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A new learning algorithm for kernel-based topographic map formation
is introduced. The kernel parameters are adjusted individually so as to
maximize the joint entropy of the kernel outputs. This is done by maxi-
mizing the differential entropies of the individual kernel outputs, given
that the map’s output redundancy, due to the kernel overlap, needs to be
minimized. The latter is achieved by minimizing the mutual information
between the kernel outputs. As a kernel, the (radial) incomplete gamma
distribution is taken since, for a gaussian input density, the differential
entropy of the kernel output will be maximal. Since the theoretically opti-
mal joint entropy performance can be derived for the case of nonoverlap-
ping gaussian mixture densities, a new clustering algorithm is suggested
that uses this optimum as its “null” distribution. Finally, it is shown that
the learning algorithm is similar to one that performs stochastic gradient
descent on the Kullback-Leibler divergence for a heteroskedastic gaus-
sian mixture density model.

1 Introduction

In an effort to improve the density estimation properties, the noise tol-
erance, or even the biological relevance of the self-organizing map (SOM)
(Kohonen, 1982, 1995), algorithms have been devised that can accommodate
neurons with kernel-based activation functions, such as gaussians, instead
of winner-take-all (WTA) functions (Voronoi tessellation). An early example
is the elastic net of Durbin and Willshaw (1987), which can be viewed as an
equal-variance or homoskedastic gaussian mixture density model, fitted to
the data points by a penalized maximum likelihood term. More recent ex-
amples of the density modeling approach are the algorithms introduced by
Bishop, Svensén, and Williams (1998; generative topographic map, based on
constrained, homoskedastic gaussian mixture density modeling with equal
mixings), Utsugi (1997, also using equal mixings of homoskedastic gaus-
sians), and Van Hulle (1998, equiprobabilistic maps using heteroskedastic
gaussian mixtures—thus, with differing variances). We should also men-
tion the fuzzy membership in the clusters approach of Graepel, Burger, and
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Obermayer (1997) and the maximization of local correlations approach of
Xu and coworkers (Sum, Leung, Chan, & Xu, 1997), both of which rely
on homoskedastic gaussians. Graepel, Burger, and Obermayer (1998) pro-
posed a still different approach to kernel-based topographic map formation
by introducing a nonlinear transformation that maps the data points to a
high-dimensional “feature” space and, in addition, admits a kernel function,
such as a gaussian with fixed variance, as in (kernel-based) support vector
machines (SVMs) (Vapnik, 1995). This idea was recently taken up again by
András (2001), but with the purpose of optimizing the map’s classification
performance, by individually adjusting the kernel radii using a supervised
learning algorithm. Finally, the original SOM algorithm itself has been re-
garded as an approximate way to perform homoskedastic gaussian mixture
density modeling by Utsugi (1997), Yin and Allinson (2001), and Kostiainen
and Lampinen (2002), among others.

Linsker (1989) was among the first to develop topographic maps by opti-
mizing an information-theoretic criterion. He applied his principle of maxi-
mum information preservation (mutual information maximization between
input and output—infomax for short) to a network of WTA neurons. The
question now is whether this principle can also be applied to kernel-based
topographic maps. The obvious answer is to express the average mutual in-
formation integral in terms of the kernel output densities—or probabilities
when they are discretized—and adjust the kernel parameters individually
so that the integral is maximized. However, such an approach rapidly be-
comes infeasible in practice. Linsker needed to restrict himself to binary
outputs in his WTA network in order to facilitate computing the integral.
A different information-theoretic approach is to minimize the Kullback-
Leibler divergence (also called relative- or cross-entropy) between the true
and the estimated input density, an idea that has been introduced for kernel-
based topographic map formation by Benaim and Tomasini (1991), using
homoskedastic gaussians, and extended more recently by Yin and Allinson
(2001) to heteroskedastic gaussians.

We will introduce in this article a new learning algorithm for kernel-based
topographic map formation that adjusts the kernel parameters individually
and in such a manner that the joint entropy of the kernel outputs is maxi-
mized. We will derive our learning algorithm, and the optimization criterion
behind it, in a bottom-up manner by starting with differential entropy maxi-
mization: when this is maximized for a given kernel, the kernel’s parameters
will be optimally adapted in the sense that the mutual information between
the kernel output and its input will maximal. The kernel output function
and the learning rule for this case are derived in sections 2 and 3, respec-
tively. As our kernel output function, we take the (radial) incomplete gamma
distribution, since the kernel’s differential entropy is theoretically maximal
when the input density is gaussian. Section 4 starts with the observation
that differential entropy maximization alone is not sufficient when there are
multiple kernels in the map, since all kernels will eventually coincide. As
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a measure for kernel overlap, and thus for the map’s output redundancy,
the mutual information between the kernel outputs is taken. Maximizing
joint entropy is then put forward as our optimization principle since it uni-
fies both requirements: maximizing the differential entropies of the kernel
outputs given that the map’s mutual information also needs to be mini-
mized. Section 5 then complements the learning rules with a neighborhood
function so that topographic maps can be developed. Since we are able to
derive the theoretically optimal joint entropy performance for the case of an
input distribution consisting of nonoverlapping gaussians, we will suggest
a new clustering algorithm that uses this optimum as its “null” distribution
in section 6. In section 7, we show that our learning algorithm is similar
to one that performs stochastic gradient descent on the Kullback-Leibler
divergence when heteroskedastic gaussian mixtures are used. Finally, in
section 8, we discuss the correspondence with other learning algorithms for
kernel-based topographic map formation.

2 Kernel Definition

Consider a formal neuron i, the output of which is, in response to an in-
put v ∈ �d, v = [v1, . . . , vd], described by a (localized) kernel K centered at
wi = [wi1, . . . , wid]. For simplicity, we consider the kernel to be radially sym-
metrical around its center, K(v, wi, σi) ≡ K(‖v − wi‖, σi), with σi the kernel
radius. As motivated by Bell and Sejnowski (1995), the mutual information
between the output yi ∈ � of neuron i and its input v, I(yi, v), v ∈ �d, will
be maximized when the differential entropy of its output, H(yi), is max-
imized. When assuming that the kernel output yi has bounded support,
H(yi) will be maximized when the output distribution is uniform. This is
the case when the output distribution matches the cumulative distribution
function (repartition function) of the input density. This will be our kernel
definition, and its parameters will be adapted to the local input density with
an incremental (on-line) learning algorithm. We will first restrict ourselves
to gaussian input densities.

Assume a d-dimensional gaussian with mean [µ1, . . . , µd], and unit vari-

ance. The squared Euclidean distance to the center x �= ∑d
j=1(vj − µj)

2 is

known to obey the chi-squared distribution with θ = 2 and α = d
2 degrees

of freedom (Weisstein, 1999):

pχ2(x) = x
d
2 −1 · exp (− x

2 )

2
d
2 �( d

2 )
, (2.1)

for 0 ≤ x < ∞, and with �(.) the gamma distribution. Hence, the distri-
bution of the Euclidean distance to the center becomes p(r) = 2 r pχ2(r2),
with r = √

x, following the fundamental law of probabilities. After some
algebraic manipulations and by generalizing to a gaussian with standard
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Figure 1: Distribution functions of the Euclidean distance r from the mean of a
unit variance, radially symmetrical gaussian, parameterized with respect to the
dimensionality d (continuous lines) and the corresponding complements of the
cumulative distribution functions (dashed lines). The functions are plotted for
d = 1, . . . , 10 (from left to right); the thick lines correspond to the d = 1 case.

deviation σ , we can write the distribution of the Euclidean distances as
follows:

p(r) = 2( r
σ
)d−1 exp (− ( r

σ
)2

2 )

2
d
2 �( d

2 )
. (2.2)

The distribution is plotted in Figure 1 (thick and thin continuous lines). The

mean of r equals µr =
√

2σ�( d+1
2 )

�( d
2 )

, which can be approximated as
√

dσ , for

d large, using the approximation of Graham, Knuth, and Patashnik (1994);
the second moment around zero equals dσ 2. The distribution p(r) quickly
approaches a gaussian with mean µr and standard deviation σ√

2
when d

increases; for example, the skewness and Fisher kurtosis are 8.07 10−2 and
8.71 10−3 for d = 10, respectively.

Finally, the kernel is defined in accordance with the cumulative distribu-
tion of p(r), which is the (complement of the) incomplete gamma distribu-
tion:

yi = K(v, wi, σi) = P
(

d
2
,
‖wi − v‖2

2σ 2
i

)
≡

�( d
2 ,

‖wi−v‖2

2σ 2
i

)

�( d
2 )

, (2.3)

which is plotted as a function of the Euclidean distance r = ‖wi − v‖2, for
d = 1, . . . , 10 in Figure 1 (thick and thin dashed lines). Note that since K(.)
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depends on only the Euclidean distance, the obtained kernel in the input
space is radially symmetrical.

3 Kernel Adaptation

We will now derive an on-line stochastic learning algorithm that adapts an
individual kernel’s parameters in such a way that the differential entropy of
the kernel output is maximized. Consider first the adaptation of the kernel
center. The entropy of the kernel output of neuron i can be written as

H(yi) = −
∫ ∞

0
pyi(x) ln pyi(x) dx, (3.1)

with pyi(.) the kernel output density, which can be written as a function of
the distribution of the Euclidean distance to the kernel center r:

pyi(yi) = pr(r)∣∣∣ ∂yi
∂r

∣∣∣ . (3.2)

After substitution of the latter into equation 3.1, we obtain

H(yi) = −
∫ ∞

0
pr(r) ln pr(r) dr +

∫ ∞

0
pr(r) ln

∣∣∣∣∂yi(r)
∂r

∣∣∣∣ dr. (3.3)

By performing gradient ascent on H(.), we obtain the on-line learning rule
for the kernel center,

�wi = ηw
∂H
∂r

∂r
∂wi

= ηw
v − wi

σ 2
i

, ∀i, (3.4)

with ηw the learning rate, after some algebraic manipulations (see the ap-
pendix). In a similar manner, the learning rule for the kernel radius σi is
obtained,

�σi = ησ

∂H
∂σi

= ησ

1
σi

(‖v − wi‖2

dσ 2
i

− 1
)

, ∀i, (3.5)

with ησ the learning rate.

4 Joint Entropy Maximization

Maximizing differential entropy alone is not sufficient when there are mul-
tiple kernels in the map. This can be easily shown as follows. Consider a
lattice of two neurons with kernel outputs y1 and y2. When equations 3.4
and 3.5 are used (e.g., in the case of a gaussian input density), then the two
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kernels will eventually coincide, the neural outputs will be maximally sta-
tistically dependent, and thus the map will be maximally redundant. We can
formulate statistical dependency (or redundancy) in information-theoretic
terms as the mutual information between the neuron outputs. Hence, we
maximize the differential entropy given that we also need to minimize the
mutual information in order to cope with the kernel overlap. This dual goal
is captured by maximizing the joint entropy of the neuron outputs,

H(y1, y2) = H(y1) + H(y2) − I(y1, y2), (4.1)

with H(y1, y2) the joint entropy, H(y1) and H(y2) the differential entropies,
and I(y1, y2) the mutual information. We will perform mutual information
minimization heuristically by putting kernel adaptation in a competitive
learning context. In this way, the winning neuron’s kernel will decrease
its range—in particular when it is strongly active—and thus decrease its
overlap with the surrounding kernels. In addition, we will add a neighbor-
hood function to the learning process, since we want to achieve topology-
preserving lattices. The learning rules are derived in the next section.

5 Topographic Map Formation

Consider a lattice A of N neurons and corresponding incomplete gamma dis-
tribution kernels K(v, wi, σi), i = 1, . . . , N. We introduce an activity-based
competition between the neurons, with the “winning” neuron defined as
i∗ = arg max∀i∈A yi, rather than the more common (minimum Euclidean)
distance-based competition, i∗ = arg mini ‖wi − v‖, which is equivalent to
our case only when all kernels have equal radii. We supply topological in-
formation by means of a neighborhood function �, for which we take a
monotonously decreasing function of the lattice distance from the winner.
We opt for a gaussian neighborhood function,

�(i, i∗, σ�) = exp

(
−‖ri − ri∗‖2

2σ 2
�

)
, (5.1)

with σ� the neighborhood function range and ri neuron i’s lattice coordinate.
The complete set of learning rules then becomes

�wi = ηw�(i, i∗, σ�)
v − wi

σ 2
i

, (5.2)

�σi = ησ �(i, i∗, σ�)
1
σi

(‖v − wi‖2

dσ 2
i

− 1
)

, ∀i. (5.3)

In case the neighborhood function is omitted in equations 5.2 and 5.3,
joint entropy maximization will still be aimed for, but the kernels will not
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become topographically organized, in particular, when starting from a ran-
dom initialization. Hence, one could envisage the purpose of the neighbor-
hood function as a way to constrain the learning process so that it favors
the development of topographic maps.

5.1 Lattice-Disentangling Dynamics. The disentangling dynamics is
exemplified in Figure 2 for the standard case of a square lattice and a uni-
form square input density. The weights were initialized by sampling from
the same input density and the radii by sampling the uniform distribution
[0, 0.1]. The neighborhood range was decreased as follows:

σ�(t) = σ�0 exp
(

−2σ�0
t

tmax

)
, (5.4)

with t the present time step, tmax the maximum number of time steps, and
σ�0 the range spanned by the neighborhood function at t = 0. We took
tmax = 2,000,000 and σ�0 = 12, so that the neighborhood function vanishes
at the end of the learning process (σ�(tmax) ≈ 4.5 × 10−10). We further took
ηw = 0.01 and ησ = 10−4ηw.

6 Theoretically Optimal and Achieved Performance

The theoretically optimal performance of the kernel-based map can be de-
rived for two limiting cases. In the first case, we assume that the input den-
sity consists of N gaussians that are spaced infinitely far apart so that their
overlap is infinitesimally small (N-gaussians case). We quantize the kernel
outputs yi, ∀i ∈ A, uniformly into k equally sized and nonoverlapping quan-
tization intervals.1 The optimal solution is reached when each gaussian is
modeled by a different kernel. The expressions for the joint entropy JE and
mutual information MI can be derived analytically:

JE = k − 1
k

log2 kN + 1
k

log2 k, (6.1)

MI = k − 1
k

log2

(
kN

(N − 1)k + 1

)N−1

+ 1
k

log2

1
k(

(N−1)k+1
kN

)N . (6.2)

In Figure 3A, JE and MI are plotted as a function of N and parameterized
with respect to k. We can easily determine the asymptotes for MI when

1 Note that as a result of this quantization, the aforementioned assumption is achieved
as soon as, for each neuron, the tails of the N−1 other gaussians activate only the neuron’s
lowest quantization interval—the one that codes for the lowest kernel output values.
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Figure 2: Evolution of a 24 × 24 lattice as a function of time. (Left column)
Evolution of the kernel weights. (Right column) Evolution of the kernel radii.
The boxes outline the uniform input probability density. The values given below
them represent time.
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k → ∞ (the thin dashed line in Figure 3A) and k, N → ∞ (dot-dashed line):

MI = log2

(
N

N − 1

)N−1

, for k → ∞, (6.3)

MI = 1
loge 2

≈ 1.4427, for k, N → ∞. (6.4)

This means that for a given number of neurons N, the mutual information
will always be finite.2 Furthermore, we also see that for any number of
neurons and quantization levels, the mutual information will be bounded
by the second asymptote. Finally, note that the optimal JE and MI do not
depend on the input space dimensionality d.

The performance of our learning algorithm can be easily measured
against these theoretical results. Consider a one-dimensional lattice (chain)
of N neurons, with N = 1, . . . , 10, developed in the one-dimensional in-
put space. We take N unit-variance gaussians, spaced 15 units apart along
the real line. We initialize the weights and radii by sampling the [0, 1]
interval uniformly and run our learning algorithm 20 times for several
(N, k)-combinations. We take tmax = 2,000,000, σ�0 = 12, ηw = 0.01, and
ησ = 10−4ηw. The JE and MI plots obtained practically coincide with the
optimal ones and are not shown in Figure 3A: the differences between the
theoretically optimal JE and MI values and the obtained averages are smaller
than, respectively, 0.005 and 0.02 everywhere. This performance was main-
tained for input space dimensionalities d = 1, . . . , 10 (see Figure 3C).

In the second case, we assume that the input density consists of one gaus-
sian only (1-gaussian case). The expressions for the joint entropy and mutual
information can be derived analytically, for the case of k = 2 quantization
levels and a one-dimensional input space:

JE = log2 2N,

MI = log2 2N + 2
(

N − 1
N

log2
N

N − 1
+ 1

N

)
+ (N − 2)

(
3

2N
log2

2N
3

+ 2N − 3
2N

log2
2N

2N − 3

)
+ log2

1
2N

, (6.5)

2 This can be intuitively understood by observing that only the lowest quantization
interval accounts for the overlap with the other kernels (see note 1) and that as k increases,
the activation probability of this interval becomes more and more “unique” with respect
to the activation probabilities of the neuron’s other quantization intervals (which form
an equitable distribution). More specifically, the probability that the lowest quantization
interval is active equals (N−1)k+1

kN , whereas that of the other intervals equals 1
kN , from

which it follows that the mutual information will be bounded when k → ∞.
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Figure 3: (A,B) Optimal joint entropy (JE—thick continuous lines) and mutual
information (MI—thick dashed lines) for the case of N lattice neurons and N one-
dimensional gaussians spaced infinitely far apart (A) and for the case of only one
one-dimensional gaussian (B). Results are plotted as a function of the number of
neurons N, parameterized with respect to k = 2, 4, 8, 16, 32 quantization levels,
with the k = 2 curves being the lowest and the k = 32 curves the highest ones.
The thin dashed line in A denotes the MI plot for the case where k → ∞ and
the dot-dashed line the case where k, N → ∞. The thin continuous line in B
is the average MI result obtained with the learning algorithm (including error
bars). (C) Simulation results obtained for JE, for the N gaussians case with k = 2,
plotted as a function of the dimensionality d and parameterized with respect to
the number of lattice neurons N, N = 1, 2, . . . , 10. The thick line corresponds to
N = 1 case, the upper line to N = 10. (D) Optimal JE and MI (thick continuous
and dashed lines, respectively) for the one-dimensional gaussian case, plotted
as a function of d. Note that MI = 0 for N = 1. The thin continuous line is the
average MI result (error bars omitted) obtained with our learning algorithm.
Other conventions are as in Figure 3C.
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with the second term in MI being present for N > 2 only. Figure 3B shows the
JE and MI plots for different values of k; the plots for the k > 2 cases were
determined numerically. Contrary to the N-gaussians case, MI continues
to increase when N increases. Furthermore, the optimal JE and MI plots
depend on the input dimensionality d and are also determined numerically.

We also determine the performance of our learning algorithm for the
1-gaussian case. The results are summarized in Figure 3B. The average JE
results (also for 20 runs) practically coincide with the theoretically optimal
ones (difference with optimal result < 0.02; standard deviation < 0.03). The
results as a function of the input dimensionality d are shown in Figure 3D for
k = 2. The average JE plots again practically coincide with the numerically
determined ones (difference with optimal result < 0.02; standard deviation
< 0.025). The standard deviations on the MI results are similar to those
shown in Figure 3B and are omitted for clarity.

Finally, since we are using a heuristic for mutual information minimiza-
tion (i.e., competitive learning), we can empirically verify the performance
of only the learning algorithm. We cannot formally prove that for a given
input distribution, the algorithm is guaranteed to converge toward a so-
lution that will maximize the joint entropy. However, at least for the test
cases considered here, we could verify that the achieved performance was
satisfactory, since the theoretical results were available.

6.1 Clustering. The theoretical results suggest a new type of metric for
determining the number of clusters in a data set, given that they can be
appropriately modeled by gaussians.3 If the data set can be modeled by N
gaussians that are spaced sufficiently far apart, then we know the theoret-
ically optimal joint entropy (cf. the N-gaussians case). We also know that a
mismatch in the number of neurons leads to a higher joint entropy: the JE
values of the N-gaussians case are always smaller than the corresponding
values for the 1-gaussian case (e.g., 1

2 log2 2N + 1
2 < log2 2N, for N > 1,

k = 2). Hence, the N-gaussians case will be our “null” distribution and the
corresponding optimal joint entropy our reference value. We suggest the
following clustering procedure:

1. For (N ⇐ 1; N ≤ max˙number˙of˙clusters; N + 1), develop a
topographic map with N kernels and determine JE; determine the
difference with JE equation 6.1, assuming N gaussians, one for each
kernel; and store the JE difference.

2. Select N with the smallest JE difference.

The advantage of this procedure is twofold. First, we can still consider
the one-cluster case, which is lacking in most clustering methods (Gordon,

3 In practice, single clusters can be appropriately modeled by log-concave functions,
such as gaussians.
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Figure 4: Clustering based on the difference between expected and obtained
joint entropy (thick continuous line) and based on the Gap statistic applied to
kernel weights (thin continuous line) and applied to the k-means clustering
result (dashed line).

1999). Second, our reference value is a theoretical result, instead of an es-
timate, as, for example, in the case of the Gap statistic, which looks at the
point where the difference between two values of an intracluster distance
metric becomes maximal, one for the given sample set and another for a
reference set (Tibshirani, Walther, & Hastie, 2001).

In order to test our procedure, we reapply the benchmark Tibshirani
and coworkers (2001) used for the Gap statistic. We consider two one-
dimensional gaussians with equal standard deviations and vary the
(Bayesian) overlap rate. For each overlap rate, we train our one-dimensional
lattices in batch mode on 100 samples—50 from each Gaussian—and deter-
mine the configuration N for which JE is minimal, as explained above. We
repeat this experiment 20 times, for different 100 sample sets, determine
the probability that the correct number of clusters is found, and plot this
probability as a function of the overlap rate. The result is shown in Fig-
ure 4 (thick continuous line). We observe a marked drop in performance at
about an 18% overlap rate, which is close to the point where the sum of two
gaussians becomes unimodal. The Gap statistic, using the Euclidean dis-
tance metric, is applied to the kernel centers and also to the case where the
weights are determined with the k-means clustering algorithm. The results
are shown in Figure 4 (thin continuous and dashed line, respectively). We
now observe a gradual decrease in performance for an increasing overlap
rate, until it drops below chance level (dot-dashed line), since the choice is
in practice between one or two clusters.
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7 Connection with Kullback-Leibler Divergence

There is an interesting connection between joint entropy maximization,
given our incomplete gamma distribution kernels, and the Kullback-Leibler
divergence minimization, given heteroskedastic gaussian kernels. The Kull-
back-Leibler divergence KL (also called relative- or cross-entropy) is a fre-
quently used metric for assessing the quality of a density estimate. It is
defined as follows:

KL = −
∫

log
p̂(v)

p(v)
p(v) dv, (7.1)

with p(v) the true input density and p̂(v) the estimated density. It is always a
nonnegative number, and it will equal zero if and only if the density estimate
is identical to the true density.

Assume that we perform a gaussian mixture density modeling with equal
mixings,

p̂(v) = 1
N

N∑
i=1

exp
(
−‖v−wi‖2

2σi
2

)
(2π)

d
2 σ d

i

, (7.2)

with wi and σi the ith gaussian’s center and radius, respectively. The “opti-
mal” density estimate is determined by minimizing KL. We need the partial
derivatives with respect to the centers and radii:

∂KL
∂wi

= −
∫ (

1
p̂(v|�)

∂ p̂(v|�)

∂wi

)
p(v) dv = 0, (7.3)

∂KL
∂σi

= −
∫ (

1
p̂(v|�)

∂ p̂(v|�)

∂σi

)
p(v) dv = 0, ∀i, (7.4)

with � = {[wi], [σi]}, the parameter vector of the density model. Stochas-
tic approximation (Robbins & Munro, 1951) can be invoked to solve these
equations, which leads to the following learning rules,

�wi = ηwP̂(v|i) (v − wi)

σ 2
i

, (7.5)

�σi = ησ P̂(v|i) d
σi

(‖v − wi‖2

dσ 2
i

− 1
)

, ∀i, (7.6)

after some algebraic manipulations (see the appendix). The parameter P̂(v|i)
represents the ith neuron’s posterior probability. When we take for P̂(v|i) =
δii∗ , with i∗ the neuron that wins the competition and introduce the con-
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ventional neighborhood function, since we wish to achieve a topology-
preserving mapping, we obtain the following learning rules:

�wi = ηw�(i, i∗, σ�)
(v − wi)

σ 2
i

, (7.7)

�σi = ησ �(i, i∗, σ�)
d
σi

(‖v − wi‖2

dσ 2
i

− 1
)

, ∀i. (7.8)

Apparently, these learning rules correspond to those of equations 5.2 and
5.3 except for the constant factor d in equation 7.8, but this can be absorbed
by the learning rate ησ . Hence, at least for our incomplete gamma distri-
bution kernels and our activity-based definition of “winner,” joint entropy
maximization and Kullback-Leibler divergence minimization seem to be
equivalent. This is a potentially interesting observation for density estima-
tion since the log-likelihood of the training samples will equal the Kullback-
Leibler divergence, when the number of training samples goes to infinity,
and when the sample generating process is ergodic (for references, see Yin
& Allinson, 2001).

As an example, we consider the distribution shown in Figure 5A (quadri-
modal product distribution). We have used this example before as a bench-
mark for comparing the density estimation performance of a series of kernel-
based and kernel-extended topographic map formation algorithms (Van
Hulle, 2000). The analytic equation of the distribution is, in the first quad-
rant, (− log v1)(− log v2), with (v1, v2) ∈ [0, 1]2, and so on. Each quadrant
is chosen with equal probability. The resulting asymmetric distribution is
unbounded and consists of four modes separated by sharp transitions (dis-
continuities), which makes it difficult to model. The support of the distri-
bution is bounded by the unit square [−1, 1]2. We take a 24 × 24 lattice
and train it until tmax = 1,000,000 in equation 5.4. The density estimate
is obtained by using equation 7.2, with wi and σi as determined with our
learning algorithm. The result is shown in Figure 5B. The Kullback-Leibler
divergence is 19.2; the mean squared error (MSE) between the estimated
and the theoretical distribution is 5.08 × 10−2. For comparison, we have
also considered the classic variable kernel (VK) density estimation method
(Silverman, 1992), which puts a gaussian kernel at each input sample and
adapts the kernel range to the local sample density.4 The Kullback-Leibler
divergence is 80.4 (MSE = 7.12 × 10−2) for M = 500 samples, 38.6 (MSE =
5.92 × 10−2) for M = 2000 samples, 28.6 (MSE = 5.57 × 10−2) for M = 5000
samples, and 21.4 (MSE = 5.35 × 10−2) for M = 10, 000 samples. Hence, ap-
parently many more kernels are needed to match our learning algorithm’s

4 Technically, we take for the sensitivity parameter of the VK method, α = 1
2 , as

suggested by Breiman, Meisel, and Purcell (1977). The pilot estimate was determined
by using the (kth) nearest-neighbor method with k = √

M (Silverman, 1992).
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performance. Finally, in order to see the effect of our activity-based WTA
competition, i∗ = arg max∀i∈A yi, we have also trained our lattice using
the classic distance-based rule, i∗ = arg mini ‖wi − v‖ (and with the radii
adapted as in equation 5.3). The resulting density estimate is shown in Fig-
ure 5C. The Kullback-Leibler divergence is now 84.7 (MSE = 5.13 × 10−2),
which is again inferior to our initial result.

8 Correspondence with Other Kernel-Based Topographic Map
Algorithms

The soft topographic vector quantization (STVQ) algorithm (Graepel et al.,
1997) performs a fuzzy assignment of input samples to lattice neurons, sim-
ilar to fuzzy clustering. It also serves as a general model for probabilistic,
SOM-based topographic map formation since several algorithms can be
considered as special cases, including Kohonen’s batch map version (Ko-
honen, 1995). Our learning algorithm is different in at least three ways.
First, the STVQ kernel represents a fuzzy membership (in clusters) func-
tion, that is, the softmax function, normalized with respect to the other
lattice neurons. In our case, the kernel represents a cumulative distribution
function, which operates in the input space, and determines the winning
neuron. Second, instead of using kernels with equal radii in the STVQ al-
gorithm, our radii are individually adapted. Third, the kernels also differ
conceptually since in the STVQ algorithm, the kernel radii are related to
the magnitude of the noise-induced change in the cluster assignment (thus,
in lattice space), whereas in our case, they are related to the radii of the
incomplete gamma distribution kernels and, by consequence, to the stan-
dard deviations of the assumed gaussian local input densities (thus, in input
space).

In the kernel-based soft topographic mapping (STMK) algorithm (Grae-
pel et al., 1998), a nonlinear transformation, from the original input space
to some “feature” space, is introduced that admits a kernel function, (e.g., a
gaussian). The topographic map’s parameters (“weights”) are expressed as
linear combinations of the transformed inputs, so that the map is in effect
developed in the feature space rather than in the input space directly, as in
our approach. Other points of distinction are that the kernels’ parameters
are not updated in the STMK algorithm and that the inputs are assigned in
probability to neurons. In András’s approach (2001), the gaussians serve as a
nonlinear transformation, mapping the input vectors to a high-dimensional
space, so that the boundaries between the input classes are linearized. The
kernel radii are adapted individually so that the map’s classification per-
formance is optimized, an operation that requires supervised learning. This
basically sets András’s approach apart from ours.

In the kernel-based maximum entropy learning rule (kMER) (Van Hulle,
1998), the kernel outputs are thresholded (0/1 activations), and, depend-
ing on these binary activations, the kernel centers and radii are adapted.
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Figure 5: Two-dimensional quadrimodal product distribution (A) and density
estimate obtained with our kernel-based topographic map learning algorithm
(B), and when in our learning algorithm a distance-based competition is used
instead of an activity-based competition (C).
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In the current approach, both the activation states and the learning rules,
equations 5.2 and 5.3, depend on the continuously graded kernel outputs.

In the approach of Benaim and Tomasini (1991), the weights are adapted
in such a manner that the Kullback-Leibler divergence is minimized, given
a homoskedastic gaussian mixture density model. Furthermore, in order
to achieve a topology-preserving mapping, a smoothness term of the form
�(i, i∗)(wi−wi∗) is added to the weight update rule, with the winning neuron
i∗ defined by a distance-based WTA rule. Recently, Yin and Allinson (2001)
reconsidered Benaim and Tomasini’s idea and extended it by also adapting
the radii of the gaussian kernels. Yin and Allinson’s neighborhood function
basically corresponds to the P̂(v|i) term in equations 7.5 and 7.6, which is
in input space coordinates, instead of in lattice space coordinates, as in our
case (cf. �(.) in equations 7.7 and 7.8). Furthermore, the winning neuron i∗
is the one for which the gaussian kernel output is maximal. In general, this
leads to quite different results.

9 Conclusion

We have developed a new learning algorithm for kernel-based topographic
map formation, aimed at maximizing the joint entropy of the map’s output.
We have formulated the theoretically optimal joint entropy performance
for two example input distributions, which we used for assessing the algo-
rithm’s performance and also for suggesting a new type of clustering algo-
rithm. Finally, we have shown the correspondence with stochastic gradient
descent on the Kullback-Leibler divergence in the case of a heteroskedastic
gaussian mixtures density model.

Appendix

A.1 Derivation of Learning Rules: Equations 3.4 and 3.5. We first con-
sider the update rule for the kernel centers. The first term on the right-hand
side of equation 3.3 does not depend on the kernel center. Hence, we need
to concentrate further on only the second term, which in fact corresponds
to the expected value of its ln component. Entropy maximization can be
achieved by considering the training set of r’s to approximate the density
pr(r), which leads to the on-line stochastic gradient ascent learning rule:

�wi = ηw
∂H
∂r

∂r
∂wi

= ηw

(
∂yi

∂r

)−1
∂

∂wi

(
∂yi

∂r

)
, ∀i. (A.1)

After some algebraic manipulations, we obtain

∂yi

∂r
= −2

�( d
2 )

rd−1

(
√

2σi)d−1
exp

(
− ( r

σ
)2

2

)
, (A.2)
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of which also the derivative with respect to wi is needed. For the one-
dimensional case (d = 1), this leads to

�wi = ηw
v − wi

σ 2
i

, ∀i, (A.3)

when using equation 2.3. For d > 1, we obtain the same term on the right-
hand side and a second one: (d − 1) v−wi

‖v−wi‖2 . This more complex rule also
converges toward the centroid of the inputs that activate neuron i. It is rea-
sonable to omit this second term in order to keep the learning rule simple.
Indeed, we know that E[‖v − wi‖2] = dσ 2

i , for a gaussian input distri-
bution, when wi converges to the gaussian’s mean and σi to its standard
deviation. Hence, the second term is expected to be smaller than the first
term. We can also motivate the omission in the following manner. Since a
d-dimensional radially symmetrical gaussian distribution can be built up
by taking d samples—one for each input dimension—of a one-dimensional
gaussian with the same radius, when the updates �wij are small and when
we update along each input dimension separately (e.g., in random order),
then we can approximate the learning rule by the simpler one, equation 3.4.

The update rule for the kernel radii, equation 3.5, can be derived di-
rectly, without any approximations, by performing gradient ascent on the
differential entropy H, after some algebraic manipulations.

A.2 Derivation of Learning Rules: Equations 7.5 and 7.6. We first con-
sider the derivation of the update rule for the kernel centers, equation 7.5.
Since the true input density p(v) is not known, Robbins-Munro stochastic
approximation can be invoked in order to solve equation 7.3. This leads to

�wi = ηw
1

p̂(v|�)

∂ p̂(v|�)

∂wi
, ∀i. (A.4)

Working out the derivative ∂̂p(v|�)

∂wi
yields

∂ p̂(v|�)

∂wi
= pi(v|θi)

(v − wi)

σ 2
i

, (A.5)

with pi(v|θi)
�= 1

(2π)
d
2 σ d

i

exp
(
−‖v−wi‖2

2σi
2

)
and θi = {wi, σi}. Bayes’ rule tells us

that

P̂(v|i) = P̂i pi(v|θi)

p̂(v|�)
, (A.6)

with P̂i the prior probability, that is, the ith mixing parameter in our gaus-
sian mixture. Since we have assumed equal mixings in equation 7.2, P̂i is
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constant. Substituting equations A.5 and A.6 in equation A.4 leads to the
end result given in equation 7.5.

In a similar way, the update rule for the kernel radii, equation 7.6, is
obtained.
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