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ABSTRACT

We study inflow density dependence of substructures within electron diffusion region (EDR) of collisionless symmetric magnetic
reconnection. We perform a set of 2.5D particle-in-cell simulations which start from a Harris current layer with a uniform background
density nb. A scan of nb ranging from 0:02 n0 to 2 n0 of the peak current layer density (n0) is studied keeping other plasma parameters the
same. Various quantities measuring reconnection rate, EDR spatial scales, and characteristic velocities are introduced. We analyze EDR
properties during quasisteady stage when the EDR length measures saturate. Consistent with past kinetic simulations, electrons are heated
parallel to the B field in the inflow region. The presence of the strong parallel anisotropy acts twofold: (1) electron pressure anisotropy drift
gets important at the EDR upstream edge in addition to the E� B drift speed and (2) the pressure anisotropy term �r � PðeÞ=ðneÞ modifies
the force balance there. We find that the width of the EDR demagnetization region and EDR current are proportional to the electron inertial
length �de and �den0:22b , respectively. Magnetic reconnection is fast with a rate of �0:1 but depends weakly on density as �n�1=8b . Such
reconnection rate proxies as EDR geometrical aspect or the inflow-to-outflow electron velocity ratio are shown to have different density
trends, making electric field the only reliable measure of the reconnection rate.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5109368

I. INTRODUCTION

Magnetic reconnection is a universal plasma processes1 which
is responsible for the release of the stored magnetic energy, recon-
figuration of the stressed field lines, generation of fast plasma flows,
and energetic particles. Magnetic reconnection is involved in energy
transfer in the Earth’s magnetosphere; it drives explosive events on
the solar surface and disruptions in tokamaks. The process has
been the subject of many theoretical and modeling studies in past
decades. It is well understood now that magnetic reconnection
involves processes happening on two very different scales.2,3 The
macroscale contains the entire volume of interacting magnetic flux
tubes frozen into plasma. At the microscale, the Diffusion
Region(s) (DR) host(s) intense currents which allow for a diffusive

mechanism (or a combination of diffusive mechanisms) to break
field lines.

Diffusion region is defined formally as a region close to the
X-line where the frozen-in constraint Eþ V� B ¼ 0 breaks for the
reconnecting electric field component (hereinafter denoted as Er). The
concept of diffusion region was originally developed for single-fluid
MHD approach with uniform resistivity.4,5 The theory predicts forma-
tion of thin elongated current layers where plasma is accelerated up to
the Alfv�en velocity VA. The length and width and reconnection rate
scale with finite resistivity. In the absence of collisional resistivity, other
mechanisms like electron inertia6–9 break the frozen-in constraint. Ion
and electron components of plasma are tied to field lines and move via
E� B drift on large MHD scales. The motion of ion and electron

Phys. Plasmas 26, 102305 (2019); doi: 10.1063/1.5109368 26, 102305-1

Published under license by AIP Publishing

Physics of Plasmas ARTICLE scitation.org/journal/php

https://doi.org/10.1063/1.5109368
https://doi.org/10.1063/1.5109368
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5109368
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5109368&domain=pdf&date_stamp=2019-10-14
https://orcid.org/0000-0002-5579-3066
https://orcid.org/0000-0001-6592-056X
https://orcid.org/0000-0002-0640-0123
https://orcid.org/0000-0002-7694-3422
https://orcid.org/0000-0002-2272-9818
https://orcid.org/0000-0002-3123-4024
https://orcid.org/0000-0001-8467-0041
https://orcid.org/0000-0003-0639-0639
mailto:andrey.div@gmail.com
https://doi.org/10.1063/1.5109368
https://scitation.org/journal/php


components decouples from magnetic field in, ion and electron diffu-
sion regions (IDR and EDR, respectively) localized within a few ion/
electron gyroradii to the reconnection line.

Scale separation between ions and electrons makes collisionless
magnetic reconnection an inherently multiscale process. The relative
motion of ions and electrons generates the Hall effect, well visible
inside the IDR due to electron frozen-in constraint. The Hall term
does not generate reconnection electric field, but it is argued that the
Hall mediated reconnection remains fast and weakly dependent on the
EDR scales7,10,11 in Hall-MHD, hybrid, and full particle simulations.9

Basic IDR parameters of collisionless magnetic reconnection scale
with inflow density similar to Sweet-Parker model: the downstream
ion velocity is proportional to the ion Alfv�en velocity VA up to a factor,
and the width is proportional to the ion inertial length12,13 �di.
Similarly, the EDR outflow velocity scales with the electron Alfv�en
velocity VAe, and thickness

10,11,14 is comparable to the electron inertial
length �de, or some typical electron thermal gyroradius15 qe, or elec-
tron bounce width16 ke in some other studies. Here, VAe and other
electron parameters are calculated at the EDR inflow edge which is
located deep inside IDR and where the B field is reduced substantially.
Electrons get heated anisotropically due to parallel electrostatic poten-
tial development as they advect within the inflow region.17,18 The EDR
upstream edge location depends self-consistently19 on the electron dis-
sipation mechanism, mass ratio mi=me, and plasma b (here plasma b
is the ratio of plasma to magnetic pressure far in the inflow region).

The fluid electron momentum equation describes the electron
motion in collisionless plasma

Eþ VðeÞ � B ¼ � 1
ne
r � PðeÞ �me

e
@VðeÞ

@t
þ VðeÞ � rVðeÞ

� �
: (1)

The terms at the right-hand side of Eq. (1) are the electron pres-
sure �r � PðeÞ=ðneÞ and the inertial terms ð@VðeÞ=@t þ VðeÞ � rVðeÞÞ.
In laminar symmetric case, the X-line is also the in-plane flow stagna-
tion point making the �r � PðeÞ=ðneÞ term to play a dominant role
there and compensate for the Er. The off diagonal nongyrotropic com-
ponents of the electron pressure tensor PðeÞ are produced by the pres-
ence of a population of electrons accelerated by Er close to the X-line,
superimposed with colder inflowing gyrotropic population.20–23

Various models of collisionless dissipation are constructed to date
involving dissipation based on laminar electron pressure inside the
EDR,14,20,24 electron viscous heat flux,25 and anomalous turbulent
processes.26,27

2.5D Particle-in-Cell (PIC) studies of collisionless reconnection
in large ð�100 diÞ domains found that the length of the Eþ Ve � B
6¼ 0 layer as well as the length of the fast electron jets grows with time
at nearly constant width correlated with the reconnection rate
decrease.28 Generation of secondary plasmoids temporarily increased
the reconnection rate due to shortening of the EDR. These results
were complemented by studies of the Ohm’s law terms distribution
within the region where electrons are demagnetized.29–32 A primary
finding of those studies was that close to the X-line the�r � PðeÞ=ðneÞ
term and Er are of the same sign as in a normal diffusion region, but
the �r � PðeÞ=ðneÞ term changes its sign in the outer parts, thus driv-
ing the super-Alfv�enic electron jet. The origin of these outer jets was
later identified to be the electron anisotropy in the EDR inflow,18

which supports the electron momentum balance inside the EDR and
controls its length. In the presence of the Hall (out-of-plane) magnetic

field at the EDR edges, this gives rise to strong nongyrotropy within
such outflow jets.24

Most simulations of collisionless magnetic reconnection were
performed using Geospace Environmental Modeling (GEM) challenge
setup9 which is a plain Harris equilibrium of width 0.5–1.0 di, back-
ground plasma b of 0.2–0.4, and plasma density of nb ¼ 0.1–0:2 n0,
the latter representing the peak plasma density in Harris current sheet.
Conceptually, for such a setup de � qe up to a factor of 1 which
implies that the effects of the electron finite-Larmor-radius (FLR,�qe)
are strong compared to the electron inertia effects (�de). Such param-
eters are typical for the Earth’s magnetotail, but in many environments
of interest the upstream plasma is much different from that. In this
paper, we study properties of EDR of antiparallel collisionless symmet-
ric magnetic reconnection with a ion-to-electron mass ratio of
mi=me ¼ 256 and initial ion-to-electron temperature ratio of Ti=Te

¼ 5 and a set of background densities 0:02 < nb=n0 < 2. We investi-
gate the density dependence of basic EDR parameters and the micro-
scopic reconnection rate. We aim at figuring out how far length scales
and velocities deviate from the reference EDR values (de and VAe,
respectively) for various nb. However, establishing macroscale MHD
effects or predicting self-consistent global reconnection rate is out of
the scope of our paper.

Evolution of reconnection exhausts and energy exchange is con-
nected to electron-scale processes which determine the EDR physics.
Hence, much of the efforts are put into studying collisionless electron
dynamics inside reconnecting thin current layers. The magnetospheric
multiscale (MMS) campaign, which provides multispacecraft high-
resolution measurements, is the first mission capable of detecting key
features of electron-scale thin current sheets in the Earth’s magneto-
sphere. Theoretical and numerical modeling of such dynamical plas-
mas is important for adequate detection and interpretation of diffusion
regions and electron outflow jet crossings in spacecraft data,22 and for
better understanding of microphysics of the process.

The primary aim of our study is to investigate different sub-
structures formed inside the EDR and study density dependence.
Therefore, considerable effort is spent discussing formal definitions
of EDR spatial scales and other characteristic quantities. The paper is
organized as follows: Section II contains a brief description of the
simulation code used and parameters employed. Section III presents
the reference run with background density of 0.1 similar to GEM-
challenge studies and discusses various EDR length measures (inner
EDR, outer EDR, remagnetization region, Sec. III A) based on the
Ohm’s law terms balance. Temporal evolution of the length measures
and reconnection electric field is studied in Secs. III B and III C,
respectively, to select specific times when the process is quasisteady.
Section IV presents a systematic density dependence study: width
measures (Sec. IVA), length (Sec. IVB), reconnection electric field
and upstream microscopic B field (Sec. IVC), and velocities (Sec.
IVD). Finally, Sec. V presents conclusions and discussion.

II. PIC SIMULATIONS AND NORMALIZATION

We solve the 2.5D magnetic reconnection problem numerically
using the semi-implicit Particle-in-Cell (PIC) code33 iPIC3D in which
implicit moment method34 is implemented. The code iPIC3D was
utilized previously in application to such problems as magnetic recon-
nection studies,14,35,36 reconnection jet fronts,37–40 and other stud-
ies.41,42 The code is capable of using realistic ion-to-electron mass ratio
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mi=me, but a fixed ratio of mi=me ¼ 256 is used in the present paper
to reduce computational costs. The key feature of the implicit moment
method is to use closure equations to approximate the feedback from
current and plasma density in Maxwell’s equations over a computa-
tional cycle from time t to time t þ dt. In contrast to full-implicit PIC
schemes (where equations for a time step t þ dt contain unknown
fields and particles of the time layer tþ dt), the closure equations allow
to calculate the field sources removing the need to implicitly solve for
particles at the time step tþ dt. Hence, second-order implicit equation
for electric field at the time step Eðt þ dtÞ appears, containing plasma
moments (density, currents, and pressure) at time step t.

The simulation setup is similar to that of past studies of undriven
magnetic reconnection. To summarize: The initial condition is pro-
vided by two conventional Harris sheets43 within a double-periodic
computational domain. Magnetic field is

BxðyÞ ¼ B0ðtanhððy � Ly=4Þ=kHÞ
�tanhððy � 3Ly=4Þ=kHÞ � 1Þ

and the density profile is

nðsÞðyÞ ¼ n0ðcosh�2ððy � Ly=4Þ=kHÞ

þcosh�2ððy � 3Ly=4Þ=kHÞÞ þ nðsÞb :

The current sheet half-width kH ¼ 0:5 di and s denotes ions (s¼ i)
and electrons (s¼ e). The uniform background density is nb¼ 2, 1,
0.5, 0.3, 0.1, 0.04, 0.03, 0.02 (runs R1–R8, respectively). The x axis is
parallel to the initial magnetic field, the z axis is parallel to the initial
Harris sheet current, and the y axis completes the right-hand system.

Density is normalized to the peak Harris current sheet density n0,
and the magnetic fields are normalized to the asymptotic value B0.
Lengths are expressed in units of ion inertial length di ¼ c=xpi, where
xpi is the ion plasma frequency based on n0. Time is expressed in units
of inverse ion cyclotron frequency Xci ¼ eB0=ðmicÞ based on B0, and
velocities are normalized to the Alfv�en velocity based on B0 and n0.

Ion-to-electron temperature ratio is TðiÞ=TðeÞ ¼ 5 for both back-
ground and current sheet populations in all runs. Initial thermal veloc-
ities of electron and ion populations are, respectively, c=uthe ¼ 22:2;
c=uthi ¼ 159. Alfv�en velocity computed for n0 and B0 is c=VA ¼ 103
in all runs. Local Alfv�en velocities VAl computed for each run for B0
and nb can be found in Table I. The computational domain is a
two-dimensional box with the dimensions Lx � Ly , a uniform grid
Nx � Ny , and grid spacing Dx ¼ Dy ¼ Lx=Nx ¼ Ly=Ny . A localized

X-point perturbation is added to start reconnection at the point
ðLx=2; Ly=4Þ. The instantaneous main X-line position ðx�; y�Þ is deter-
mined as a saddle point location44 with a minimum of jBj closest to
ðLx=2; Ly=4Þ. The drift velocity of ðx�; y�Þ is much smaller than typical
velocities of electrons inside the EDR and hence does not affect the
scaling study. Other parameters (including time step dtXci and number
of initial macroparticles NPcell per cell per species) are listed in Table I:

III. SIMULATION OVERVIEW FOR Nb ¼ 0:1
A. EDR structure and length measures

In this section, we present an overview of a simulation (nb ¼ 0:1,
run R5) developing under the parameters similar to the ones found in
the GEMmagnetic reconnection challenge.9

A common pattern of single X-line collisionless reconnection is
displayed in Fig. 1 for times t¼ 21.728 (leftmost panels) and t¼ 33.95
(rightmost panels). Figures 1(a)–1(i) show, respectively, the Ohm’s law
terms, electron velocity components, the two-dimensional structure of

V ðeÞy , electron pressure anisotropy log10P
ðeÞ
k =P

ðeÞ
? , off diagonal compo-

nent PðeÞyz , gyrotropic part of P
ðeÞG
yz , a rotated component24 ~P

ðeÞ
yz , nongyr-

otropy measure45
ffiffiffiffiffiffiffiffi
QðeÞ

p
, and electron frame dissipation measure46

D0e. The gyrotropic part of the pressure tensor is denoted usually as P
G

¼ P?Iþ ðPk � P?Þbb, where Pk ¼ bPb and P? ¼ ðTrðPÞ � PkÞ=2
are, respectively, the electron pressure components parallel and per-
pendicular to the local magnetic field direction given by b ¼ B=jBj.

EDR is subdivided into different parts depending on the balance
between generalized Ohm’s law terms.29,31 In agreement with previous
studies (e.g., Refs. 12, 16, 47, and 48), the electron nongyrotropy

PðeÞyz � PðeÞGyz supports Ez at the X-line and hosts a load region (D0e > 0)
in the innermost EDR part (bounded by red lines in Fig. 1). The veloc-

ity V ðeÞx peaks downstream of this region (marked by green lines, Fig.
1), where the electron pressure component in the Ohm’s law
ð�r � PðeÞÞz=ðneÞ reverses due to strong gyrotropic parallel anisot-

ropy PðeÞk � PðeÞ? existing in the EDR inflow and hence producing a

gyrotropic contribution24 to PðeÞGyz . A rotated component ~P
ðeÞ
yz (cast in a

coordinate system aligned with the electron flow and from which the
upstream anisotropy is subtracted) is nearly uniform throughout this
region.24 Thus, an electron jet with j½VðeÞ � B�zj > jEzj forms outside
of the inner EDR. Whether this region between blue lines in Fig. 1 is a
“true” EDR28,29,49 or not14,30,31,50 is yet a matter of debate. In what fol-
lows, we use a conventional “definition”:30,51

TABLE I. Summary of simulations R1–R8 parameters. The initial upstream electron beta19 is be1 ¼ nbTe=ðB20=2Þ.

Run nb=n0 Lx � Ly Nx � Ny Dx be1 dtXci=10�3 NPcell c=VAl

R1 2.0 61:44di � 28:8di 3072� 1440 0.02 0.333 0.67 100 145.8
R2 1.0 61:44di � 28:8di 3072� 1440 0.02 0.1667 0.67 100 103.1
R3 0.5 96di � 24di 3456� 864 0.0278 0.0833 0.78 140 72.9
R4 0.3 76:8di � 36di 3072� 1440 0.025 0.05 0.67 144 56.5
R5 0.1 192di � 60di 4608� 1440 0.0417 0.01667 0.67 80 32.6
R6 0.04 144di � 72di 1728� 864 0.0833 0.00667 0.87 80 20.6
R7 0.03 192di � 96di 2304� 1152 0.0833 0.005 0.87 100 17.8
R8 0.02 165:9di � 77:76di 3072� 1440 0.054 0.00167 1.0 100 14.6
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• Red lines in Fig. 1 mark the extent of the inner EDR based on the
condition14,30,50 Ez þ ½VðeÞ � B�z ¼ 0 at y ¼ y�. We denote the dis-
tance between those points as 2Le. Typically, electron velocity there
is �1=3 of its peak exhaust value.14,52

• Green lines mark points where jV ðeÞx j peaks in the outflow direction
(approximately corresponds to the overshoot of jEz þ ½VðeÞ � B�z j).
We define the distance between those points as 2De.

• Blue lines are plotted for points where electrons are remagnetized
and thus Ez þ ½VðeÞ � B�z ¼ 0 marking the full length of electron
demagnetization region. We denote the distance between those
points29 as 2De.

Electrons slow down in a region downstream of the outer EDR
[Fig. 1(g)], inside the Electron Remagnetization Jet (ERJ) or electron
braking region. The electron remagnetization jet starts to open down-
stream of the outer EDR. This region is also denoted as outer layer or
outflow jet,29 or super-Alfv�enic electron jet,31 or E2DR (Extended
Electron Diffusion Region).53 There, the electron flow slows down to
match the E� B drift velocity51,54 (shown by blue lines in Fig. 1).
Remagnetization causes pitch angle mixing of accelerated particles,55

gyrotropization, and heating due to betatron effect.19,55 The

remagnetization jet is likely formed by accelerated meandering par-
ticles superimposed on a population of inflowing electrons that follow
noncrossing Speiser orbits which dominate outside the inner and outer
EDRs.54 The substructures within the full electron demagnetization
region continue to evolve after t¼ 21.768 (Fig. 1, left panels) so the
quasisteady stage is reached later. By the time t¼ 33.95 (Fig. 1, right
panels), the region of large

ffiffiffiffiffiffiffiffi
QðeÞ

p
elongates considerably as well as the

D0e region. Such configuration appears to be similar to dissipation-less
electron current layer.56 At such later times, there is no electron
remagnetization shock57 standing at the outflow EDR edge, which
now contains an elongated electron braking region.

B. Temporal evolution of EDR extent

Time evolution of le, Le, De, De for run R5, nb ¼ 0:1 is displayed
in Fig. 2. Here, le is the EDR width based on the Ohm’s law violation
scale, which is half the distance between the points Ez þ ½VðeÞ � B�z
¼ 0 along the line x ¼ x�. Times t¼ 21.73 and t¼ 33.94 (shown by
black lines) are moments displayed in Fig. 1. The structure of the EDR
continues to evolve until quasisteady stage is reached. The growth of

FIG. 1. (a) Ohm’s law terms. (b) Electron velocities and the x component of the E� B drift speed ðVE�B
x Þ. (c) V ðeÞy . (d) log10P

ðeÞ
k =P

ðeÞ
? . (e) PðeÞyz . (f) Gyrotropic part of P

ðeÞ
yz ,

given by PðeÞGyz ¼ ðPðeÞ? Iþ ðPðeÞk � PðeÞ? ÞbbÞyz, where b ¼ B=jBj is the magnetic field direction. (g) Rotated component24 ~P
ðeÞ
yz . (h) Electron nongyrotropy measure

45
ffiffiffiffiffiffiffiffi
QðeÞ
p

.
(i) Electron dissipation measure46 D0e. Plots are shown for two selected time slices, before (t¼ 21.728) and after (t¼ 33.95) the quasi-steady EDR regime is reached.
Definitions of inner EDR, outer EDR, and electron braking (remagnetization) region are shown in left panels. Length measures Le, De, and De are shown in right panels.
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Le saturates by t � 18, followed by De saturation at t � 22 and finally
De stops growing by t> 25. Notably, the computational domain mea-
sures Lx � Ly ¼ 192di � 36di in run R5; hence, periodic boundary
conditions (BCs) do not impede electron demagnetization region
stretching. The EDR width le grows weakly likely because of magnetic
flux and density depletion but remains close to le � 0:3 by 25 < t
< 30. A time interval marked yellow represents the run R5 times for
which single X-line EDR parameters are sampled for density scaling
analysis. For each run, we select an interval matching the following

criteria: (1) De growth saturates implying that Le and De are also
steady, (2) there are no large-scale plasmoids which introduce large
asymmetry in reconnection outflows, and (3) reconnection outflows
are not affected by periodic BCs. We need to point out that due to lim-
ited computational resources we do not consider very long reconnec-
tion evolution (hundreds of X�1ci ), which is perturbed by regular
plasmoid formation52,53 leading to fluctuations in reconnection rate
and EDR parameters. The question as to how plasmoid formation
impacts reconnection rate and heating globally has long been dis-
cussed in literature19,28,37,53,58 but seems to be open at present.

C. Time evolution of reconnection rates

The un-normalized electric field Ez in the X-line [Fig. 3(a)] is pre-
sented in code units. In much similarity with other reconnection stud-
ies,13,48,53 an overshoot in Ez is formed at early stage of the evolution,
when the Harris sheet is reconnected. The overshoot is more notice-
able for smaller background densities since the reconnection electric
field scales with the Alfv�en upstream velocity V ðupÞA � n�1=2b . Random
fluctuations are due to PIC noise or generation of small-scale flux
ropes (more visible for smaller densities in runs R7 and R8); hence, we
select several times (marked in Fig. 3 for each run) at quasisteady stage
for the detailed EDR study. Long time simulations with duration
exceeding �300X�1ci in fully open systems52,53 display periodic forma-
tion of magnetic islands near the diffusion region, leading to large var-
iations in EDR scales. Comparing Fig. 3(a) (run R5 curve) and Fig. 2,
one observes that the time of peak reconnection rate (time t � 17) is a
transient stage before the scales Le, De, De saturates. Hence, it is possi-
ble that EDR scaling relations produced for such a peculiar moment of
time59 significantly deviate from typical parameters in quasisteady
regime.

The microscopic ion rate of conversion of stored magnetic energy
(the normalized reconnection rate) is conventionally measured as a
dimensionless ratio of the plasma inflow speed V toward the diffusion

FIG. 2. EDR scales (width and lengths) evolution for run R5 (nb ¼ 0:1). Vertical
lines mark time slices selected to plot Fig. 1. Yellow rectangle marks times when
data for density dependence study are sampled with run R5.

FIG. 3. (a) Un-normalized reconnection rate (electric field Ez at the main X-line). (b) Microscopic ion reconnection rate er ¼ Ez=E
ðupÞ
A , for all runs. In each line, the symbols

mark moments chosen for quasi-steady study.
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region and the ion Alfv�en velocity V ðupÞA upstream: er ¼ V=VðupÞA , or
equivalently er ¼ Ez=E

ðupÞ
A , where the upstream Alfv�en electric field is

EðupÞA ¼ BðupÞV ðupÞA . We estimate parameters BðupÞ and V ðupÞA at a point
y ¼ 2diðnbÞ to the X-line19 (diðnbÞ based on the local density at the
X-line), which approximately represents the IDR upstream edge.
Figure 3(b) shows er vs time for each run. As a first check we find the
microscopic ion reconnection rate to be er � 0:1, in agreement with
other studies.9

IV. EDR DENSITY DEPENDENCE STUDY

In this section, we study systematically the nb dependence of
characteristic EDR velocities, spatial scales, and reconnection rate.

The quantitative comparison of the EDR parameters requires
knowledge of the typical B field and density at the upstream edge
because the electron Alfv�en velocity and electron inertial length are,
respectively, the typical velocity and width scale. It is found in simula-
tions19 that the density inside EDR is very close to nðupÞ for the range
of plasma b studied. To reduce noise, we average the plasma density in
a box jx � x�j < Le; jy � y�j < deðnbÞ=2. Unlike density, the mag-
netic field jBxðx�; yÞj increases monotonically with jy � y�j from 0
within the diffusion region; therefore, the magnetic field and

characteristic velocity VAe (see Sec. IVC) depend on a specific defini-
tion of width (see Sec. IVA) in a given set of simulation data.

A. Structure scales around the neutral line

Let us examine quantitatively spatial profiles of various common
measures used for identifying the electron diffusion region structure.
Below we define formally several width measures commonly used as a
proxy of EDR thickness.

• le: The scale of the Ohm’s law violation identified rigorously as half
the distance between the points Ez þ ½VðeÞ � B�z ¼ 0 along the line
x ¼ x� [see Figs. 4(a1) and 4(a2)].

• lje: The half-thickness of the electron current layer defined as a dis-

tance from the X-line to a point where jðeÞz is half of its maximum
value at x ¼ x� profile inside the EDR [see Figs. 4(c1) and 4(c2)].

Note that we sample magnetic field Bð2jeÞx at a point13 ðx�; y� þ 2ljeÞ
since the point ðx�; y� þ ljeÞ is inside the EDR.

Other physical scales measured are as follows:

• lD: The thickness of the electron-frame dissipation measure46 (D0e
layer). lJ�E: same as the latter, but for the quantity J � E layer. lJzEz:

FIG. 4. In this figure, we show qualitative differences between the low- and high-density cases. Vertical cuts through the X-line x ¼ x� of the Ohm’s law terms and velocities.
Definitions of various width measures of an EDR (see details in Sec. IVA).
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same as the latter, but for the quantity JzEz layer. Figures 4(d1) and
4(d2) show the respective dissipation measures (D0e; J � E; Jz � Ez)
along a cut through x ¼ x�.

• lDng: The thickness of the nongyrotropic electron layer60 Dng . lQ:

same as the latter, but for electron nongyrotropy measure45
ffiffiffiffiffiffiffiffi
QðeÞ

p
.

Figures 4(e1) and 4(e2) show the respective nongyrotropy measures

(Dng ;
ffiffiffiffiffiffiffiffi
QðeÞ

p
) along a cut through x ¼ x�.

• qe: The electron meandering orbit amplitude evaluated as a point
where the local electron gyroradius equals the distance to the X-line
jy � y�j at x ¼ x�.

Figure 5 shows how the discussed quantities (le, lje, lD, lJ�E; lJzEz ,
lDng, lQ, qe) vary with nb. Quantities are normalized by the local
electron inertial length deðnðupÞÞ to remove the general trend
�de � n�1=2b .

The following important conclusions could be made. First, the
measured quantities are proportional to the local de with a coefficient
approximated by a power law / nb (alternatively, / be1). To ease
comparison of noisy data, we plot regression lines and power law indi-
ces for each set of measured quantities. Second, the resulting slope of
le=de � n�0:03b is nearly zero which agrees well with other studies11,61

performed using both kinetic and two-fluid approaches. The Ohm’s
law violation scale le is governed by fluid Hall electron dynamics12,14

producing the scaling le � de. Also (see Sec. IVC), the BðleÞx field calcu-
lated at the upstream EDR edge y � y� ¼ le; x ¼ x� appears nearly
constant for the studied range of be. It should be noted that this result
is at odds with the adiabatic equations of state which set the EDR edge
according to the electron firehose condition18,19 (see Appendix A).
Third, other scales introduced in Fig. 5 have nonzero slopes with
power law indices close to 0.2. Notably, the characteristic thickness of
the nongyrotropic layer lDng is slightly larger than the electron
meandering width qe in agreement60,62 with studies of the EDR

signatures. To summarize, the Ohm’s law violation scale and the EDR
current width are governed by “different” physical mechanisms.

Let us examine qualitatively the discrepancy between le and lje
scales. We revisit the Ohm’s law terms in Figs. 4(a1) and 4(a2) along a
vertical cut through x ¼ x� for nb ¼ 0:02 and nb¼ 1, respectively.
Right at the X-point, both runs display common results: the terms
½VðeÞ � B�z � 0 and �ðme=eÞðVðeÞ � rVðeÞÞz � 0; the nongyrotropic
pressure component ð�r � PðeÞÞz=ðneÞ balances Ez, and the latter is
uniform in the diffusion region vicinity. The differences are visible
close to the EDR edges and further upstream. The inertial term (which

reduces to�ðme=eÞV ðeÞy @yV
ðeÞ
z at x ¼ x�) appears because the current

velocity gradient @yV
ðeÞ
z is large at the inflow edge [see Fig. 4(c)].

Hence, one presumes the spatial scale of the inertial term extent is
proportional to the EDR current layer width lje and the sign is

�ðme=eÞVðeÞy @yV
ðeÞ
z < 0. The pressure term profile is composed of

two different regions: one inside the EDR ð�r � PðeÞÞz=ðneÞ < 0
(originated from the electron-meandering motion with a spatial extent
proportional to qe), and the other in the inflow region formed by adia-
batically trapped electrons and providing18,19 ð�r � PðeÞGÞz=ðneÞ > 0

with PðeÞk > PðeÞ? . The gyrotropic contribution PðeÞG is shown with a

dashed red line in Figs. 4(a1) and 4(a2).
The profiles in Figs. 4(a1) and 4(a2) reveal qualitative differences

between low and high density cases.
For nb ¼ 0:02 case (run R8), the inertial contribution clearly

exceeds the pressure term contribution at jy � y�j ¼ lje. The overshoot
is ð�r � PðeÞÞz=ðneÞ > 0 with a partial counterbalance existing
between those two terms. This effect appears in the interval de
< jy � y�j < le in low-beta plasma as FLR effect49 and is typically
interpreted as gyroviscous cancelation.12 The sum is

�r � PðeÞð Þz=ðneÞ � ðme=eÞV ðeÞy @yV
ðeÞ
z < 0

at jy � y�j ¼ lje; hence, the convective term satisfies j½VðeÞ � B�zj
< jEzj and a point jy � y�j ¼ le is pushed at a larger distance to the
X-line than lje. The gyrotropic part PðeÞG is relatively low.

In nb ¼ 1:0 case (run R2), the electron pressure term strongly
exceeds jEzj at the EDR upstream edge due to substantial contribution
from gyrotropic part PðeÞG existing in the inflow region. We suggest
that the ð�r � PðeÞÞz=ðneÞ term should play a major role at jy � y�j
¼ lje in high b plasmas, and there is no gyroviscous cancelation in
such a regime. The sum of dissipative terms is

�r � PðeÞð Þz=ðneÞ � ðme=eÞV ðeÞy @yV
ðeÞ
z > 0;

hence j½VðeÞ � B�zj > jEzj. The point jy � y�j ¼ le shifts closer to the
X-line and is embedded within the dissipative electron layer [cf. the
scales defined in Fig. 4(e2)].

Next we discuss how the nonideal electric fields change the veloc-
ity of electrons flowing into the EDR. The classical Sweet-Parker-like
diffusion region analysis presumes that the dissipative electric field
peaks at the DR center and drops monotonically with distance to the
X-line at the DR edges. Accordingly, the convective electric field con-
verges to the reconnection electric field to satisfy the frozen-in condi-
tion, making the scale of the Ohm’s law violation (le) proportional to
the dissipative current sheet width (lje). PIC simulations reveal that
extra nondissipative terms come into play at the EDR edges; therefore,

FIG. 5. Density dependence of various width measures. All quantities are normal-
ized by the local electron inertial length deðnðupÞÞ to remove the general trend
�de � n�1=2b . Single points represent the EDR widths sampled at specific times
when magnetic reconnection is in the steady state regime (the specific times are
emphasized in Fig. 3 with large markers). Respective power law fits are shown with
numbers, e.g., le=de � n�0:03b is nearly independent of nb but other width measures
scale as approximately 2lje=de � n�0:22b .
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one expects the ½VðeÞ � B�z profile to compensate for the contribution
of the inertial and pressure components since the reconnection electric
field is uniform in the quasisteady phase. To understand the effects
controlling the inflow of electrons into the EDR, we show VðeÞy along
the y direction in Figs. 4(b1) and 4(b2) show. We plot the E� B drift
velocity (magenta) and the “modified49 E� B drift velocity”

VðE�BÞ0y ¼ Ez= Bx � ðme=eÞ@Ve
z=@y

� �
;

which accounts for the large �ðme=eÞVðeÞy @yV
ðeÞ
z contribution [Fig.

4(a1)] for nb ¼ 0:02 case. Additional electron drifts are caused by the
gyrotropic pressure gradient and field line curvature in the inflow
region63

VðeÞ?dia ¼ �
1

enB2
B�r � PðeÞ

¼ � 1
enB2

B�rp? �
1

enB2
PðeÞk � PðeÞ?

� �
B� ðb � rÞbð Þ:

The solid red line expresses the profile of the diamagnetic drift
�ð1=enB2ÞB�rp?. The dashed red line represents the pressure
anisotropy drift. In agreement with a previous study,49 the modified
E� B drift velocity follows closely the velocity VðeÞy for nb ¼ 0:02, and
diamagnetic drift is close to zero in such a case. Opposite to latter, the
nb ¼ 1:0 case reveals that V ðeÞy strongly exceeds VE�B

y drift because of
pressure anisotropy drift (red dashed line), with the diamagnetic drift
velocity being close to zero (red solid line) in the inflow region. Hence,
the E� B drift velocity does “not” necessarily represent the inflow
velocity of electrons, which must have important implications for
reconnection rate estimate and Sweet-Parker analysis of EDR.

B. EDR length scales

Let us study the EDR dimensions in the X direction. We found
that there are different ways to define lengths (Le, De, De discussed
in Sec. III A) and widths (le, lje discussed in Sec. IVA). We measure
different length estimates for all runs and plot the results in Fig.
6(a) in code units. Figures 6(b) and 6(c) display these estimates

normalized to local de and 2lje, respectively. To guide the eye, we
plot regression lines and power law indices for each set.

Figure 6(a) reveals that power law fits are very close to �1=2
and hence scale with electron inertial length de � n�1=2b .
Subtracting this general trend, one observes several striking fea-
tures in Fig. 6(b): (1) regression lines for Le=de; De=de and De=de
roughly lie on a straight line and hence are nearly independent of
density ð�n�0:03b …n�0:05b Þ. (2) The EDR aspect ratios le=Le; le=De

depend very weakly on density, pointing3 to a reconnection rate
on the order of 0.1 which is independent of nb as well (also see
Sec. IV C).

According to common scaling analyses based on conservation
laws,14,15 the width scales well with de and the EDR width-to-length
ratio is identical to the electron reconnection rate ee up to a coeffi-
cient.52 A recent scaling analysis59 provides corrections to this scheme.
A weak power law scales for le � 2deb

1=8
e [Eq. (6) of Ref. 59] and Le

� 3b1=4
e ðdideÞ

1=2 [Eq. (11) of Ref. 59] were found. For a fixed elec-
tron to ion mass ratio and a fixed initial temperature, these equa-
tions provide le � 2den

1=8
b and Le � 3n1=4b de, respectively, giving

the inner EDR aspect ratio Le=le � n1=8b , which is clearly at odds
with our Fig. 6(b).

We suggest that the analysis performed in Ref. 59 reflects the cor-
rect upstream Te dependence but is only valid for a limited upstream
nb range (0:2 < nb < 0:5) and reconnection rate peak time. The elec-
tron behavior is fully kinetic inside the EDR, but the Ohm’s law
demagnetization scales (le, Le) behave conceptually the same as in fluid
simulations since it is argued that the EDR scales are independent of
the mechanism which breaks the frozen-in condition.11,64 Next we
plot the regression lines in Fig. 6(c) (length estimates scaled to 2lje)
and find a substantial trend (�n�0:26����0:34b ). In fact, such a trend
agrees well with density dependence of 2lje=le � n0:22b discussed in Sec.
IVA (see Fig. 5). An intriguing property of lje scale is that for high nb
case the aspect ratio 2lje=Le approaches unity which clearly contradicts
a common scaling analyses3 predicting reconnection rates on the order
of �0:1� 0:2. As discussed in Sec. IVA, non-E� B drifts are capable
of modifying the EDR inflow velocity. Hence, electron pressure anisot-
ropy drift pushes plasma into the EDR making the reconnection rate

FIG. 6. EDR Length measures for all runs: (a) un-normalized. (b) Lengths =de. (c) Lengths =2lje. Respective power law fits are shown with numbers.
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er very different from the geometrical aspect ratio. We discuss this
point next.

C. Reconnection electric field and upstream BðupÞ field

To compare quantitatively electron outflow velocities, one needs
to introduce typical electron Alfv�en velocities and upstream EDRmag-
netic fields first.

The estimates for the upstream EDR edge magnetic field Bx are
BðleÞx ; BðjeÞx , and Bð2jeÞx computed at x ¼ x� and y ¼ y� � le; y ¼ y�

�lje y ¼ y� � 2lje, respectively. The EDR edge field BðleÞx defined at the
frozen-in condition violation width appears nearly constant [black
dashed line in Fig. 7(a)] with BðleÞx � n�0:01b . Quantities defined by
electron current width scale lje show a clear trend with nb which agrees
relatively well with the analytical scaling18 plotted by red line (also see
Appendix A). The theory is known to break down19 for be1 < 0:03
(which corresponds to nb ¼ 0:18 for initial conditions considered)
causing�1:5 times underestimate in our low nb runs. The overall scal-
ing for 0:02 < nb < 2 is Bð2jeÞx � n1=8b , but more exact theory is needed
to couple self-consistently65 the microscale EDR properties and mac-
roscale global plasma flow.

Magnetic field BðupÞ upstream of the X-line is plotted with a gray
line in Fig. 7(a). Notably, BðupÞ is nearly independent of density
(�n0:01b ). The scaling study in Ref. 13 reported the trend 0:55
< BðupÞ < 0:7 for 0:01 < nb < 1. We attest such difference with our
results to the system size and periodic boundary conditions depen-
dence or the low mass ratio mi=me ¼ 25 in Ref. 13 causing the ion-
scale physics to “feel” heavy electrons.

The density dependence of the un-normalized reconnection rate
Er (which equals electric field jEzj in the X-line in code units) is pre-
sented in Fig. 7(b). The electric field depends monotonically for
approximately an order of magnitude with a power law index of

�n�0:62b which is close to the Alfv�en velocity dependence �n�1=2b . We

calculate the upstream Alfv�en electric field EðupÞA � n�0:46b [gray line in
Fig. 7(b)] to estimate the microscopic ion reconnection rate er for all

runs. The microscopic inner electron reconnection rate ee ¼ Ez=E
ðleÞ
Ae

is represented in units of electron Alfv�en electric field14,32 EðleÞAe ¼ BðleÞx

V ðleÞAe � n�0:51b [black line in Fig. 7(b)] where V ðleÞAe is the electron

Alfv�en velocity based on BðleÞx . The red line in Fig. 7(b) shows the ana-
lytical estimate18 of the electron Alfv�en electric field at the EDR edge
using the same magnetic field shown in Fig. 7(a) with the red dotted
line.

A power law regression for EðupÞA � n�0:46b follows closely Ez
� n�0:62b , but in fact the normalized outer reconnection rate er
¼ Ez=E

ðupÞ
A is not really a constant although being close9 to �0:1

[Fig. 7(c)]. The line of regression [Fig. 7(c), gray line] shows a weak
scaling of er � n�0:13b in agreement with other studies13,19 which
reported fading of the normalized er as density increases. As a consis-
tency check, for “standard” GEM-like conditions, the line of regression
of erðnbÞ crosses er ¼ 0:1 at nb � 0:1. A steeper trend is found

for Er=E
ð2jeÞ
Ae � n�0:39b [Fig. 7(c), cyan line] where Eð2jeÞAe ¼ Bð2jeÞx V ð2jeÞAe

� n�0:23b is based on magnetic field Bð2jeÞx which grows twofold in the
interval 0:01 < nb < 2.

D. Velocities

Electron jet outflow velocity is known to scale as the electron
Alfv�en velocity10,11,65 which implies �n�1=2b dependence. Figure 8(a)
shows density dependence of the outflow (VðeÞx ) velocities measured
within the region of electron demagnetization:

• V ðeÞxL at the inner EDR edge (y ¼ y�; x ¼ x� � Le), plotted with the
red solid line;

• V ðeÞxD at the outer EDR edge (y ¼ y�; x ¼ x� � De), plotted with the
green solid line;

• V ðeÞxD at the outer EDR edge (y ¼ y�; x ¼ x� � De), plotted with the
blue solid line.

In addition to that, we plot the following reference EDR velocities
in Fig. 8(a):

FIG. 7. (a) Magnetic field measured at the far inflow and upstream of the EDR. (b) Un-normalized reconnection rate for all runs; EA at the far inflow and EAe upstream of the
EDR for all runs. (c) Reconnection rate as normalized to EðupÞA (microscopic ion), EðleÞAe (microscopic electron), Eð2jeÞAe . Respective power law fits are shown with numbers.
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• electron Alfv�en velocity based on the upstream EDR edge magnetic
field which is computed using adiabatic theory18 and stability
condition

PðeÞk ðn;BÞ � PðeÞ? ðn;BÞ
� �

=B2 ¼ 1

shown by the red dotted line. Notably, the adiabatic theory estimate
is rather different from other quantities since accelerating potential is
comparable or exceeds the upstream electron temperature18 for low
nb limit. See details in Appendix A.

• Electron Alfv�en velocity V ðleÞAe based on BðleÞx at y � y� ¼ le (black
dashed line);

• electron Alfv�en velocity V ð2jeÞAe based on Bð2jeÞx at y � y� ¼ 2lje (green
dashed line);

• electron current velocity V ðeÞz computed right at the X-line (y ¼ y�;
x ¼ x�, magenta solid line);

• ion Alfv�en velocity V ðupÞA based on B at far inflow, see Fig. 7(a) (gray
solid line).

Lines of regression for the reference EDR velocities V ðupÞA
� n�0:49b and V ðupÞAe � n�0:51b display power law trends very close to
�n�1=2b [Fig. 8(a)]. Hence, we resolve the usual Alfv�en speed depen-
dence for these quantities. Unlike BðupÞx � n0:01b and BðleÞx � n�0:01b ,
the magnetic field Bð2jeÞx (determined by the current width at
y � y� ¼ 2lje) increases with nb, leading to a flatter Vð2jeÞA � n�0:37b
dependence. With magnetic field Bð2jeÞx being close to that provided
by the adiabatic theory [Fig. 7(a)], the corresponding analytical elec-
tron Alfv�en velocity is close to V ð2jeÞAe .

FIG. 8. Characteristic EDR velocities combined for all runs: (a) un-normalized. (b) Velocities =V ðupÞA . (c) Velocities =V ðleÞAe . Notably, the ratio V
ðeÞ
xL =V

ðleÞ
Ae is denoted52 as a and

has a significant trend with density, a � n�0:22b . (d) Velocities/V ð2jeÞAe . Respective power law fits are shown with numbers.
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Lines of regression for the current velocity V ðeÞz and EDR exhaust
velocities display steeper dependence with nb. Trends are presented
with greater details in Figs. 8(b) and 8(c) which display velocities nor-
malized by, respectively, V ðupÞA ; V ðleÞAe ; V

ð2jeÞ
Ae .

The current velocity VðeÞz normalized to V ðleÞAe has almost no nb
dependence on V ðeÞz =V ðleÞAe � n�0:07b . Since the current velocity VðeÞz

supports the EDR magnetic field reversal and BðleÞx =le ¼ �neVðeÞz , one

estimates for the typical EDR thickness (le¼ de): V
ðeÞ
z ¼ VðleÞAe . The Hall

reconnection model states that the whistler wave controls the outflow
of electrons from the X-line. The Hall field produced by the x-directed

stream of electrons is equal to BðleÞx ; hence, the equality V ðeÞxD ¼ VðeÞz

should be satisfied at the EDR outflow edge. However, the peak exhaust

velocity V ðeÞxD is close to V ðeÞz for GEM-challenge like parameters and
more generally for nb < 0:2. For the highest density run R1, the ratio

V ðeÞz =V ðeÞxD is �2 [Fig. 8(a)]; hence, the current and exhaust velocities
are not necessarily identical in the Hall reconnection model.

One notices the ordering of the exhaust velocities:
V ðeÞxD < V ðeÞxL < V ðeÞxD . The velocity V

ðeÞ
xD is sampled at the outflow edge

of the remagnetization region where electrons start to E� B drift with
a speed proportional to the local “ion” Alfv�en velocity V ðupÞA [seen well
at Fig. 8(b)]. The peak exhaust velocity V ðeÞxD is reached in the outer
EDR, where j½VðeÞ � B�zj > jEzj. The line of regression is V ðeÞxD =V

ðleÞ
Ae

� n�0:19b ; hence, the ratio falls with nb which conforms a past study19

of density dependence. Regression lines of V ðeÞxD � n�0:64b ; VðeÞxL
� n�0:71b ; V ðeÞxD � n�0:66b ; V ðeÞz � n�0:58b are very close suggesting that
the EDR substructures are qualitatively similar for all runs studied.

The inner EDR exhaust velocity VðeÞxL reaches neither V ðleÞAe nor
V ð2jeÞAe [Figs. 8(c) and 8(d)] in agreement with past scaling studies14,52

because of the strong electron anisotropy at the inflow region and the
corresponding “blocking” effect.24,30 The ratio VðeÞxL =V

ðleÞ
Ae � n�0:22b was

denoted by a in Ref. 52 and was considered to be a universal constant
independent of the mi=me ratio, density, and temperature. The value
of a ¼ 0:45 was obtained for nb ¼ 0:2 but smaller ion-to-electron
mass ratios (mi=me ¼ 25; 100) during a series of very long GEM-
challenge like runs with open boundaries.52 Our study provides a simi-
lar value of a ¼ 0:33 at nb ¼ 0:2 [Fig. 8(c)] using the regression line
for VðeÞxL =V

ðleÞ
Ae .

For 0:02 < nb < 2:0, the power law fit displays a range of
0:6 > a > 0:2, making the effectiveness of the electron acceleration
strongly density-dependent. We qualitatively explain this trend via the
Alfv�enic relation31 for the outflow velocity, V ðeÞx ¼ VAede=lje, which
is based on mass conservation. Comparing the power law fit of de=lje
� n�0:22b (Fig. 4) to results of our study in Figs. 8(c) and 8(d), one
indeed finds a close agreement with V ðeÞxL =V

ðleÞ
Ae � n�0:22b and

V ðeÞxL =V
ð2jeÞ
Ae � n�0:34b . If all the available magnetic energy at the EDR

inflow edge �ðBðleÞx Þ2=2 is transformed into bulk kinetic energy, then
the electron fluid should reach the electron Alfv�en velocity V ðleÞAe .
Simulations indicate that for high nb a smaller share of the available
magnetic energy upstream of the EDR ð�BðleÞx Þ2=2 is transformed into
kinetic energy at the EDR exhaust.

V. DISCUSSION AND CONCLUSIONS

In this paper, we studied density dependence of undriven sym-
metric magnetic reconnection using a set of 2.5D PIC simulations.
The primary goal of our study was to measure various EDR properties
(length scales, velocities, reconnection rate, etc.) and compare them to

the characteristic quantities, namely, the electron inertial length (de),
the electron Alfv�en velocity (VAe), and electron Alfv�en electric field
(EAe).

In contrast to a common conclusion (based on a number of
GEM-challenge like studies) that the microscopic reconnection rate is
a universal constant3,9 �0:1 in a wide range of upstream parameters,
our study shows that the ion ðEz=EðupÞA Þ and inner electron ðEz=EðleÞAe Þ
reconnection rate estimates depend on�n�1=8b .

In order to further pinpoint differences between various recon-
nection rate measures, we revisit a simplistic Sweet-Parker-like analy-
sis.14,28 The EDR is approximated as a box of length D and width
l (without referring to whether le or lje). For an incompressible plasma,
the conservation of mass provides nDV ðeÞyl ¼ nlVðeÞxD . The electrons are
frozen-in at inflow and outflow EDR boundaries; therefore,

jV ðeÞxD B
ðDÞ
y j ¼ jV

ðeÞ
yl B

ðlÞ
x j ¼ jEzj: (2)

Assuming that the outflow magnetic field BðDÞy measured at

ðx ¼ D; y�Þ is negligible ðBðDÞy 	 BðlÞx Þ and the inflow magnetic energy
is converted exclusively into exhaust kinetic energy (which is a rough
approximation since it neglects heating), one gets the outflow velocity

equal to the electron Alfv�en velocity computed for magnetic field BðlÞx :

VxD ¼ V ðlÞAe . Dividing Eq. (2) by EðlÞAe ¼ VðlÞAeB
ðlÞ
x , common Sweet-

Parker-like expressions are recovered,

V ðeÞyl

V ðeÞxD

¼ BðDÞy

BðlÞx
¼ l
D
¼ Ez

EðlÞAe

 ee: (3)

We plot these ratios in Fig. 9. Reconnection rate measure based
on aspect ratio le=De � n�0:01b is nearly a constant �0:1. A measure

FIG. 9. Comparison of various proxies for reconnection rate: 2lje=De; le=De, a ratio

of peak inflow electron velocity to peak exhaust velocity VeðpeakÞ
y =V ðeÞxD , reconnection

electric field Ez normalized by E
ðupÞ
A ; EðleÞAe ; E

ð2jeÞ
Ae .
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based on velocities VeðpeakÞ
y =V ðeÞxD � n0:16b equals 0.1 for nb ¼ 0:3. The

measure lje=De � n0:27b displays a strong trend with density since
2lje=de � n0:22b .

The ratios presented in Eq. (3) are not identical and display dif-
ferent trends with density. We hypothesize (but do not prove here)
that similar trends might exist with respect to temperature and/or
mi=me ratio; hence, the study of antiparallel symmetric reconnection
is far from being fully solved from a theoretical perspective. The ulti-
mate rate of magnetic field conversion is provided “only” by electric
field which is noisy due to waves and instabilities and other instru-
mental uncertainties in observations and is known to be a tricky quan-
tity to measure in experiment.

We recapitulate our results:

(1) The microscopic electron reconnection rate measure weakly
decreases with density, ee ¼ Er=E

ðleÞ
Ae � n�0:11b . A similar trend

appears for the microscopic ion reconnection rate measure
er ¼ Er=E

ðupÞ
A � n�0:13b . The value of er ¼ 0:1 is found at GEM-

challenge like parameters for nb � 0:2. Flow reconnection rate,
EDR, aspect ratio, and ee are different.

(2) Ohm’s law study along a cut through the EDR (x ¼ x�) in Sec. IVA
allows us to conclude that it is the presence of a non-E� B drift at
the inflow EDR edge which makes the reconnection rate estimates
based on electron velocity or electric field that different. The elec-
tron component and the B field are detached so as the field recon-
nection rate and flow reconnection rate.

(3) A point where V ðeÞx peaks (x � x� ¼ De, the outer EDR exhaust edge)
should be considered the EDR outflow edge even though electron com-
ponent is not frozen-in there due to upstream pressure anisotropy.

(4) The inner EDR outflow velocity V ðeÞxL is denoted as52 a when normal-
ized by V ðleÞAe : a � n�0:22b and not a universal constant as was suggested.

(5) EDR spatial measures normalized to the electron inertial length,
Le=de; De=de, and De=de are nearly independent of density.

(6) Geometrical and fluid properties of the EDR are subject to of den-
sity dependence which are not in agreement with estimates pro-
vided by Ref. 59. The time of the reconnection rate peak used for
performing the scaling study by Ref. 59 does not contain the fully
developed EDR (inner and outer parts) and electron remagnetiza-
tion jet. We summarize our findings in Appendix B.
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APPENDIX A: ADIABATIC ELECTRON PRESSURE
CLOSURE EQUATIONS

We revisit below the electron pressure closure equations used
to approximate the B field at the EDR upstream edge [Fig. 7(a), red
dashed line] and corresponding electron Alfv�en velocity (Fig. 8, red
dashed lines). A theory of adiabatic electron acceleration during col-
lisionless reconnection developed by Egedal17,18,66 states that

electron pressure is not isotropic close to the EDR. Resulting elec-
tron distribution functions show strong parallel anisotropy66 reach-
ing PðeÞk =P

ðeÞ
? � 6 or even24 PðeÞk =P

ðeÞ
? � 10. The theory assumes the

presence of a parallel electric field potential which traps electrons
with initially low parallel velocity VðeÞk (trapped population) near
the X-line. Another population of passing (accelerated) electrons
crosses the x line vicinity in a single shoot and produces an isother-
mal Boltzmann-like response in the distribution function.

Two invariants are conserved (namely, the magnetic moment
l and parallel action integral, J ¼

Ð
Vkdl, where integration is per-

formed between turning points67) as a magnetized particle moves
through the reconnection inflow. This allows constructing an
approximate solution of the Vlasov equation upstream of the EDR
and also derivation of the fluid closure for PðeÞk and PðeÞ?

~P
ðeÞ
k ¼ Fða=2Þ~n þ Fða�1=2Þp~n3

6~B
2 ; (A1)

~P
ðeÞ
? ¼ FðaÞ~n þ Fða�1Þ~n~B; (A2)

where quantities are normalized to the values upstream of the
reconnection (“source”) region: ~n ¼ n=nðupÞ (we neglect density

variation in our calculations, hence ~n � 1); ~B ¼ B=BðupÞ; ~P
ðeÞ

¼ PðeÞ=PðupÞ; a ¼ ~n3=~B
2
; FðaÞ ¼ ð1þ aÞ�1. The expressions (A1)

and (A2) provide closed equations of state67 PðeÞk ðn;BÞ; P
ðeÞ
? ðn;BÞ.

Next, the model assumes that the EDR upstream edge is controlled
by the firehose instability threshold and the solution of

PðeÞk ðn;BÞ � PðeÞ? ðn;BÞ
� �

=B2 ¼ 1

provides the EDR edge magnetic field.
We use the approximation (A1) and (A2) to estimate the B

field and the corresponding electron Alfv�en velocity VAe at the EDR
edge

• Figure 7(a) (red dotted line) shows the EDR edge magnetic field pro-
vided by the adiabatic theory. The solution agrees relatively well with
the value computed at the electron current layer thickness (lje) for
nb < 1. The adiabatic solution strongly overestimates the EDR B
field for larger nb’s.

• Figure 7(b) (red dotted line) shows the electron Alfv�en electric field
computed for the adiabatic B value.

• Figure 8(a) (red dotted line) shows the electron Alfv�en velocity in code
units; Figs. 8(b)–8(d) show the electron Alfv�en velocity normalized by,

respectively, Alfv�en velocity far upstream V ðupÞA ; V ðleÞAe and V ð2jeÞAe .

APPENDIX B: SUMMARY OF POWER LAW
REGRESSION FITS

Summary of power law regression fits is presented in Table II.

TABLE II. Summary of simulations R1–R8 parameters.

Quantity Fits Nakamura59

BðupÞx �const ðn0:01b Þ
BðleÞx �const ðn�0:01b Þ
Le �den�0:04b �b1=4ðdideÞ1=2
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le �den�0:03b �b1=8
e de

lDng �den0:16b �3b3=8
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:15b�1=2e

q
de

�n0:28b (our parameters)
lje �den0:22b

ee �n�0:11b

er �n�0:13b

a ¼ VðeÞxL =V
ðleÞ
Ae �n�0:22b �const Ref. 52

V ðeÞz =V ðleÞAe �n�0:07b
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