
Khronos: Middleware for Simplified Time Management in CPS
Stefanos Peros

imec-DistriNet, KU Leuven
Leuven, Belgium

stefanos.peros@cs.kuleuven.be

Stéphane Delbruel
imec-DistriNet, KU Leuven

Leuven, Belgium
stephane.delbruel@cs.kuleuven.be

Sam Michiels
imec-DistriNet, KU Leuven

Leuven, Belgium
sam.michiels@cs.kuleuven.be

Wouter Joosen
imec-DistriNet, KU Leuven

Leuven, Belgium
wouter.joosen@cs.kuleuven.be

Danny Hughes
imec-DistriNet, KU Leuven

Leuven, Belgium
danny.hughes@cs.kuleuven.be

Abstract
Cyber Physical Systems (CPS) combine communication, computa-
tion and data storage capabilities to oversee and control physical
processes in domains including manufacturing, medical monitoring
and smart grids. CPS behavior can be remotely monitored by ag-
gregating event data from various sensors, forwarded over wireless
networks. One of the main challenges for CPS application devel-
opers is to manage event arrival-time boundaries and to trade off
between timeliness and completeness: waiting too long until all
events arrive can fail to produce a useful result, while not waiting
long enough may lead to faults because the status information is in-
complete. Monitoring the production lines in a factory, for example,
depends on the aggregation of event data from multiple sensors
in the distributed CPS, such as temperature and movement. Yet,
predicting time-boundaries for individual event arrivals is difficult,
if not impossible, for an application developer, because the wireless
network and the sensing devices introduce latencies which vary
continuously along with the load, status or environmental condi-
tions of the network and the sensors. This paper proposes Khronos,
a middleware that automatically determines timeouts for event
arrivals that improve timeliness, given completeness constraint(s)
specified by the CPS application developer and taking into account
variations in event propagation delays. Extensive evaluations on a
physical testbed show that Khronos considerably improves timeli-
ness under varying network configurations and conditions, while
satisfying application-specific completeness constraints.

CCS Concepts
• Information systems→ Stream management; • Networks→
Network monitoring; • Computer systems organization → Em-
bedded and cyber-physical systems; • Software and its engineer-
ing →Middleware;
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1 Introduction
Physical objects are being enhancedwith computational capabilities
to serve as components of larger distributed cyber physical systems
(CPS) [3]. The objective to digitally transform industries, including
manufacturing, transport & logistics and utilities [8, 13, 16, 20],
builds upon distributed CPS infrastructures and the possibility to
remotely monitor CPS behavior by aggregating event data from
various sensors, typically forwarded over a wireless network.

CPS applications often rely on sensors that measure a physical
property of the environment, at a specified sampling period. How-
ever, packets can still be generated at different rates, referred to as
packet inter-generation delay [17], due to the lack of a shared and
accurate time-source along with device imperfections. This can lead
to non-deterministic packet arrival times, even in the presence of
emerging network technologies that provide deterministic network
latency, e.g. Time-Sensitive Networking. Packet inter-generation
delay, together with the presence of varying network latency in
state-of-the-art wireless network technologies, can result in non-
deterministic packet arrival times at the gateway. Inmany cases, it is
impossible to distinguish between a non-arrival due to a fault or due
to delay, which can be crucial for detecting failures in distributed
systems [6].

The detection of complex events may depend on the occurrence
of multiple events, such as the arrival of sensor data, to compute a
result. The problem lies in predicting time-boundaries for individ-
ual event arrivals, for which state-of-the-art solutions rely on the
application developer. This is difficult, if not impossible, due to the
heterogeneity and dynamism in the network, platform and appli-
cations, along with the application developer’s limited knowledge
of the underlying infrastructure [1, 2]. For many CPS applications,
complex events need to be computed in a timely fashion to pro-
duce useful output, e.g. detecting production line down-times in
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manufacturing and sending an alert to a human operator. However,
when the window is closed too soon, not all dependent events may
have arrived, leading to incorrect results under incomplete infor-
mation. Having clear control over the trade-off between timeliness
and completeness is of prime importance for CPS applications.

In this paper, we propose Khronos, a middleware solution that
aims to simplify the development and maintenance of CPS applica-
tions. Khronos allows the developers to precisely trade off timeli-
ness versus completeness of the data produced by the underlying
CPS infrastructure. The middleware shields the application devel-
oper from the burden of manually specifying timeouts for each data
stream, by supporting the specification of completeness constraints:
the minimum fraction of packets expected to have arrived from a
device data stream. An extensive evaluation on a physical testbed
shows that Khronos not only ensures constraint satisfaction in the
presence of dynamism and heterogeneity, but also improves timeli-
ness by automatically setting timeouts, based on the observed status
of the underlying network. The complete code-base of Khronos and
the data sets used in the evaluation are open-source1, to ensure the
reproducibility of our work and promote collaboration.

The remainder of the paper is structured as follows: Section 2
provides additional background and explores the problem through
the lens of a real-world industrial use-case. Section 3 provides
an overview of the related work and the identified middleware
requirements. Section 4 describes the architecture of Khronos and
the prediction technique. Section 5 presents the implementation
details of Khronos and the CPS network. Section 6 discusses the
evaluation setup and results. Finally, Section 7 concludes the paper
and Section 8 discusses future work.

2 Background
Technological advancements in the area of Industry 4.0 have cre-
ated new business opportunities based on integrating CPS with
manufacturing to form Cyber-Physical Production Systems (CPPS)
[12, 28, 31], which increase efficiency and reduce manufacturing
costs [14]. Manufacturing plants are enhanced with actuators and
sensors that measure various physical properties, such as product
displacement, machine temperature, liquid flow rate, etc [21]. Sen-
sor data are transmitted over the network to a central point (human
operator or controller) that takes actions to improve the operation
of the manufacturing plant.

Typical network technologies used in industrial CPS applications
are wireless mesh and star networks. In mesh networks, messages
may need to traverse the network across many hops, traveling
through several devices before reaching their final destinations.
Based on the underlying medium access control protocols, e.g.
Carrier-Sense Multiple Access (CSMA) and Time Synchronized
Channel Hopping (TSCH), per-hop latency varies from tens of mil-
liseconds to several seconds. Variable latency is also prevalent in
wireless star networks, such as LoRa and BLE, due to radio interef-
erence [22, 23]. As a result, predicting packet arrival times in these
networks and specifying corresponding timeouts in the application
remains an open challenge.

State-of-the-art solutions rely on the application developer’s
infrastructure knowledge to manually specify timeouts for each

1Available at: https://github.com/mazerius/khronos

Figure 1: Industrial plant overview consisting of six production
lines.

device data stream at compile-time. Static timeouts are hard to
specify in advance, since the application developer has limited
knowledge of the infrastructure [1, 2], and are highly inflexible in
the presence of dynamism, as their performance depends entirely
on the current state of the network. Recent work [17] attempts to
address this issue, focusing on probabilistic approaches to manage
late event arrival times, yet still relies on the user to specify timeouts
and further configuration parameters that directly impact their
performance. In practice, static timeouts are determined using rules-
of-thumbs, such as a multiple of the sampling period or adding the
average network delay [24].

Middleware can be used to interface between the various mod-
ules of such CPS architectures [13], allowing abstraction and flex-
ibility on the application side, and custom management for the
edge of the architecture. However, the diversity and heterogeneity
of CPS architectures makes it hard for a general purpose middle-
ware to keep track of the afore mentioned trade-off. A dedicated
middleware is required that enables developers to easily manage
the timeliness and completeness of events flowing from the CPS
to their application, without requiring additional configuration
from the user by relying on his/her knowledge of the underlying
infrastructure [7, 13].

Use case
This section describes a concrete industrial use-case from the cus-
tomization and packaging division of a Fortune 500 fast-moving
consumer goods company, to further illustrate the problem. An
overview of the packaging plant is shown in Figure 1, including the
device communication links and corresponding link latency range
(e.g. latency between 200ms and 600ms between Line 3 and Line 1).
The packaging plant has six production lines, labeled Line 1 to Line
6. Each line consists of various machines that box, seal and wrap
items as they pass through and can be reconfigured depending on
the product. Sensors at every line count the number of items that
are processed and store metadata, e.g. item weight and machine
temperature. Sensors transmit a packet to the gateway at fixed
sampling periods, containing the recorded metadata as payload
over the past time period. The metadata is forwarded to a back-end
for analysis, e.g. the cloud, and the results are shown on a display.
Typically, the displayed results are the output of complex events
that aggregate measurements frommultiple sensors, e.g. correlation
between measured machine temperature and product weight. The
problem lies in determining the refresh period of the display, which
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is non-trivial since packets can travel across different paths in the
network, resulting in non-deterministic arrival times due to varying
link latency. Despite the small scale of the network, the recorded
packet arrival times at the gateway show substantial variance, up
to the order of seconds. Unlike the typical Internet, the challenge in
WSN technologies is largely due to the resource-constrained nature
of the devices and the unreliability of the physical environment.

State-of-the-art solutions require the operators to specify a static
refresh period for the display. Operators in industry typically use
an arbitrarily large refresh period to ensure completeness of the
results at the expense of timeliness. As a result, the display lags
behind in time, making it difficult for the operators to interpret the
results and act in a timely fashion.

Since the displayed information is a function of event data re-
ceived by one or more sensors, the dashboard refresh period de-
pends on the packet arrival times and timeouts. Human operators
are application experts, and thus know how important it is to wait
for each sensor data prior to refreshing the displayed result(s),
which is expressed by the completeness constraint. As a result,
they benefit from a solution that automatically determines packet
arrival timeouts in a way that improves timeliness, while satisfy-
ing their application completeness constraints through continuous
monitoring of the underlying infrastructure. Operators then require
less time to develop and maintain the CPS application and at the
same time make timelier decisions, improving the overall operation
efficiency of the packaging plant.

For example, the dashboard displays a metric that indicates the
operational efficiency of each machine in the production lines,
which is a function of input data from two devices: an object detec-
tion and a weight sensor respectively. The measured item weight
does not vary substantially across items of the same type. As a
result, the operational efficiency of production lines that only pro-
cess a single type of items can be updated more frequently on the
display, since it can be computed without always waiting for the
item weight input data to arrive. Waiting long enough so that one
out of four updates includes the item weight would suffice in that
case, corresponding to a 25% completeness constraint.

3 Related work
Middleware and related frameworks are key components of com-
plex systems, especially when dealing with the constraints of CPS.

Due to the broader range of environments and related constraints
on network resources found in CPS, the limited support offered by
modern systems is not enough and a one-size-fits-all solution is
not an option. This need for more specific solutions is raised by
Mohamed et al. [13] who identifies that general-purpose distributed
middleware are not flexible enough to tackle unique challenges in
CPS. The challenges of middleware for CPS, including the support
for real-time operations (e.g. decision making), autonomous opera-
tions, data integrity and correctness, have been addressed in the
past as a subset of these in a generic form for a specific feature,
or focusing on one for a more broader group of CPS applications.
The authors [13] rely on past work to emphasize the specificity and
diversity of a CPS ecosystem, and propose a more context-aware
approach to consolidate the generic approach and limit the spread
of the specific solutions.

Among these past works, Zhang et al. [30] explored the issues of
real-timemiddleware used as platforms for distributed systemswith
time constraints when facing workloads with both aperiodic and
periodic tasks. In order to tackle the lack of flexibility from existing
systems, their contribution of configurable middleware components
providing effective on-line admission control and load balancing
for distributed computing platforms is an important step for CPS.
However, the authors do not address timeliness challenges that
occur due to the underlying network and its resource-constrained
devices and middleware reconfiguration options to cope with its
uncertainties and maintain real-time support.

Significant research efforts focus on the management of late
event arrivals in the context of Complex Event Processing systems,
such as punctuation [24, 27], speculation [15, 18] and buffer-based
data-structures [9–11, 29]. However, these approaches often rely
on the user (e.g. application developer) to specify key configuration
parameters, limiting their effectiveness in applications where the
user has limited knowledge of the underlying system, as in CPS.

The authors in [17] address these shortcomings and the need
to leverage completeness over timeliness by proposing ProbSlack,
a probabilistic approach towards managing late event arrivals in
the presence of varying packet inter-generation and network delay.
However, ProbSlack relies on a user-specified period T to refresh
its models for the two delays, which has a significant impact on its
performance. Furthermore, ProbSlack is designed under the assump-
tion that events arrive in the order in which they are generated,
which is not necessarily the case in large CPS networks, where
packets from devices close to the gateway can arrive faster than
packets generated further away.

Requirements
In the context of the industrial use case and the related work, we
identify five requirements for CPS middleware:

A) The middleware should enable CPS application developers
to specify completeness constraints of their applications on
a per-device basis, through a set of provided services.

B) The middleware should not rely on user knowledge of the un-
derlying infrastructure and require no further configuration
after deployment.

C) The middleware should adapt to changes in the CPS infras-
tructure to satisfy the application constraints in the face of
network and application dynamism.

D) The middleware should satisfy the application constraints
for a wide variety of different infrastructures and application
requirements.

E) The middleware should provide CPS applications with con-
text regarding the completeness and timeliness.

4 Architecture
The proposed middleware acts as a generic bridge between the
underlying CPS and the applications that run on top of them. The
identified requirements that Khronos addresses are highlighted in
Section 3. The providedAPI, that enables CPS applications to specify
completeness constraints for device data streams, is explained in
Section 4.1. Next, Khronos’ architecture and key responsibilities of
each component are discussed in Section 4.2. Finally, the prediction
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technique used by the middleware to automatically determine event
arrival times for sensor data is described in Section 4.3.

4.1 Application Programming Interface
Khronos offers developers a simple API, which consists of two
operations:

• registerCompleteness(device, constraint, on_next,
on_timeout, on_violation)

• registerTimeout(device, timeout, on_next,
on_timeout)

registerCompleteness(..) addresses requirementA) and takes
five arguments: the device, the constraint and three callback meth-
ods. device:<String> identifies the CPS device data stream(s)
and can be a unique identifier (e.g. serial number) or a wildcard
(e.g. sensor type) that refers to a group of devices. constraint is
the value for the completeness constraint, expressed as a fraction.
Given the completeness constraint, the middleware updates the
timeout for the next packet, whenever a packet has arrived from
the corresponding device. on_next(value:<Sensor Data>, time-
out:<Double>, completeness:<Double>) is the callbackmethod
that is invoked by the middleware whenever data from the specified
device arrives on time. It takes as arguments the value of the arrived
sensor data and the corresponding timeout and completeness. on_-
timeout(timeout, completeness) is the callback method that is
invoked by the middleware whenever the timeout is reached and
no sensor data have arrived. It takes as arguments the value of
the timeout and the current completeness. on_violation(value,
timeout, completeness) is the callback method that is invoked
by the middleware whenever the completeness is below the con-
straint when the timeout is reached or a packet has arrived. It takes
as arguments the value of the sensor data (if any) and the current
timeout and the completeness. For example, a simple application
can define on_next(...) to update the average temperature when-
ever new temperature data arrives, on_timeout(...) to count the
number of occurred timeouts and on_violation(...) to spawn a
pop-up alert window upon constraint violation.

registerTimeout(..) enables developers to register a static
timeout for a sensor device data stream and takes four arguments:
the device, the static timeout and two callback methods, which
contain application logic and are thus specified by the CPS appli-
cation developer. device: <String> is identifies the CPS device
data stream(s) and can be a unique identifier or a wildcard that
refers to a group of devices. timeout is the value for the static
timeout for packet arrivals from the given device, expressed in time
units (e.g. seconds). Given the timeout, the middleware recomputes
the completeness for the given device whenever it receives a new
packet from it. on_next(value, timeout, completeness) is the
callback method that is invoked by the middleware whenever data
from the specified device arrives on time. It takes as arguments the
value of the arrived sensor data, the given timeout and the current
completeness, addressing requirement E). on_timeout(timeout,
completeness) is the callback method that is invoked by the mid-
dleware whenever the timeout for packet arrival from this device
is reached. It takes as arguments the current timeout and complete-
ness.

4.2 Components
Figure 2 shows a complete overview of Khronos’ architecture.
Khronos acts as a generic bridge between external CPS applica-
tions and the gateways of the underlying CPS infrastructure. The
middleware consists of three layers: CPS Communication, Time
Management and Application Management. The rest of the section
describes the key responsibilities of each layer and the role of its
sub-components in greater detail.

Figure 2: Khronos component diagram.

CPS Communication. This layer is responsible for managing
communication between the underlying CPS network. The Gateway
Manager is responsible maintaining an overview of the underlying
devices that connect to the Gateway. It listens for published sensor
data from each Gateway and forwards it to the Data Parser for
parsing. The parsed data is then passed to the Network Monitor and
the Time Management Layer. The Network Monitor maintains
an overview of network statistics, including discovered devices and
communication latency between Khronos and the gateway(s). For
industrial-scale networks with a large number of gateways, the
modularity of this layer can be exploited to improve scalability by
distributing its components across the gateways and thus decou-
pling the CPS communication logic from the rest of the middleware.

Time Management. This layer is responsible for processing
network statistics and packet arrival times to coordinate the call-
backs of each CPS application. The Stream Manager maintains
completeness statistics and determines the timeouts per device data
stream for the completeness constraint(s) specified by the CPS ap-
plication. The Scheduler coordinates application calls using the
above timeout(s) by invoking the application callback methods,
through the Application Management layer, whenever a packet
arrives or a timeout is exceeded.

Application Management. This layer is responsible for com-
munication with external CPS applications. The Application Man-
ager provides applications with the API described in section 4.1 and
is responsible for registering the completeness constraint(s) and/or
static timeouts to the Scheduler. The Updater is responsible for
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executing on_next, on_timeout and on_violation application
callbacks, as instructed by the Scheduler.

4.3 Prediction technique
Khronos automatically (re)computes the timeouts of device packet
arrivals, based on the application completeness constraint(s) for that
device. These timeouts are determined using an approach similar
to the Retransmission TimeOut (RTO) timer in the Transmission
Control Protocol (TCP), a well-established transport layer protocol
for communications over the Internet [25].

TCP’s RTO is a durable solution that works on top of a wide,
heterogeneous and dynamic infrastructure and also tackles the
problem of determining timeouts for non-deterministic packet ar-
rivals. Both RTO and Khronos are faced with a similar challenge:
determining how long to wait for packet arrival before taking ac-
tion, in the presence of varying network latency. In both cases, the
trade-off between timeliness and completeness is determined by
these timeouts. RTO’s approach is simple and lightweight, since it
uses exponentially weighted moving averages instead of storing
past observations to compute the timeout in every step, which fits
the resource-constrained model of CPS. In RTO however, the time-
out occurs at the sender, while in CPS they happen at the receiver
who also needs to take into account the packet inter-generation
delay of the sender. Finally, CPS applications can have flexible com-
pleteness constraints, while RTO’s design is limited to covering
99% of all packet arrivals.

In TCP, the RTO needs to determine how long to wait for the
acknowledgment to arrive after a segment has been sent, before
re-transmitting the segment. Short timeouts result in unnecessary
re-transmissions and possibly network congestion, while long time-
outs negatively impact performance. RTO keeps track of two expo-
nentially weighted moving averages: the smoothed round-trip time
(SRTT) and round-trip time variance (RTTVAR), with smoothing
factors α = 7/8 and β = 3/4 respectively, as specified in RFC 6298
[19]. SRTT is the best current estimate of the round-trip time to the
destination, and RTTVAR is the variance in round-trip times. The
timeout is computed as RTO = SRTT + K ∗ RTTVAR, where K = 4
since less than 1% of all packets arrive more than four standard
deviations too late. The role of K in this formula is to over-provision
by adding that many times the variance to the mean in order to
cover over 99% of packet arrival times [25].

Khronos approach
In the context of our use-case, Khronos needs to determine how
long it should wait for each packet to arrive such that the appli-
cation completeness constraints are satisfied for each device data
stream without unnecessarily long timeouts. For each completeness
constraint, referring to a particular device data stream, Khronos
computes the smoothed arrival time S(ti ) and the arrival time vari-
anceV(ti ), whenever a new packet arrives at a timestamp ti . S(ti ) is
the best current estimate for the next packet arrival time and V(ti )
the variance in arrival times. These are computed by the formulas:

S(ti ) = αS(ti−1) + (1 − α)R(ti ) (1)

V(ti ) = βV(ti−1) + (1 − β)|S(ti−1) − R(ti )| (2)

where R(ti ) is the actual arrival time of the packet at timestamp
ti and α , β the smoothing factors, set to the same values as in RTO,
which are empirically derived. A timeout based on S(ti ) alone is
too inflexible for large variance in arrival times, which is accounted
for by V(ti ). The timeout TO(ti ) for the next packet at timestamp
ti+1 is computed as:

TO(ti ) = S(ti ) + K ∗ V(ti ) (3)

As in RTO, K determines how sensitive the timeout is to packet
arrival time variance. In this use-case, the percentage of packet
arrival times that should be covered is specified by the applica-
tion completeness constraint, which determines the value of K, as
explained further in this section.

Finally, the formula is slightly modified to account for the com-
munication delay DT between the CPS gateway and the middle-
ware:

TO(ti ) = S(ti ) + K ∗ V(ti ) + DT (4)
Khronos periodically pings each gateway to refresh DT .

The computation cost of our approach is linear (O(n)), where
n the number of registered completeness constraints. Concretely,
whenever a packet arrives from a device, Khronos performs, per-
constraint for that device, five multiplications and five additions to
compute the next timeout.

Determining K
K is determined empirically by monitoring the underlying CPS
network under various conditions. The network is monitored over
a period of three weeks, during which packet arrival times are ob-
served under different conditions . In the first week, no disturbances
are introduced. In the second week, the sampling period is gradu-
ally increased and decreased. In the third week, the network size
is reduced and the network latency is increased by re-configuring
the network manager. Next, we determine a one-to-one mapping
between a given completeness constraint ρ and the smallest value
of K that satisfies the constraint across all device data streams in
the network. Finally, we over-provision by multiplying each value
of K with a factor 2 to improve the robustness of the approach.
This simple training phase ensures that the application developers
can use the middleware without further configuration, as stated by
requirement B). The resulting K values are discussed in Section 5.2.

5 Implementation
This section discusses the key technologies that implement the
underlying CPS network and the middleware.

5.1 Network
In industrial CPS applications, like the use case in Section 2, two
widely used network technologies are Time Slotted Channel Hop-
ping (TSCH) and Carrier-Sense Multiple Access (CSMA) mesh net-
works. In a TSCHmesh, all motes are precisely synchronized to tens
of microseconds. Time is organized in slots which are allocated to
motes in the network, allowing them to know in advance when to
turn the radio on or off. Frequency bands are separated in channels,
and communications are done using those different channels at
different times, resulting in reliable, low-power communication.
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Table 1: Deployed peripherals and their settings.

Identifier Peripheral Type Quantity Sampling
3302/5500 Sensor (Presence) 1 10s
9803/9805 Sensor (Light) 3 120s
3303/5702 Sensor (Temperature) 3 120s
8040/8042 Sensor (Pressure) 3 60s
9903/9904/2 Sensor (Thermocouple) 1 10s
1010/9000 Sensor (Battery) 10 900s

In CSMA networks, motes sense the shared medium before trans-
mitting to verify the absence of other traffic. In wireless networks,
CSMA is often enhanced with Collision Avoidance (CSMA/CA) in
order to improve performance, where motes wait for a random
period of time after sensing the medium is not free, before retrying.

In the context of our use-case a wireless mesh network is de-
ployed to connect the underlying CPS devices. Additionally, mesh
networks introduce increased complexity when dealing with net-
work latency due to multi-hop communication. As a result, we focus
on a wireless mesh network and do not use LoRa or BLE for the im-
plementation. The key technology used for the underlying wireless
embedded network is SmartMesh IP (SMIP)2, which is broadly used
in industrial CPS applications, such as the manufacturing plant
described previously in the use case.

By default, a SMIP network is a TSCH mesh but it can be eas-
ily reconfigured to a CSMA mesh through the bbmode setting. In
the evaluation, we use this parameter to test our implementation
on top of both a TSCH and a CSMA/CA wireless mesh. A SMIP
network is a wireless, multi-hop mesh network that self-forms and
self-maintains to guarantee high network reliability and ultra low-
power. Due to this self-adaptation, several network parameters,
including allocated bandwidth, latency and hop-depth, can change
over time without any system parameter reconfiguration, leading
to non-deterministic packet arrival times.

For this paper, a real-life testbed is built that consists of 33 phys-
ical devices: 22 SmartMesh IP motes3 (DC9003A-B) and 10 Ver-
saSense wireless devices4 (Model P02) connected through a Ver-
saSense Edge Gateway5 (Model M01). The SmartMesh IP motes are
not equippedwith sensors: their role is to act as routers that forward
packets they receive across the network, enabling a widespread
deployment with a large number of hops.

The VersaSense wireless devices are built on top of SmartMesh IP
and provide plug-and-play support: up to four sensors or actuators,
known as peripherals, can be connected on each VersaSense device.
Each VersaSense device is also equipped with a built-in peripheral
that measures the battery-level.

The VersaSense Edge Gateway, which is the network manager,
acts as a bridge between the wireless sensor network and Khronos.

Table 1 shows the types of peripherals that are deployed in the
testbed along with their quantities and default sampling periods.
Each VersaSense device is equipped with at most one peripheral of

2https://www.analog.com/en/products/rf-microwave/wireless-sensor-
networks/smartmesh-ip.html
3https://www.analog.com/en/design-center/evaluation-hardware-and-
software/evaluation-boards-kits/dc9003a-b.html
4https://www.versasense.com/pdf/VersaSense-Pxx.pdf
5https://www.versasense.com/pdf/VersaSense-M01.pdf

the same type. These peripherals are fully self-identifying, requiring
no further manual intervention. In the rest of the paper, we use
the term ’device’ to refer to a peripheral connceted to a VersaSense
device. It is uniquely defined by the peripheral identifier and the
IPv6 address of the VersaSense device.

5.2 Middleware
Khronos runs on a Raspberry Pi 3 and is developed in Python v3.6 as
a Representational State Transfer6 (REST) server, using the flask
framework and implements the API that was described in Section
4.1. REST is a stateless communication protocol that separates the
concerns of the client and server, enabling transparent communica-
tion between software systems. In this proof-of-concept implemen-
tation, Khronos communicates with applications using Pyro 4.6, a
python library that enables remote method invocation (RMI) across
the network, on objects created by the client application(s) and
stored locally in the client machines. These objects implement the
callbackmethods discussed in Section 4.1: on_next(...), on_time-
out(...) and on_violation(...). Clients application(s) register
these objects to the Pyro name server, which provides them with
a URI per object. Application(s) provide this URI as an argument
to Khronos when calling the provided API methods, instead of di-
rectly passing the callback functions, leading to easier client-server
integration. Khronos invokes each of the callbacks accordingly,
based on whether or not constraint violation occurred, which then
executes the corresponding method locally on the client machine.

The Raspberry Pi is in the same local area network (LAN) as the
Versasense Edge Gateway. Khronos obtains the relevant network
status information from the Versasense Edge Gateway through a
CoAP 7 API, which is a client-server model similar to REST but
designed for resource-constrained devices. Additionally, the Ver-
saSense Edge Gateway listens for connections to a websocket8,
which enables full-duplex communication over a single TCP con-
nection. Khronos connects to the websocket to receive the raw
sensor data stream, which is processed by the rest of the middle-
ware.

Resulting K
Khronos uses the technique discussed in Section 4.3 to automati-
cally compute the timeouts for individual packet arrivals. K is used
in formula (4) to determine the sensitivity to packet arrival time
variance. Based on the described methodology, we determine K
for a wireless TSCH mesh network. The same values can be used
for Khronos on top of a CSMA/CA wireless mesh network, shown
by the experiments performed in Section 6. For other network
technologies, such as LoRa and BLE, recomputation of K might be
necessary. The resulting K values are shown in Table 2 for vari-
ous completeness constraints ρ. Intuitively, since K determines the
sensitivity of the timeout to change, the higher the completeness
constraint, the larger the resulting K. For ρ = 1.0, K is in theory
infinitely large so that packets always arrive on time. In practice,
the results show that for ρ = 1.0, the constraint violation saturates
at 0.3% for K >= 300.

6https://en.wikipedia.org/wiki/Representational_state_transfer
7http://coap.technology/
8https://en.wikipedia.org/wiki/WebSocket
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Table 2: K values for different completeness constraints ρ .

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
K 0 0.1 0.6 1 1.2 1.4 2 2.8 4.6 300

6 Evaluation
This section discusses the evaluation of Khronos, focusing on two
key aspects, based on the requirements in Section 3: (1) the perfor-
mance of the predicted time windows in the presence of application
and network heterogeneity and (2) its ability to adapt to network
and application dynamism. For that purpose, we have conducted
an extensive set of experiments on a physical testbed that evalu-
ate the performance of Khronos. The evaluation metrics and the
approaches Khronos is compared against are discussed in Section
6.1. Next, the empirical evaluation results are presented in Section
6.2 for each set of experiments.

6.1 Setup
All experiments conducted in this evaluation are performed on top
of data collected from the real-life testbed consisting of 22 forward-
ing devices and 20 sensors, as discussed in Section 5.1. The quantity
and types of sensors are shown in Table 1. The dataset repository
will be made available in the final version. The experiments aim to
extensively evaluate Khronos across two dimensions: heterogeneity
and dynamism, both typical for CPS networks. Its performance is
evaluated against the approaches described in Section 6.1.1, using
the metrics discussed in Section 6.1.2.

6.1.1 Approaches

Khronos is compared against three state-of-the-art approaches [17,
24] which use a fixed timeout per device data stream:

DSP (Double Sampling Period). DSP sets the timeout for each
packet arrival from a device equal to twice its sampling period. This
leads to significantly large timeouts, ensuring high completeness
at the expense of timeliness.

SPND (Sampling Period Network Delay). SPND sets the timeout
timeout for each packet arrival equal to the device sampling period
plus the average network delay. This typically leads to smaller
timeouts compared to DSP, at the expense of completeness.

STO (Static Timeout Oracle). STO is a theoretical approach that
knows in advance all the packet arrival times from each device. STO
computes a fixed timeout based on the completeness constraint for
each device data stream. The timeout is equal to the smallest value
that satisfies the given constraint for that device data stream across
the experiment.

Khronos. For each constraint, Khronos automatically computes
timeout predictions for the next packet arrival from the correspond-
ing device whenever a packet arrives, as discussed in Section 4.3.

DSP is an example that opts for completeness, where fixed time-
outs are set arbitrarily large enough and SPND opts for timeliness,
where timeouts are equal to the device sampling period plus a fixed
offset, e.g. the average network latency. In practice, only DSP, SPND
and Khronos can be used, since STO requires perfect knowledge of
the future to compute the timeouts. However, STO is a reference
benchmark as it demonstrates the best possible performance when
using fixed timeouts under perfect information.

Table 3: Default SMIP network manager configuration parameters
[26].

Parameter txpower basebw numparents bbmode bbsize bwmult
Value 8 50000 2 0 1 1000

6.1.2 Metrics

Wemeasure the performance of each approach using two evaluation
metrics:

Prediction Error (PE). This is the average absolute distance,
measured in seconds, between the predicted timeout and actual
packet arrival time across all packets. PE, for a device data stream
d and a completeness constraint ρ, is computed using the formula:

PEd,ρ =
1
n

n∑
k=1

distance(pk , tok ),

where n the total number of packet arrivals for device data stream
d, pk the arrival time of the kth packet, tok is the timeout for the
kth packet and distance(pk , tok ) the function:

distance(pk , tok ) = abs(pk − tok )
Intuitively, the smaller the PE, the closer the timeouts are to the
actual event arrival times, leading to more timely reactions.

Constraint Violation (CV). This is the percentage of packet
arrivals for which the constraint is violated. Completeness is the
fraction of packets that arrived before the timeout. It is measured
as a moving average over the past 100 packets that arrived from the
same device: smaller window sizes result in coarse grained values,
while larger window are less sensitive to change. A completeness
constraint is satisfied when over 99.999% of the time, the measured
completeness is equal to or above the constraint. In theory, to ensure
that a completeness constraint ρ of 1.0 or 100% is satisfied over
99.999% of the time, the corresponding timeouts would be quasi-
infinitely large. This is impractical, since timeouts should still occur
within a reasonable amount of time. Thus, for 100% completeness
constraint we compare each approach on a best-effort basis.

6.1.3 Parameters

Each approach is evaluated for completeness constraints ρ ∈ [0.1, 1.0].
Unless specified otherwise, by default the results are illustrated for
a completeness constraint ρ = 0.8. The default values used for the
most important network manager configuration parameters are
shown in Table 3.

6.2 Results
This section provides an overview of the performed experiments
and results, comparing Khronos against the approaches discussed
previously in Section 6.1.1. The experiments evaluate Khronos
across two dimensions: dynamism and heterogeneity.

6.2.1 Dynamism

This section evaluates the capability of Khronos to satisfy appli-
cation completeness constraints in the presence of network and
application dynamism, as specified by requirementC). From the use
case and literature study, we identify three sources of dynamism.
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First, applications can change device sampling periods over time
in order to achieve their goal. Second, devices can fail (join) at any
time, which results in a smaller (larger) network size, expressed as
the number of operational motes. Third, network parameters can
be re-configured on the spot to impact the network latency. In the
case of SMIP, the re-configuration requires a reset of the network
manager to take effect. In the experiments to follow, devices are
deployed across three floors of our departmental building, up to one
floor away from the gateway. The acquired results show a similar
trend for each of the 20 unique devices. Due to space limitations,
we illustrate these for an arbitrary selected device, with identifier
9803/9805|fd34...dfe8.

Figure 3: Timeplot for a single device, illustrating the impact of net-
work size dynamism on the performance of each approach, given
completeness constraint ρ = 0.8. The four approaches are compared
in terms of the prediction error (Subplot 2), measured in seconds,
and completeness constraint violation percentage (Subplot 1).

Impact of Network Size
In this experiment, we test the hypothesis that Khronos can consis-
tently satisfy application completeness constraints in the presence
of network size dynamism, by turning off and on 66.67% of the
devices.

Figure 3 shows the impact of changing the network size on
the constraint violation and prediction error, over five hours, for
a sampling period of 10 seconds and ρ = 0.8. The left and right
arrows in Subplot 3 indicate the two events: reducing and increasing
the network size respectively. Khronos reacts to the changes by
increasing the timeouts, which lead to temporarily larger prediction
errors (Subplot 2) but ensure the constraint violation remains at 0%
(Subplot 1). SPND is the only approach that violates the constraint
throughout this experiment, as indicated by the pink line in Subplot
1. Overall, Khronos always satisfies the constraint, just like DSP

and STO, bus has a far smaller prediction error than DSP, shown
in Subplot 2. Note that DSP’s prediction error is proportional to
the sampling period, which can be up to many orders of magnitude
larger than Khronos’.

Performance with Dynamic Sampling Periods
In this experiment, we test the hypothesis that Khronos can consis-
tently satisfy application completeness constraints in the presence
changing sampling periods, by re-configuring the devices. We eval-
uate the performance of each approach in two scenarios: step-wise
increase and step-wise decrease of the sampling period.

Figure 4: Timeplot for a single device, illustrating the impact of in-
creasing sampling period, given completeness constraint ρ = 0.8.
The four approaches are compared for the prediction error, mea-
sured in seconds, (Subplot 2) and completeness constraint violation
percentage (Subplot 1).

Figure 4 shows the impact increasing the sampling period over
three days. The sampling period is increased from 60 to 120 sec-
onds and from 120 to 240 seconds, shown by the arrival times in
Subplot 3. Khronos reacts to both changes by increasing the time-
outs, leading to two peaks in the resulting prediction error (Subplot
2). The benefits of Khronos in terms of completeness are shown
in Subplot 1: DSP and SPND both fail the constraint (Subplot 1)
after the first change, in contrast to Khronos which always has
a constraint violation smaller than 0.001%. Additionally, Khronos
is the only approach that achieves a consistently low prediction
error compared to the alternative approaches. The large prediction
errors of DSP, SPND and STO clearly show the limitations of static
timeouts, even in the presence of perfect knowledge of the future.

Figure 5 shows the impact of decreasing the sampling period over
the course of three days. The sampling period is decreased from 240
to 120 seconds and from 120 to 60 seconds, shown in Subplot 3. Since
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Figure 5: Timeplot for a single device, illustrating the impact of de-
creasing sampling period, given completeness constraint ρ = 0.8.
The four approaches are compared in terms of the prediction error,
measured in seconds, (Subplot 2) and completeness constraint vio-
lation percentage (Subplot 1).

SPND is defined by the initial sampling period and the sampling
periods decrease, its CV decreases to 0% (Subplot 1). However, there
is a clear penalty in timeliness for DSP, SPND and STO, shown
by the large PE in Subplot 2. Khronos is the only approach that
consistently satisfies the constraint (CV < 0.001%) while at the same
time resulting in drastically smaller prediction error, compared to
the other approaches across the entire experiment.

Performance with Dynamic Network Latency
In this experiment, we test the hypothesis that Khronos can consis-
tently satisfy application completeness constraints in the presence
of network reconfiguration, leading to increased network latency
and variance. Figure 6 shows the impact of changing networking
latency by re-configuring the network manager, over ten hours,
for a sampling period of 60 seconds and ρ = 0.8. The network
manager is restarted, indicated by the arrow in Subplot 3, with
new configuration: bwmult = 100 and basebw = 1000. The new
configuration leads to higher and more variable latency (Subplot
3), which Khronos detects and reacts by increasing the timeouts,
leading to temporarily larger prediction error (peak in Subplot 2)
to ensure the completeness constraint remains satisfied (Subplot
1). SPND violates the constraint after network reconfiguration and
DSP results in a prediction error that’s proportional to the sampling
period.

6.2.2 Heterogeneity
This section evaluates the capability of Khronos to satisfy appli-
cation completeness constraints in the presence of network and
application heterogeneity, as specified by requirement D). Broadly,

Figure 6: Timeplot for a single device, illustrating the impact of in-
creasing network latency, given completeness constraint ρ = 0.8.
The four approaches are compared in terms of the prediction error,
measured in seconds, (Subplot 2) and completeness constraint vio-
lation percentage (Subplot 1).

we identify two classifications for heterogeneity: on the network
and on the application level. Networks can vary in their topol-
ogy based on the use-case at hand. Similarly, networks can dif-
fer in their medium access control schemes, based on the applica-
tion requirements (e.g. low-latency versus reliability). Sharing the
medium without synchronization (CSMA) can lead to lower net-
work latency, while time-synchronized channel-hopping (TSCH)
minimizes packet collisions by allocating dedicated communica-
tion slots to each device. Finally, applications can require devices
to sample at distinct rates while imposing different completeness
constraints. The rest of this subsection compares the performance
of the approaches for separate completeness constraints, network
topologies, medium access control protocols and sampling periods.

The results for each approach are shown as error-bar charts,
where the bar height is equal to the mean across the 20 peripherals
and the min and max values are respectively the lower and upper
bound of the error range.

Meeting a Range of Completeness Constraints
In this experiment, we test the hypothesis that Khronos consistently
satisfies a range of different completeness constraints ρ. The testbed
is deployed across three building floors and each device is up to
one floor away from the gateway. Devices are configured with
their default sampling periods, shown in Table 1, and data has been
collected over seven days. During this period, over 4 million packets
arrived at the gateway across all devices.

Figure 7 illustrates the constraint violation for each ρ. A con-
straint is violated when this percentage is higher than 0.001%, with
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Figure 7: Percentage of completeness being below the constraint, for
various constraints ρ .

the exception of ρ = 1.0. STO by design never violates any con-
straint and is thus omitted from the figure. Khronos and DSP never
violate the constraint, while SPND fails to satisfy ρ >= 0.6. For
ρ = 1.0, Khronos is below it only 0.32% of the time, over 10 times
less than DSP.

Figure 8: PE per-approach, measured in seconds, for varying com-
pleteness constraints ρ .

Figure 8 illustrates the PE each approach, computed for different
ρ. Overall, DSP has the highest prediction error, with a mean of
447 seconds and a max value of 850 seconds. Khronos’ PE is in the
same order as that of SPND and STO.

The results show the Khronos satisfies all completeness con-
straints at least as well as DSP, with a prediction error comparable
to that of SPND, almost two orders of magnitude less than DSP.

Performance in Heterogeneous Network Topologies
In this experiment, we test the hypothesis that Khronos satisfies
completeness constraints for different network topologies. We com-
pare the performance of the approaches for two different deploy-
ments. In topology A, the entire testbed is deployed within one

meter of the gateway. In topology B, devices are deployed across a
building, up to two floors away from the gateway. For each topology,
data has been collected over 72 hours and devices are configured
with their default sampling periods, shown in Table 1. During this
period, around 2 million packets arrived at the gateway across all
devices.

Table 4: Constraint Violation (%) per-approach for topology A and
B, where completeness constraint ρ = 0.8.

Approach Topology A Topology B
DSP 0% 0.045%
SPND 27.8% 42.8%
STO 0% 0%

Khronos 0% 0%

The constraint violation percentage (CV) of each approach is
shown in Table 4. The results show that Khronos does not violate
the constraint in either topology, unlike SPND (27.8% in topology
A and 42.8% in topology B) and DSP (0.045% in topology B).

Figure 9: PE per-approach across two network topologies, measured
in seconds, for ρ = 0.8.

Figure 9 illustrates the PE of the different approaches per-topology,
for ρ = 0.8. In topology A, Khronos has a PE in the same order as
SPND and STO, while in topology B its PE is almost half of STO
and around two orders of magnitude less than DSP.

Performance with Heterogeneous Medium Access Control
Protocols
In this experiment, we test the hypothesis that Khronos can sat-
isfy completeness constraints for networks with different medium
access control protocols. We compare the performance of the ap-
proaches for two different medium access control protocols : TSCH
and CSMA/CA. Data is collected over 72 hours, during which
around 2 million packets are received at the gateway. All devices
are deployed within one meter of the gateway (Topology A).

The constraint violation percentage (CV) of each approach for
a TSCH and CSMA/CA wireless mesh is shown in Table 5. The
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Table 5: Constraint Violation (%) per-approach for a TSCH and
CSMA/CA wireless mesh network, where ρ = 0.8.

Approach TSCH CSMA/CA
DSP 0% 0%
SPND 27.8% 40%
STO 0% 0%

Khronos 0% 0%

results show that Khronos does not violate the constraint in either
topology, unlike SPND (27.8% in topology A and 40% in topology
B).

Figure 10: Prediction Error, measured in seconds, per-approach for
TSCH and CSMA/CA, completeness constraint ρ = 0.8.

Figure 10 illustrates the PE per-approach for TSCH andCSMA/CA.
While both DSP and Khronos satisfy the constraint, Khronos scores
similarly to SPND and STO with a PE of 0.87 seconds (TSCH) and
0.27 seconds (CSMA/CA), drastically less than DSP’s mean of 450
seconds.

Performance with Heterogeneous Sampling Periods
In this experiment, we test the hypothesis that Khronos can satisfy
completeness constraints for different device sampling periods.
We compare the performance of each approach for four sampling
periods: 10, 60, 120 and 900 seconds. The testbed is deployed across
three floors of our departmental building, each device up to one
floor away from the gateway. For each constraint, data has been
collected over a course of seven days and devices are configured
with their default sampling periods, shown in Table 1. During this
period, over 4 million packets arrived at the gateway across all
devices.

The constraint violation percentage (CV) of each approach for
different device sampling periods is shown in Table 6. The results
show that Khronos and DSP always satisfy the constraint ρ = 0.8,
while SPND fails it 21.5%, 20.3%, 25.16% and 16.18% of the time for
a sampling period of 10, 60, 120 and 900 seconds respectively.

Figure 11 illustrates the PE per-approach for TSCH andCSMA/CA.
Khronos’ PE is slightly above NDSP and comparable to STO, while

Table 6: Constraint Violation (%) per-approach for different device
sampling periods and constraint ρ = 0.8.

Approach 10s 60s 120s 900s
DSP 0% 0% 0% 0%
SPND 21.5% 20.3% 25.16% 16.18%
STO 0% 0% 0% 0%

Khronos 0% 0% 0% 0%

Figure 11: PE measured in seconds, per approach, for various sam-
pling periods and ρ = 0.8.

satisfying ρ = 0.8 in contrast to NDSP. DSP satisfies the constraint
at a far larger cost, with a PE proportional to the sampling period
and at least two orders of magnitude higher than Khronos for a
sampling period larger than 10 seconds.

7 Conclusion
CPS are increasingly integrated with critical physical processes,
including manufacturing, healthcare and smart grids, enabling ad-
vanced monitoring and control to improve operational efficiency. In
the presence of varying network latency, due to the heterogeneity
of the underlying platform, network technologies and the dynam-
icity of the system, reacting in a timely manner to changes while
operating over complete information remains a crucial yet open
challenge.

This paper introduced Khronos, a middleware that provides ser-
vices to CPS application developers that enable them to easily trade-
off timeliness versus completeness in their applications. Concretely,
Khronos supports the specification of completeness constraint(s)
per-device data stream, shielding the developer frommanually spec-
ifying packet arrival timeouts or further configuration parameters.
This is achieved by monitoring the CPS infrastructure and auto-
matically specifying the packet arrival timeouts that satisfy the
specified completeness requirements. Khronos relies on a single
configuration parameter K, which we determine empirically for a
wireless mesh network following a simple methodology. A natural
progression of this work is to analyze techniques that adapt the
value of K, eliminating the need for pre-deployment configuration
(e.g. by applying machine learning techniques).
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Khronos is extensively evaluated on top of a physical testbed
of 33 devices, connected through a state-of-the-art wireless mesh
network that supports two medium access control protocols: TSCH
and CSMA/CA. The results show that Khronos never violates the
application completeness constraints in the presence of heterogene-
ity and dynamism in the underlying CPS. Additionally, Khronos
greatly improves compare to state-of-the-art approaches, resulting
in up to two orders of magnitude smaller timeouts. This enables
CPS application developers to easily write reliable distributed ap-
plications with flexible completeness requirements.

8 Future Work
Our ongoing research efforts focus on developing expressive pro-
gramming languages that ease the development of CPS applications.
Literature shows that reactive programming fits well with the event-
driven nature of CPS applications, due to the automatic propagation
of changes throughout the program dependency graph [4, 5]. Dis-
tributed reactive programming takes into account the heterogeneity
and distribution of CPS by distributing the dependency graph and
application across multiple physical nodes. Existing reactive pro-
gramming frameworks can benefit from integrating with Khronos
by alleviating programmers from statically specifying packet arrival
timeouts per device data stream.
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