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STRANG SPLITTING IN COMBINATION WITH RANK-1 AND
RANK-r LATTICES FOR THE TIME-DEPENDENT SCHR\"ODINGER

EQUATION\ast 

YUYA SUZUKI\dagger , GOWRI SURYANARAYANA\ddagger , AND DIRK NUYENS\dagger 

Abstract. We approximate the solution for the time dependent Schr\"odinger equation in two
steps. We first use a pseudospectral collocation method that uses samples of the functions on rank-1
or rank-r lattice points. We then get a system of ordinary differential equations in time, which
we solve approximately by stepping in time using the Strang splitting method. We prove that the
numerical scheme proposed converges quadratically with respect to the time step size, given that
the potential is in a Korobov space with the smoothness parameter greater than 9/2. Particularly,
we prove that the required degree of smoothness is independent of the dimension of the problem.
We demonstrate our new method by comparing with results using sparse grids from [V. Gradinaru,
SIAM J. Numer. Anal., 46 (2007), pp. 103--123], with several numerical examples showing the large
advantage for our new method and pushing the examples to higher dimensionality. The proposed
method has two distinctive features from a numerical perspective: (i) numerical results show the
error convergence of time discretization is consistent even for higher-dimensional problems; (ii) by
using the rank-1 lattice points, the solution can be efficiently computed (and further time stepped)
using only one-dimensional fast Fourier transforms.

Key words. time-dependent Schr\"odinger equations, lattice point sets, Fourier pseudospectral
methods, Strang splitting, Korobov spaces, error convergence

AMS subject classifications. 65M15, 65M70, 65T40

DOI. 10.1137/18M1207879

1. Introduction. Approximating the solution of the many-particle Schr\"odinger
equation is a challenging problem, where the dimension of the problem increases
linearly with the number of particles in the system. Many attempts have been made
to break the curse of dimensionality with respect to this problem [13, 14, 17]. This
is also the focus of the present paper and we propose a numerical method which
provides a partial solution to this. Often in the context of physics, the time-dependent
Schr\"odinger equation (TDSE) is referred to as the following equation:

i \hbar 
\partial \psi 

\partial t
(\bfitx , t) =  - \hbar 2

2m
\nabla 2\psi (\bfitx , t) + v(\bfitx )\psi (\bfitx , t),

where \hbar is the reduced Planck constant and m is the mass. By scaling the time
by 1/

\surd 
m and setting \gamma = \hbar /

\surd 
m this is equivalent to the following form for which

\psi (\bfitx , t) = u(\bfitx , t/
\surd 
m). We therefore consider the following equivalent equation in this

paper (as was done in [13, 14, 17]):

i \gamma 
\partial u

\partial t
(\bfitx , t) =  - \gamma 

2

2
\nabla 2u(\bfitx , t) + v(\bfitx )u(\bfitx , t),(1.1)
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with positions \bfitx \in \BbbT d = \BbbT ([0, 1)d), time t \in [0, T ], \gamma = \hbar /
\surd 
m > 0 a small positive

parameter, i the imaginary unit, and \nabla 2 the Laplace operator w.r.t. the positions
\bfitx , i.e., \nabla 2 =

\sum M
i=1

\sum D
j=1 \partial 

2/\partial x2i,j , where M is the number of particles and D is the
physical dimensionality. For notational simplicity we set d = M \times D. The function
u(\bfitx , t) is the wave function which we seek to approximate, v(\bfitx ) the potential, and g(\bfitx )
the initial condition at time t = 0; specific details about these functions will be covered
in the later sections. In addition, the boundary conditions are assumed to be periodic.
This periodic boundary makes the problem equivalent to identifying the domain of \bfitx 
as the d-dimensional torus \BbbT d = \BbbT ([0, 1)d) \simeq [0, 1)d with period 1. The TDSE in the
above form appears in quantum mechanics and molecular chemistry and is general
enough to include the case of the quantum-mechanical harmonic oscillator; see, e.g.,
[2, 37]. We note that this form of equations can be interpreted in several ways: one
particle in d-dimensional space; multiple d particles in one-dimensional space (e.g.,
[4]); and the combination of those two (multiple particles in multidimensional space,
e.g., [19, 37]).

In [17], Jahnke and Lubich applied the Strang splitting method which is an oper-
ator splitting method to approximate the solution of the TDSE where a collocation
method using regular grids was first used to discretize the spatial dimensions of the
initial wave function and the Strang splitting method was then applied to propagate
the wave function in time. In [13, 14], sparse grids were used instead of regular grids
to overcome the curse of dimensionality but with limited success. The numerical
experiments on the TDSE were limited to dimension 5.

We are interested in using rank-1 lattices for function approximation. Lattice
rules have traditionally been used for numerical integration of periodic functions; see,
e.g., [9, 28, 32]. Rank-1 lattice rules have been studied for the integration of functions
belonging to smooth permutation invariant function spaces in [30]. This research
is also relevant to our work, since a system with identical particles admits to the
setting where (groups of) coordinates, i.e., per particle, are permutation invariant.
Additionally, lattice rules have been used for function approximation in recent years,
e.g., [21, 22]. A spectral collocation method using a rank-1 lattice was developed by
[23] to approximate the solution of partial differential equations in a periodic space.
In addition to the periodic setting, rank-1 lattices, after an appropriate transforma-
tion, were found suitable for integration and approximation of nonperiodic functions
from smooth half-period cosine spaces (which includes the usual Sobolev space with
bounded mixed first derivatives); see respectively [12] and [8, 34].

The above research motivates the use of rank-1 lattices for solving the TDSE
where some symmetry is exhibited due to the physical nature; see [37]. We derive a
spectral collocation method based on rank-1 and more general rank-r lattice rules.
The general rank-r lattice points also include the (possibly anisotropic) regular grids.
The computation of the involved spectral coefficients can be efficiently calculated using
unitary fast Fourier transformations (FFTs) owing to the special structure of lattice
points. Further, we conduct the error analysis of the numerical scheme. Our focus is
on the error coming from the time discretization. The main theoretical result is that
the error of the time discretization converges with rate of \scrO ((\Delta t)

2
), where \Delta t is the

discretization step of the time t \in [0, T ]. Our analysis shows that the convergence rate
requires some smoothness of the potential function v(\bfitx ), but this smoothness does not
depend on the dimension d, where the results in [14], where the collocation was done
using sparse grids, need the smoothness to be higher when d increases. We provide
numerical results in various settings, showing that the convergence rate against the
time propagation is very stable and not affected by the dimension d.
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The rest of this paper is organized as follows. Section 2 describes our method and
the corresponding theoretical results. In section 3, we demonstrate our method by
numerical experiments with various values of parameters. Our numerical experiments
contain both low-dimensional cases and high-dimensional cases. In section 4, an
expression for the total error bound of the full discretization is given. Section 5 gives
conclusions of this paper.

Throughout the paper \BbbZ denotes the set of all integers, \BbbZ n := \{ 0, 1, . . . , n  - 1\} 
is the set of integers modulo n, \BbbN := \{ 1, 2, . . .\} is the natural numbers, and \BbbQ is the
rational numbers. We use In or just I to denote the n\times n identity matrix.

2. The method. In this section, we will describe the numerical method used for
solving the TDSE. First, we introduce the key concepts that are required throughout
this paper: lattice point sets, the Fourier pseudospectral method on lattices, and the
Strang splitting.

2.1. Lattices. The main building blocks of the proposed method are integration
lattices. They are the intersection of a lattice A\BbbZ d with the unit cube [0, 1)d where
A \in \BbbQ d\times r, 1 \leq r \leq d, is a rational matrix and were originally proposed to approximate
periodic integrals on [0, 1)d. For more detailed information we refer to [9, 25, 32].

For the main part of this paper we make use of a rank-1 lattice

\Lambda (\bfitz , n) :=

\biggl\{ 
\bfitz k

n
mod 1 : k \in \BbbZ 

\biggr\} 
,

which is completely defined by its integer generating vector \bfitz \in \BbbZ d and the modulus
n. We take the components of \bfitz relatively prime to n, such that the total number of
points is n.

We derive theory for both rank-1 and rank-r lattices, enabling us to state all
results for regular (anisotropic) grids as well since they can be represented by rank-r
lattices. We therefore introduce the definition of a rank-r lattice; see [32].

Definition 2.1 (canonical form of rank-r lattice). A d-dimensional integration
lattice can be written in terms of a generator

A =

\left(  \bfitz 1/n1 \bfitz 2/n2 \cdot \cdot \cdot \bfitz r/nr

\right)  \in \BbbQ d\times r,

which is specified by the generating vectors \bfitZ = (\bfitz 1, . . . ,\bfitz r) \in \BbbZ d\times r and moduli
\bfitn = (n1, . . . , nr) \in \BbbN r, such that A = \bfitZ diag(\bfitn ) - 1, with the corresponding lattice
point set \Lambda (\bfitZ ,\bfitn ) given by

\Lambda (\bfitZ ,\bfitn ) :=
\Bigl\{ 
A\bfitk mod 1 : \bfitk \in \BbbZ r

\Bigr\} 
\subset [0, 1)d.

This form is the canonical form of a rank-r lattice provided the moduli satisfy ni+1

divides ni for i = 1, . . . , r  - 1, the generating vectors \bfitz 1, . . . ,\bfitz r \in \BbbZ d are linearly
independent over the rational numbers, and the components of each \bfitz i are relatively
prime to ni. Then r is the minimum number of generating vectors needed to describe
this lattice point set and its total number of unique points in the unit cube [0, 1)d is
n =

\prod r
i=1 ni.

For further details we refer to [32, Theorem 3.2] and the related part there. We
interpret the collection of generating vectors \bfitZ = (\bfitz 1, . . . ,\bfitz r) \in \BbbZ d\times r as a matrix
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where the generating vectors constitute the columns of the matrix. The associated
rank-r ``lattice rule"" is the equal-weight cubature rule to approximate an integral of a
function f over the unit cube. For a rank-r lattice in its canonical form we can iterate
over all points by a multiindex \bfitk \in \BbbZ n1 \oplus \cdot \cdot \cdot \oplus \BbbZ nr and therefore the cubature rule
based on this lattice point set can be written as

Q(f ;\bfitZ ,\bfitn ) :=
1

n1

n1 - 1\sum 
k1=0

\cdot \cdot \cdot 1

nr

nr - 1\sum 
kr=0

f

\biggl( \biggl( 
\bfitz 1k1
n1

+ \cdot \cdot \cdot + \bfitz rkr
nr

\biggr) 
mod 1

\biggr) 
.

In this paper we will always assume that a rank-r lattice is given in canonical form,
i.e., \bfitZ and \bfitn satisfy the properties of Definition 2.1, and there is thus a one-to-one
correspondence between the lattice points and the multiindex \bfitk \in \BbbZ n1 \oplus \cdot \cdot \cdot \oplus \BbbZ nr .
We also introduce an associated antialiasing index set for the rank-r lattice \Lambda (\bfitZ ,\bfitn )
which we will denote by \scrA (\bfitZ ,\bfitn ). The antialiasing set is not unique.

Definition 2.2 (antialiasing set). An antialiasing set \scrA (\bfitZ ,\bfitn ) \in \BbbZ d associated
with the rank-r lattice \Lambda (\bfitZ ,\bfitn ) in canonical form has the property that for all distinct
vectors \bfith ,\bfith \prime \in \scrA (\bfitZ ,\bfitn ) it never holds that

\bfitZ \top (\bfith  - \bfith \prime ) \equiv 0 (mod \bfitn ) \equiv 

\left\{       
0 (mod n1),
...

...

0 (mod nr),

where the equivalence is to be interpreted componentwise and 0 is the r-dimensional
zero-vector.

The antialiasing condition states that every \bfith \in \scrA (\bfitZ ,\bfitn ) can be associated with a
unique multiindex \bfitxi \in \BbbZ n1

\oplus \cdot \cdot \cdot \oplus \BbbZ nr
, similar to how we iterate over the points of the

rank-r lattice. Therefore the maximum size of \scrA (\bfitZ ,\bfitn ) is n =
\prod r

i=1 ni. Furthermore,
if | \scrA (\bfitZ ,\bfitn )| = n we can divide \BbbZ d into conjugacy classes with respect to \scrA (\bfitZ ,\bfitn ) in
the following three ways:

\BbbZ d =
\biguplus 

\bfith \in \Lambda \bot (\bfitZ ,\bfitn )

(\bfith +\scrA (\bfitZ ,\bfitn ))

=
\biguplus 

\bfith \in \scrA (\bfitZ ,\bfitn )

\{ \bfith \prime \in \BbbZ d : \bfitZ \top \bfith \prime \equiv \bfitZ \top \bfith (mod \bfitn )\} 

=
\biguplus 

\bfitxi \in \BbbZ n1\oplus \cdot \cdot \cdot \oplus \BbbZ nr

\{ \bfith \in \BbbZ d : \bfitZ \top \bfith \equiv \bfitxi (mod \bfitn )\} ,

(2.1)

where \uplus means that all sets are disjunct.
This set in the rank-1 case, \scrA (\bfitz , n), has been studied before, e.g., [10, 23, 8, 34].

It is sometimes also called a reconstructing rank-1 lattice, e.g., in [3, 18]. By using
the concept of the dual of the lattice, defined by

\Lambda \bot (\bfitZ ,\bfitn ) := \{ \bfith \in \BbbZ d : \bfitZ \top \bfith \equiv 0 (mod \bfitn )\} ,(2.2)

where again the equivalence is to be interpreted componentwise with respect to the
\bfitn = (n1, . . . , nr), an antialiasing set can be equivalently defined as a set for which for
all distinct \bfith ,\bfith \prime \in \scrA (\bfitZ ,\bfitn ) we have

\bfith  - \bfith \prime /\in \Lambda \bot (\bfitZ ,\bfitn ).
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Fig. 2.1. An example of rank-1 lattice and the corresponding antialiasing set with full cardi-
nality, where n = 55 and \bfitz \top = (1, 34).

In addition, we make extensive use of the character property of a rank-r lattice
which is given by

1

n

\sum 
\bfitp \in \Lambda (\bfitZ ,\bfitn )

exp(2\pi i (\bfith \cdot \bfitp )) =

\Biggl\{ 
1 if \bfith \in \Lambda \bot (\bfitZ ,\bfitn ),

0 otherwise.
(2.3)

This follows since

1

n

\sum 
\bfitp \in \Lambda (\bfitZ ,\bfitn )

exp(2\pi i (\bfith \cdot \bfitp )) =
r\prod 

j=1

1

nj

\sum 
kj\in \BbbZ nj

exp

\biggl( 
2\pi i (\bfith \top \bfitz j)

kj
nj

\biggr) 
,

and
1

nj

\sum 
kj\in \BbbZ nj

exp

\biggl( 
2\pi i (\bfith \top \bfitz j)

kj
nj

\biggr) 
=

\Biggl\{ 
1 if \bfith \top \bfitz j \equiv 0 (mod nj),

0 otherwise.

The condition \bfith \top \bfitz j \equiv 0 (mod nj) for all j = 1, . . . , r is equivalent to \bfith \in \Lambda \bot (\bfitZ ,\bfitn );
see (2.2).

As an example of rank-1 lattice points and corresponding antialiasing set, we ex-
hibit the case for n = 55 and \bfitz \top = (1, 34) in Figure 2.1. Typically, psuedospectral
Fourier methods use regular grids in the spatial domain, and the unitary Fourier trans-
form maps these points to integer points in a hyper-rectangle in the frequency domain.
Our method uses rank-r lattices instead of regular grids in the spatial domain. Similar
to the typical pseudospectral Fourier methods, a unitary discrete Fourier transforma-
tion maps the lattice points to antialiasing integer point sets in the frequency domain;
see Theorem 2.4.

2.2. The Fourier pseudospectral method on lattice point sets. A pseudo-
spectral method is a way to approximate solutions of partial differential equations in
terms of a finite number of basis functions. This was applied to approximate the
solution of the TDSE in [14, 17] by expanding all functions into Fourier series. To
apply the Fourier pseudospectral method, we require some properties. The minimum
requirement we need is that any considered function is continuous and its Fourier
series converges pointwise to the original function

f(\bfitx ) =
\sum 
\bfith \in \BbbZ d

\widehat f(\bfith ) exp(2\pi i\bfith \cdot \bfitx ) for all \bfitx \in \BbbT d,
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where the Fourier coefficients of f are given by \widehat f(\bfith ) = \int 
[0,1]d

f(\bfitx ) exp( - 2\pi i\bfith \cdot \bfitx ) d\bfitx .
This condition is guaranteed if we assume that the Fourier coefficients of the function
f are absolutely summable,

\| f\| A(\BbbT d) :=
\sum 
\bfith \in \BbbZ d

| \widehat f(\bfith )| <\infty .

The space of functions satisfying this condition is called the Wiener algebra A(\BbbT d).
For a detailed discussion, we refer to [15, section 3.3].

To ensure that the solution u(\bfitx , t) \in A(\BbbT d), we have the following lemma, which
makes use of the Korobov space, a reproducing kernel Hilbert space of Fourier series
with a certain decay,

E\alpha (\BbbT d) :=

\left\{   f \in L2(\BbbT d) : \| f\| 2E\alpha (\BbbT d) :=
\sum 
\bfith \in \BbbZ d

| \widehat f(\bfith )| 2 r2\alpha (\bfith ) <\infty 

\right\}   ,

where

r2\alpha (\bfith ) :=

d\prod 
j=1

max(| hj | 2\alpha , 1).(2.4)

The parameter \alpha > 1/2, the smoothness parameter, determines the rate of decay
of the Fourier coefficients. For \alpha > 1/2 we have E\alpha (\BbbT d) \subset A(\BbbT d). This space is
also referred to as a kind of unanchored periodic Sobolev space with dominating
mixed smoothness. In particular when \alpha \in \BbbN the norm can be expressed in terms of
derivatives. Furthermore, if we define (r\ast \alpha (\bfith ))

2 :=
\prod d

j=1(1 + | 2\pi hj | 2\alpha ) \geq r2\alpha (\bfith ), then
the associated norm defined as above is always larger than for r\alpha , and when \alpha \in \BbbN 
this norm then reads as

\| f\| 2E\ast 
\alpha (\BbbT d) :=

\sum 
\bfith \in \BbbZ d

| \widehat f(\bfith )| 2 (r\ast \alpha (\bfith ))2 =
\sum 

\bfittau \in \{ 0,\alpha \} d

\| D\bfittau f\| 2L2(\BbbT d).

In fact this could be used as an alternative norm throughout the paper. For a detailed
discussion about Korobov spaces, see [27] and references therein. To ensure that the
term \nabla 2u in (1.1) makes sense, we require \alpha \geq 2. In the later section, this space plays
an important role in proving the convergence of our proposed method.

Lemma 2.3 (regularity of solution and Fourier expansion). Given the TDSE (1.1)
with v, g \in E\alpha (\BbbT d) and \alpha \geq 2, then the solution u(\bfitx , t) \in E\alpha (\BbbT d) for all finite t \geq 0
and therefore

u(\bfitx , t) =
\sum 
\bfith \in \BbbZ d

\widehat u(\bfith , t) exp(2\pi i\bfith \cdot \bfitx ),(2.5)

with

i \gamma \widehat u\prime (\bfith , t) = 2\pi 2\gamma 2 \| \bfith \| 22 \widehat u(\bfith , t) + \widehat f(\bfith , t),(2.6)

for all \bfith \in \BbbZ d, with \widehat u\prime (\bfith , t) = (\partial /\partial t) \widehat u(\bfith , t) and \widehat f(\bfith , t) the Fourier coefficients of
f(\bfitx , t) := u(\bfitx , t) v(\bfitx ).
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Proof. To prove that u(\bfitx , t) \in E\alpha (\BbbT d), we first rewrite the TDSE (1.1),

\partial 

\partial t
u(\bfitx , t) = i

\gamma 

2
\nabla 2u(\bfitx , t) - i

\gamma 
v(\bfitx )u(\bfitx , t) = Au(\bfitx , t) +Bu(\bfitx , t),

where Au(\bfitx , t) = i \gamma 
2 \nabla 2u(\bfitx , t) and Bu(\bfitx , t) =  - i

\gamma v(\bfitx )u(\bfitx , t). We let (eAt)t\geq 0 and

(eBt)t\geq 0 denote strongly continuous semigroups generated by A and B, respectively.
We note that the solution of (1.1), then, can be written as u(\bfitx , t) = e(A+B) t g(\bfitx ).
Observe that eAt is unitary on the Korobov space E\alpha (\BbbT d), i.e., for any t \geq 0,

\| eAtg(\bfitx )\| 2E\alpha (\BbbT d) =
\sum 
\bfith \in \BbbZ d

| e
\gamma 
2 i \| \bfith \| 2

2 t \widehat g(\bfith )| 2 r2\alpha (\bfith ) = \sum 
\bfith \in \BbbZ d

| \widehat g(\bfith )| 2r2\alpha (\bfith ) = \| g(\bfitx )\| 2E\alpha (\BbbT d).

Also we know that the Korobov space is an algebra (see [26, Appendix 2]) such that
for any f, g \in E\alpha (\BbbT d) also their product is in E\alpha (\BbbT d),

\| f g\| E\alpha (\BbbT d) \leq Cd,\alpha \| f\| E\alpha (\BbbT d) \| g\| E\alpha (\BbbT d),

where the constant Cd,\alpha = 2d\alpha (1 + 2\zeta (2\alpha ))d/2. Hence this result holds for any
t \geq 0 and f(\bfitx ) = v(\bfitx ) and g = u(\bfitx , t). By using the Lie--Trotter product for-
mula, we obtain the following bound on the induced operator norm, \| V \| X\rightarrow X :=
sup0 \not =u\in X \| V (u)\| X/\| u\| X , of the solution operator:\bigm\| \bigm\| e(A+B)t

\bigm\| \bigm\| 
E\alpha (\BbbT d)\rightarrow E\alpha (\BbbT d)

=
\bigm\| \bigm\| \bigm\| lim
n\rightarrow \infty 

\Bigl( 
eA

t
n eB

t
n

\Bigr) n\bigm\| \bigm\| \bigm\| 
E\alpha (\BbbT d)\rightarrow E\alpha (\BbbT d)

\leq lim
n\rightarrow \infty 

\Bigl( 
\| eAt\| 

1
n

E\alpha (\BbbT d)\rightarrow E\alpha (\BbbT d)
\| eBt\| 

1
n

E\alpha (\BbbT d)\rightarrow E\alpha (\BbbT d)

\Bigr) n
\leq lim

n\rightarrow \infty 

\Bigl( 
\| eBt\| 

1
n

E\alpha (\BbbT d)\rightarrow E\alpha (\BbbT d)

\Bigr) n
= \| eBt\| E\alpha (\BbbT d)\rightarrow E\alpha (\BbbT d)

\leq e
1
\gamma Cd,\alpha \| v\| 

E\alpha (\BbbT d)
t,

and this is bounded for finite time t. Thus we have u(\bfitx , t) \in E\alpha (\BbbT d) for any finite
t > 0.

By expanding the left-hand side of (1.1), we have

i \gamma 
\partial u

\partial t
= i \gamma 

\sum 
\bfith \in \BbbZ d

\widehat u\prime (\bfith , t) exp(2\pi i\bfith \cdot \bfitx ).

By also expanding the right-hand side of (1.1), we obtain

i \gamma 
\sum 
\bfith \in \BbbZ d

\widehat u\prime (\bfith , t) exp(2\pi i\bfith \cdot \bfitx ) =
\sum 
\bfith \in \BbbZ d

\Bigl( 
2\pi 2\gamma 2 \| \bfith \| 22 \widehat u(\bfith , t) + \widehat f(\bfith , t)\Bigr) exp(2\pi i\bfith \cdot \bfitx ).

This holds for all \bfitx \in \BbbT d; therefore by comparing each of the coefficients, we obtain

i \gamma \widehat u\prime (\bfith , t) = 2\pi 2\gamma 2 \| \bfith \| 22 \widehat u(\bfith , t) + \widehat f(\bfith , t)(2.7)

for all \bfith \in \BbbZ d.

We approximate the Fourier series (2.5) using a rank-r lattice \Lambda (\bfitZ ,\bfitn ) and a
corresponding well-chosen antialiasing set \scrA (\bfitZ ,\bfitn ). Let the approximation of the
solution be given by
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ua(\bfitx , t) :=
\sum 

\bfith \in \scrA (\bfitZ ,\bfitn )

\widehat ua(\bfith , t) exp(2\pi i\bfith \cdot \bfitx ),(2.8)

with the approximated coefficients calculated by a rank-r lattice rule

\widehat ua(\bfith , t) := 1

n

\sum 
\bfitp \in \Lambda (\bfitZ ,\bfitn )

u(\bfitp , t) exp( - 2\pi i\bfith \cdot \bfitp ).(2.9)

We thus write ua(\bfitx , t) and \widehat ua(\bfith , t) to denote the approximations to u(\bfitx , t) and \widehat u(\bfith , t),
respectively. For notational simplification we fix the time t and omit this argument
in the remainder of this section.

We define the unitary discrete Fourier transform to map an r-dimensional tensor
\bfitx \in \BbbC n1\times \cdot \cdot \cdot \times nr to a similarly shaped tensor \bfitX \in \BbbC n1\times \cdot \cdot \cdot \times nr by the transform

X\xi 1,...,\xi r =
1

\surd 
n1

n1 - 1\sum 
k1=0

exp( - 2\pi i k1\xi 1/n1) \cdot \cdot \cdot 
1

\surd 
nr

nr - 1\sum 
kr=0

exp( - 2\pi i kr\xi r/nr)xk1,...,kr

(2.10)

for \bfitxi \in \BbbZ n1 \oplus \cdot \cdot \cdot \oplus \BbbZ nr and with the obvious modification for r = 1. We define the
unitary one-dimensional Fourier matrix and its inverse by

Fn :=
1\surd 
n

\Biggl( 
exp( - 2\pi i k\xi /n)

\Biggr) n - 1

k=0

, F - 1
n :=

1\surd 
n

\Biggl( 
exp(2\pi i k\xi /n)

\Biggr) n - 1

\xi =0

,(2.11)

and the r-dimensional Fourier matrix of size n1 \times \cdot \cdot \cdot \times nr as the tensor product
F\bfitn = \otimes r

i=1Fni . We can then write \bfitX = F\bfitn \bfitx for (2.10), and \bfitx = F - 1
\bfitn \bfitX when

``vectorizing"" the tensors in lexicographical ordering. The fast implementation of
transforming \bfitx into \bfitX , as well as its inverse, in \scrO (n log n), where n =

\prod r
i=1 ni, is

the FFT and is well known (although the direction and the normalization vary from
implementation to implementation).

In the next theorem we show how to use r-dimensional FFTs to map from a
rank-r lattice (in space) to a corresponding antialiasing set of full cardinality (in the
frequency domain), and back. Note that a regular grid would be represented as a
lattice with r = d, and in this setting the usage of the d-dimensional FFT is well
known. The use of one-dimensional FFTs with a rank-1 lattice and a corresponding
antialiasing set is also known; see, e.g., [11, 23]. We extend this for rank-r lattices by
using the r-dimensional FFT. The following theorem shows three essential properties
which make use of the fact that | \scrA (\bfitZ ,\bfitn )| = n.

Theorem 2.4. Given a rank-r lattice point set \Lambda (\bfitZ ,\bfitn ) in canonical form and a
corresponding antialiasing set \scrA (\bfitZ ,\bfitn ) with | \scrA (\bfitZ ,\bfitn )| = n, the following properties
hold:

(i) (Dual character property) Define the corresponding d-dimensional Dirichlet
kernel by

D\scrA (\bfitZ ,\bfitn )(\bfitx ) :=
\sum 

\bfith \in \scrA (\bfitZ ,\bfitn )

exp(2\pi i\bfith \cdot \bfitx ).

Then for any two lattice points \bfitp ,\bfitp \prime \in \Lambda (\bfitZ ,\bfitn )

1

n
D\scrA (\bfitZ ,\bfitn )(\bfitp  - \bfitp \prime ) =

1

n

\sum 
\bfith \in \scrA (\bfitZ ,\bfitn )

exp(2\pi i\bfith \cdot (\bfitp  - \bfitp \prime )) = \delta \bfitp ,\bfitp \prime ,(2.12)

where \delta \bfitp ,\bfitp \prime is the Kronecker delta function that is 1 if \bfitp = \bfitp \prime and 0 otherwise.
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(ii) (Interpolation condition) If ua is the approximation of a function u \in A(\BbbT d)
by truncating its Fourier series expansion to the antialiasing set \scrA (\bfitZ ,\bfitn ) and by cal-
culating the coefficients by the rank-r lattice rule (cf. (2.8) and (2.9)), then for any
\bfitp \in \Lambda (\bfitZ ,\bfitn )

ua(\bfitp ) = u(\bfitp ).(2.13)

(iii) (Mapping through FFT) Define the r-dimensional tensors

\bfitu :=
\bigl( 
u(\bfitp (k1,...,kr))

\bigr) 
k1=0,...,n1 - 1,...,kr=0,...,nr - 1

,

\bfitu a :=
\bigl( 
ua(\bfitp (k1,...,kr))

\bigr) 
k1=0,...,n1 - 1,...,kr=0,...,nr - 1

,\widehat \bfitu a :=
\bigl( \widehat ua(\bfith (\xi 1,...,\xi r))

\bigr) 
\xi 1=0,...,n1 - 1,...,\xi r=0,...,nr - 1

,

with \bfitp \bfitk = (\bfitz 1k1/n1 + \cdot \cdot \cdot + \bfitz rkr/nr) mod 1 \in \Lambda (\bfitZ ,\bfitn ), and where \bfith \bfitxi \in \scrA (\bfitZ ,\bfitn ) is
such that \bfitxi = (\bfith \cdot \bfitz 1 mod n1, . . . ,\bfith \cdot \bfitz r mod nr). Then \bfitu = \bfitu a (by (ii)) is the collection
of function values u(\bfitp ) on the lattice points \bfitp \in \Lambda (\bfitZ ,\bfitn ) and \widehat \bfitu a is the collection of
Fourier coefficients \widehat ua(\bfith ) (by using the lattice rule; cf. (2.8) and (2.9)) on the anti-
aliasing indices \bfith \in \scrA (\bfitZ ,\bfitn ). The r-dimensional discrete Fourier transform and its
inverse now map tensors \bfitu a \in \BbbC n1\times \cdot \cdot \cdot \times nr to tensors \widehat \bfitu a \in \BbbC n1\times \cdot \cdot \cdot \times nr and back.

Proof.
(i) The proof is based on [5, Theorem 7.3]. Remember that n =

\prod r
i=1 ni. Now

associate an arbitrary but fixed ordering such that we can enumerate the lattice
points by \bfitp (\kappa ) for \kappa = 0, . . . , n - 1. Likewise, associate an arbitrary but fixed ordering
such that we can enumerate the Fourier indices in the antialiasing set by \bfith (\chi ) for
\chi = 0, . . . , n - 1. Then

1

n

n - 1\sum 
\kappa =0

exp(2\pi i\bfith (\chi ) \cdot \bfitp (\kappa )) exp( - 2\pi i\bfith (\chi \prime ) \cdot \bfitp (\kappa )) = \delta \chi ,\chi \prime for all \chi , \chi \prime = 0, . . . , n - 1,

(2.14)

because of the character property (2.3) and since \bfith (\chi )  - \bfith (\chi \prime ) /\in \Lambda \bot (\bfitZ ,\bfitn ) for \chi \not = \chi \prime 

because of the antialiasing condition. We rewrite (2.14) as

PMP \ast = In,

where M = diag(1/n, . . . , 1/n) and

P =
\Bigl( 
exp(2\pi i\bfith (\chi ) \cdot \bfitp (\kappa ))

\Bigr) 
\chi =0,...,n - 1
\kappa =0,...,n - 1

=

\left(   exp(2\pi i\bfith (0) \cdot \bfitp (0)) \cdot \cdot \cdot exp(2\pi i\bfith (0) \cdot \bfitp (n - 1))
...

. . .
...

exp(2\pi i\bfith (n - 1) \cdot \bfitp (0)) \cdot \cdot \cdot exp(2\pi i\bfith (n - 1) \cdot \bfitp (n - 1))

\right)   
with P \ast the Hermitian conjugate of P . We note that once (2.14) holds, then the
matrix P is nonsingular. Therefore we obtain

P \ast P =M - 1,

which can be written as

1

n

n - 1\sum 
\chi =0

exp( - 2\pi i\bfith (\chi ) \cdot \bfitp (\kappa )) exp(2\pi i\bfith (\chi ) \cdot \bfitp (\kappa \prime )) = \delta \kappa ,\kappa \prime for all \kappa , \kappa \prime = 0, . . . , n - 1,

which is equivalent to (2.12).



STRANG SPLITTING AND LATTICES FOR TDSEs B1263

(ii) From (2.8) and (2.9) it follows that

ua(\bfitp ) =
\sum 

\bfith \in \scrA (\bfitZ ,\bfitn )

\widehat ua(\bfith ) exp(2\pi i\bfith \cdot \bfitp )

=
\sum 

\bfith \in \scrA (\bfitZ ,\bfitn )

\left(  1

n

\sum 
\bfitp \prime \in \Lambda (\bfitZ ,\bfitn )

u(\bfitp \prime ) exp( - 2\pi i\bfith \cdot \bfitp \prime )

\right)  exp(2\pi i\bfith \cdot \bfitp )

=
\sum 

\bfitp \prime \in \Lambda (\bfitZ ,\bfitn )

u(\bfitp \prime )
1

n

\sum 
\bfith \in \scrA (\bfitZ ,\bfitn )

exp( - 2\pi i\bfith \cdot \bfitp \prime ) exp(2\pi i\bfith \cdot \bfitp )

=
\sum 

\bfitp \prime \in \Lambda (\bfitZ ,\bfitn )

u(\bfitp \prime ) \delta \bfitp ,\bfitp \prime 

= u(\bfitp ),

where the dual character property (2.12) is used for the second to last equality.
(iii) Consider approximating the Fourier coefficient \widehat u(\bfith ) by the rank-r lattice

rule,

\widehat ua(\bfith ) = 1

n1

n1 - 1\sum 
k1=0

\cdot \cdot \cdot 1

nr

nr - 1\sum 
kr=0

u(A\bfitk mod 1) exp( - 2\pi i\bfith \top A\bfitk ).

Now define the r-dimensional function v(k1/n1, . . . , kr/nr) := u(A\bfitk mod 1); then we
can identify the above equation with

\widehat ua(\bfith ) = 1

n1

n1 - 1\sum 
k1=0

\cdot \cdot \cdot 1

nr

nr - 1\sum 
kr=0

v(k1/n1, . . . , kr/nr)

r\prod 
j=1

exp( - 2\pi i (\bfith \cdot \bfitz j) kj/nj)

= \widehat v(\bfith \cdot \bfitz 1 mod n1, . . . ,\bfith \cdot \bfitz r mod nr),

where \widehat v(\xi 1, . . . , \xi r) are the discrete Fourier coefficients of v. Now because of the
antialiasing condition we can identify each \bfith \in \scrA (\bfitZ ,\bfitn ) uniquely with an index \bfitxi \in 
\BbbZ n1

\oplus \cdot \cdot \cdot \oplus \BbbZ nr
through (\bfith \cdot \bfitz 1 mod n1, . . . ,\bfith \cdot \bfitz r mod nr) = (\xi 1, . . . , \xi r). Therefore

the transformation is an r-dimensional n1 \times \cdot \cdot \cdot \times nr discrete Fourier transform.

Finally we show the relation between the approximated coefficients \widehat ua(\bfith ) and the
coefficients \widehat u(\bfith ). The approximated coefficients would be exact in case the function
u is solely supported on the antialiasing set \scrA (\bfitZ ,\bfitn ), but in general this is not the
case and we will have aliasing errors.

Lemma 2.5 (aliasing). The approximated Fourier coefficients (2.9) through the
lattice rule \Lambda (\bfitZ ,\bfitn ) alias the true Fourier coefficients in the following way:

\widehat ua(\bfith ) = \sum 
\bfith \prime \in \Lambda \bot (\bfitZ ,\bfitn )

\widehat u(\bfith + \bfith \prime ) = \widehat u(\bfith ) + \sum 
\bfzero \not =\bfith \prime \in \Lambda \bot (\bfitZ ,\bfitn )

\widehat u(\bfith + \bfith \prime ).

Proof. This follows from a straightforward calculation:

\widehat ua(\bfith ) = 1

n

\sum 
\bfitp \in \Lambda (\bfitZ ,\bfitn )

u(\bfitp ) exp( - 2\pi i\bfith \cdot \bfitp )

=
1

n

\sum 
\bfitp \in \Lambda (\bfitZ ,\bfitn )

\sum 
\bfith \prime \in \BbbZ d

\widehat u(\bfith \prime ) exp(2\pi i\bfith \prime \cdot \bfitp ) exp( - 2\pi i\bfith \cdot \bfitp )
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=
\sum 

\bfith \prime \in \BbbZ d

\widehat u(\bfith \prime )
1

n

\sum 
\bfitp \in \Lambda (\bfitZ ,\bfitn )

exp(2\pi i (\bfith \prime  - \bfith ) \cdot \bfitp )

=
\sum 

\bfith \prime \in \Lambda \bot (\bfitZ ,\bfitn )

\widehat u(\bfith + \bfith \prime ),

where the character property (2.3) is used in the last equality.

This last lemma shows that for the approximation ua to be meaningful the Fourier
coefficients necessarily have to decay at a certain rate such that the error in the
approximation \widehat ua(\bfith ) can be bounded. This decay is not enforced by asking u \in A(\BbbT d),
but it is enforced by asking u to be in the Korobov space E\alpha (\BbbT d).

2.3. Strang splitting. We will use Strang splitting to do time stepping on
our discretized function. The idea of Strang splitting [33] is to break up the solution
operator for an ODE which consists of a sum of two differential operators into applying
them each separately in a way to be specified below and thereby achieving second order
convergence with respect to the time step. Strang splitting can be applied to initial
value problems of the form

y\prime (t) = (A+B) y(t), y(0) = y0,

where A and B are differential operators.
We first explain a splitting method which attains first order convergence in the

time step and then show the Strang operator splitting which gives second order con-
vergence in the time step. If A and B are constant coefficient matrices, as is the case
in our application, then the solution is given by

y(t) = e(A+B) t y0,

where e(A+B) is the matrix exponential. If A and B commute, i.e., AB = BA, then
y(t) = eA t eB t y0. This follows from the Baker--Campbell--Hausdorff formula from Lie
group analysis

log(eA t eB t) = (A+B) t+ [A,B]
t2

2
+ ([A, [A,B]] + [B, [B,A]])

t3

12
+ \cdot \cdot \cdot ,

where the commutator of two operators A and B is defined by [A,B] := AB  - BA,
which reduces to eA t eB t = e(A+B) t if [A,B] = 0, where 0 should be interpreted as
the zero matrix. If [A,B] is nonzero, then, given an initial solution y(t), we can write

y(t+\Delta t) = e(A+B)\Delta t y(t) = exp

\Biggl( 
log(eA\Delta t eB\Delta t) - [A,B]

(\Delta t)
2

2
 - \scrO ((\Delta t)

3
)

\Biggr) 
y(t),

which for a discrete time stepping scheme yt \approx y(t) can be used to show a global error
of first order in \Delta t for bounded (fixed) commutator.

For Strang operator splitting we first write A+B = 1
2B +A+ 1

2B; we now want

to approximate e(A+B) t by e
1
2B teA te

1
2B t, in effect taking twice half a time step for

B and sandwiching a full time step for A in the middle. The Strang splitting method
for a time discretization \Delta t then operates as follows:

yk+1 = e
1
2B\Delta t eA\Delta t e

1
2B\Delta t yk,(2.15)

where yk \approx y(k\Delta t) and y0 = y(0) is the initial value. We have the following local
error bound (per time step) from [17, Theorem 2.1].
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Theorem 2.6 (Strang splitting local error bounds). Let X be a Banach space
equipped with the norm \| \cdot \| , A the generator of the strongly continuous semigroup eA t

on the Banach space X, and B a bounded linear operator on X with induced operator
norm \| B\| := sup0 \not =y\in X \| B y\| /\| y\| < \infty . Let \omega be an arbitrary constant. Then the
following hold:

(i) If there exist constants \alpha \geq 0 and c1 satisfying

\| [A,B] y\| \leq c1 \| (A+ \omega I)\alpha y\| for all y \in X,

then the local error of the Strang splitting method is bounded as follows:\bigm\| \bigm\| \bigm\| e 1
2B \tau eA\tau e

1
2B \tau y  - e(A+B) \tau y

\bigm\| \bigm\| \bigm\| \leq C1 \tau 
2 \| (A+ \omega I)\alpha y\| for all y \in X,

where C1 depends only on c1 and \| B\| .
(ii) Under the condition above and additionally if there exist constants \beta \geq 1 \geq \alpha 

and c2 satisfying

\| [A, [A,B]] y\| \leq c2 \| (A+ \omega I)\beta y\| for all y \in X,

then the local error of the Strang splitting method is bounded as follows:\bigm\| \bigm\| \bigm\| e 1
2B \tau eA\tau e

1
2B \tau y  - e(A+B) \tau y

\bigm\| \bigm\| \bigm\| \leq C2 \tau 
3 \| (A+ \omega I)\beta y\| for all y \in X,

where C2 depends only on c1, c2 and \| B\| .
Proof. See [17, Theorem 2.1].

Now assume \widehat \bfitu t are the approximate Fourier coefficients of u(\bfitx , t) at time t. The
previous theorem shows that we need a bound on \| (A + \omega I)\alpha \widehat \bfitu t\| 2 and that \| B\| 2
should be bounded to get first order convergence for the global error of the time
stepping scheme using the Strang splitting method. It also shows that if we have a
bound on \| (A+\omega I)\beta \widehat \bfitu t\| 2 we obtain second order convergence for the global error of
the time stepping scheme.

In Lemma 2.8 we will first derive the key ingredient for our main result when the
discretization in space is done by a rank-1 lattice \Lambda (\bfitz , n) with corresponding finite
Fourier series on an associated antialiasing set \scrA (\bfitz , n). In Lemma 2.9 we will extend
the result for general rank-r lattices \Lambda (\bfitZ ,\bfitn ) which include any regular (possibly
anisotropic) grid.

2.4. Strang splitting and rank-1 lattices. Denote by \widehat \bfitu t :=
\bigl( \widehat ua(\bfith (0), t),

. . . , \widehat ua(\bfith (n - 1), t)
\bigr) 
the approximated solution at time t using a fixed antialiasing set

\scrA (\bfitz , n) = \{ \bfith \xi : \xi = 0, . . . , n  - 1\} of full size n, where \bfith \xi \in \scrA (\bfitz , n) is such that
\bfith \xi \cdot \bfitz \equiv \xi (mod n). Demanding that (2.6) holds for all \bfith \in \scrA (\bfitz , n), we have the
relation

i \gamma \widehat \bfitu \prime 
t =

1

2
\gamma 2Dn\widehat \bfitu t +Wn\widehat \bfitu t,(2.16)

with the initial condition \widehat \bfitu 0 = \widehat \bfitg a := (\widehat ga(\bfith (0)), . . . , \widehat ga(\bfith (n - 1))),

Dn := diag
\bigl( 
(4\pi 2\| \bfith \xi \| 22)\xi =0,...,n - 1

\bigr) 
,(2.17)

and the linear operator Wn := FnVnF
 - 1
n with
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Vn := diag
\Bigl( 
(v(\bfitp k))k=0,...,n - 1

\Bigr) 
,(2.18)

where Fn is the unitary Fourier matrix. For the derivation of Wn, we have the
following lemma.

Lemma 2.7 (multiplication operator on rank-1 lattices). Assume a rank-1 lattice
point set \Lambda (\bfitz , n) and corresponding antialiasing set \scrA (\bfitz , n) of full size, a potential
function v \in E\alpha (\BbbT d) with \alpha \geq 2, and a function ua \in E\beta (\BbbT d) with \beta \geq 2 with
Fourier coefficients only supported on \scrA (\bfitz , n). Then the action in the Fourier do-
main restricted to \scrA (\bfitz , n) of multiplying with v, that is, fa(\bfitx ) = v(\bfitx )ua(\bfitx ), on the
nodes of the rank-1 lattice, and with fa having Fourier coefficients restricted to the set
\scrA (\bfitz , n), can be described by a circulant matrix Wn \in \BbbC n\times n with Wn = Fn Vn F

 - 1
n ,

with Vn given by (2.18) and Fn the unitary Fourier matrix (2.11), where the element
at position (\xi , \xi \prime ) of Wn is given by

w\xi ,\xi \prime = w(\xi  - \xi \prime ) mod n =
\sum 
\bfith \in \BbbZ d

\bfith \cdot \bfitz \equiv \xi  - \xi \prime (modn)

\widehat v(\bfith ).(2.19)

Proof. In the following, Fn is the unitary discrete Fourier transformation matrix.
We denote the coefficients of the product v(\bfitx )u(\bfitx ) by \widehat f(\bfith ). For each \bfith \in \scrA (\bfitz , n) we
have

\widehat f(\bfith ) = \int 
[0,1]d

ua(\bfitx )v(\bfitx ) exp( - 2\pi i\bfith \cdot \bfitx ) d\bfitx 

=

\int 
[0,1]d

\Biggl( \sum 
\bfith \prime \in \scrA (\bfitz ,n)

\widehat ua(\bfith \prime ) exp(2\pi i\bfith \prime \cdot \bfitx )

\Biggr) 

\times 

\Biggl( \sum 
\bfith \prime \prime \in \BbbZ d

\widehat v(\bfith \prime \prime ) exp(2\pi i\bfith \prime \prime \cdot \bfitx )

\Biggr) 
exp( - 2\pi i\bfith \cdot \bfitx ) d\bfitx 

=
\sum 

\bfith \prime \in \scrA (\bfitz ,n)

\widehat v(\bfith  - \bfith \prime ) \widehat ua(\bfith \prime ).

By Lemma 2.5 The coefficients calculated on the rank-1 lattice points have the form

\widehat va(\bfith  - \bfith \prime ) =
\sum 

\ell \in \Lambda \bot (\bfitz ,n)

\widehat v(\bfith  - \bfith \prime + \ell ).

Therefore we have the following approximation for \widehat f(\bfith ):
\widehat fa(\bfith ) = \sum 

\bfith \prime \in \scrA (\bfitz ,n)

\sum 
\ell \in \Lambda \bot (\bfitz ,n)

\widehat v(\bfith  - \bfith \prime + \ell )\widehat ua(\bfith \prime , t).

We have hence proved the claims of the lemma.

The exact solution of the ordinary differential equation (2.16) is

\widehat \bfitu t = e - 
i
\gamma Wn t - i\gamma 

2 Dn t \widehat \bfitu 0.

Applying the Strange splitting method (2.15) then gives us

\widehat \bfitu k+1
a = e - 

i
2\gamma Wn\Delta t e - 

i\gamma 
2 Dn\Delta t e - 

i
2\gamma Wn\Delta t \widehat \bfitu k

a for k = 0, 1, . . . ,m - 1,(2.20)
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where

e - 
i
2Wn\Delta t = Fn diag

\Bigl( 
(e - 

i
2v(\bfitp k)\Delta t)k=0,...,n - 1

\Bigr) 
F - 1
n .

We then approximate the solution of the differential system at time t = k\Delta t by
stepping with a time step of \Delta t iteratively.

To bound the error of the Strang splitting we need to bound the effect of the
commutators as specified in Theorem 2.6, and for this we will make use of the Korobov
space. Now we are ready to state our key theoretical result, namely that the Strang
splitting has bounded error of the time evolution when the discretization in space
is done by a rank-1 lattice rule and the truncation of the Fourier series is done on
an associated antialiasing set. First we show that the commutators of the operators
D = \gamma 

2Dn and W = 1
\gamma Wn are bounded in the sense of Theorem 2.6 with A = D,

B =W , and \omega = 1.

Lemma 2.8 (rank-1 lattice commutator bounds). Assume a rank-1 lattice with
generating vector \bfitz \in \BbbZ d and modulus n and a TDSE with a potential function v \in 
E\alpha (\BbbT d) with \alpha \geq 2 and an initial condition g \in E\beta (\BbbT d) with \beta \geq 2. Let D = \gamma 

2Dn

and W = 1
\gamma Wn with Dn and Wn = FnVnF

 - 1
n as defined in (2.17) and (2.19) and with

Vn as defined in (2.18) using the potential function v.
If the antialiasing set \scrA (\bfitz , n) = \{ \bfith \xi \in \BbbZ d : \bfith \xi \cdot \bfitz \equiv \xi (mod n) for \xi = 0, . . . , n - 1\} ,

with full cardinality, is chosen such that it has minimal \ell 2 norm, i.e.,

\| \bfith \xi \| 2 = min
\bfith \prime \in A(\bfitz ,n,\xi )

\| \bfith \prime \| 2,(2.21)

with

A(\bfitz , n, \xi ) :=
\bigl\{ 
\bfith \in \BbbZ d : \bfith \cdot \bfitz \equiv \xi (mod n)

\bigr\} 
,

then the following hold:
(i) If v \in E\alpha (\BbbT d) with parameter \alpha > 5/2, then for all \bfity \in \BbbR n we have

\| [D,W ]\bfity \| 2 \leq c1 \| (D + I)\bfity \| 2,

where c1 is a constant independent of n and \bfity .
(ii) If v \in E\alpha (\BbbT d) with \alpha > 9/2, then for all \bfity \in \BbbR n we have

\| [D, [D,W ]]\bfity \| 2 \leq c2 \| (D + I)2 \bfity \| 2,

where c2 is a constant, independent of n and \bfity .

Proof. We first prove the first order result (i) and then prove the second order
result (ii).

(i) Since (D + I) is nonsingular, we show

\| [D,W ] (D + I) - 1 \bfity \| 2 \leq c1\| \bfity \| 2 for all \bfity \in \BbbR n.

Hence we need to bound the induced matrix p-norm \| A\| p := sup\bfzero \not =\bfity \in \BbbR n \| A\bfity \| p/\| \bfity \| p
for p = 2 for the matrix A = [D,W ] (D + I) - 1 \in \BbbR n\times n by an absolute constant. We
have

[D,W ] = DW  - WD =
\Bigl( 
2\pi 2

\bigl( 
\| \bfith \xi \| 22  - \| \bfith \xi \prime \| 22

\bigr) 
w\xi  - \xi \prime 

\Bigr) 
\xi ,\xi \prime =0,...,n - 1

,
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where the subscript of w should be interpreted modulo n; see (2.19). For ease of
notation we now multiply by \gamma and consider the matrix M defined by

M := \gamma (DW  - WD) (D + I) - 1 =

\biggl( 
\| \bfith \xi \| 22  - \| \bfith \xi \prime \| 22

\| \bfith \xi \prime \| 22 + c
w\xi  - \xi \prime 

\biggr) 
\xi ,\xi \prime =0,...,n - 1

,

where c = 1/(2\pi 2\gamma ) > 0. Note that \| [D,W ] (D + I) - 1\| 2 = 1
\gamma \| M\| 2. By H\"older's

inequality, we have \| M\| 2 \leq 
\sqrt{} 

\| M\| 1\| M\| \infty ; therefore we will bound two norms

\| M\| 1 = max\xi \prime =0,...,n - 1

\sum n - 1
\xi =0 | M\xi ,\xi \prime | and \| M\| \infty = max\xi =0,...,n - 1

\sum n - 1
\xi \prime =0 | M\xi ,\xi \prime | .

Clearly the diagonal elements of M are zero and we can exclude those cases in the
following. For \| M\| 1 we obtain

\| M\| 1 = max
\xi \prime \in \BbbZ n

n - 1\sum 
\xi =0
\xi \not =\xi \prime 

\bigm| \bigm| \bigm| \bigm| \| \bfith \xi \| 22  - \| \bfith \xi \prime \| 22
\| \bfith \xi \prime \| 22 + c

w\xi  - \xi \prime 

\bigm| \bigm| \bigm| \bigm| \leq max
\xi \prime \in \BbbZ n

n - 1\sum 
\xi =0
\xi \not =\xi \prime 

\biggl[ 
(1 +

\| \bfith \xi \| 22
max(\| \bfith \xi \prime \| 22, c)

) | w\xi  - \xi \prime | 
\biggr] 
.

Note that

max
\xi \prime \in \BbbZ n

n - 1\sum 
\xi =0
\xi \not =\xi \prime 

| w\xi  - \xi \prime | =
n - 1\sum 
i=1

| wi| \leq 
\sum 
\bfith \in \BbbZ d

| \widehat v(\bfith )| = \| v\| A(\BbbT d) <\infty ,

since we assume v \in A(\BbbT d); see Lemma 2.3. We still need to bound

max
\xi \prime \in \BbbZ n

n - 1\sum 
\xi =0
\xi \not =\xi \prime 

\| \bfith \xi \| 22
max(\| \bfith \xi \prime \| 22, c)

| w\xi  - \xi \prime | = max
\xi \prime \in \BbbZ n

n - 1\sum 
\xi =0
\xi \not =\xi \prime 

\| \bfith \xi \| 22
max(\| \bfith \xi \prime \| 22, c)

\| \bfith \xi  - \xi \prime \| 22
\| \bfith \xi  - \xi \prime \| 22

| w\xi  - \xi \prime | ,

(2.22)

where also \bfith \xi  - \xi \prime has to be read as \bfith (\xi  - \xi \prime ) mod n. Note that \bfith \xi  - \xi = \bfith 0 = 0 is excluded
from the sum. Since the antialiasing set is such that \bfith \xi has minimal \ell 2 norm by (2.21)
we can bound \| \bfith \xi \| 2 \leq \| \bfith \prime 

\xi \| 2 for any \bfith \prime 
\xi \in A(\bfitz , n, \xi ) with the property \bfith \prime 

\xi \cdot \bfitz \equiv \xi 

(mod n). In particular for \bfith \prime 
\xi = \bfith \xi  - \xi \prime + \bfith \xi \prime since (\bfith \xi  - \xi \prime + \bfith \xi \prime ) \cdot \bfitz \equiv \xi (mod n) for

any choice of \xi \prime = 0, . . . , n - 1. Therefore

\| \bfith \xi \| 22 \leq \| \bfith \prime 
\xi \| 22 = \| \bfith \xi  - \xi \prime + \bfith \xi \prime \| 22 \leq \| \bfith \xi  - \xi \prime \| 22 + 2 \| \bfith \xi  - \xi \prime \| 2 \| \bfith \xi \prime \| 2 + \| \bfith \xi \prime \| 22,

and thus (remembering we have \bfith \xi  - \xi \prime \not = 0)

\| \bfith \xi \| 22
max(\| \bfith \xi \prime \| 22, c) \| \bfith \xi  - \xi \prime \| 22

\leq \| \bfith \xi  - \xi \prime \| 22 + 2 \| \bfith \xi  - \xi \prime \| 2 \| \bfith \xi \prime \| 2 + \| \bfith \xi \prime \| 22
max(\| \bfith \xi \prime \| 22, c) \| \bfith \xi  - \xi \prime \| 22

\leq max(1/c, 4).

Let c\prime := max(1/c, 4). We continue from (2.22) to obtain

max
\xi \prime \in \BbbZ n

n - 1\sum 
\xi =0
\xi \not =\xi \prime 

\| \bfith \xi \| 22
max(\| \bfith \xi \prime \| 22, c)

\| \bfith \xi  - \xi \prime \| 22
\| \bfith \xi  - \xi \prime \| 22

| w\xi  - \xi \prime | \leq c\prime max
\xi \prime \in \BbbZ n

n - 1\sum 
\xi =0
\xi \not =\xi \prime 

\| \bfith \xi  - \xi \prime \| 22

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
\bfith \in A(\bfitz ,n,\xi  - \xi \prime )

\widehat v(\bfith )\bigm| \bigm| \bigm| \bigm| \bigm| 
= c\prime max

\xi \prime \in \BbbZ n

n - 1\sum 
\xi =0
\xi \not =\xi \prime 

\| \bfith \xi  - \xi \prime \| 22

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
\bfith \in A(\bfitz ,n,\xi  - \xi \prime )

\widehat v(\bfith )\bigm| \bigm| \bigm| \bigm| \bigm| 
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\leq c\prime max
\xi \prime \in \BbbZ n

n - 1\sum 
\xi =0
\xi \not =\xi \prime 

\sum 
\bfith \in A(\bfitz ,n,\xi  - \xi \prime )

\| \bfith \| 22 | \widehat v(\bfith )| 
\leq c\prime max

\xi \prime \in \BbbZ n

\sum 
\bfith \in \BbbZ d

\| \bfith \| 22 | \widehat v(\bfith )| .
The last inequality follows from (2.1) and is independent from \xi \prime such that we can
drop the maximum. For the function v \in E\alpha (\BbbT d) with \alpha > 5/2 the following holds
by applying the Cauchy--Schwarz inequality and multiplying and dividing by r\alpha , as
defined in (2.4):

\sum 
\bfith \in \BbbZ d

\| \bfith \| 22 | \widehat v(\bfith )| \leq 
\left(  \sum 

\bfith \in \BbbZ d

r2\alpha (\bfith ) | \widehat v(\bfith )| 2
\right)  1/2\left(  \sum 

\bfith \in \BbbZ d

\| \bfith \| 42
r2\alpha (\bfith )

\right)  1/2

\leq \| v\| E\alpha (\BbbT d)

\left(  \sum 
\bfith \in \BbbZ d

(
\surd 
d \| \bfith \| \infty )4

r2\alpha (\bfith )

\right)  1/2

\leq \| v\| E\alpha (\BbbT d)

\left(  \sum 
\bfith \in \BbbZ d

d2

r2\alpha  - 2(\bfith )

\right)  1/2

\leq \| v\| E\alpha (\BbbT d)

\bigl( 
d2 (1 + 2 \zeta (2\alpha  - 4))d

\bigr) 1/2
<\infty .

Therefore we have bounded \| M\| 1 independent of n. For \| M\| \infty we can proceed in a
similar way to obtain

\| M\| \infty = max
\xi \in \BbbZ n

n - 1\sum 
\xi \prime =0
\xi \prime \not =\xi 

\bigm| \bigm| \bigm| \bigm| \| \bfith \xi \| 22  - \| \bfith \xi \prime \| 22
\| \bfith \xi \prime \| 22 + c

w\xi  - \xi \prime 

\bigm| \bigm| \bigm| \bigm| 
\leq \| v\| A(\BbbT d) + c\prime \| v\| E\alpha (\BbbT d)

\bigl( 
d2 (1 + 2 \zeta (2\alpha  - 4))d

\bigr) 1/2
.

Therefore, for any \bfity \in \BbbR n it holds that

\| (DW  - WD)\bfity \| 2 \leq c1 \| (D + I)\bfity \| 2,

where c1 is a constant independent of \bfity and n.
(ii) A similar argument holds for second order convergence. Then

[D, [D,W ]] (D + I) - 2 =

\biggl( 
(\| \bfith \xi \| 22  - \| \bfith \xi \prime \| 22)2

2\pi 2\gamma (\| \bfith \xi \prime \| 22 + c)2
w\xi  - \xi \prime 

\biggr) 
\xi ,\xi \prime =0,...,n - 1

,

with the same constant c = 1/(2\pi 2\gamma ). For \xi \not = \xi \prime we can multiply and divide by
\| \bfith \xi  - \xi \prime \| 42 and then

(\| \bfith \xi \| 22  - \| \bfith \xi \prime \| 22)2

(\| \bfith \xi \prime \| 22 + c)2\| \bfith \xi  - \xi \prime \| 42
\leq (\| \bfith \xi  - \xi \prime + \bfith \xi \prime \| 22 + \| \bfith \xi \prime \| 22)2

(\| \bfith \xi \prime \| 22 + c)2\| \bfith \xi  - \xi \prime \| 42

has an upper bound of max(25, 1/c2). Therefore, the \ell 1 and \ell \infty induced norms of
this matrix can be bounded if the potential function v(\bfitx ) is in Korobov space E\alpha (\BbbT d)
with the smoothness parameter \alpha > 9/2:



B1270 YUYA SUZUKI, GOWRI SURYANARAYANA, AND DIRK NUYENS

Algorithm 2.1. Strang splitting.

Input:
\Delta t,m, g  \triangleleft m\Delta t = T is the final time, g is the initial condition
\scrA (\bfitz , n) = \{ \bfith 0, . . . ,\bfith n - 1\} \subset \BbbZ d\times n  \triangleleft Antialiasing set of full cardinality
\Lambda (\bfitz , n) = \{ \bfitp 0, . . . ,\bfitp n - 1\} \subset \BbbT d\times n  \triangleleft Lattice points

Vn = diag
\Bigl( 
(v(\bfitp k))k=0,...,n - 1

\Bigr) 
 \triangleleft The potential matrix on lattice points

Dn = diag
\bigl( 
(4\pi 2\| \bfith \xi \| 22)\xi =0,...,n - 1

\bigr) 
 \triangleleft The Laplacian matrix on the antialiasing set\widehat \bfitu 0

a = \widehat \bfitg a = (\widehat ga(\bfith 0), . . . , \widehat ga(\bfith n - 1)) = Fn(g(\bfitp 0), . . . , g(\bfitp n - 1))/
\surd 
n

for k = 1, 2, . . . ,m do\widehat \bfitu k
a = Fne

 - i
2\gamma Vn\Delta t F - 1

n e - 
i\gamma 
2 Dn\Delta t Fne

 - i
2\gamma Vn\Delta t F - 1

n \widehat \bfitu k - 1
a

end for

Output: \widehat \bfitu m
a

max
\xi \prime \in \BbbZ n

n - 1\sum 
\xi =0
\xi \not =\xi \prime 

\| \bfith \xi  - \xi \prime \| 42 | w\xi  - \xi \prime | \leq 
\sum 
\bfith \in \BbbZ d

\| \bfith \| 42 | \widehat v(\bfith )| \leq \| v\| E\alpha (\BbbT d)

\bigl( 
d4 (1 + 2\zeta (2\alpha  - 8))d

\bigr) 1/2
.

We have hence proved the claims of the lemma.

In Algorithm 2.1, our procedure of the time stepping is shown. Each time step

is done with complexity \scrO (n log n). Matrices e - 
i

2\gamma Vn\Delta t and e - 
i\gamma 
2 Dn\Delta t are diagonal,

hence there is no need to store n-by-n matrices.

2.5. Strang splitting and rank-\bfitr lattices. In this section, we generalize the
results of the previous section for rank-r lattices. Consider a rank-r lattice \Lambda (\bfitZ ,\bfitn )
in canonical form and the corresponding antialiasing set \scrA (\bfitZ ,\bfitn ) with full cardinality
n =

\prod r
i=1 ni. We enumerate the antialiasing set in ``lexicographical ordering"" by

identifying \bfith (\chi ) = \bfith \bfitxi for \chi = 0, . . . , n - 1 and \bfitxi = \bfith \bfitxi \cdot \bfitz mod \bfitn for all \bfith \bfitxi \in \scrA (\bfitZ ,\bfitn )
such that

\chi = \xi 1 n2 \cdot \cdot \cdot nr + \xi 2 n3 \cdot \cdot \cdot nr + \cdot \cdot \cdot + \xi r =

r\sum 
i=1

\left(  \xi i r\prod 
j=i+1

nj

\right)  
for all \bfitxi \in \BbbZ n1

\oplus \cdot \cdot \cdot \oplus \BbbZ nr
. Likewise, we enumerate the lattice points by identifying

\bfitp (\kappa ) = \bfitp \bfitk for \kappa = 0, . . . , n - 1 such that

\kappa = \kappa 1 n2 \cdot \cdot \cdot nr + \kappa 2 n3 \cdot \cdot \cdot nr + \cdot \cdot \cdot + \kappa r =

r\sum 
i=1

\left(  \kappa i r\prod 
j=i+1

nj

\right)  
for all \bfitk \in \BbbZ n1 \oplus \cdot \cdot \cdot \oplus \BbbZ nr . Then the ordinary differential equation (2.16) holds with\widehat \bfitu 0 = \widehat \bfitg a := (\widehat ga(\bfith (0)), . . . , \widehat ga(\bfith (n - 1))),

D\bfitn := diag
\Bigl( 
(4\pi 2\| \bfith (\chi )\| 22)\chi =0,...,n - 1

\Bigr) 
,(2.23)

and
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W\bfitn := F\bfitn V\bfitn F
 - 1
\bfitn ,(2.24)

with

V\bfitn := diag

\biggl( \Bigl( 
v(\bfitp (\kappa ))

\Bigr) 
\kappa =0,...,n - 1

\biggr) 
,(2.25)

where F\bfitn is the r-dimensional discrete Fourier transform. With this notation we have
the following generalization of Lemma 2.8.

Lemma 2.9 (rank-r commutator bounds). Assume a rank-r lattice \Lambda (\bfitZ ,\bfitn ) in
canonical form with the number of points n =

\prod r
i=1 ni, and a TDSE with a potential

function v \in E\alpha (\BbbT d) with \alpha \geq 2 and an initial condition g \in E\beta (\BbbT d) with \beta \geq 2.
Let D = \gamma 

2D\bfitn and W = 1
\gamma W\bfitn with D\bfitn and W\bfitn = F\bfitn V\bfitn F

 - 1
\bfitn as defined in (2.23)

and (2.24) and with V\bfitn as defined in (2.25) using the potential function v.
If the antialiasing set \scrA (\bfitZ ,\bfitn ) = \{ \bfith \bfitxi \in \BbbZ d : \bfitZ \top \bfith \bfitxi \equiv \bfitxi (mod \bfitn ) for \bfitxi \in \BbbZ n1

\oplus 
\cdot \cdot \cdot \oplus \BbbZ nr

\} , with full cardinality, is chosen such that each \bfith \bfitxi with \bfitxi \in \BbbZ n1
\oplus \cdot \cdot \cdot \oplus \BbbZ nr

has minimal \ell 2 norm, i.e.,

\| \bfith \bfitxi \| 2 = min
\bfith \prime \in A(\bfitZ ,\bfitn ,\bfitxi )

\| \bfith \prime \| 2,

with

A(\bfitZ ,\bfitn , \bfitxi ) :=
\bigl\{ 
\bfith \in \BbbZ d : \bfitZ \top \bfith \equiv \bfitxi (mod \bfitn )

\bigr\} 
,

then the following hold:

(i) If v \in E\alpha (\BbbT d) with parameter \alpha > 5/2, then for all \bfity \in \BbbR n we have

\| [D,W ]\bfity \| 2 \leq c1\| (D + I)\bfity \| 2,

where c1 is a constant independent of \bfitn and \bfity .
(ii) If v \in E\alpha (\BbbT d) with parameter \alpha > 9/2, then for all \bfity \in \BbbR n we have

\| [D, [D,W ]]\bfity \| 2 \leq c2\| (D + I)2 \bfity \| 2,

where c2 is a constant independent of \bfitn and \bfity .

Proof. Due to the lexicographical ordering on matrices D\bfitn ,W\bfitn , and V\bfitn , we op-
erate in the same way as in Lemma 2.8.

We note that Algorithm 2.1 works in the same manner by replacing the inputs to
the rank-r setting and using r-dimensional FFTs.

2.6. Total time discretization error bound. Combining Theorem 2.6 with
Lemmas 2.8 and 2.9 we obtain the following global error bound.

Theorem 2.10 (total error bounds). Assume a rank-r lattice \Lambda (\bfitZ ,\bfitn ) in canon-
ical form with number of points n =

\prod r
i=1 ni, and a TDSE with a potential function

v \in E\alpha (\BbbT d) with \alpha \geq 2 and an initial condition g \in E\beta (\BbbT d) with \beta \geq 2. Let D = \gamma 
2D\bfitn 

and W = 1
\gamma W\bfitn with D\bfitn and W\bfitn = F\bfitn V\bfitn F

 - 1
\bfitn as defined in (2.23) and (2.24), and

with V\bfitn as defined in (2.25) using the potential function v.
If the antialiasing set \scrA (\bfitZ ,\bfitn ) = \{ \bfith \bfitxi \in \BbbZ d : \bfitZ \top \bfith \bfitxi \equiv \bfitxi (mod \bfitn ) for \bfitxi \in \BbbZ n1 \oplus 

\cdot \cdot \cdot \oplus \BbbZ nr
\} , with full cardinality, is chosen such that each \bfith \bfitxi with \bfitxi \in \BbbZ n1

\oplus \cdot \cdot \cdot \oplus \BbbZ nr

has minimal \ell 2 norm, i.e.,
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\| \bfith \bfitxi \| 2 = min
\bfith \prime \in A(\bfitZ ,\bfitn ,\bfitxi )

\| \bfith \prime \| 2,

with

A(\bfitZ ,\bfitn , \bfitxi ) :=
\bigl\{ 
\bfith \in \BbbZ d : \bfitZ \top \bfith \equiv \bfitxi (mod \bfitn )

\bigr\} 
,

then, by applying the Strang splitting

\widehat \bfitu k+1
a = e - 

i
2\gamma W\bfitn \Delta t e - 

i\gamma 
2 D\bfitn \Delta t e - 

i
2\gamma W\bfitn \Delta t \widehat \bfitu k

a for k = 0, 1, . . . ,m - 1,

the following hold:
(i) If v \in E\alpha (\BbbT d) with parameter \alpha > 5/2, then the error is bounded for t = k\Delta t

by

\| uka(\cdot ) - ua(\cdot , t)\| L2
\leq \Delta t C1t max

0\leq t\prime \leq t
\| (D + I) \widehat \bfitu t\prime \| 2,

where C1 is a constant independent of n, k, and \Delta t.
(ii) If v \in E\alpha (\BbbT d) with parameter \alpha > 9/2, then the error is bounded for t = k\Delta t

by

\| uka(\cdot ) - ua(\cdot , t)\| L2 \leq (\Delta t)2 C2t max
0\leq t\prime \leq t

\| (D + I)2 \widehat \bfitu t\prime \| 2,

where C2 is a constant independent of n, k and \Delta t.

Proof.

(i) Let us denote the Strang splitting operator by S=e - 
i

2\gamma W\bfitn \Delta te - 
i\gamma 
2 D\bfitn \Delta te - 

i
2\gamma W\bfitn \Delta t

and the true solution operator by T = e - ( i
\gamma W\bfitn  - i\gamma 

2 D\bfitn )\Delta t. We have the following for
first order convergence:

\| uka(\cdot ) - ua(\cdot , k\Delta t)\| L2
= \| Sk \widehat \bfitg  - T k \widehat \bfitg \| 2
=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
k - 1\sum 
j=0

Sk - j - 1(S  - T )T j \widehat \bfitg 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 
\biggl( 

max
0\leq t\prime \leq t

\| (S  - T ) \widehat \bfitu t\prime \| 2

\biggr) k - 1\sum 
j=0

\bigm\| \bigm\| Sk - j - 1
\bigm\| \bigm\| 
2
;

by using a telescoping sum, for the maximum argument t\prime there exists \ell \in \{ 0, 1, . . . , k\} 
such that t\prime = \ell \Delta t. Applying Theorem 2.6 and Lemmas 2.8 and 2.9, we have \| S\bfity  - 
T\bfity \| \leq C1(\Delta t)

2\| (D+I)\bfity \| for the first order convergence condition and \| S\bfity  - T\bfity \| \leq 
C2(\Delta t)

3\| (D + I)2\bfity \| for the second order convergence condition for all \bfity \in \BbbR d. Note

that \| S\| 2 \leq \| e - 
i

2\gamma W\bfitn \Delta t\| 2\| e - 
i\gamma 
2 D\bfitn \Delta t\| 2\| e - 

i
2\gamma W\bfitn \Delta t\| 2 = 1, because the \ell 2 norm of a

matrix is the largest singular value of the matrix, e.g.,\bigm\| \bigm\| \bigm\| e - i
2\gamma W\bfitn \Delta t

\bigm\| \bigm\| \bigm\| 
2
=

\sqrt{} 
\lambda max

\Bigl( 
e - 

i
2\gamma W\bfitn \Delta t

\Bigl( 
e - 

i
2\gamma W\bfitn \Delta t

\Bigr) \ast \Bigr) 
=

\sqrt{} 
\lambda max

\Bigl( 
F\bfitn Jv,\bfitn F

 - 1
\bfitn 

\bigl( 
F\bfitn Jv,\bfitn F

 - 1
\bfitn 

\bigr) \ast \Bigr) 
=
\sqrt{} 
\lambda max(I) = 1,
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where \lambda max denotes the largest eigenvalue, Jv,\bfitn = diag[(e - 
i
2 v(\bfitx )\Delta t)\bfitx \in \Lambda (\bfitZ ,\bfitn )], and A

\ast 

is the Hermitian conjugate of A. Hence we obtain the following for the first case:\Biggl( 
k - 1\sum 
j=0

\| Sk - j - 1\| 2

\Biggr) 
max
0\leq t\prime \leq t

\| (S  - T ) \widehat \bfitu t\prime \| 2 \leq kC1(\Delta t)
2 max
0\leq t\prime \leq t

\| (D + I) \widehat \bfitu t\prime \| 2

= C1t\Delta t max
0\leq t\prime \leq t

\| (D + I) \widehat \bfitu t\prime \| 2.

(ii) For second order convergence a similar argument holds and we obtain\bigm\| \bigm\| uka(\cdot ) - ua(\cdot , k\Delta t)
\bigm\| \bigm\| 
L2

\leq kC2(\Delta t)
3 max
0\leq t\prime \leq t

\bigm\| \bigm\| (D + I)2 \widehat \bfitu t\prime 
\bigm\| \bigm\| 
2

= C2(\Delta t)
2t max

0\leq t\prime \leq t

\bigm\| \bigm\| (D + I)2 \widehat \bfitu t\prime 
\bigm\| \bigm\| 
2
.

This concludes the proof.

Note that this shows that the smoothness for the potential v required for second
order convergence is independent of the number of dimensions. This is a big im-
provement compared to the results shown in [14] with respect to sparse grids, where
the smoothness \alpha needs to increase for increasing dimension to obtain second order
convergence.

3. Numerical results. In this section, we demonstrate the method with nu-
merical results. We particularly consider three quantities of interest: approximation
error against the time step; evolution of the norm and the energy of the wave function
over the time period; and the error which is caused by the physical discretization. To
compare with the results from [14] using sparse grids, we choose the same experi-
ments, but since our method allows the results to also be calculated for higher d than
in [14] we extended the experiments.

3.1. Component-by-component construction. For constructing the rank-1
lattice and the antialiasing set, we employ the fast component-by-component con-
struction for lattice sequences; see, e.g., [6]. We use the script fastrank1expt.m,
available online [29] for fast component-by-component construction of a rank-1 lattice
sequence with a prime power of points. We use powers of 2. The lattice point set is
optimized for integration in the (unweighted) Korobov space with smoothness \alpha = 1
(in a common alternative notation this is \alpha = 2, as is the case for the construction
script). After having obtained the generating vectors we construct the corresponding
antialiasing sets in accordance with Lemma 2.8 in the following manner:

1. Generate all \bfith \in \BbbZ d for which \| \bfith \| 2 \leq r for some well-chosen r.
2. Sort the points according to the \ell 2 norm in ascending order.
3. Calculate m\bfith \equiv \bfith \cdot \bfitz (mod n) in sorted order and add \bfith to \scrA (\bfitz , n) if the

value m\bfith has not been seen before. Repeat this step until the set has the
cardinality n.

We refer to [7, section 2.6] for iteratively constructing \bfith in a bounded region.
To compare our results with the results in [14], we regenerated the data from that

paper as accurately as possible from the graphs therein. In Figures 3.1 and 3.2, we
denote by SG the results from [14] using sparse grids and by LR our method using
lattice rules. To make a fair comparison, we choose as close as possible the same
number of basis functions n as in [14] whenever this is known. We calculate the
number of basis functions nGS for the d-dimensional sparse grid with level \ell by
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Fig. 3.1. The time discretization error. Our method (LR) is presented by the solid line and
the results by sparse grid (SG) from [14] by the dotted line. Note that the initial condition g2 does
not satisfy the regularity condition.

nSG =

\ell  - 1\sum 
i=0

2i
\biggl( 
d - 1 + i

i

\biggr) 
.

The corresponding numbers of basis functions for both methods and the generating
vectors for the rank-1 lattice used in the experiments are exhibited in Table 3.1.
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Fig. 3.2. The time discretization error in high-dimensional cases. Results by sparse grid [14]
are not available for these higher-dimensional cases.

Table 3.1
Parameters of the numerical results. For (*) the level of the sparse grid is not specified as one

number in [14]. For d \geq 4, we always choose n = 225, and \bfitz is chosen to be the first d components,
e.g., for d = 4, \bfitz \top = (1, 12386359, 15699201, 6807287).

d n \bfitz \top nSG from [14]

2 218 (1, 100135) 217.7 or 219.9 *

220 (1, 443165) 219.9

3 222 (1, 1737355, 261247) 222.9

225 (1, 12386359, 15699201) 225.4

4 to 12 225
(1, 12386359, 15699201, 6807287,

13966305, 6107923, 4432603, 2304135
7323801, 5705679, 5643703, 3867405)

Not available

3.2. Convergence with respect to time step size. As in [13, 14, 17] we
consider the error of the calculated solution in terms of decreasing time steps against
a reference solution. We choose two types of the initial condition g from [14], the
``Gaussian"" initial condition given by

g1(\bfitx ) :=

\biggl( 
2

\pi \gamma 

\biggr) d/4

exp

\Biggl( 
 - 
\bigl( 
2\pi x1  - 3\pi 

2

\bigr) 2
+
\sum d

j=2 (2\pi xj  - \pi )
2

\gamma 

\Biggr) 
1

c1
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and the ``hat"" initial condition given by

g2(\bfitx ) :=

\biggl( 
3

\pi 
\surd 
\gamma 

\biggr) d/2\biggl( 
1 - 2

\pi 
\surd 
\gamma 

\bigm| \bigm| \bigm| \bigm| 2\pi x1  - 3\pi 

2

\bigm| \bigm| \bigm| \bigm| \biggr) d\prod 
j=2

\biggl( 
1 - 2

\pi 
\surd 
\gamma 
| 2\pi xj  - \pi | 

\biggr) 
1

c2

for \bfitx \in [0, 1)d, where c1 and c2 are normalizing constants to make the L2 norms of
both functions equal to 1. We remark that in [14], the domain was erroneously stated
as [ - \pi , \pi ]d, which would be equivalent to [ - 1/2, 1/2)d in our setting. However, we
conclude that the actual calculation was done in [0, 2\pi ]d, as can be confirmed by the
fact that the calculated norm of the Gaussian function was 1 in [14, Figure 6.8] therein,
and the fact that the same author has exactly the same result in another paper [13],
where the domain is stated as [0, 2\pi ]d with the same Gaussian initial condition, which
corresponds to [0, 1)d in our case. Therefore we conclude that our experiment is the
same experiment as in [14]. For the potential function v, we consider a ``smooth""
potential function

v1(\bfitx ) =

d\prod 
i=1

(1 - cos(2\pi xj))

and a ``harmonic"" potential function

v2 =
1

2

d\sum 
j=1

(2\pi xj  - \pi )2.

To show the time discretization error \| ua(\bfitx , t) - uma (\bfitx )\| L2 at time t = m\Delta t = 1
being fixed, we calculate a reference solution uMa (\bfitx ) with the finest time step size
\Delta t = 1/M = 1/10000, as an approximation of ua(\bfitx , t). Then we calculate uma (\bfitx )
with various time step sizes \Delta t = 1/m = 1/5, . . . , 1/1000 to be able to plot the
convergence rate of \| uMa (\bfitx ) - uma (\bfitx )\| L2

.
The result is exhibited in Figures 3.1 and 3.2. We observe that the convergence

rate for our new method consistently shows second order convergence \scrO ((\Delta t)2). On
the other hand the sparse grid results from [14] do not; for instance, see the case d = 3
with \gamma = 0.01. We remark that the initial condition g1 combined with the potentials v1
and v2 satisfy the conditions of Lemma 2.3 and Theorem 2.10. Therefore we expect to
see second order convergence in those cases. However, the hat initial condition g2 does
not satisfy the required regularity; nevertheless we have second order convergence in all
cases. Moreover, our method achieves the second order convergence consistently even
for high-dimensional cases, going from d = 4 in Figure 3.1 up to d = 12 in Figure 3.2.
We note that for d = 10 and d = 12 the convergence graph for the potential v1
does show some irregular behavior. This comes from the numerical exuberance of
the function v1 itself when the dimension is high; the function rapidly increases to
2d when the position \bfitx is close to (1/2, . . . , 1/2). This phenomenon does not happen
with the harmonic potential v2, which is more relevant for physics applications.

3.3. Norm and energy conservation. The TDSE, as a physical system, needs
to conserve the norm and energy of the system. To test our algorithm we look at
how well these quantities are preserved numerically. Denote the Hamiltonian by
H :=  - 1

2\gamma \nabla 
2 + 1

\gamma v, then
\partial u
\partial t =  - iHu. We study the time evolution of the L2 norm

of the wave function \| ua\| L2 and the energy \langle Hua, ua\rangle L2 , where \langle , \rangle L2 denotes the
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Fig. 3.3. Variation of the norm (left) and the energy (right) for \gamma = 0.5, d = 5 with g1 and v2.

Hermitian inner product in the L2 space. These two quantities are supposed to be
conserved over the time period since

\partial 

\partial t
\langle u, u\rangle L2 = \langle  - iHu, u\rangle L2 + \langle u, - iHu\rangle L2 = 0

and
\partial 

\partial t
\langle Hu, u\rangle L2

= \langle  - iHu,Hu\rangle L2
+ \langle Hu, - iHu\rangle L2

= 0

for the self-adjoint Hamiltonian H. For the self-adjointness of the Hamiltonian, we
refer to [31]. Our numerical results are presented in Figure 3.3. To compare with the
result from [14], we traced the graph therein, but we also need to remark that the
absolute value there was not accurate; the axis of the graph in [14] is not informative
enough for this purpose. However, since the value of (max - min)/mean was exhibited
in the article, we can compare the variation. Therefore, we plot the time evolution of
the norm and the energy where the initial values are adjusted to zero.

In Figure 3.3 we see the two quantities are conserved much more accurately using
our algorithm than when using the sparse grid approach in [14]. We calculate the
quantity \delta := (max - min)/mean to give an indication of the variation. Our method
conserves more accurately than the sparse grid approach, for the norm conservation
we have a factor of 10 - 5 smaller variation, and for the energy conservation we have a
factor of 10 - 4. The reason of the stability of our method comes from the unitarity of
the Fourier transform on our lattice points. Due to unitarity, the potential operator in
the frequency domain, F\bfitn V\bfitn F

 - 1
\bfitn , becomes Hermitian. Therefore the operator matrix

F\bfitn V\bfitn F
 - 1
\bfitn + D\bfitn is also Hermitian and hence the spectral theorem tells us that the

eigenvalues of the operator matrix are all real. Finally, the time evolution operator

is norm and energy conserving, i.e., \| e - 
i
\gamma W\bfitn t - i\gamma 

2 D\bfitn t\| 2 = 1. In contrast, the Fourier
transform on the sparse grid in [14] is not unitary. The lack of unitarity can lead
to numerical issues and can even lead to having exponential error growth, instead of
linear, in time [24, section III.1.4].

3.4. Discussion on the initial discretization. Here we study the initial error
which is caused by the initial discretization in space. The total mean square error of
the initial (spatial) discretization is given by



B1278 YUYA SUZUKI, GOWRI SURYANARAYANA, AND DIRK NUYENS

Fig. 3.4. The initial discretization error etotal for \gamma = 1 with Gaussian initial condition g1.

e2total = \| g  - ga\| 2L2

=

\int 
[0,1]s

\bigm| \bigm| \bigm| \bigm| \sum 
\bfith \in \BbbZ d

\widehat g(\bfith ) exp(2\pi i\bfith \cdot \bfitx ) - 
\sum 

\bfith \in \scrA (\bfitz ,n)

\widehat ga(\bfith ) exp(2\pi i\bfith \cdot \bfitx )
\bigm| \bigm| \bigm| \bigm| 2 d\bfitx 

=
\sum 

\bfith \in \BbbZ d\setminus \scrA (\bfitz ,n)

| \widehat g(\bfith )| 2 + \sum 
\bfith \in \scrA (\bfitz ,n)

| \widehat g(\bfith ) - \widehat ga(\bfith )| 2.
We plot the error etotal in Figure 3.4 with different dimensionality for the Gaussian

initial condition. Approximating functions still requires many basis functions when
the dimension becomes higher. However, intuitively we might argue that our way
of choosing the basis functions according to the \ell 2 distance works well particularly
for the Gaussian initial condition since the magnitude of the Fourier coefficients of a
Gaussian is also a Gaussian (i.e., only depends on the \ell 2 norm of the frequency, and
decays exponentially fast).

4. The total error of full discretization. The total error of the method
comes from the discretization in both space and time. Here we recall our notation for
approximating the solution:

1. u(\bfitx , t) is the true solution of (1.1);
2. ua(\bfitx , t) is the spatially discretized solution including the dynamics as (2.16);
3. uka(\bfitx ) is the fully discretized solution with Strang splitting (2.20).

First we denote by \scrI \bfitn the interpolation operator on the lattice points, for a function f ,

\scrI \bfitn (f)(\bfitx , t) :=
\sum 

\bfith \in \scrA (\bfitZ ,\bfitn )

\widehat fa(\bfith , t) exp(2\pi i\bfith \cdot \bfitx ),

where \widehat fa(\bfith , t) := 1

n

\sum 
\bfitp \in \Lambda (\bfitZ ,\bfitn )

f(\bfitp , t) exp( - 2\pi i\bfith \cdot \bfitp ).

By using the interpolation operator, we can bound

\| u(\cdot , t) - ua(\cdot , t)\| L2
\leq \| u(\cdot , t) - \scrI \bfitn (u)(\cdot , t)\| L2

+ \| \scrI \bfitn (u)(\cdot , t) - ua(\cdot , t)\| L2
.

The error \| ua(\cdot , t) - uka(\cdot )\| L2
is already bounded by Theorem 2.10. Using the triangle

inequality we can then bound the total error.
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Theorem 4.1 (total error). Assume a rank-r lattice \Lambda (\bfitZ ,\bfitn ) in canonical form
with the number of points n =

\prod r
i=1 ni, and a TDSE with a potential function v \in 

E\alpha (\BbbT d) with \alpha \geq 9/2 and an initial condition g \in E\beta (\BbbT d) with \beta \geq 2. Let D = \gamma 
2D\bfitn 

and W = 1
\gamma W\bfitn with D\bfitn and W\bfitn = F\bfitn V\bfitn F

 - 1
\bfitn as defined in (2.23) and (2.24), and

with V\bfitn as defined in (2.25) using the potential function v.
If the antialiasing set \scrA (\bfitZ ,\bfitn ) = \{ \bfith \bfitxi \in \BbbZ d : \bfitZ \top \bfith \bfitxi \equiv \bfitxi (mod \bfitn ) for \bfitxi \in \BbbZ n1 \oplus 

\cdot \cdot \cdot \oplus \BbbZ nr\} , with full cardinality, is chosen such that each \bfith \bfitxi with \bfitxi \in \BbbZ n1 \oplus \cdot \cdot \cdot \oplus \BbbZ nr

has minimal \ell 2 norm, i.e.,

\| \bfith \bfitxi \| 2 = min
\bfith \prime \in A(\bfitZ ,\bfitn ,\bfitxi )

\| \bfith \prime \| 2,(4.1)

with

A(\bfitZ ,\bfitn , \bfitxi ) :=
\bigl\{ 
\bfith \in \BbbZ d : \bfitZ \top \bfith \equiv \bfitxi (mod \bfitn )

\bigr\} 
,

then the following bound holds:

\| u(\cdot , t) - uka(\cdot )\| L2

\leq \| u(\cdot , t) - \scrI \bfitn (u)(\cdot , t)\| L2 + \| \scrI \bfitn (u)(\cdot , t) - ua(\cdot , t)\| L2 + \| ua(\cdot , t) - uka(\cdot )\| L2

\leq 2
\sum 

\bfith \in \BbbZ d\setminus \scrA (\bfitZ ,\bfitn )

| \widehat u(\bfith , t)| + t\gamma 

2
max
0\leq t\prime \leq t

\sum 
\bfith \in \BbbZ d\setminus \scrA (\bfitZ ,\bfitn )

\| \bfith \| 22 | \widehat u(\bfith , t\prime )| 
+ (\Delta t)2 C2t max

0\leq t\prime \leq t
\| (D + I)2 \widehat \bfitu t\prime \| 2,

where C2 is a constant independent of n, k and \Delta t.

Proof. To show the error, we follow a similar means as the proof for [24, Theo-
rem 1.8], where the one-dimensional pseudospectral Fourier method for the TDSE is
analyzed. Applying the interpolation operator to (1.1) on both sides, we have

\partial \scrI \bfitn (u)(\bfitx , t)
\partial t

=
\gamma i

2
\scrI \bfitn (\nabla 2u)(\bfitx , t) - i

\gamma 
\scrI \bfitn (v u)(\bfitx , t)

=
\gamma i

2
(\nabla 2\scrI \bfitn (u))(\bfitx , t) - 

i

\gamma 
\scrI \bfitn (v (\scrI \bfitn (u)))(\bfitx , t) + \delta \bfitn (\bfitx , t),(4.2)

where \delta \bfitn (\bfitx , t) =
\gamma i
2 \scrI \bfitn (\nabla 2u(\bfitx , t)) - \gamma i

2 (\nabla 2\scrI \bfitn (u)(\bfitx , t)) is called the defect which can
be seen as a commutator of the interpolation operator and the Laplacian applied to
the solution, and we used \scrI \bfitn (v u)(\bfitx , t) = \scrI \bfitn (v (\scrI \bfitn (u)))(\bfitx , t). At the same time, we
can express the dynamics of \widehat ua(\bfith , t) given in (2.16) in the original space by

\partial ua(\bfitx , t)

\partial t
=
\gamma i

2
\nabla 2ua(\bfitx , t) - 

i

\gamma 
\scrI \bfitn (v ua)(\bfitx , t).(4.3)

Here we see two different dynamics in (4.2) and (4.3); therefore, by letting \theta \bfitn (\bfitx , t) :=
\scrI \bfitn (u)(\bfitx , t) - ua(\bfitx , t) and comparing (4.2) with (4.3), we have

\partial \theta (\bfitx , t)

\partial t
=
\gamma i

2
\nabla 2\theta (\bfitx , t) - i

\gamma 
\scrI \bfitn (v \theta )(\bfitx , t) + \delta \bfitn (\bfitx , t).(4.4)

We note that \theta (\bfitx , 0) = 0. Using the relation

1

2

\partial | \theta (\bfitx , t)| 2

\partial t
= Re

\Biggl( 
\theta (\bfitx , t)

\partial \theta (\bfitx , t)

\partial t

\Biggr) 
,



B1280 YUYA SUZUKI, GOWRI SURYANARAYANA, AND DIRK NUYENS

where x denotes the complex conjugate, and using the chain rule we obtain the in-
equality

\| \theta (\cdot , t)\| L2

\partial \| \theta (\cdot , t)\| L2

\partial t
=

1

2

\partial \| \theta (\cdot , t)\| 2L2

\partial t
= Re

\Biggl( \biggl\langle 
\theta (\cdot , t), \partial \theta (\cdot , t)

\partial t

\biggr\rangle 
L2

\Biggr) 

= Re

\Biggl( \biggl\langle 
\theta (\cdot , t), \gamma i

2
\nabla 2\theta (\cdot , t) - i

\gamma 
\scrI \bfitn (v \theta )(\cdot , t)

\biggr\rangle 
L2

\Biggr) 
+Re

\Biggl( \biggl\langle 
\theta (\cdot , t), \delta \bfitn (\cdot , t)

\biggr\rangle 
L2

\Biggr) 

= Re

\Biggl( \biggl\langle 
\theta (\cdot , t), \delta \bfitn (\cdot , t)

\biggr\rangle 
L2

\Biggr) 
\leq \| \theta (\cdot , t)\| L2

\| \delta \bfitn (\cdot , t)\| L2
,

where we used the fact that our discrete Fourier matrix F\bfitn is unitary, which makes
the operator \gamma i

2 \nabla 
2(\cdot ) - i

\gamma \scrI \bfitn (v (\cdot ))(\bfitx , t) (e.g., (2.16) and (4.3)) self-adjoint, and conse-

quently the energy \langle \theta (\cdot , t), \gamma 2 \nabla 2\theta (\cdot , t) - 1
\gamma \scrI \bfitn (v \theta )(\cdot , t)\rangle L2 is always real. Dividing both

sides of the above inequality by \| \theta (\cdot , t)\| L2
and integrating over time, we obtain\int t

0

\partial \| \theta (\cdot , t\prime )\| L2

\partial t
dt\prime = \| \theta (\cdot , t)\| L2 \leq 

\int t

0

\| \delta \bfitn (\cdot , t\prime )\| L2 dt
\prime .

Using Lemma 2.5, we can explicitly calculate the defect

\delta \bfitn (\bfitx , t) =
\gamma i

2
\scrI \bfitn (\nabla 2u(\bfitx , t)) - \gamma i

2
(\nabla 2\scrI \bfitn (u)(\bfitx , t))

=
\gamma i

2

\sum 
\bfith \in \scrA (\bfitZ ,\bfitn )

\left(  \sum 
\ell \in \Lambda \bot (\bfitZ ,\bfitn )

(\| \bfith + \ell \| 22  - \| \bfith \| 22) \widehat u(\bfith + \ell , t)

\right)  exp(2\pi i\bfith \cdot \bfitx ).

For \ell = 0, all terms become zero and we drop those. Now we use (4.1) such that
| \| \bfith + \ell \| 22  - \| \bfith \| 22 | \leq \| \bfith + \ell \| 22 for any \bfith \in \scrA (\bfitZ ,\bfitn ) and \ell \in \Lambda \bot (\bfitZ ,\bfitn ). This means

\| \delta \bfitn (\cdot , t)\| L2 \leq \gamma 

2

\left(   \sum 
\bfith \in \scrA (\bfitZ ,\bfitn )

\left(  \sum 
\bfzero \not =\ell \in \Lambda \bot (\bfitZ ,\bfitn )

\| \bfith + \ell \| 22 | \widehat u(\bfith + \ell , t)| 

\right)  2
\right)   

1/2

\leq \gamma 

2

\sum 
\bfith \in \BbbZ d\setminus \scrA (\bfitZ ,\bfitn )

\| \bfith \| 22 | \widehat u(\bfith , t)| .
Therefore, we have

\| \theta (\cdot , t)\| L2
\leq 
\int t

0

\| \delta \bfitn (\cdot , t\prime )\| L2
dt\prime \leq t max

0\leq t\prime \leq t

\gamma 

2

\sum 
\bfith \in \BbbZ d\setminus \scrA (\bfitZ ,\bfitn )

\| \bfith \| 22 | \widehat u(\bfith , t\prime )| .
For the remaining term \| u(\cdot , t) - \scrI \bfitn (u)(\cdot , t)\| L2

, we have

\| u(\cdot , t) - \scrI \bfitn (u)(\cdot , t)\| L2

=

\left(   \sum 
\bfith \in \BbbZ d\setminus \scrA (\bfitz ,n)

| \widehat u(\bfith , t)| 2 + \sum 
\bfith \in \scrA (\bfitz ,n)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfzero \not =\ell \in \Lambda \bot (\bfitZ ,\bfitn )

\widehat u(\bfith + \ell , t)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right)   

1/2

\leq 

\left(  \sum 
\bfith \in \BbbZ d\setminus \scrA (\bfitz ,n)

| \widehat u(\bfith , t)| 2
\right)  1/2

+

\left(   \sum 
\bfith \in \scrA (\bfitz ,n)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\bfzero \not =\ell \in \Lambda \bot (\bfitZ ,\bfitn )

\widehat u(\bfith + \ell , t)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right)   

1/2
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\leq 
\sum 

\bfith \in \BbbZ d\setminus \scrA (\bfitz ,n)

| \widehat u(\bfith , t)| +
\left(   \sum 

\bfith \in \scrA (\bfitz ,n)

\left(  \sum 
\bfzero \not =\ell \in \Lambda \bot (\bfitZ ,\bfitn )

| \widehat u(\bfith + \ell , t)| 

\right)  2
\right)   

1/2

\leq 2
\sum 

\bfith \in \BbbZ d\setminus \scrA (\bfitz ,n)

| \widehat u(\bfith , t)| .
Using the triangle inequality, we obtain

\| u(\cdot , t) - ua(\cdot , t)\| L2
\leq \| u(\cdot , t) - \scrI \bfitn (u)(\cdot , t)\| L2

+ \| \scrI \bfitn (u)(\cdot , t) - ua(\cdot , t)\| L2

\leq 2
\sum 

\bfith \in \BbbZ d\setminus \scrA (\bfitZ ,\bfitn )

| \widehat u(\bfith , t)| + t\gamma 

2
max
0\leq t\prime \leq t

\sum 
\bfith \in \BbbZ d\setminus \scrA (\bfitZ ,\bfitn )

\| \bfith \| 22 | \widehat u(\bfith , t\prime )| .
This completes the proof.

The above error bound is further bounded by

\| u(\cdot , t) - ua(\cdot , t)\| L2
\leq (2 +

t\gamma 

2
) max
0\leq t\prime \leq t

\sum 
\bfith \in \BbbZ d\setminus \scrA (\bfitZ ,\bfitn )

\| \bfith \| 22 | \widehat u(\bfith , t\prime )| .
This is similar to the result of [24, Theorem 1.8] for the one-dimensional case, which
states

\| u(\cdot , t) - ua(\cdot , t)\| L2
\leq C(1 + t) max

0\leq t\prime \leq t

\bigm\| \bigm\| \bigm\| \bigm\| \partial 2u(\cdot , t\prime )\partial x2
 - 
\biggl( 
\partial 2\scrI \bfitn (u)
\partial x2

\biggr) 
(\cdot , t\prime )

\bigm\| \bigm\| \bigm\| \bigm\| 
L2

.

For certain function spaces, the approximation errors of lattice points are explicitly
known, e.g., [3, 21]. It might be possible to construct approximation lattices according
to the referenced papers and then to extend the frequency index set to fulfill the
needed conditions. However, this is not the focus of the present paper. The focus is
the interplay between the spatial discretization and the time stepping error, because
the time stepping error itself is heavily affected by the spatial discretization, as we
can see from the comparison with [14].

5. Conclusion. We approximated the solution of the time-dependent Schr\"o-
dinger equation by using rank-1 and rank-r lattices for the space discretization and
Strang splitting for the time discretization. We combined the antialiasing set of the
lattices together with FFTs to obtain both theoretical advantages and computational
efficiency. We showed that the time discretization of our method has second order
convergence for a potential function v \in E\alpha (\BbbT d) with \alpha > 9/2 which is independent of
the dimension d. The numerical experiments confirm the theory. We observed second
order convergence with respect to the time step in cases up to 12 dimensions. Previous
results based on sparse grids [14] have difficulty for cases higher than 5 dimensions.

Here we also remark on limitations of our method. We exploited the structure of
lattices to mitigate the curse of dimensionality, but we do not completely remove the
curse. This means we can solve rather higher-dimensional problems than regular grids
and sparse grids in [14] can, but not too high. Also, our focus in the present paper
is on the time-dependent problems. The algorithm is especially made for obtaining a
small time stepping error. Therefore, we cannot expect that our method works better
for the time-independent problems than existing methods such as [1, 16]; for this the
lattice points have to be constructed with this in mind.
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Our method can be applied to different problems which would be more interesting
for physics applications. One possibility is the time-dependent nonlinear Schr\"odinger
equation for simulating Bose--Einstein condensates. In [36], Thalhammer showed that
pseudospectral Fourier methods using regular grids with exponential splitting can ob-
tain the higher order convergence in time stepping. We may possibly alternate the
regular grid with lattice points to obtain the efficient simulation scheme, keeping the
same convergence order. Another possibility is using our method for time-dependent
potentials. For instance, the time-dependent harmonic oscillator is used for consider-
ing multiphoton excitation of molecules; see [20]. Our method can also be extended
to the higher order exponential splitting, which is studied in the follow-up paper [35].

Acknowledgment. We would like to thank two anonymous referees for their
valuable comments.
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