, four different types of cells
must be modelled, each consisting of a finite element
model of the superstructure and part of the soil, with
a PML at the boundary of the soil domain as shown in
figure 5. All parts of the track contain two UIC60 rails
with a mass per unit length of 60.2 kg/m and a bending
stiffness of 6.45 Nm2. The rail pad stiffness and damping
are equal to 150 MN/m and 13.5 kNs/m, respectively.
The sleepers have a mass of 300 kg and are 2.50 m long
and 0.235 m wide with spacing L = 0.60 m. The soil is
modelled as a homogeneous halfspace with shear wave
velocity Cs and longitudinal wave velocity Cp equal to
150 m/s and 300 m/s, respectively, material damping
ratios βs and βp in shear and dilatational deformation
equal to 0.04 and a density ρ of 1800 kg/m3.

0.30 m

0.40 m

0.24 m

0.30 m

Ballasted track Transition

ballasted track

Transition

slab track

Slab track

10.2 m 5.4 m

2

1

4

1

4

3

4

3

Figure 6. Longitudinal geometry of the transition zone.

The ballasted track consists of a ballast and a sub-
ballast layer. In the transition ballasted track, the sub-
ballast is replaced by layer of hydraulic subbase. The
transition slab track consists of a 0.24 m thick concrete
slab on top of a 0.46 m thick layer of hydraulic subbase.
In the slab track, the subbase layer thickness is reduced
to 0.30 m. The properties of the materials used in
the superstructure are summarized in table 1. The
dimensions of the ballasted track, transition ballasted
track, transition slab track and slab track are shown in
figure 7.

The change in static track stiffness in the transition
from ballasted track to slab track is shown in figure 8,
for the case of a gradually increasing stiffness and for a
sudden stiffness increase between ballast and slab track,
i.e. without the transition ballast track and transition

Table 1. Characteristics of the materials used in the ballasted
track and slab track.

Cs Cp βs = βp ρ
[m/s] [m/s] [-] [kg/m3]

1 Ballast 278.9 455.4 0.03 1500
2 Sub-ballast 197.2 332.0 0.03 1500
3 Slab 2380.5 3887.3 0.03 2500
4 Hydraulic 1291.0 2108.2 0.03 2500

subbase

(a)

0.40 m

0.30 m

3.34 m
2.92 m
2.60 m

(b)

0.46 m

0.24 m

3.34 m
2.92 m

(c)

0.30 m

0.24 m

3.34 m
2.92 m

Figure 7. Model of (a) ballasted track and transition
ballasted track, (b) transition slab track and (c) slab track.

slab track. This figure shows that the transition zone
with gradually increasing stiffness leads to a stiffness
increase in two steps, while for the transition zone
with sudden stiffness increase this happens in one step.
Remark that in this transition zone, the transition slab
track is stiffer than the track slab itself, due to the
thicker layer of hydraulic subbase. The nearby presence
of the ballasted track, however, ensures that the static
stiffness in the transition slab track does not exceed
the stiffness of the slab track. Making the transition
slab track longer would therefore not make the stiffness
increase in the transition zone more gradual, but would
lead to a section with higher static stiffness compared
to the slab track, which is undesirable. The oscillations
in the track stiffness in figure 8 are due to the periodic
supports of the rails.

The superstructure and soil are modelled with 20-
node quadratic 3D volume elements. The mesh of the
physical soil domain and PML are frequency-dependent
in order to accurately model the wave propagation in the
soil and to effectively absorb the waves in the PML for
all frequencies. The size of the PML decreases with the
frequency: 4 elements are used below 20 Hz, 3 elements
between 20 Hz and 50 Hz and 2 elements above 50 Hz.

Prepared using sagej.cls
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Figure 8. Static track stiffness in the transition zone from
ballasted track to slab track with gradually (black line) and
suddenly (grey line) increasing stiffness.

The element size in the soil le is equal to Cs/(4f). In
this verification, the parameter f e

s0 is chosen as follows in
order to ensure accurate absorption of evanescent waves:

f e
s0 =

Cs

lef
− 1. (44)

The constant value fp
s0 = 20 is used, as suggested by

Basu and Chopra32.

The use of the proposed track model based on a wave
analysis technique for multi-coupled periodic structures
is first verified. This is done for the case of a perfectly
periodic track corresponding to the ballast track of
the case study. The results obtained with this track
model are compared with the results obtained with a
periodic FE-BE model. In this case, all cells in the track
model with PML are identical to allow for a comparison
between two periodic track models.

Figure 9 shows the modulus and phase of the vertical
rail receptance, computed above a sleeper with the
two track models. The agreement is very good for the
modulus. For the phase, there is a small difference for
frequencies above 60 Hz.

Figure 10 shows the modulus of the track-free field
mobility at 6 m and 24 m from the track center line.
The results agree very well. For frequencies above 60 Hz,
the track model with PML has a slightly higher track-
free field mobility, but the difference is never larger than
1 dB. The difference is due to very small wave reflection
on the boundaries of the soil domain and can be reduced
by considering a larger PML layer.

This verification shows that the track model based on
the wave analysis technique gives very similar results
as a periodic FE-BE model. The computation time
of these models is compared on a PC with 8 GB
RAM and a 2.10 GHz processor. The periodic FE-
BE model on average needs 1100 s per frequency,
while the track model based on the wave analysis
technique only needs 105 s. Therefore, the latter is
much more efficient despite its larger finite element
grid. This is mainly due to two reasons. First, the
wave analysis technique avoids the computation of the
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Figure 9. (a) Modulus and (b) phase of the vertical rail
receptance computed with the track model with PML based
on the wave analysis technique (black line) and the periodic
FE-BE track model (grey line).
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Figure 10. Modulus of the track-free field mobility at (a) 6 m
and (b) 24 m from the track center line computed with the
track model with PML based on the wave analysis technique
(black line) and the periodic FE-BE track model (grey line).

computationally very expensive soil stiffness matrices.
Also, the equations in the periodic FE-BE model must
be solved for every wavenumber and frequency, while in
the wave analysis technique all computations are solved
only once for each frequency. The highest additional
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MW

kW

Figure 11. Model of a Thalys high speed train wheel set.

cost of the wave analysis technique is the solution
of the eigenvalue problem of equation (25). Based on
the comparison between the computation times of the
periodic FE-BE model and FE model with PML, it
can be concluded that the wave analysis technique also
significantly reduces the computation time compared to
a 3D FE-BE model.

The train-track interaction force and free field
vibrations for a train passing on the transition zone are
computed subsequently using the algorithm described
in subsection 2.1. In order to make the interpretation of
the results more easy, the train is represented by a single
wheelset of a Thalys high speed train. The wheelset
model consists of a mass Mw of 2027 kg and a massless
wheel-rail contact point (figure 11). The mass Mw and
the massless contact point are connected by a spring kw

with stiffness 2.80× 109 N/m. The total mass carried by
the axle is equal to 20× 103 kg. Three vehicle speeds are
considered: 100, 200 and 300 km/h, resulting in a sleeper
passage frequency of 46.3 Hz, 92.6 Hz and 138.9 Hz,
respectively.

To evaluate the effectiveness of the transition zone,
the passage of the vehicle is simulated for a transition
zone with gradually increasing stiffness, corresponding
to figure 6, and for a track with a sudden stiffness
increase, the vehicle thus moving directly from a
ballasted track to a slab track. Figures 12 to 14 show the
time history and frequency spectrum of the train-track
interaction force for the three considered train speeds.
In the time domain, the results are synchronized in such
a way that the change from ballasted track to slab track
in the track with sudden stiffness change occurs at the
same moment as the change from transition ballasted
track to transition slab track in the track with gradual
stiffness change. The periodicity of the interaction force,
corresponding to the sleeper passage frequencies, can
clearly be observed. The highest interaction forces
due to the periodic rail support are observed at 100
km/h. This can be explained by figure 15, showing
the receptance of the vehicle and the track. Around
50 Hz, vehicle and track have approximately the
same receptance, which corresponds to the so-called
P2-resonance frequency at which higher train-track
interaction forces are expected. At 100 km/h, the sleeper
passage frequency is close to this resonance frequency,
giving rise to higher dynamic excitation. It is also
observed that the periodic excitation is higher for the
slab track than for the ballasted track, due to the stiffer
behavior of the former.

The effect of the transition zone is limited at 100
km/h and 200 km/h. At 300 km/h, however, higher

dynamic excitation is clearly observed passing from
ballasted to slab track if the train experiences a sudden
track stiffness increase. In the frequency spectrum, this
gives rise to higher forces in a broad frequency band,
with a peak around the P2-resonance frequency of the
train-track system. Figure 16 shows the spectrograms
of the interaction force with a time window of 0.02 s.
This figure clearly shows the change from ballasted
track to slab track in the case with sudden stiffness
increase in the transition zone, and the changes from
ballasted track to transition ballasted track and from
the latter to transition slab track for the track with
gradual stiffness increase in the transition zone. The
same color scale is used in both figures. Force levels are
clearly reduced when a transition zone with gradually
increasing stiffness is installed.

Apart from parametric excitation, wheel and rail
unevenness also contribute to the dynamic excitation
of the train and track. To model this unevenness
excitation, a stochastic track unevenness profile uw/r(y)
is generated as the superposition of harmonic functions
with random phase angle θi uniformly distributed in the
interval [0, 2π]25:

uw/r(y) =

n∑
i=1

αicos(kyiy − θi), (45)

where the parameters αi are determined by imposing
that the mean square of the artificial profile uw/r(y)
is equal to the area under the power spectral density
(PSD) curve G̃w/r(kyi) in each interval ∆kyi with center
wavenumber kyi:

αi =
√

2Gw/r(kyi)∆ky. (46)

The following expression is used for the one-sided PSD
function36:

G̃w/r(ky) = G̃w/r(ky0)

(
ky
ky0

)−w

, (47)

where ky0 = 1 rad/m and w = 3.5. According to the ISO

8608 standard, the lower and upper limits of G̃w/r(ky0)
are 1 ×10−9 m3 and 5 ×10−7 m3, respectively. For a
high speed train and track, unevenness is usually very
low. Therefore, the lower limit value of 1 ×10−9 m3 is
used.

A gradual change in track stiffness is required
most at 300 km/h. Figure 17 shows the time history
and frequency spectrum of the train-track interaction
force at this speed, taking into account wheel and
rail unevenness. Particularly high dynamic forces
are observed between 40 and 60 Hz, corresponding
to frequencies close to the P2 resonance frequency.
The unevenness excitation now has an important
contribution to the dynamic excitation. In the time
history, the peaks due to the transition from ballast
to concrete slab can be observed. Higher peaks are
observed in the case with sudden stiffness increase in the
transition zone, about two times higher than those due
to the unevenness excitation. Therefore, the transition
from ballasted to slab track has an important influence
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Figure 12. (a) Time history and (b) frequency spectrum of the dynamic train-track interaction force for the passage of the
wheel set at 100 km/h on the track with gradually (black line) and suddenly (grey line) increasing stiffness in the transition zone.
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Figure 13. (a) Time history and (b) frequency spectrum of the dynamic train-track interaction force for the passage of the
wheel set at 200 km/h on the track with gradually (black line) and suddenly (grey line) increasing stiffness in the transition zone.
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Figure 14. (a) Time history and (b) frequency spectrum of the dynamic train-track interaction force for the passage of the
wheel set at 300 km/h on the track with gradually (black line) and suddenly (grey line) increasing stiffness in the transition zone.

on the force applied on the track, which will lead to
faster degradation of the track structure at the location
of the transition. In the frequency spectrum of the force,
almost no difference can be observed since the difference
in interaction force occurs only for a very short period of
time. Therefore, the transition zone will have a relatively

small influence on the free field vibrations when wheel
and rail unevenness are introduced. This is because in
this case study, the unevenness profile was generated
randomly and independently from the track structure.
In reality, the stiffness change at the transition between
ballasted and slab track will result in higher interaction
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Figure 15. Receptance of the slab track (solid black line),
ballasted track (solid grey line) and vehicle (dashed black line).

(a)

(b)

Figure 16. Spectrogram of the dynamic train-track
interaction force at a train speed of 300 km/h for a track with
(a) gradually and (b) suddenly increasing stiffness in the
transition zone.

forces, leading to differential settlements in this region.
In that way, the change in track stiffness and the
unevenness will amplify each other.

The dynamic train-track interaction forces are
subsequently used to predict the free field response.
The interaction forces at 300 km/h are used, since at
this speed the influence of the transition zone was most
important. Wheel and rail unevenness are disregarded.
Figures 18 to 20 show the time history and frequency
spectrum of the free field velocity at 6 m, 12 m and
24 m of the track center line at the longitudinal position

of the transition between the transition ballasted track
and transition slab track. In case of a sudden stiffness
increase in the transition zone, much higher free field
vibrations are observed, up to 0.42 mm/s at 6 m
from the track center line. The sudden change in track
stiffness leads to an impulse load on the track. The
vibrations are transferred through the track structure
and the soil to the free field, where the arrival of the P-
wave and Rayleigh wave can be clearly observed as the
first and second peak, respectively. The sudden stiffness
increase in the transition zone leads to higher vibrations
for all frequencies between 0 and 120 Hz. The peak
at the sleeper passage frequency is still present in the
spectrum; this periodic vibration is also observed in the
time history.

Conclusion

This paper presents a track modelling approach based
on a wave analysis technique for multi-coupled periodic
structures. Wave reflection on the boundaries of the
soil domain is avoided by a perfectly matched layer
at the boundaries of the soil domain. The advantage
of this technique is that it is computationally efficient,
and unlike a 2.5D or periodic model allows to model
a track with varying characteristics in the longitudinal
direction. For coupling a train model to this track
model, a two-step train-track-soil coupling algorithm is
presented.

The track model based on a wave analysis technique
for multi-coupled periodic structures is used to model
a transition zone between a ballasted track and a
slab track. The proposed track model is verified
by a comparison with a periodic FE-BE model. A
periodic ballasted track is therefore modelled with both
techniques. The vertical rail receptance and track-free
field mobility are compared and the results of both
models are shown to correspond very well. Next, the
passage of a train on the transition zone is computed
for a track with a gradually and suddenly increasing
stiffness, respectively. The train-track interaction force
and free field vibrations are compared. A sudden
stiffness increase in the transition zone leads to higher
interaction forces for all frequencies up to 150 Hz. This
effect is stronger with increasing train speed. In the free
field, the sudden stiffness increase in the transition zone
leads to much higher vibrations for frequencies up to
120 Hz.
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Figure 17. (a) Time history and (b) frequency spectrum of the dynamic train-track interaction force taking into account wheel
and rail unevenness, for the passage of the wheel set at 300 km/h on the track with gradually (black line) and suddenly (grey
line) increasing stiffness in the transition zone.
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Figure 18. (a) Time history and (b) frequency spectrum of the free field velocities at 6 m of the track center line for the
passage of the wheel set at 300 km/h on the track with gradually (black line) and suddenly (grey line) increasing stiffness in the
transition zone.
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Figure 19. (a) Time history and (b) frequency spectrum of the free field velocities at 12 m of the track center line for the
passage of the wheel set at 300 km/h on the track with gradually (black line) and suddenly (grey line) increasing stiffness in the
transition zone.
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