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Abstract: The Failure Mode and Effect Analysis (FMEA) employing the Risk Priority Numbers (RPN) have been 

used extensively for identifying and prioritizing failure modes with a view of mitigating their impact on equipment 

failure. However, in its traditional form, the prioritization approach through the RPN lacks the objectivity required for 

robust risk assessment, more so, where maintenance data is available, which could enhance such objectivity. This 

paper extends a quantitative approach for prioritizing failure modes and component failures in facilities, and more 

specifically, leverages on maintenance data often recorded in such facilities. To enhance the objectivity of the risk 

prioritization process, the proposed approach integrates three objective measures – the cost of failure, failure 

occurrence rate and percentage downtime effects of equipment failure. The integrated measures are demonstrated as 

more robust for prioritizing risks as opposed to ordinal indices as the case in the conventional FMEA approach. Using 

historical maintenance records, a three-step ranking approach is proposed for prioritizing critical failure modes in a 

thermal power plant where a case study is discussed. Moreover, the study compares the results derived from the 

prioritization approach with that derived utilizing the conventional RPN method. The comparative study demonstrates 

the added value of a more objective and quantitative prioritization approach for maintenance decision support. 

Ultimately, the critical failure modes are evaluated using a decision scheme to allocate appropriate maintenance 

strategies as the final step of risk assessment (i.e. risk treatment). The proposed approach is viewed as generalizable, 

intuitive and offering insights to the maintenance practitioners.  
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Abbreviations: 

FMEA  Failure mode and effect analysis  

RPN  Risk priority number 

FMECA Failure modes and effect criticality analysis 

TBM Time based maintenance  

UBM Use based maintenance  

CA Ccriticality analysis 

FM Failure mode 

SS Subsystem 

FBM Failure based maintenance 

CBM  Condition-based maintenance 

DOM  Design out maintenance 

DFM Design for maintenance  

DOR Design out reliability  

1. Introduction 

The Failure Mode and Effect Analysis (FMEA) is a well-known prioritization approach for risk assessment and 

consequently assisting in maintenance decision making. The analysis is embedded in the Reliability Centered 

Maintenance and provides decision-makers with a logical, structured framework for identifying, analyzing and 

prioritizing failure modes and component failures in technical assets/equipment. Moreover, the FMEA aids the 

decision-makers to analyze the possible causes and consequences of equipment failure at the plant/system, subsystem 

or component level in technical assets (Cameron et al. 2017). In addition, the FMEA allows the classification, or 

                                                           
* Corresponding author: Wakiru J; 

E-mail: jamesmutuota.wakiru@kuleuven.be 



 

 

prioritisation, of each potential failure mode in accordance with the seriousness or severity of its effect. Therefore, 

critical failure modes are better identified, which provides maintenance practitioners with the basis of formulating 

more effective and robust mitigation measures – through implementing more effective maintenance actions targeted 

at the critical failure modes.  

1.1 Failure prioritization using FMEA 

The Failure Modes and Effect Criticality Analysis (FMECA) has been used for long, to predict the consequences 

of failures in systems and assists to identify failures in advance so that failure effects can be reduced, if not eliminated 

from the system (Karthikeyan et al. 2017). On one hand, the criticality analysis (CA) is used to prioritize the failure 

modes in terms of importance quantified based on combined severity and frequency of failure. While ranking based 

on the CA, the process utilizes historical failure data or based on expert assessment well versed with the technical 

system (Sahoo et al. 2014). 

Hence, by prioritizing failure modes according to their level of severity, more robust maintenance strategies can 

be implemented in assets, therefore enhancing the reliability of the asset. In this context, reliability looks at the ability 

of the asset to undertake its intended function to support manufacturing or to provide a service (Pintelon and Van 

Puyvelde 2013). Improving asset reliability is essential to the profitability and existence of any organization, especially 

to its operation and maintenance activities. Importantly, by implementing robust maintenance strategies, the 

organization is in a better position of minimising the operation and maintenance cost. This is attributed to the fact that 

the failure of a critical component may portend significant operation and maintenance cost impacts, for instance, 

production loss, need for spare parts, loss of plant efficiency, etc.(Chemweno et al. 2016a; Linnéusson et al. 2016; 

Castro-Santos et al. 2016; Wakiru et al. 2018; Fakher et al. 2018). 

The need for implementing robust maintenance strategies extends to thermal power plants, which in developing 

countries like Kenya, performs an essential role in bridging power generation and supply deficiencies. The power 

plants are often fuel-driven and are set up both for long-term and as emergency power plants. To this end, the power 

plants are required to operate with high availability and manage the often-high operation and maintenance costs, an 

essential need experienced by power plant operators. Distinctly, maintenance costs represent very often a salient cost 

aspect in which, depending on the operating context, it often constitutes a substantial proportion of the total cost of 

ownership (Wakiru et al. 2019a). Moreover, in thermal power plants, any downtime due to the failure of critical 

components frequently affects plant economics significantly.  

In installed thermal power plant facilities in Kenya, condition-based maintenance strategies (CBM) such as used 

oil analysis, vibration analysis, or thermography, Use-based Maintenance (UBM) and preventive maintenance are 

implemented as the key strategies (Wakiru 2015). However, despite implementing such strategies, power plants 

continue experiencing failures, incurring high downtime and maintenance costs, implying the existing strategies are 

sub-optimal, hence the need for developing more robust strategies(Wakiru et al. 2019a). Nonetheless, formulating 

such strategies is not straightforward and requires a structured framework for decision-makers to be able to select the 

most appropriate strategies tailored for recurrent critical failure modes and component failures. Significantly since the 

power plant consists of several inter-linked equipment types prone to failure, there is a need for prioritizing the critical 

subsystem. In this case, if their respective failure modes are addressed, a significant contribution to plant downtime 

will have been mitigated. However, many thermal power plants in developing countries lack such a structured 

methodology for formulating appropriate maintenance strategies which mitigate recurrent critical failures (Wakiru 

2015). Significantly, the proposed structured methodology would firstly, assist the maintenance practitioners in 

prioritizing the subsystems systematically. Ultimately, for the critical subsystems, prioritize their respective failure 

modes and mitigate them through targeted maintenance strategies of which depending on the failure mode criticality, 

differentiated maintenance strategies are assigned to equipment failures observed at the plant. This aspect further 

motivates the need for a risk-based maintenance approach of which equipment failures are prioritized and ranked 

according to their level of criticality.  

Thus, given the challenges, this research proposes a risk-based structured methodology for prioritizing equipment 

failures as per the level of associated risks. The research integrates a cost-based prioritization approach for ranking 

critical failures alongside the failure occurrence rate and equipment downtime. The study further advances a 

maintenance strategy selection framework to mitigate the critical failure modes identified. Finally, a comparison 

between the advanced cost-based FMEA and RPN FMEA approaches is undertaken based on the empirical 

maintenance data used in the research. The other sections of this paper are as follows. Section 2 presents a recent 

literature review that is relevant to the research discussed in this paper. In Section 3, the proposed methodology is 

outlined, and the specific steps further discussed. Section 4 discusses the application of the methodology using the 

case study of a thermal power plant facility in Kenya. Section 5 presents the managerial implications of the 

methodology proposed where the novelty of the same approach is further discussed. Section 6 presents the conclusion 

and directions for future research. 



 

 

 

 

2. Review of related literature 

2.1 Risk identification and prioritization 

 Risk management entails four key steps, risk identification, risk assessment, risk management and finally 

monitoring, where different studies (e.g.,(Ríos et al. 2019) ) conclude that the first two steps (i.e., risk identification 

and assessment) are critical for performing successful risk management. Diverse methods have been utilized in 

literature for specific types of risk identification such as checklists, what-if analysis, task analysis, questionnaires, 

Delphi method, operability and risk studies, brainstorming, decomposition techniques and semi-structured 

interviews(Ríos et al. 2019). 

The criticality of failure of equipment in the conventional FMEA is assessed by computing the risk priority 

number (RPN), which represent a product of three risk metrics: occurrence (O), severity (S) and detectability (D), as 

depicted in Eq. 1 below: 

RPN=O*S*D       (1) 

In the RPN formulation, the occurrence metric evaluates the probability/likelihood of a failure occurring, the 

severity metric indicates the intensity of failure, and finally, detectability metric indicates the likelihood of discovering 

a developing or commencing failure mode before its occurrence (Chemweno et al. 2016b). Nonetheless, several 

reasons have been raised criticizing conventional FMEA as follows: 

 The importance of each of the metrics O, S and D are not taken into consideration (Zammori and Gabbrielli 

2012; Sharma and Sharma 2012; Liu et al. 2015). For instance, failure modes of varying failure severities (S) 

may yield the same risk priority number computed through Eq. 1. Consequently, this may lead to the 

erroneous conclusion of the failure criticality ranking even though high failure severity metric (e.g. severity 

of 10) would imply high failure criticality, as opposed to low assigned failure severity (e.g. severity of 1).  

 The RPN metrics, i.e. Occurrence (O), Severity (S), and Detection (D) are usually ordinal numbers, ranging 

from 1 to 10, hence challenging to evaluate precisely (Kutlu 2012; Zammori and Gabbrielli 2012). Moreover, 

the ordinal indices are assigned based on expert experience or judgment and seldom linked to the empirical 

failure event. As an example, assigning an occurrence metric of 10 delinks from empirical evidence of the 

failure occurrence which may be observable through objective reliability metrics, for instance, time to failure 

or failure frequency (Chemweno et al. 2016a). 

 The formula for computing RPN is contentious (Chin et al. 2009; Kutlu 2012; Du et al. 2014). For the reason 

that multiplying ordinal numbers for the RPN leads to criticality index, which ranges from 1 to 1000, hence 

deriving precise equipment failure criticality is not straightforward.  

Nonetheless, the RPN approach has been widely studied by different authors (Feili et al. 2013; Du et al. 2014; 

Gaula and Sharma 2015; Sinha and Mukhopadhyay 2015; Li et al. 2016; Karthikeyan et al. 2017). 

Therefore, to address the limitations of the RPN, several indices are advanced and utilized while prioritizing 

failures by different authors. Some authors have proposed employing production outage (Bhangu et al. 2017), the 

frequency of failures and downtime (Vala et al. 2018), consequences of missed fault detection (Panchal and Kumar 

2017) or considering causes of equipment failure (Panchal and Kumar 2017). Other authors (e.g., Bhangu et al. 

(2017)), propose using the expected cost of failure as an intuitive measure of risk in technical assets. The authors here 

argue the cost measure is ideal for prioritizing equipment failure modes and thereby assigning appropriate maintenance 

strategies. The cost-based FMEA methodology offers several advantages compared to conventional RPN-FMEA. For 

instance, the use of cost is an alternative and promising approach compared to RPN since the cost is quantifiable, 

computable and directly correlated with failure severity or seriousness. Moreover, it enables identification of potential 

and critical failures, which directly reduces the exposure by the system or plant to the failures and associated effects 

(Bhangu et al. 2017). Consequently, this makes the cost based FMEA a credible tool for failure analysis of divergent 

facilities such as power plants. The subsequent section briefly summarizes several studies which employed cost-based 

FMEA prioritization metric.  

2.2 Cost-based FMEA 

Several authors have advocated the significance of the cost aspect while undertaking FMEA programs. Gaula and 

Sharma (2015) advanced a hybrid framework adopting qualitative and quantitative techniques to model and analyze 

the failure aspects of flexible manufacturing cells. The study concluded that cost of maintenance should be taken into 

consideration. However, ‘life cost-based FMEA’ was proposed by Gilchrist (1993) and further enhanced by Rhee and 

Ishii (2003). Their paper (i.e., Rhee and Ishii), advanced a cost-Based FMEA approach which relies on empirical data 

to enhance the reliability, maintainability and life cycle cost of complex systems. However, the study employed the 

probability of specific failure occurring; which in real life is unknown a-priori and may change due to equipment 



 

 

operational and environmental aspects. Moreover, the study disregarded the evaluation of failure risk consequences, 

hence no prioritization of the failures is made. Furthermore, the study did not consider inherent expertise knowledge 

in FMEA, which can be used to address the challenge of unavailable data experienced in many industrial set-ups.  

Kmenta and Ishii (2005), proposed the use of probability and cost FMEA in decision making and failure scenario 

analysis. In this case, they utilized the expected costs and the probability of failure observed and detected at various 

points in the life cycle of a product. Despite their paper reviewing risk prioritization using both RPN and expected 

cost, it, however, did not utilize expert knowledge in quantifying the expected failure costs. The latter, an integral 

aspect of ensuring the validity of the prioritization approach. 

Dong (2007), proposed a tool for cost based FMEA, which focuses on quantifying the utility cost. They employed 

the utility theory and fuzzy membership functions for the assessment of severity, occurrence, and detection. Their 

approach further embedded a fuzzy utility cost estimation approach for dealing with the shortcomings of the 

conventional FMEA. The study considered fuzzy triangular membership functions, which were defuzzified to 

compute the Risk Priority Index (RPI) while considering team opinions. The research did not apply actual empirical 

maintenance costs associated with equipment failure modes which may offer more intuitive insights in cost intensive 

facilities like power plants. Moreover, the failure cost metric is clearly unexplained in their study. 

von Ahsen (2008), advanced an approach that incorporated the cost of defects or faults discovered by the 

customer. The costs found within the company and due to flaws in inspection while evaluating the impact of potential 

failures. The study considered failure cost as the sole criteria for prioritization and did not apply actual empirical 

maintenance costs, an approach that may yield suboptimal decision support. This is contrary to the expectations in 

facilities like power plants, where other aspects such as opportunity or production loss, availability and failure 

frequency are equally significant in evaluating the impact of failures. In a similar fashion, the research did not attempt 

to review the critical failure modes using a prioritization criterion.  

Bradley (2011), suggested using a data elicitation technique aiming to prioritize Failure Modes while employing 

Yager’s method (Yager 1981). In their solution, three criteria were assigned a weighting factor to address the challenge 

of varying importance between different risk prioritization cost metrics. However, their approach suffers two 

disadvantages; in the first place, they increase the difficulty of performing the FMEA, as one requires an in-depth 

understanding of mathematical concepts to involve their proposed fuzzy logic solutions. Such intuitiveness present 

oftentimes a critical challenge amongst practitioners in practice. Secondly, they employ the probability of detection 

for functional failure, as an input variable. This aspect increases uncertainty, especially where the detection metric is 

estimated subjectively. Wang (2011), proposed a revised format for FMEA analysis by replacing occurrence, severity, 

and detection using quality cost factors alluding to their ambiguousness. Their research was based on a manufacturing 

set up, which specifically addressed the manufacturing process and not the maintenance of the equipment. However, 

despite integrating the quality cost with the conventional RPN approach, the research overlooks the need of expert 

knowledge. Furthermore, various empirical maintenance cost factors, for instance, the cost of spare parts which are 

significant constituents addressing maintenance of industrial facilities like power plants, are not applied.  

Hassan et al. (2010) incorporated cost-based FMEA in a quality/cost-based conceptual process planning 

(QCCPP). The study undertook cost-based FMEA analysis to assess the failure modes due to the manufacturing 

process and to estimate the failure cost. However, the study did not utilize actual empirical maintenance data, for 

instance, the quantification of the failure cost disregarded cost elements such as spares which are significant in 

operations like power plants. Moreover, the study disregarded the use of expert knowledge and did not prioritize the 

failure modes systematically based from the system to equipment level.  

Liu et al. (2013), addressed the limitations of RPN metric in their review of risk evaluation approaches for 

prioritizing equipment failures in the FMEA. The study recommends alternative prioritization criterion based on 

methods like fuzzy approaches, linear programming and multi-criteria decision-making approaches. However, the 

proposed methods are limited to providing intuitive decision support to practitioners, for instance, in many power 

plants in developing countries, hence, their use for a wholesome decision support is questionable.  Moreover, their 

application may require tools and some level of expertise or in-depth understanding of the concepts, which may not 

be available for the practitioners. 

Jahangoshai Rezaee et al. (2017) employed cost-based FMEA and data envelopment analysis by imposing costs 

related to any failure in the system to prioritize failures. The study primarily computed the cost based on the 

opportunity lost by the failure of the equipment (e.g., production loss), and did not explicitly apply empirical 

maintenance related costs like spares among others. However, despite the study being involved in the stone processing 

sector, it did not follow a systematic approach while prioritize the failures. Due to numerous equipment in such 

facilities as power plants, addressing them concertedly would be arduous and may not offer robust decision support 

with palpable insights.  Moreover, the employment of expert knowledge was disregarded, an aspect which would offer 

more insights in failure quantification and prioritization and ensure applicability of the approach in real life. 

 

https://www.merriam-webster.com/dictionary/concertedly


 

 

In more recent studies, several authors address the deficiency of which the RPN delinks the failure prioritization 

to the observed empirical failure modes, through enhanced data-driven FMEA approaches. For instance, Chemweno 

et al. (2016b) proposed a dynamic FMEA approach which leverages on both expert knowledge and sparse equipment 

reliability or maintenance data. They propose an approach based on a Bayesian inferencing framework for addressing 

concerns of data availability. Their approach combines elicited expert knowledge and empirical maintenance data. 

They also propose a data mining framework which allows maintenance practitioners to prioritize equipment failures, 

hence assist the performance of root cause analysis (Chemweno et al. 2016a). A considerable flaw of their proposed 

methodologies represents the need to adopt statistical and mathematical modelling approaches. These approaches are 

limited by the available data, and often not intuitive to maintenance practitioners. For instance, the hierarchical 

Bayesian approach and multivariate and cluster analysis, may not be clearly used by many practitioners. Moreover, 

the data mining approach presumes the availability of large structured datasets, which in practice remain ordinarily 

not the case. 

In real-life applications, exact information is not constantly available; it follows, uncertainty is retained in the 

analysis, and this could be countered by integrating fuzzy methodologies with the conventional FMEA techniques. 

Several authors have considered integrating fuzzy methodology to overcome the drawbacks of traditional FMEA 

approach in risk ranking. (Jamwal et al. 2018; Panchal and Srivastava 2018; Panchal et al. 2018) applied risk ranking 

fuzzy FMEA and grey relational analysis approaches within traditional RPN based FMEA for diverse applications. 

The studies sort to address the uncertainty or imprecision involved in the information collected from field experts and 

maintenance logbooks. The advanced fuzzy logic models retain several limitations despite rendering more 

straightforward and intuitive models from vague conditions, while managing uncertainty to provide robust predictions. 

They retain stagnant rules since any change in the variables necessitate a change in the decision logic; rule segregation 

is challenging because all rules have an influence on the output, thus may compromise model accuracy. Moreover, 

increased features employed could lead to a combinatorial challenge(Wakiru et al. 2019b). 

2.3 Risk treatment strategies 

The prioritized critical risks ultimately require to be mitigated to ensure plant operability and sustainability. Risk 

treatment as an aspect of mitigating and possibly eliminating recurrent prioritized failure modes, is significant towards 

achieving maximized plant availability. This is achieved through selecting optimal maintenance action or 

tactic/strategies. Several alternative strategies are proposed in this context for achieving this; Failure based 

maintenance (FBM) which is breakdown maintenance usually employed for non-critical or equipment characterized 

by constant failure rates (Kumar and Maiti 2012). Time or Use Based Maintenance (TBM/UBM) is employed after a 

specified calendar or usage time elapses, while Condition-based Maintenance (CBM) approach utilizes information 

derived through monitoring the condition of the equipment, from which maintenance intervention is carried out 

(Jardine and Tsang 2013). The Design out Maintenance (DOM) may be selected in instances where changes or 

modifications may be carried out on the equipment to eliminate a failure cause or to improve the equipment reliability. 

By applying DOM, practitioners hope to reduce their reliance on maintenance (Sondalini 2009). Design for 

Maintenance (DFM) considers the objective of reducing the likelihood of failures of the equipment or even better to 

eliminate the requirement of maintenance (Gupta and Gandhi 2014). DFM addresses design aspects that could reduce 

human or technical errors, prevent maintenance altogether, and if not, significantly reduce the frequency of 

maintenance intervention. Lastly, the Design out Reliability (DOR) represents an improvement that develops high-

reliability components that seldom fail due to standard failure modes, hence ensures the durability of the asset (Gupta 

and Gandhi 2014). DOR activities can be employed in an existing component by re-engineering to significantly reduce 

failure modes in service. This can also be attained by using an alternative design where a prototype is produced and 

intentionally made to fail while analyzing failure modes with a view of designing-out such failures.  

2.4 Summary and motivation of the study 

All the studies reviewed so far in Section 2.2; however, suffer from several deficiencies hence drive the motivation 

of this study as discussed briefly: 

 Limited embeddedness of expert knowledge or empirical data in the failure prioritization step, which we 

view as significant where experts can augment missing data and information to derive prioritization 

index such as cost comprehensively and ultimately offer validation of the various data being utilized. 

 Lack of an empirical link to actual maintenance costs, like spare and labour costs. Moreover, complex 

algorithms for prioritizing failure modes fail to invoke the practitioner’s interest, understanding, and 

interpretability. 

 The studies do not go beyond prioritizing failure modes to review the critical failure modes and further 

suggest or align mitigating risk strategies to the critical failure modes. 

The purpose of this study is to introduce a risk-based approach, where through cost-based FMEA, a structured 

approach for identifying critical failure modes is used. A comparison between the advanced approach and conventional 



 

 

RPN based on the empirical data used is further advanced. Additionally, the risks embedded in critical failure modes 

are evaluated and risk-mitigating maintenance strategies selected to address the risks. In the subsequent section, we 

expound in detail the methodology adopted in this study. 

3.0 Methodology 

3.1 Integrated cost-based FMEA framework 

The proposed approach in this paper consists of five steps, as outlined in Fig. 1, which include; maintenance data 

collection, data consolidation, structuring and risk identification, risk quantification and prioritization/ranking. In the 

ultimate step of the methodology (i.e. risk treatment), the critical failure modes are assigned appropriate maintenance 

strategies using a decision scheme after the prioritization process.  

 
Fig. 1 Summary of research methodology 

3.2 Methodology 

The methodology illustrated in Fig. 1, takes a five-step approach, as discussed in the following section. 

Step 1: Data Collection 

The proposed methodology is applied in the case study of a thermal power plant that retains heavy fuel oil-driven 

engines generating electricity connected to the grid. The raw maintenance data was collected from maintenance 

records and intensive interviews with the maintenance staff. The data documented in maintenance records indicated 

failure dates, a description that retains both the failure modes and repair actions undertaken on the power plant engines. 

Other vital details like spare parts used, maintenance staff utilization and labour rates estimates were derived from the 

operations and supply chain department records.  However, the critical cost aspects missing were augmented by 

estimates elicited through interviews with the maintenance staff. The data used in this research was initially 

unstructured, hence the need to re-structure, as discussed in the next section.  

Table 1 illustrates a sample of the unstructured data, which details aspects such as; component failures, failure 

modes, date and time of occurrence of the failures, date and time of resumption type of repair done, spares used and 

the estimated downtime. 

Table 1 Sample raw failure data from maintenance records 
Serial 
no. 

Incidence 
date 

Description Stop Start 

1 23/12/11  High exhaust gas temperature shutdown/TC A failure 23/12/11 16:07 12/01/12 23:39 

2 05/01/12 Cam failure 05/01/12 14:59 06/01/12 5:48 
3 07/01/13 Stop due to B4 cylinder head stud failure 07/01/13 9:53 22/01/13 22:30 

4 01/12/12 Cylinder B2 high exhaust gas temperature 01/12/12 13:26 01/12/12 21:47 

Step 2: Data consolidation, structuring, and risk identification 

In this step, the data were restructured to satisfy the requirements of the methodology, of which maintenance 

cost aspects were extracted for purposes of prioritizing critical system, subsystem and component failures. For the 

structuring process, the plant was categorized to subsystems in consultation and discussions with the maintenance 

engineers. The data was further organized in a manner facilitating extraction of cost parameters required as input to 

the cost-based FMEA approach. The information here includes data on functional failures and other related data such 

as spare parts used and their respective quantity. This information was derived from maintenance records as well as 

Data collection

- Failure occurrence rate (%)

- Percentage downtime (%)

Expert assessment

Ranking and prioritization

Data consolidation, 

structuring

- Expected failure cost ($)

Risk identification

- Documentation review

- Expert interviews

- Impact analysis

Risk quantification

Expert assessment

Risk treatment

Risk identification

1

2

3

4

5



 

 

responses from the informal interview sessions with maintenance staff as discussed before. New cost estimates were 

elicited through interviews with procurement and supply chain, for instance, cost estimates of spare parts used during 

repair activities. Maintenance schedules adopted by the plant were important for estimating diagnosis, isolation, repair 

and start-up times. The maintenance schedules were also insightful for estimating man-hour costs, which were linked 

to repairing times.  

During the structuring process, 13 engine subsystems were identified and coded; SS1 to SS13 (subsystems). 

Additionally, a total of 86 failure modes was observed from the data and consequently linked to the 13 subsystems. 

The failure modes are indicated with the codes; FM1 …to FM86. A sample of the 21 failure modes discussed in the 

subsequent sections is detailed in Appendix 1, while the description of the 13 subsystems and their respective codes 

are detailed in Appendix 2.  

Table 2 shows a sample of structured failure modes, where the first failure mode (FM1) in Table 1, is linked with 

subsystem 1 (SS1). On the other hand, FM26 is linked to subsystem SS3. Illustratively, for the latter, camshaft failure 

(FM 26) depicted in Appendix 1 is observed as influencing the operational availability of the cam subsystem (SS3). 

The day and time of failure (stop) and at the (start) metrics in Table 2 were observed as useful for computing the 

unavailable time (UT). The UT is used for computing the percentage downtime, and outage production cost discussed 

in Step 3. 

Table 2 Restructured data classified to subsystem and failure mode 

Sub 
System 

Failure 

mode 

Stop date Stop 

time 

Start date Stop 

time 

Unavailable  

Time - UT 
(Hours) 

Unavailable 

production-UM 
(MWh) 

SS1 FM1 23/12/11 16:07 06/03/12 22:45 487.53 3,657 

SS3 FM26 05/01/12 14:59 06/01/12 5:48 14.8 81 
SS2 FM15 07/01/13 9:53 22/01/13 22:30 348 1,914 

SS3 FM27 01/12/12 13:26 01/12/12 21:54 8.28 47 

After the structuring process, the expected failure cost, percentage downtime, and failure occurrence rate were 

computed for each of the observation, depicting the impact while employing expert consultations to identify the risks 

based on the expected failure cost impact and capacity of the plant to recover from the failure. Moreover, task analysis 

in conjunction with brain storming was employed to identify all risks linked to each failure mode and subsystem. The 

objective of the computation is to facilitate prioritization of the failures modes grouped within each of the 13 engine 

subsystems. In the following sections, the risk quantification process is discussed. 

Step 3: Risk quantification 

In this step, the risk quantification follows two complimenting approaches, as indicated in Fig. 1, where the first 

involves computation of the expected failure cost, while the second involves computation of both the failure 

occurrence rate and percentage downtime, as enumerated in the following sections.   

a) Computation of expected failure cost 

The expected cost of failure (TC) for each identified failure mode includes the production loss due to downtime, labour 

cost, and spares cost, as illustrated by Eq. 2. The inclusion of such cost components is also corroborated by (Avontuur 

and van der Werff 2001).  Eq. 2 below depicts the calculation of the expected failure cost in dollar value terms. 

𝑇𝐶 = 𝐶𝑃 + 𝐶𝑀 + 𝐶𝑆       (2) 

Where:   TC is the total failure cost for a specific failure mode 

CP is the outage production loss cost 

𝐶𝑀 is the man-hour cost  

CS is the spare parts or material cost  

The Outage Production Cost (CP), also referred to as downtime cost or opportunity cost, is the cost associated with 

loss of production (value creation) due to the occurrence of a failure. It is described by Eq. 3.: 

𝐶𝑃 = 𝑈𝑀 ×  𝐸𝑆        (3) 

𝑈𝑀 = 𝑈𝑇 ×  𝐸𝑂        (4) 

Where:  UM = Unavailable production  

 UT = Unavailable time/downtime 

 EO = Engine output 

ES = Energy cost per MWh  

The man-hour cost (CM) in Eq. 2, also referred to as Labour cost is the cost associated with the repairing the failure 

mode. Despite this aspect not recorded in many unstructured maintenance data such as for the case company, it can 

be derived from information contained maintenance schedules and in-depth interviews. This is arrived at by using the 

industrial power plant standard labour-rate as below equations shows: 

𝐶𝑀 = 𝐿𝑅 × 𝑇𝑁 × 𝑇𝑇𝑅        (5) 

               𝑇𝑇𝑅 = 𝑈𝑇 − 𝐼𝑆𝑇 − 𝑅𝑆𝑇         (6) 



 

 

                𝑈𝑇 = 𝐸𝑆𝑇 − 𝐸𝑆𝑃        (7) 

Where:  LR = Industry-standard labour-rate  

TN = Number of technicians 

TTR = Time to Repair  

EST       = Engine stopping time 

ESP = engine start-up time 

IST = Isolation time 

RST = removal of isolation, commission and start time 

TTR is computed by considering the unavailable time negating isolation time, commission and start times. TTR was 

also verified using the maintenance task or work plan schedules reviewed from the plant records. Finally, for the 

spares or material cost (CS) were associated with component replacement during repair, because of direct failure or 

due to secondary failure, and the material cost or spare part cost obtained by the Eq. 8: 

𝐶𝑆 = 𝑁𝐶 × 𝐶𝐶        (8) 

Where:   NC =Number of components replaced 

CC =Component average cost 

Several variables are treated as standard during the computation of expected total failure cost, which includes 

the engine output (7.5 MWh/hr.), labour-rate (LR) of 15$/hr., Energy cost (ES) 48.23 $/MWh which were retrieved 

from the engine data and service level agreements. An example of the total expected cost computation for the failure 

mode, FM 1 is briefly discussed.  

While computing the production loss (CP) applying Eq. 3, the unavailable production (UM) is first derived by 

multiplying the unavailable time (UT) as observed in Table 2 with the standard engine output (EO). The unavailable 

production (UM), is computed using Eq. 4, where unavailable time (UT) is 487.53 hrs. while the engine output (EO) 

is 7.5MWh/hr., hence deriving from Eq. 4: 

𝑈𝑀 = 𝑈𝑇 ×  𝐸𝑂𝑈 , hence UM = 487.53*7.5, generating 3,657MWh.  

Thus, from Eq. 3: 

𝐶𝑃 = 𝑈𝑀 ×  𝐸𝑆, where UM was derived above, while the energy cost (ES) is 48.23$/MWh. Therefore, applying 

this equation, the outage production cost/loss is 3,657 * 48.23 giving 176.35 $K. 

While computing man-hour cost (CM), following expert review concerning FM1, isolation and diagnosis time 

(IST) was 107 hrs, while removal of isolation, commissioning and starting (RST) was 67.53 hrs. (See Table 3). The 

number of technicians (TN) was 6, thus, the time to repair (TTR) was computed applying Eq. 6, as 313hrs (487.53-

107-67.53), hence one employs TTR, TN and standard labour-rate (LR) to derive CM. Finally computing the spare 

cost (SC), the number of components replaced (NC) was two units each with the average cost (CC) of 2,031$ hence 

computed as below.  

 

Using Eqs.3, 5 and 8 and substitute to Eq. 2, the total cost is: 

TC   = 𝐶𝑃 + 𝐶𝑀 + 𝐶𝑆 = (3,657*48.23) + (15*6*313) + (2*2031) 

 = 176,353 + 28,170 + 4,062 

  = $208,585 

Table 3 Data represented in the cost-based FMEA worksheet 

SS. FM 
Frequency 

(No.) 
Downtime - UT 

(hrs.) 
IST 

(hrs.)  
 RST 
(hrs.)  

     

TTR      
(hrs.) 

UM 
(MWh) 

 SC  
($K)   TN 

CM    
($K)  

 CP 
($K)   

TC           
($K)   

SS1 
FM1 

1 
487.53 

487.53 
107.00 67.53 

313.0

0 3656.48 4.06 6 28.17 

176.3

5 

208.5

8 

FM2 
2 

12.88 
70.86 

1.33 0.75 10.80 96.60 50.98 8 1.30 4.66 56.94 

FM2 57.98 5.48 2.50 50.00 434.85 51.96 6 4.50 20.97 77.43 

SS2 

FM16 
2 

13.00 
24.46 

3.75 1.25 8.00 97.50 23.91 3 0.36 4.70 28.97 

FM16 11.46 1.50 0.96 9.00 85.95 23.53 3 0.41 4.15 28.09 

FM17 1 74.00 74.00 10.00 2.00 62.00 555.00 22.39 6 5.58 26.77 54.74 

SS3 

FM27 

4 

8.28 

49.83 

1.28 0.50 6.50 62.10 8.84 3 0.29 3.00 12.13 

FM27 18.40 3.90 1.00 13.50 138.00 7.86 3 0.61 6.66 15.13 

FM27 14.80 3.80 2.00 9.00 111.00 29.35 6 0.81 5.35 35.51 

FM27 8.35 2.35 1.00 5.00 62.63 7.45 3 0.23 3.02 10.70 

Key: SS, subsystem; FM, failure mode; UT, unavailable time; IST, isolation, diagnosis time; RST, removal of isolation, commissioning and starting 
time; TTR, time to repair; UM, unavailable production; SC, spare costs; TN, number of technicians; CM, man-hour/labour cost; CP, production 

loss; TC, total expected failure cost. 

b) Computation of failure occurrence rate and percentage downtime 



 

 

Apart from prioritizing based on failure cost, the subsystems and failure modes were similarly prioritized while 

considering the percentage failure occurrence, and percentage downtime associated with each respective failure 

modes. This section shows the computation of the failure occurrence rate and percentage downtime for the various 

failure modes categorized according to the different subsystems. 

i) Failure occurrence rate  

The failure occurrence rate for the subsystem was computed as the percentage of the total failure frequency of a 

subsystem to the total failure frequency of the power plant in the period of three years. The failure occurrence rate for 

failure modes represent the ratio of the number of failures of each failure mode to the total failures in a subsystem. 

See Eq. 9. 

 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 % =
𝑁𝑜.  𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑟 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑜𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡 𝑜𝑟 𝑠𝑢𝑏−𝑠𝑦𝑠𝑡𝑒𝑚
× 100     (9) 

ii) Percentage Downtime  

The percentage downtime for subsystem was measured as the percentage of the total downtime in hours of a 

subsystem to the total failure related downtime of the power plant. Similarly, that of the failure modes was computed 

as a percentage of downtime directly related to a failure mode as a proportion of the total downtime of the subsystem. 

This computation is depicted in Eq. 10.  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 % =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 ℎ𝑟𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑦𝑡𝑒𝑚 𝑜𝑟 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑜𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 ℎ𝑜𝑢𝑟𝑠 𝑖𝑛 𝑝𝑙𝑎𝑛𝑡 𝑜𝑟 𝑠𝑢𝑏−𝑠𝑦𝑠𝑡𝑒𝑚
× 100   (10) 

 

To illustrate the computation of the failure occurrence rate and percentage downtime, again consider failure 

mode FM1 and FM2. From the structured records, of which a sample is indicated in Table 3, SS1 was observed as 

suffering a total of 17 failure modes. Out of these, FM1 was only observed once, while FM2 appeared twice in the 

records. Put differently, FM1 and FM2 had frequencies of one and two, respectively. Hence, using Eq. 9, FM1 and 

FM2 the failure occurrence rates of FM1 and FM2 are 6% (or 1 out of 17 failures) and 11.8% (or 2 out of 17 failures) 

respectively.  

In a similar fashion, SS1 had a total downtime of 995.17hrs from records, of which a sample of two failure modes 

FM1 and FM2 whose downtime are 487.53 hrs. and 70.86 hrs. (two similar failure modes are summed up 12.88 hrs. 

and 57.98hrs. generating a total of 70.86 hrs.) respectively, as indicated in Table 3. Hence, applying Eq. 10, the 

percentage downtime for FM1 is 49% (or 487.53/995.517), while that of FM2 is 7.1% (or 70.86/995.517). 

Step 4: Ranking and prioritization 

This step follows a three-tier risk analysis process, where the three indices, the expected failure cost, failure occurrence 

rate, and downtime contribution were employed in the evaluation for prioritizing and ranking the failure modes. The 

fundamental element of analysis is the failure modes; hence, each respective subsystem will be constituted with several 

failure modes.  

 Firstly, the total expected cost, failure occurrence rate and percentage downtime of each subsystem are 

summed up considering individual values for each failure mode. Prioritization and ranking of the 

subsystems are performed, where highly ranked (critical) subsystems based on the 80:20 Pareto rule 

were identified. The results of this step are indicated in Table 4. 

 Secondly, failure modes constituting each of the identified critical subsystems from the previous step, 

are ranked with a view of identifying critical failure modes among each of the known critical 

subsystems. The result of this step is indicated in Table 5. 

 Finally, the highly ranked (using 80:20 rule) failure modes in each identified critical subsystem were 

summed and ranked/prioritized, hence constituting the most critical failure modes for the system.  

Based on the prioritization process, several highly ranked failure modes were selected and considered for risk 

treatment where mitigation strategies were allocated according to step 6 discussed below.  

Step 5: Risk treatment 

For each of the critical failure modes identified, a risk mitigation maintenance strategy is selected using a decision 

tree scheme to address the risk depicted by the failure modes, where various maintenance strategies advanced 

considering the risks and root causes embedded in the failure modes. 

The decision scheme illustrated in Fig. 2 represents an enhanced version from (Chemweno et al. 2016b), for 

selecting suitable maintenance strategies for the critical failure modes identified as risk treatment options.  

The first strategy, i.e. the failure-based maintenance (FBM), is selected for items of low urgency and can be 

repaired or replaced post-failure. For instance, items with minor failures that are addressed post occurrence are 

subjected to FBM. The second strategy i.e. Use or Time-based Maintenance (UBM/TBM), is selected for failures of 

components which deteriorate due to firstly the use (UBM). In this case, where observed use is quantified by time 

which can be from a meter reading like the engine hours. Secondly, (TBM) is advanced for failure of components 



 

 

which deteriorate due to time in use, where time is based on the calendar. This can be determined by the use of 

maintenance data of the component. The third strategy, i.e. Condition-based Maintenance (CBM) is proposed where 

the available component condition can trigger the failure mode, and right information on the component historical 

performance is available to enable one to determine its remaining life. Hence, maintenance intervention is made before 

failure occurrence. The fourth strategy i.e. design out maintenance (DOM) strategy, the modification is selected where 

partial or minor changes on the components being done in the plant are practical and attainable. An example would 

be, to include a bolt and nut on the flange of a coupling to ensure close tolerances required (Locke et al. 2013). Another 

DOM option, where the failure mode is done away with completely. This option, is used for components of which 

either minor or partial changes and repairs, still do not reduce failure rates and cost of carrying out adjustment require 

equipment builder expertise and cannot be done in the plant. This instance would require reference and advice from 

the original equipment manufacturer (OEM) on the modification to be done in practice. An example would replace 

the fasteners on the coupling which has to use special OEM fasteners to ensure more tight installations. 

 

 

Fig. 2  Decision scheme for Maintenance strategy selection  

The use of the fifth and sixth strategies, i.e. design for maintenance (DFM) and design-out reliability (DOR) 

respectively, ensures risk information is cascaded to the OEM to design the components addressing the risks identified 

in practice to reduce instances that introduce or aggravate risks. DFM will ensure either maintenance is avoided or is 

significantly reduced, while DOR is used where maintenance cannot be eliminated. Hence, the component is designed 

to avoid the failure mode identified, while if not re-designable, then DFM is employed. DOR, retain the objective to 

maximize the lifetime of a component and its durability. To achieve this objective, requires comprehensive knowledge 

on potential failure modes and reliability characteristics which this study advances in prioritizing the failure modes 

and further root cause analysis would ideally enable the advancement of the program. 

4.0 Case study results  

The results were organized following the methodology Steps 4, where ranking/prioritization is performed and 

Step 5, which involve risk treatment as discussed in the following section. 

4.1 Ranking and prioritization 

(a) Subsystem prioritization 

Table 4 illustrates the failure frequency, downtime, failure occurrence rate, percentage downtime, total failure 

cost, percentage failure cost and cumulative failure cost (%) of the plant subsystems ranked based on total failure cost. 

As depicted using 80:20 Pareto rule, subsystem SS1 had the highest percentage failure cost (29%) in the plant, 

followed by the SS2 (19%), SS3 and SS4 at (9%), while SS5 and SS6 (8%) which cumulatively account for over 82%. 
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Subsystems SS13 and SS12 bore the most minimal costs of failure at 2% and 1% respectively. The SS1 had the most 

significant percentage of downtime (25%), followed by SS2 (18%) and SS6 at 13%, while SS9 had the lowest at 1%. 

The SS4 showed the highest failure occurrence rate at 23%, followed by the SS7 at 13%, then the SS3 at 12%.  SS8 

had the least failure occurrence rate of 1% which translates to only one failure occurrence of the 154-failures recorded 

in the last three years. The analysis of the total failure cost, failure occurrence rate and downtime in Table 4, is based 

on the 80:20 rules. It is clearly observed that from both, a failure occurrence rate and failure cost perspectives, that 

SS1 is the most critical subsystem followed by the SS2, SS3, SS4, SS5 and the SS6. 

 

 

Table  4 Computed prioritization indices for Power plant subsystems 

Subsystem 
Frequency 

(No.) 

Downtime 

(Hrs.) 

Failure 

occurrence rate   
(%) 

Percentage 

downtime 
(%) 

Total failure 

cost  
($K) 

Failure cost 

(%) 

Cumulative 

cost % 

SS1 17 995.52 11% 25%          763.39    29% 29% 

SS2 13 724.2 8% 18%          502.83    19% 48% 

SS3 18 286.35 12% 7%          250.07    9% 57% 

SS4 35 18.18 23% 1%          238.73    9% 66% 

SS5 6 363.65 4% 9%          211.65    8% 74% 

SS6 7 496.36 5% 13%          200.92    8% 82% 

SS7 20 251.89 13% 6%          145.99    6% 87% 

SS8 1 384 1% 10%          104.86    4% 91% 

SS9 6 57.59 4% 1%            78.19    3% 94% 

SS10 10 117.37 6% 3%            61.34    2% 97% 

SS11 6 91.16 4% 2%            51.00    2% 99% 

SS12 8 82.25 5% 2%            30.59    1% 100% 

SS13 7 77.28 5% 2%              4.57    0% 100% 

 The least critical subsystems are SS13, SS12 and SS11. However, for brevity, we will focus on the first three 

ranked subsystems (i.e. SS1, SS2, and SS3). In the subsequent section, the failure modes under the three identified 

critical subsystems (SS1, SS2, and SS3) are evaluated and prioritized. The quantitative risk matrix shown in appendix 

3 is based on the risk levels that were judged acceptable for the Case study plant subsystems by the researcher and the 

maintenance engineers. 

(b) Failure mode prioritization 

Failure modes for each of the identified critical subsystems identified in Section 5.1, were analyzed. Due to space 

constraint, we illustrate an extract of the failure modes in subsystem 2 (SS2), where Table 5 illustrates the computed 

parameters. From Table 5, analyzing failure modes for subsystem SS2, FM15 and FM16 both had the highest failure 

occurrence rate (each failure mode had occurred twice out of the total 13 failures on the subsystem). FM15 exhibited 

the highest percentage downtime of 49% of all the failures in the subsystem, cost (26% of all costs on the failure 

mode) and occurrence rate of 15% as compared to the other failure modes. 

Table 5  Table illustrating computed prioritization indices for failure modes included in SS2 

Failure 

Mode 

Frequency 

(No.) 

Downtime 

(Hrs.) 

Failure 
occurrence rate   

(%) 

Percentage 
downtime 

(%) 

Total 
failure cost 

($K) 

Failure  
cost  

(%) 

Cumulative 
cost  

 (%) 

FM15 2     358.00    15% 49%   129.65    26% 26% 
FM16 2       24.46    15% 3%    57.06    11% 37% 

FM17 1       74.00    8% 10%    54.74    11% 48% 

FM18 1       74.00    8% 10%    53.36    11% 59% 
FM19 1       63.12    8% 9%    44.58    9% 67% 

FM20 1       43.32    8% 6%    42.20    8% 76% 

FM21 1       16.83    8% 2%    30.03    6% 82% 
FM22 1       13.25    8% 2%    28.92    6% 88% 

FM23 1         8.11    8% 1%    27.19    5% 93% 

FM24 1       40.00    8% 6%    23.64    5% 98% 
FM25 1         9.12    8% 1%    11.46    2% 100% 

This was followed by FM17 and FM 18 both with a percentage downtime (10% of total downtime on the 

subsystem), cost (11% of all costs on SS2) and occurrence rate of 8% as compared to the other failure modes.  FM 15, 

FM16 and FM 17 were picked as the critical failure mode for the subsystem. Selection of FM16 as one of the critical 

failure modes could be controversial here; however, following the methodology, whose basis is the cost of failure of 

respective failure mode, it could be selected over FM18. However, following 80:20 rule FM15, FM16, FM17, FM18, 

FM19, and FM20 are selected for the final ranking process. 

The consequent analysis was conducted considering other highly ranked subsystems i.e. SS1, SS3, SS4, SS5 and 

SS6 to prioritize/rank failure modes for each of the subsystems. In this case, the resulting highly ranked 25 failure 



 

 

modes (total from the six subsystems) were ranked based on total failure cost, failure occurrence rate and percentage 

downtime as seen in Table 6. 

Table 6 Listing of the critical failure modes derived from critical subsystems 

Subsystem Failure 

Mode 

Frequency 

(No.) 

Downtime 

(Hrs.) 

Failure 

occurrence rate  

(%) 

Percentage 

downtime 

(%) 

Total 

failure cost 

($K) 

Failure 

cost  

(%) 

Cumulative 

cost (%) 

SS1 FM1 1 487.53 2% 20% 208.58 12% 12% 

SS1 FM2 2 70.87 3% 3% 134.37 8% 19% 

SS2 FM15 2 358.00 3% 15% 129.65 7% 27% 
SS1 FM3 2 167.73 3% 7% 127.55 7% 34% 

SS1 FM4 2 113.18 3% 5% 112.36 6% 40% 

SS3 FM26 10 136.46 15% 6% 112.06 6% 47% 
SS5 FM56 1 240.00 2% 10% 111.16 6% 53% 

SS1 FM5 1 72.98 2% 3% 83.23 5% 58% 

SS3 FM27 4 49.83 6% 2% 73.52 4% 62% 
SS4 FM46 8 95.83 12% 4% 73.25 4% 66% 

SS5 FM61 1 43.50 2% 2% 58.61 3% 69% 

SS2 FM16 2 24.46 3% 1% 57.06 3% 73% 

SS2 FM17 1 74.00 2% 3% 54.74 3% 76% 

SS2 FM18 1 74.00 2% 3% 53.36 3% 79% 

SS6 FM62 1 11.00 2% 0% 51.50 3% 82% 
SS2 FM19 1 63.12 2% 3% 44.58 3% 84% 

SS2 FM20 1 43.32 2% 2% 42.20 2% 87% 

SS3 FM28 2 16.99 3% 1% 37.80 2% 89% 
SS4 FM47 4 46.98 6% 2% 36.58 2% 91% 

SS4 FM48 10 111.25 15% 5% 35.43 2% 93% 

SS5 FM57 1 15.46 2% 1% 33.91 2% 95% 
SS2 FM21 1 16.83 2% 1% 30.03 2% 97% 

SS4 FM49 2 28.00 3% 1% 23.88 1% 98% 

SS5 FM58 1 20.24 2% 1% 21.74 1% 99% 
SS4 FM50 4 61.28 6% 3% 15.78 1% 100% 

4.2 Selection of critical failure modes  

From the analysis depicted in Table 6, which follows the 80:20 Pareto rule, indicate FM1, FM2, FM15, FM3, 

FM4, FM26, FM56, FM5, FM27, FM46, FM61, FM16, FM17, and FM18 as the critical failure modes. The 14 failure 

modes contribute over 79% of total failure cost, 58% of occurrence rate and 82% of downtime of the 25 highly ranked 

failure modes.  

 

4.3  Selection process of the risk treatment strategies 

In this study, the 14 critical failure modes as indicated in Section 4.2, were subjected to the risk mitigation 

strategy selection process. The process involved expert’s discussion (both maintenance engineers and OEM 

specialists) following the scheme illustrated in Fig 2 in the same Section 4.2. For brevity, we evaluate the three highly 

ranked failure modes (i.e. FM1 “secondary failure on turbocharger due to broken intake valve”, FM2 “Thermal fatigue 

of the turbine wheel” and FM15 “Stress fatigue on cylinder head studs”), whose results are illustrated in Table 8. 

Table 8 Maintenance strategy selected for critical failure modes 

      Failure Modes     Subsystems Primary 

strategy 

Secondary 

strategy Code Description Code Description 

FM1 Secondary failure - broken intake valve SS1 Turbocharger CBM DOR 

FM2 Thermal fatigue -turbine wheel SS1 Turbocharger UBM/TBM CBM 

FM15 Stress fatigue on cylinder head studs SS2 Cylinder CBM DOM 

For FM1, CBM option, for instance, employing vibration analysis would address the failure mode if the 

occurrence is gradual. Detecting deviations in the vibration signals would potentially signal the need for intervention 

through more inspection. However, this would be limited if the process of the valve breakage was instantaneous, 

whereby DOR was proposed as the second option when the use of CBM would not comprehensively address the risk 

exposed by the failure mode. This is predominantly if the valve design contains a metallurgical defect leading to the 

breakage. However, this failure had no recurrence characteristics; hence, it was viewed as performing diagnosis, which 

is a reactive approach. While evaluating FM2, the strict use of TBM for preventive replacement of the turbine wheel 

is proposed as the primary strategy. Condition monitoring techniques like thermography combined with other 

inspection techniques like dye penetrant inspection would abate such failure modes. The use of dye penetrant would 

offer information about the crack existence and or propagation status, while thermography would indicate stressed or 

hot points which would enhance inspection and further investigation before such failure modes occur. In closing, 

FM15 evaluation elucidated the use of CBM where vibration analysis could expose cyclic stress while material stress 



 

 

fatigue could invoke DOM where a change of the studs in consultation with original equipment builder (OEM) or 

equipment builder (EB) could address the risk. This would entail modification, which can be done in-house to mitigate 

the recurrence of failure. Decidedly, DOR could be invoked if the studs design modification under DOM cannot reduce 

the failures. The information on the failure mode could be exchanged with the OEM/EB who would re-design the 

future components (studs) of the equipment incorporating new reliability measures to prevent the recurrence of the 

failure mode. This process is expected to be interactive with the OEM carrying out field tests of the newly designed 

studs with the client or under their test engines under research and development (R&D). 

4.4 Comparison of proposed cost-based FMEA with conventional RPN approach 

This research equally did a comparison study using RPN and cost based FMEA as discussed in this section. This 

is meaningful as it demonstrated how the results while implementing the two approaches differed. The same structured 

data as presented in Table 2, under the second step of the methodology in Section 3.2, was utilized for this exercise.    

Scales ranging from one to ten were applied, this means RPN’s range from 1 to 1000. Both the subsystems and Failure 

Mode, with the highest RPN, were considered for comparison purposes. While calculating the RPN, severity refers to 

the magnitude of the impact or effect caused by a failure. Hence, when severity rate 10 is tagged failure, it means the 

failure can cause extensive damage. Likewise, occurrence refers to the likeliness of a failure to take place or eventuate, 

and detection refers to the prospect or chance of observing or spotting failure before eventuation (Feili et al. 2013). 

This research adopted the rating scales from (Towler and Sinnott 2012).  

Table 7 Subsystem prioritization comparison using RPN and cost-based FMEA 

Sub-

system 

Cost-based FMEA Approach  

Cost  

(%) 

RPN Approach 

RPN 

rank 

Cost-based 

FMEA rank 

Failure 

occurrence rate 

(%) 

Percentage 
downtime 

(%) 

Expected 

Failure 

cost ($K) S O D RPN 

SS10 6% 3% 61.34 3% 9 6 6 324 1 10 
SS2 8% 18% 502.83 18% 10 6 5 300 2 2 

SS7 13% 6% 145.99 6% 8 9 4 288 3 7 

SS1 11% 25% 763.39 27% 8 7 5 280 4 1 
SS6 5% 13% 200.92 7% 7 4 8 224 5 6 

SS3 12% 7% 250.07 9% 9 7 3 189 6 3 

SS5 4% 9% 211.65 8% 7 4 6 168 7 5 
SS4 23% 0% 238.73 8% 4 10 4 160 8 4 

SS9 4% 1% 78.19 4% 9 4 4 144 9 9 

SS11 4% 2% 51.00 2% 4 4 8 128 10 11 

SS12 5% 2% 30.59 2% 3 5 8 120 11 12 

SS8 1% 10% 104.86 5% 10 2 5 100 12 8 

SS13 5% 2% 4.57 1% 3 4 6 72 13 13 

Table 7 illustrates the comparison of results using the two approaches RPN vis-a-vis expected failure cost, 

downtime, and failure occurrence rate. RPN was calculated using the ordinal indices S, O and D as discussed in 

Section 2.1 while the expected cost computed as discussed in Section 3.4.3. The final two columns indicate the ranking 

for each subsystem as demonstrated by RPN and cost-based FMEA approaches, respectively.  

 

Fig. 3 Failure modes prioritized based on RPN compared with cost-based FMEA approach 

Fig.3 illustrates the comparison of failure modes ranked utilizing RPN in comparison to cost-based FMEA 

performance, where nine failure modes are illustrated. From Table 7 and Fig. 3, it clearly shows that when using the 

proposed method of cost-based FMEA and RPN, the results are different. SS1, which is ranked first when using Cost 
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based FMEA, is ranked fourth using RPN. This subsystem had high severity whose failure would result in non-

functionality of the system, while detectability of the defect obtained a moderate score of 5 (see Table 7). Using the 

cost-based FMEA, the SS1 subsystem accounts for 25% of downtime experienced by the power plant and 27% of the 

failure costs incurred by the plant. Comparing the two methods, it clearly shows RPN ranking in terms of criticality 

is limited and not comprehensive. 

With the most significant contribution of 27% of total failure costs and 25% of total downtime, the subsystem 

SS1 clearly should be ranked higher in terms of criticality in the power plant, which by contrast, the RPN indicates 

otherwise. SS3 is ranked third using cost-based FMEA while sixth using RPN. The subsystem had high severity whose 

failure would result in non-functionality of the system and a remote probability that the defect will be detected with a 

score of 3. Using the cost-based FMEA, the subsystem accounts to 12% of the combined number of failures in the 

plant, 7% of downtime experienced by the power plant and 9% of the failure costs incurred by the plant. SS4 is ranked 

fourth using cost-based FMEA and eighth using RPN. The subsystem had low severity, a significant probability of 

occurrence over 20% and detectability of the defect indicated a reasonable probability. Using cost-based FMEA, the 

subsystem accounts for 23% of the combined number of failures in the plant, no downtime and 8% of the failure costs 

incurred by the power plant.  

Similarly, failure mode FM 15 was ranked first using RPN while cost-based FMEA of all failure modes of the 

plant is ranked third. The severity indicated that the failure resulted in causing non-functionality of the plant. The 

downtime was the highest for the whole plant of 358 hours. This is likely the reason for a high ranking using RPN. 

The occurrence rate was also rated high since it was 15% of the total failures of the subsystem SS2. 

5.0  Discussion 

Many plants such as the case study power plant generate maintenance data, often unstructured and undoubtedly 

require pre-processing and structuring to be able to derive information. This information can further be analyzed and 

ultimately offer knowledge that assists in maintenance decision support. This step makes distinct the extent to which 

meaningful data for the FMEA program was retrieved, the significance of expert assessment and records to offering 

valid information.  Significantly, an interactive engagement is developed between the stakeholders in cases where data 

requires structuring and further lacks information on key variables required for analysis, to ensure the validity of the 

outcome of the results is achieved. This study demonstrated this aspect, by employing experts in all data verification 

and validation process, as well as consolidating various aspects such as labour costs and carrying out RPN 

computations.  

In this study, the methodology advanced follows a three-step prioritization process where, the first step involved 

performing criticality analysis of subsystems following the 80:20 Pareto rule. In this first step, SS1, SS2, SS3, SS4, 

SS5, and SS6 were derived as critical subsystems. In the second step, failure modes for each of the six highly ranked 

subsystems were prioritized, while the ultimate step the highly ranked failure modes from each of the critical 

subsystem were evaluated to prioritize the failure modes. This evaluation approach demonstrates the potential of 

offering critical insights especially for maintenance managers that desire to identify critical failure modes in a plant. 

For instance, evaluating Table 4; the plant can identify the six critical subsystems contributing to over 80% of the total 

cost of failure in the plant. Sizeable plants with many subsystems could harness this potential benefit, while this may 

bare a limitation for small plants. The limitation may be attributed to the fact that, while prioritizing subsystems, 

highly intensive subsystems in terms of failure costs will dominate, and this may lead to the sub-optimal outcome as 

some critical failure modes may go unnoticed. However, this framework offers insight into the critical failure modes 

the maintenance function should focus on and address. If these critical failure modes are dealt with, significant plant 

performance improvement will be derived. In contrast to the conventional FMEA programs, this approach utilizes 

multiple indices (failure cost, downtime, and failure occurrence rate) while undertaking prioritization task. This 

combination of findings provides some support for the conceptual premise, that the consideration of more than one 

index could represent a significant factor. This factor would ensure reliability of the prioritization process as evidenced 

in the results derived in Section 4.2. This case reveals, where failure modes had approximately same value in terms of 

failure cost and other indices can be used to prioritize between the two failure modes. Nonetheless, the present results 

are significant in at least two significant respects, firstly, the approach while prioritizing the subsystems offers the first 

criticality analysis, which conclusively adds insight and focus to the maintenance function. For instance, identifying 

the critical subsystems will undoubtedly reduce effort and time in the preceding or future prioritization process, which 

we believe will ensure timely interventions and maintenance plans. This further offers a potential benefit to the plant, 

ensuring an objective and targeted resource allocation and scheduling program that considers the critical subsystems.  

In the second aspect, employing the cost of failure as a basis for prioritization, a quantitative index eliminates bias 

while offering an objective decision support framework. The elicited cost aspects were retrieved from the supply chain 

and verified, e.g. checking the cost of similar parts from the OEM or part suppliers which offers validity to the process. 



 

 

Cost represents a generalizable objective aspect that is well understood and related to. Hence, due to its quantitative 

characteristics; its application in the prioritization process will eliminate subjectivity and bias as evidenced in other 

conventional FMEA approaches such as RPN. Sensitivity analysis was utilized for predicting the outcome of a 

decision if a situation turns out to be different (considering downtime, spare cost and labour rate) compared to the key 

predictions. The results of the sensitivity analysis for the expected failure cost, sample (downtime and spare cost as 

independent variables) presented in Appendix 4, demonstrates that with an average change between 2% and 12% of 

the downtime, spare parts cost and labour rate, the expected cost of failure increases between 1.8% and 10.3%. The 

spare parts cost is identified as the variable with significant influence or impact on the expected cost of failure.  
The three-step prioritization using RPN and cost-based FMEA approaches, for comparison produced altogether 

distinct sets of results. This is because, from the onset, the two ranking approaches are not exactly similar, because 

cost-based FMEA is quantitative while RPN approach is qualitative. Hence the prioritized subsystems were different 

when RPN or cost-based FMEA is employed. However, the conventional RPN approach is principally used in practice 

where all the failure modes of a plant are evaluated together. This is in contrast to our three-step ranking approach 

using cost-based FMEA, where we first rank the subsystems, followed by the failure modes of the critical subsystems 

and finally the failure modes from the highly ranked subsystems are prioritized. These two aspects, consideration of 

quantitative indices and 3-step prioritization process, we view offers a more realistic differentiation between the 

conventional RPN and our proposed cost-based FMEA approach.  Consistent with the literature, this research found 

that utilizing RPN lacks the objectivity required for robust risk assessment, more so, where maintenance data is 

available which could enhance such objectivity and validity of failure prioritization outcomes. 

While undertaking risk treatment, which represents the ultimate process that is supported by the developed 

framework, options considered include unconventional maintenance strategies. The unconventional strategies 

included Design of Maintenance (DOM), Design of Reliability (DOR) and Design for Maintenance (DFM). These 

strategies were utilized in addition to the conventional FBM, UBM/TBM, and CBM. While strategies employed by 

the end-user or the maintenance team might be limited to the application context of the equipment under study, the 

involvement of the equipment builder or original equipment manufacturers (OEM) becomes significant to address 

inherent risks. This decision scheme would offer support to a broad range of industries and addresses not only the in-

house strategies but also engages the OEM or supplier of the technology. This is an aspect that is significant for capital 

assets that plants strive to lengthen or extend their life beyond the end of life. This finding considers significant 

implications for selecting maintenance strategies in cases where a plant is faced with the challenge like obsolete 

technology. In this case, equipment and or spares are no longer available due to technological advancement or 

equipment builder interruptions such as close-out or acquisition. Hence, the requirement to employ unconventional 

strategies like DOM and DOR is recommended.  

6.0 Conclusion 

This research was designed to develop a methodology to identify critical failure modes and their mitigation 

strategies. This was derived from the use of the cost-based FMEA to generate the anticipated costs and consequent 

prioritization of the subsystems and failure modes. This additionally incorporated failure occurrence rate and 

downtime contribution of the subject subsystem and failure modes. It was noted that the prioritization of failures using 

frequency alone would lead to erroneous maintenance actions prioritization. Analysis of the variables used in the 

research exposed that the downtime in terms of time the equipment is unavailable, and the cost, contributes 

significantly to the failure cost. This could also be dealt with by maintaining a redundant unit on standby, which would 

present an extra challenge of high inventory holding costs in the spares inventory. Despite the downtime cost 

contributing to the failure costs, most power plants secure contractual agreements to supply up to a thresh hold 

capacity, failure to which a hefty penalty is imposed. The methodology exposed the magnitude in size/value of a 

failure mode that needs to be identified and seen by the maintenance engineers, an aspect unconsidered by other 

conventional FMEA approaches. With the identification of the critical subsystems and failure modes, the plant can 

implement an optimal allocation of maintenance policies and targeted maintenance actions that will reduce failure, 

consequent downtime, and cost of failure. This directly positively affects the plant reliability and cost of operations, 

improving profitability. Further research on root cause analysis of the critical failure modes would ideally enable 

comprehensive maintenance strategy selection. 

The research also compared the risk prioritization of the proposed method of cost-based FMEA with the 

conventional RPN method. The two methods produced altogether conflicting results with cost-based FMEA producing 

more comprehensive results. The developed cost-based FMEA method employed in this research addressed most of 

the RPN limitations outlined earlier. The research showed a comprehensive prioritization of critical subsystems and 

failure modes should not be subjective as using ordinal values as the case of RPN represent but should use discrete 

values with actual implications or exposure which cost-based FMEA utilized. The use of costs (generated from actual 



 

 

impact and through expert assessment hence reducing subjectivity), failure occurrence rate and downtime for the 

subject failure modes offer an objective method for risk prioritization. This integrated approach will enhance the 

accuracy and exactness of FMEA results in the field of risk assessment. Finally, the incorporation of design for 

maintenance and design for reliability as risk treatment options involving both the OEM and equipment user, illustrate 

the significance of collaboration in learning the equipment risks and improving the designs. Further research on the 

OEM-user framework towards enhanced equipment design for maintenance and reliability optimization is proposed. 

Finally, due to extensive failures experienced and the need for plants to extend operations of the equipment beyond 

their end of life, a study linking maintenance and other equipment life extension strategies could be advanced. 

Appendix 1  

Failure modes codes and description. 
Code Failure Mode Code Failure Mode 

FM1 Secondary failure - broken intake valve FM26 Cam failure 

FM2 Thermal fatigue -turbine wheel FM27 Thermal fatigue on cam 

FM3 Secondary failure - broken exhaust valve FM28 Material failure causing high exhaust temp 
FM4 Thermal erosion-turbine blades FM46 Injector cracked 

FM5 Axial displacement - Bearing failure  FM47 Cam roller failure 

FM6 Broken valve cone FM48 Fuel oil leak 
FM15 Stress fatigue on cylinder head studs FM49 Abrasive wear on injector nozzle and push rod 

FM16 Cracked cylinder head FM50 Injector leaking 

FM17 Thermal fatigue - inlet valve FM56 High LO inlet temp- governor fail 
FM18 Stress fatigue on barring bearings FM57 Sheared driveshaft 

FM19 Piston cracked -lack of lubrication FM58 Impact fatigue-governor over speed 
FM20 Thermal stress on the cylinder FM61 Sheared governor bolts 

FM21 Low water jacket pressure-Misaligned sleeve FM62 Low LO pressure-secondary contaminant 

Appendix 2  

Subsystems codes and description 

Subsystem description Subsystem 

Turbocharger SS1 

Cylinder SS2 
Cam SS3 

Fuel system SS4 

Governor SS5 
LO Pump SS6 

Lubrication system SS7 

Main bearings SS8 
Water Jacket SS9 

Valves SS10 

Cooler SS11 
Exhaust SS12 

Inlet Fuel Pipe SS13 

Appendix 3  

Risk matrix employed for risk assessment of case study subsystems 
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Over 25% 

occurrence rate         

Major                     
15% up to 25% 

occurrence rate          

Moderate         
5% up to 15% 

occurrence rate         

Low                 
Up to 5% 

occurrence rate         

   

Low         
Less than     

5 $K 

Moderate     
More than     

5 $K but less 
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Catastrophic   
More than 

500 $K 

  
Consequence Severity (Expected failure cost) 



 

 

Appendix 4 

Sensitivity analysis of Expected failure cost (US$) 

 Δ in average spare cost 
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  19.404    2% 4% 6% 8% 10% 

2%   19.767      19.945      20.122      19.109      20.478    

5%   20.045      20.223      20.400      19.387      20.756    

7%   20.230      20.408      20.586      19.572      20.941    

9%   20.416      20.593      20.771      19.758      21.126    

12%   20.694      20.871      21.049      20.036      21.404    
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