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Abstract

The application of isotropic random fields in engineering analysis requires the

definition of their first two central moments, as well as their covariance function.

In general, insufficient data are available to make a fully objective crisp estimate

on these quantities, and hence, subjectivity enters implicitly into the analysis.

The framework of imprecise probabilities is gaining popularity in this context,

as it allows to explicitly separate the epistemic uncertainty, present due to data

insufficiency, from the aleatory nature of the random parameters. However, an

approach that is capable of handling imprecision in the complete definition of

the imprecise random field is lacking to date. This paper proposes a framework

for imprecise random field analysis with parametrized covariance functions. As

such, the functional form of the covariance function is assumed to be known de-

terministically, whereas the governing parameters are subjected to imprecision.

First, a comprehensive analysis of the effect of imprecise random fields, given

imprecision on both the mean and auto-covariance structure, is presented. It is

shown that the discretization of an imprecise random field, given interval-valued

correlation lengths cannot be performed using interval arithmetical procedures

as the resulting basis functions are in that case no longer a complete basis on

L2. Therefore, an iterative procedure is proposed where the bounds on the im-

precise random field basis are determined via an optimization procedure. This
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procedure provides exact bounds on the response of a system in case the system

is monotonic with respect to the random field realizations. Two illustrative case

studies on a mass-damper-spring system and a dynamic state-space model of a

car suspension are included to illustrate the methodology. These case studies

illustrate that indeed a separation between aleatory and epistemic uncertainty is

possible in random field analysis, and hence, more objective results are obtained

at only slightly increased computational cost.

Keywords: imprecise probability, random field analysis, interval arithmetic,

imprecise random fields, parametrised p-box, transient dynamics

1. Introduction

In the context of including non-determinism into numerical models, two com-

plementary philosophies exist. Usually, either a probabilistic or a possibilistic

(interval) approach for the representation of the variability and/or uncertainty is

followed. Using the former class of methods, the non-determinism in the model

parameters is represented using joint-probability density functions that assign a

(relative) likelihood to different parameter values within a predefined interval.

The latter approach considers only the crisp bounds between which the possible

values of the corresponding parameter lie for analysis. This is sometimes also re-

ferred to as an uncertain-but-bounded representation of the uncertainty. A large

body of literature has been dedicated to the comparison of both philosophies in

a forward [1] (i.e., from parameters to model responses) and inverse (i.e., from

responses to parameters) uncertainty quantification setting [2]. These studies

show that, instead of conflicting, both approaches are complementary in a de-

sign context, and in fact the selection of the most appropriate approach should

be based on the quantity and quality of information that is available to the

analyst [3].

Special considerations however have to be made in case correlated multi-

variate parameters are considered. This, for instance, is highly relevant for

the modeling and simulation of spatially uncertain model quantities (e.g., spa-
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tially varying soil properties). The interval framework, while highly objective

under scarce data, is less suited for the description of such multivariate non-

deterministic quantities, as intervals are by definition independent. Therefore,

the classical interval framework will be over-conservative in this context. More-

over, due to the lack of an interval measure for dependence, the description of

spatial interval uncertainty proves to be a non-trivial task. Interval methods

have been mainly applied in low dimension problems (see e.g. [4, 5]), but also

some more realistic applications have been introduced so far [6, 7, 8], includ-

ing crack propagation [9]. Also initiatives towards including interval analysis

into commercial software have been undertaken [10]. Methods to cope with

dependence in a multivariate interval context where only introduced very re-

cently. For instance, Verhaeghe et al. was the first to introduce the interval

field framework to model spatially dependent uncertainty in an interval con-

text [11]. This work was later extended in the context of inverse dependent

interval analysis in [12]. Furthermore, Sofi et al. introduced interval field anal-

ysis via Karhunen-Loève expansions and the improved interval analysis via the

extra unitary interval [13, 14]. The authors recently introduced a generic frame-

work for dependent interval analysis based on the admissible set decomposition

which, similar to vine copula, decomposes the high-dimensional dependence

between intervals at the input of a model into conditional and unconditional

bi-variate admissible sets [15]. Finally, also fuzzy fields were introduced very

recently [16]. Nonetheless, all these developments fail to give an analyst a highly

informative description of the joint non-deterministic nature of the uncertainty

at hand, as a convex set description of the non-determinism is obtained at best.

Note that such description is often the most objective information that can be

derived from data, especially when the data are scarce [2].

On the other hand, when sufficient data are available, the probabilistic

framework is highly suited for the description of multivariate uncertain non-

deterministic quantities, e.g. following a random fields approach [17], which are

widely applied for spatial reliability analysis in domains such as material sci-

ence [18], geology [19] or computational fluid dynamics [20]. In some cases, non-
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probabilistic and probabilistic uncertainty are jointly present in the model under

consideration. In this context, considerable work has also been performed in the

efficient combination of probabilistic and interval uncertainty. For instance, Do

et al. proposed a spectral stochastic method to propagate random fields to-

gether with intervals [21]. Wu et al. proposed to propagate a combination of

random and interval fields using a framework called extended unified stochastic

sampling, which combines regular sampling methods with interval analysis [22].

Zheng et al. developed a robust Topology Optimization scheme under hybrid

uncertainty [23]. Finally, Faes et al. applied a combination of random field and

interval field analysis to study the reliability of Additively Manufactured PA-12

components via a double loop approach [24].

At the core of a random field representation lies the covariance function that

models the spatial dependence of the uncertain quantity. When the complete

covariance function is known, e.g. by fitting it to an elaborate set of measure-

ment data, discretization of the random field is objective with respect to the

available data (see Section 2). However, in order to obtain the complete co-

variance structure of any random field, data with both a high statistical and

spatial resolution are necessary. The argumentation for the former prerequi-

site is based on the need for an objective estimation of the statistical structure

of the non-determinism, whereas the latter is of specific importance to ensure

that the spatial effect is accurately quantified. In realistic engineering prac-

tice such data are generally not available as the necessary experimental cam-

paign is both highly time consuming and very costly. Therefore, in practice,

the auto-covariance properties of a random field are described by a predefined

auto-covariance function (also referred to as kernel). When an isotropic random

field is considered, these kernels only depend on their correlation length. This

length measures the distance between two locations ri and rj over which their

mutual correlation approaches zero. As such, in the limit case when the correla-

tion length approaches infinity, all realizations of the random field are perfectly

correlated, and the field reduces to a random variable. Conversely, when the

correlation length tends to zero, an independent random variable is defined for
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each location in Ω and the random field represents white noise. Therefore, it

can be understood that the correlation length has a significant influence on the

realizations of the auto-covariance function, and consequently, the result of the

probabilistic calculation. Moreover, it also implicitly determines the number

of random variables and corresponding computational cost that is required to

accurately determine the random field [25]. Given the major influence of the

auto-covariance function on both the spatial aspect of the random field (see

e.g., [26] for an in-depth study on the effect of both the functional form of the

autocovariance function and corresponding correlation length in a geotechnical

context) and its numerical discretization (e.g. following a Karhunen-Loève ap-

proach [27]), it is of importance that it is defined with great care [28]. This

implies that both the functional form of the auto-covariance, as well as its cor-

relation length need to be selected appropriately. This selection is preferably

based on objective data instead of an expert engineering judgement, as lack of

an accurately defined covariance structure yields an unrepresentative outcome

of the numerical approximation, as e.g. illustrated in [26].

As a remediation for the strict requirements on the data that are necessary

to accurately represent quantities in the probabilistic framework, the concept

of imprecise probabilities is gaining more and more traction [29]. Following an

imprecise probabilistic framework, the analyst acknowledges impreciseness in

key attributes of the probabilistic quantities under consideration, rather than

assuming a certain crisp value. In practice, this is usually obtained by assign-

ing intervals to the statistical moments of a family of distributions belonging

to a predefined credal set [30]. In the context of imprecise random field analy-

sis, Verhaeghe et al. [31] where the first to study the effect of computing with

interval-valued correlation lengths in a random field with exponential covariance

kernel. Similarly, Dannert et al. [32] recently introduced a p-box framework

for the propagation of imprecise random fields with interval-valued correlation

length where they select samples from the correlation length interval a priori.

Gao et al. [33] also recently proposed an efficient sampling approach to cope

with impreciseness in random field analysis to determine bounds on the relia-
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bility of structural components under mixtures of stochastic and non-stochastic

system inputs.

However, to the best knowledge of the authors, no method exists to effec-

tively and consistently propagate imprecise random fields with parametrized im-

precise covariance functions. This paper introduces a generic theoretical frame-

work for describing imprecise random fields extending the current p-box descrip-

tion of imprecise probabilities. Focus on the interval mathematical framework

behind interval-valued covariance functions is given to identify and explain the

difficulties in propagating imprecise random fields. Furthermore, it proposes an

interval approach towards the propagation of imprecise random fields via the

Karhunen-Loève (KL) expansion that ensures that a complete basis is gener-

ated for the entire range of the correlation length. The paper is structured as

follows: Section 2 first recapitulates the most important concepts for random

field analysis via the Karhunen-Loève expansion. Then, section 3 introduces a

general theoretical framework for describing imprecise random fields, extending

the current p-box formalism towards imprecise random fields. This framework

is an extension of the work presented by [33] in the sense that it also considers

imprecision in the parameters of the random field covariance function. Section

4 first discusses the propagation of imprecise random fields via a double-loop

optimization approach and then presents an efficient iterative procedure to first

generate a set of complete bases for the propagation of the imprecise random

field subjected to an imprecise covariance function in monotonic models. Two

case studies on a linear oscillator with random excitation and a car suspension

dynamics state-space model are provided in respectively section 5 and 6 to illus-

trate the developed efficient propagation scheme. These two case studies focus

on illustrating the developed efficient propagation scheme for imprecise random

field analysis. Finally, section 7 summarizes the conclusions and the outlook for

future work.
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2. Random field analysis

In a probabilistic context, model parameters x(r) that are subjected to spa-

tial variability are modeled as a random field x(r, θ). Such a random field x(r, θ)

describes a set of correlated random variables x(θ), assigned to each location

r ∈ Ω in the continuous model domain Ω ⊂ Rd with dimension d ∈ N. Each such

a random variable x(θ) provides a mapping x : (Θ, ς, P ) 7→ R with θ ∈ Θ a coor-

dinate in sample space Θ and ς the sigma-algebra. For a given event θi, x(r, θi)

is a realization of the random field. A random field is considered Gaussian if

the distribution of (x(r1, θ), x(r2, θ), . . . , x(rn, θ)) is jointly Gaussian ∀r ∈ Ω. In

this case, x(r, θ) is completely described by its mean function µx(r) : Ω 7→ R

and its auto-covariance function Γx(r, r′) : Ω × Ω 7→ R. Commonly, (squared)

exponential or Matérn covariance functions are applied [26].

In an engineering context, the application of random fields for the modeling

of spatial non-deterministic material quantities requires a discretization of x(r)

over Ω. Specifically, this means that the continuous random field x(r, θ) is rep-

resented by a finite set of M ∈ N+ correlated random variables ζi, i = 1, . . . ,M ,

as well as a set of deterministic functions that describe the spatial behavior of

the field. Usually, such discretization is obtained following a Karhunen-Loève

(KL) series expansion [34]. At the core of the method lies a spectral decomposi-

tion of a continuous, bounded, symmetric and positive definite auto-covariance

function Γx(r, r′) : Ω× Ω 7→ R following Mercer’s theorem:

Γx(r, r′) =

∞∑
i=1

λiψi(r)ψi(r
′) (1)

where λi ∈ [0,∞) and ψi(r) : Ω 7→ R are respectively the eigenvalues and

eigenfunctions of Γx(r, r′). These are in practice obtained by solving the homo-

geneous Fredholm integral equation of the second kind:∫
Ω

Γx(r, r′)ψi(r
′)dr′ = λiψi(r). (2)

Since Γx(r, r′) is bounded, symmetric and positive semi-definite, and further-

more in most practical cases can be assumed positive definite, these eigenvalues
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λi are non-negative and the eigenfunctions ψi(r) satisfy following orthogonality

condition: 〈
ψi(r),ψj(r)

〉
=

∫
Ω

ψi(r)ψj(r)dr = δij (3)

with δij the Kronecker delta and 〈·, ·〉 : Ω × Ω 7→ R an inner product space.

Hence, the eigenfunctions form a complete orthogonal basis on a L2 space. In

this case, the series expansion in eq. (1) is convergent [34]. As such, the random

field can be expressed as a series expansion:

x(r, θ) = µx(r) + σx

∞∑
i=1

√
λiψi(r)ξi(θ) (4)

with σx the standard deviation of the random field (in case Γx(r, r′) : Ω×Ω 7→

[0, 1]) and ξi(θ), i = 1, . . . ,∞ standard uncorrelated random variables, which

are determined following:

ξi(θ) =
1√
λi

∫
Ω

[x(r, θ)− µx(r)]ψi(r)dr (5)

which can be shown to be independent standard normally distributed in the

case of a Gaussian random field. In case the field is non-Gaussian, the joint

distribution of ξi(θ) is practically very hard to obtain. Therefore, non-Gaussian

random fields are typically processed as functions of Gaussian random fields via

non-linear mappings on the discretized random field [35, 36, 37].

To limit the computational cost, the series expansion in eq. (4) is usually

truncated by retaining only the Q ∈ N largest eigenvalues and corresponding

eigenfunctions of Γx(ri, rj) [38], which yields an optimal series expansion with

respect to the global mean squared error [39]. Formally, this is expressed as:

x̃(r, θ) = µx(r) + σx

Q∑
i=1

√
λiψi(r)ξi(θ). (6)

A closed form solution for the Fredholm integral equation presented in eq.

(2) exists only for very simple domains and Gaussian random fields. There-

fore, it is usually approximated via numerical methods such as numerical in-

tegration via Nystrom’s method or Galerkin projection to find a finite dimen-

sional representation of the basis functions. For a recent overview on numerical
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procedures, the reader is referred to [28]. The discretization of a continuous

random field x(r, θ) into x̃(r, θ) inevitably introduces an approximation error

εx(r, θ) = x(r, θ)− x̃(r, θ), which is defined as the distance between the contin-

uous and the discretized random field. Usually, the global mean square error is

applied to quantify the error made by the approximation:

ε̄2x =

∫
Ω

E
[
εx(r, θ)

2
]
dr (7)

with E[·] the expectation operator. Also other error metrics are commonly

applied [28].

Usually, an analyst is interested in the response of the structure or system

under consideration given the random field description of some model quantities.

Let M be a deterministic numerical model that approximates y ∈ Rd, the

solution of a set of differential equations describing the physics of the considered

structure through a set of (usually) real-valued function operators g = {gi | i =

1, . . . , ds}:

M(x) : y = gi(x), gi : Rk 7→ R, i = 1, . . . , ds (8)

with x ∈ F ⊂ Rk the vector of model parameters and F the sub-domain of feasi-

ble parameters (e.g., non-negative contact stiffness). Then, statistical properties

of y are obtained by generating realizations of x̃(r, θi), i = 1, . . . , N over Ω by

drawing N ∈ N+ samples from the independent standard normal random vari-

ables ξi(θ), i = 1, . . . , Q following a Monte Carlo sampling approach. Then,

each of these realizations is propagated through the numerical model M:

y (r, θi) =M (x̃ (r, θi)) i = 1, . . . , N. (9)

Generally, N should be sufficiently large to allow for an accurate estimation

of the joint probability structure of y(r, θ). For instance, following a regular

Monte Carlo approach, the variance on the estimation of the mean is shown to

decrease ∝ 1/
√
N . Other, more efficient sampling schemes have been introduced

in literature as well [40]. In an intrusive setting, stochastic Galerkin is commonly

applied to solve the propagation problem [39].

9



3. Imprecise random field analysis

In case a Gaussian random field x(r, θ) with a parameterized auto-covariance

function Γx(L) with L ∈ R+ the correlation length, is considered over the do-

main Ω, it is fully described by the triplet (µx, σ, L). However, in engineering

practice, it is often difficult or even intractable to objectively provide a crisp

estimate for these quantities, leading to often-subjective estimates to obtain a

random field description of the phenomenon under consideration. Especially

given the importance of the correlation length on both the numerical and sta-

tistical aspects of the random field simulation, as explained in the introduction,

such approach is not desirable. This led to the so-called concept of imprecise

random fields, which are deeply rooted in the broader concept of imprecise

probabilities, and more specifically, the field of probability boxes (p-box). A

p-box models a class of probability functions, defined between left and right

bounds of their cumulative distribution functions, enriched with constraints on

the mean, standard deviation and distribution shape [29]. Specifically, a p-

box [x] is defined by the quintuplet (F , F , µIx, σ
I
x,F) with F ⊂ F the set of

admissible distribution functions belonging the class of probability functions

F = {F | F : R 7→ [0, 1],∀x, y : x < y ⇐⇒ F (x) < F (y)}. F and F represent

the left and right bounds of the cumulative distribution functions bounding the

P-box. As such, a p-box is fully defined by the three following constraints:

F ≤F ≤ F (10a)

∞∫
−∞

xdF (x) ∈ µI (10b)

 ∞∫
−∞

x2dF (x)

−
 ∞∫
−∞

xdF (x)

2

∈ σIx. (10c)

In the context of a random field x(r, θ), given epistemic uncertainty on (some

of) its hyper-parameters, the field becomes an imprecise random field [x](r, θ).

In this case, for completeness, also the set of admissible covariance structures of

the random field should be bounded. Hence, an imprecise random field is defined
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by the sextuplet (F , F , µIx, σ
I
x,F , C), with C the set of admissible covariance

functions. In the specific case of an imprecise random field with a (quadratic)

exponential or Matérn covariance kernel, this reduces to (F , F , µIx, σ
I
x,F , LI).

The KL expansion of an imprecise random field in this case becomes:

[x](r, θ) = µIx(r) + σIx

∞∑
i=1

√
λIiψ

I
i (r)ξi(θ) (11)

with λIi ∈ IR interval-valued eigenvalues and ψIi (r) : Ω 7→ IR interval fields

representing the bounds on the corresponding eigenfunctions. It can therefore

be understood that an imprecise random field describes a set of correlated P-

boxes [x](θ) for each location r ∈ Ω. As such, when considering a single location

ri ∈ Ω bounds for the cumulative distribution are locally given. Similarly, for a

given θi, also realizations [x](r, θi) are generated. The main difference with the

realizations of a regular random field is that in case θ is fixed, the realizations

become interval field valued:

[x](r, θi) = µIx(r) + σIx

∞∑
i=1

√
λIiψ

I
i (r)ξi(θi). (12)

Indeed, since epistemic uncertainty is present in the definition of µx, σx and

L, a full admissible set of realizations that are consistent with these intervals

is provided. It should be noted that, in case F extends towards more than

Gaussian random fields, the same considerations concerning the correlation and

dependence in ξi as made for regular random fields have to be made. Note that

for practical purposes, also this series expansion should be truncated after Q

terms.

However, some fundamental issues regarding the propagation exist. Consider

a covariance function Γx; when its governing parameters (e.g., the correlation

length) become interval valued, the function itself becomes interval valued as

well. Assume that this function is discretized over a N ×N rectangular grid, as

is common in for instance Finite Element computations. In that case, a sym-

metric, bounded, positive semi-definite interval covariance-matrix ΓI ∈ IRN×N

is obtained. Following the work in [41], it can be shown that the outer approx-
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imation of the eigenvalues of ΓI is given by:

λi
(
Γc − STi Γ∆Si

)
≤ λi(ΓI) ≤ λi

(
Γc + STi Γ∆Si

)
(13)

with i = 1, . . . , N , Γc and Γ∆ respectively the midpoint and radius of the

interval covariance matrix ΓI and Si = diag(sgn(ψi(r))). The notation λi(•)

infers the process of computing the ith eigenvalue of the matrix •. This theorem

holds if Si is constant over the parameter interval [42]. In general, the bounds

for ψi(r) do not correspond to the vertices of λIi , and hence, generally they need

to be determined following an optimization approach where ψi(r) are minimized

and maximized with respect to λI and while keeping all other ψi(r) equal to

unity [43]. The bounds for the corresponding eigenvectors ψi(r) can in that

case be expressed as [42, 44]:λi(ΓI)I − STi ΓcSi − Γ∆

STi ΓcSi − Γ∆ − λi(ΓI)I

 |ψi(r)| ≤ 0 (14)

with λi(Γ
I) ∈ λIi (Γ

I). However, following this approach does not guarantee

that the corresponding sets of generated basis functions form a set of complete

orthogonal bases for L2. This is a direct result of the by-definition indepen-

dence between intervals. Indeed, since depicting the bounds on the eigenfunc-

tions as interval vectors automatically encloses all possible spatial realizations

of those vectors in between the interval bounds, the orthogonality criterion de-

scribed in eq. (3) does not longer hold. Hence, a direct interval-arithmetical

solution using classical interval arithmetic cannot provide a feasible solution to

this problem. The application of interval field formulations or affine arithmeti-

cal approaches [45, 46] to bound the spatial realizations could be a solution [12],

but this falls outside the scope of this paper.

As a practical example, consider for instance an exponential covariance ker-

nel on a 1D domain Ω = [−a, a] ⊂ R. In that case, analytical solutions for the
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eigenfunctions and eigenvalues exist and are equal to:

ψi(r) =
cos(ωnr)√
a+ sin(2ωna)

2ωn

, λ =
2/L

ω2
n + (1/L)2

, for n = even (15a)

ψi(r) =
sin(ωnr)√
a− sin(2ωna)

2ωn

, λ =
2/L

ω2
n + (1/L)2

, for n = odd (15b)

with ωn the natural pulsations of the eigenfunctions, obtained by imposing

boundary conditions on the differential equation that corresponds to solving

eq. (2) [39]. Note that, since the correlation length is interval-valued, that an

interval of natural pulsations is obtained, and hence, the eigenvalues λ also

become interval-valued. Furthermore, both the pulsation and the magnitude

of the eigenfunctions become interval-valued as well, and hence, they become

interval fields. In this case ψIi (r) and λI are given as:

ψIi (r) =
cos(ωInr)√
a+

sin(2ωI
na)

2ωI
n

, λI =
2/LI

(ωIn)2 + (1/LI)2
, for n = even (16a)

ψIi (r) =
sin(ωInr)√
a− sin(2ωI

na)
2ωI

n

, λI =
2/LI

(ωIn)2 + (1/LI)2
, for n = odd. (16b)

Since all ψIi (r) become interval field valued, their orthogonality is no longer

guaranteed as this should hold between all combinations of possible realizations

of the interval-field valued eigenfunctions. These equations illustrate as well

that the eigenvalues and eigenfunctions of a covariance kernel are not a mono-

tonic function of the correlation length, complicating the propagation of the

interval on the correlation length towards the exact bounds of the function [3].

This is further illustrated in figures 1 and 2, which show the analytic solution in

terms of eigenvalues and eigenfunctions for a 1-dimensional exponential covari-

ance kernel for various values of the correlation length. As can be noted from

figure 1, not all eigenvalues of the exponential covariance kernel are a monotonic

function of L. Furthermore, some of the eigenfunctions are positively dependent,

whereas others are negatively dependent. From figure 2, it is clear that both

the amplitude and the pulsation as well as the phasing of the eigenfunctions are

a function of L, as predicted by the analytical solutions.
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Figure 1: 12 first eigenvalues of the exponential covariance kernel as a function of L. As can

be seen, there is not always a monotonic relationship.
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increasing L

increasing L

Figure 2: 100 realizations of ψ2 of an exponential covariance kernel between L = 1 and

L = 10, showing that both the phase and amplitude of the eigenfunction are affected.
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4. Propagation of imprecise random fields

In this paper, we consider only the case of isotropic imprecise random fields

where the appropriate type of covariance kernel and probability density function

are known a priori. First, a very general procedure to propagate these fields is

shown and its drawbacks discussed. Then, an efficient approach is introduced

to propagate these imprecise random fields in case the relationship between the

field realizations and the corresponding output parameter is strictly monotonic.

4.1. General propagation

For imprecise random fields, the propagation boils down to the propagation

of random field realizations, subjected to the interval-valued uncertainty that

is present in the hyper-parameters µx, σx and L, instead of having to consider

the full sextuplet (F , F , µIx, σ
I
x,F , C). From eq. (6), it is clear that imposing

an interval on both µx, σx has a pure monotonous effect on the realizations,

hence their propagation can be performed via a vertex approach in case M is

monotonous too [47]. However, as explained in Section 3, the effect of L on the

eigenfunctions and eigenvalues of Γx is not monotonous, and hence, as simple

vertex analysis is not conservative in this case. Also an interval-arithmetical

approach is not feasible since the bounds on the eigenvectors do not necessarily

correspond to the bounds on the eigenvalues of Γx. Furthermore, there exists

no guarantee that the sets of bounds on the eigenvectors and their realizations

form a complete orthogonal basis, and hence, they are not suitable for use in

the KL series expansion. Therefore, we propose to follow an iterative procedure

based on global optimization. In a first step, the order of the series expansion

is determined, given LI . Under the assumption that σI is homogeneous over Ω,

the truncation order is determined as the maximum value of Q that is necessary

to satisfy following inequality:

1− 1

|Ω|
1

(σI)2

Q∑
i=1

λi(L
I) ≤ ε∗ (17)
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with |Ω| the length, area or volume of the domain depending on the amount of

spatial dimensions. This Q value is then subsequently used for all realizations

of L ∈ LI

Consider a general non-monotonic modelM where the bounds of the model’s

responses not necessarily correspond with the bounds of the hyper-parameter

set H = (µx, σx, L), or even the bounds on the eigenfunctions of the imprecise

random field. The main idea is to apply a global optimization scheme to deter-

mine those values H∗ that yield extreme values in a (stochastic) response of the

model y:

H = arg min
M(x(H))

yi, s.t. µx ∈ µIx, σx ∈ σIx, L ∈ LI (18a)

H = arg max
M(x(H))

yi, s.t. µx ∈ µIx, σx ∈ σIx, L ∈ LI (18b)

where y can be any sort of (stochastic) quantity depending on the application

where the imprecise random field is considered. For instance, it can be the

expected value or variance of a response of the system, or even the probability

of failure of a structure.

As such, an imprecise random field is propagated following a nested approach

where the interval analysis constitutes the outer loop for the propagation of the

epistemic uncertainty, whereas the inner loop is concerned with stochastic prop-

agation of the random field corresponding to a realization of H ∈ [H,H]. For

each step during the iterative optimization procedure, a certain set H is gener-

ated for which a full random field simulation needs to be performed to assess the

corresponding response y. For instance, considering an interval Monte Carlo [48]

implementation for imprecise random fields, while assessing the bounds on the

probability of failure of a structure, the optimization problem would be:

P f =
1

N

N∑
i=1

I [min(G(x(H, θ)) ≤ 0)] (19a)

P f =
1

N

N∑
i=1

I [max(G(x(H, θ)) ≤ 0)] (19b)

with I the indicator function and G the limit state surface of the problem at
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hand.

Since in general, the optimization problem corresponding to the min and

max operations is not convex, gradient based optimizers are very susceptible

to make under-conservative estimates due to local optima. Therefore, global

(meta-heuristic) optimization algorithms should be applied, which may prove

to be computationally intractable when real finite element models are consid-

ered. As such, following this approach, it is hard to make an a priori estimate

of the computational cost as it is highly dependent on the topology of M.

Furthermore, in most cases, such approach is intractable without resorting to

high-performance computing facilities or surrogate models such as polynomial

chaos expansions [49]. Alternatively, the recent introduced framework of Non-

instrusive Stochastic Simulation (NISS) can be applied in this context [30].

4.2. An efficient approach for monotonic problems

In some cases, the responses y of M do have a monotonic relation with

respect to the basis functions of the imprecise random field. In those cases, the

optimization problem introduced in eq. (18) can be simplified greatly, since only

the bounds on the basis functions need to be considered, rather than the full

epistemic uncertainty that is present in the definition of the imprecise random

field. This section presents such an efficient approach for the specific application

of the solution of transient dynamic problems, where the loading of the system,

structure or component is modeled as an imprecise random field.

Consider the case of a transient dynamic problem, which is governed by the

dynamic equation:

MẌ(t) + CẊ(t) +KX(t) = F (t) (20)

with •̈ and •̇ representing respectively the second and first time derivative of

• and M ∈ Rndof×ndof , C ∈ Rndof×ndof and K ∈ Rndof×ndof respectively the

mass, damping and stiffness matrices of the system under consideration. X ∈

Rndof is the solution of this ODE and represents a displacement vector. In case
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the system is discretized by a finite element model, the terms in X represent

the nodal displacements.

Let H(t) denote the impulse response function of the system at a certain

time instant τ . When the force excitation F (t) is discretized into nt time steps

∆t, the response x(tj) at a time instant tj , j = 1, . . . , nt is given by:

X(tj) =

j∑
i=1

F (ti)H(tj − ti)∆t. (21)

In the limit case where lim∆t→0, the problem reduces to the solution of the

following convolution integral:

X(t) =

t∫
0

F (τ)H(t− τ)dτ. (22)

Hence, in case H(t − τ) is a monotonic function of t, X(t) is a monotonic

function as well with respect to F (t). Now, considering F (t) as being governed

by an imprecise random field, the propagation of the uncertainty can be greatly

simplified with respect to the general case explained in eq. (18). Indeed, in

this case it is sufficient to propagate only those values in H that bound the

eigenfunctions
√
λiψi(r) of the imprecise random field.

Let G(Ω, L) : Ω × L 7→ {λ,ψ(r)} denote the process of solving eq. (2)

for Q eigenpairs of Γx given a crisp value for L (e.g., following Galerkin or

Nyström procedures), The main idea is to apply a global optimization scheme

to determine those values for L that yield extreme values in
√
λiψi(r):

L∗i = arg min
G(L)

||
√
λiψi(r)||2, s.t. L ∈ LI (23a)

L
∗
i = arg max

G(L)

||
√
λiψi(r)||2, s.t. L ∈ LI (23b)

with i = 1, . . . , Q. The underlying idea to look for those L that correspond

to extrema in the L2 norm of the basis function in each mode of the random

field is that as such, a complete bounding set is obtained. Furthermore, due

to the differentiability of the L2 norm, this is a smooth, convex, non-linear

optimization problem in limited dimension. Therefore, any sequential quadratic
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programming approach can be followed to obtain the bounds without excessive

computational overhead. Note that the problem is not necessarily convex. As

such, it is advised to try different randomized initial estimates.

The maximally 2m solutions are then concatenated in a single vertex set L:

L =
{
L∗1, L

∗
1, L
∗
2, L
∗
2, . . . L

∗
Q, L

∗
Q,
}

(24)

and the eigen pairs λ,ψ(r) are computed using (2) for each of these L ∈ L. In

this way, a set of complete orthogonal bases with corresponding scale factors is

obtained that bound the possible variation in the imprecise random field basis,

given the interval uncertainty on the correlation length. It should be noted that

due to the smoothness of the decay of the eigenvalues of Γ, the cardinality C(L)

of L will be considerably smaller than 2Q in practice for commonly applied

covariance functions, as will also be clear from the examples in sections 5 and

6.

Finally, for the propagation of the imprecise random field, a consistent ad-

missible set for the interval-valued hyper-parameters should be generated. Let

L denote the admissible set of correlation lengths that are necessary to bound

the basis functions of the random field, and let T =
{
µIx, σ

I
x

}
denote the set

of interval-valued hyper-parameters of the distribution function of the impre-

cise random field. In case a vertex approach is applied for the propagation,( L∪T
C(µx,σx,L)

)
realizations of the epistemic uncertainty are needed. It should be

noted that in this way, each realization of the admissible set yields a complete

basis on L2 for the construction of realizations of the random field, and as such,

the convergence of the KL expansion is still guaranteed. Then, for each of

these vertex combinations of the admissible set L ∪ T of hyper-parameters, a

full Monte Carlo propagation consisting of N deterministic model runs of the

corresponding random field is performed.

It should be noted that this method is equally applicable to both Gaussian

and non-Gaussian random fields. Evidently, in case of non-Gaussian random

fields, more computational work is needed to determine ξi(θ) in eq. (6) (e.g.,
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following the iterative approach presented in [37]), but this has no effect on the

spatial correlation of the field. It is self-evident that the computational cost

in this case will increase, as the iterative procedure to determine ξi(θ) needs

to be combined with the optimization problem in eq. (23). A more elaborate

framework to perform this scheme falls outside the scope of this paper.

4.3. Eigenfunction cross-over

There exists no guarantee that the eigenfunctions ψi of Γx maintain the

same ordering for all values of L during the optimization procedure presented

in eq. (23). Evidently, this poses large problems for the used optimization

algorithms, as in this way discontinuities are introduced during optimization.

Therefore, it is proposed to use Modal Assurance Criterion (MAC)-based mode

tracking, as is commonly applied in the structural dynamics community to track

structural eigenmodes corresponding to resonance frequencies [50].

MAC-based mode tracking, as the name suggests, is inherently based on the

Modal Assurance Criterion (MAC) for comparing the similarity of two mode

shapes vectors. The MAC provides a measure for the degree to which two mode

shape vectors φi and φj are similar. It is defined as:

MAC(ψi,ψj) =
(ψTi Wψj)

2

(ψTi Wψi)(ψ
T
jWψj)

(25)

with W a weighting matrix, which can safely be chosen as unity in the case

of simulated eigenfunctions of a random field. When the considered eigenfunc-

tions are closely related, the MAC value tends to one. When different eigen-

functions of the same random field are considered, the MAC value is zero, as

they are orthogonal by definition (see eq. (3)). Values between zero and one

are obtained when either the same eigenfunction is considered between different

random fields, for instance when varying the correlation length in between the

predefined bounds. Using the properties of the eigenfunctions, as discussed in

Section 2, eq. (26) can be reduced to:

MAC(ψi,ψj) = (ψTi ψj)
2. (26)
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A first intuitive approach to reorder the eigenfunctions in this solution is to

sequentially pair the eigenfunctions with the highest MAC value to the reference

eigenfunctions, based on the MAC matrix. This however is generally not the

best solution, as the matching of the eigenfunctions corresponding to the lowest

eigenvalues can become very poor. The tracking of the eigenfunctions of the

random fields is therefore performed as follows:

1. Solve eq. (2) for a predefined correlation length L̂ 6∈ LI in order to obtain

a reference configuration λ̂, ψ̂. Taking L̂ 6∈ LI prevents ambiguous mixed

eigenfunctions that possibly complicate the eigenfunction matching

2. During the solution of eq. (23), perform following iteration:

(a) sort MAC values for each combination of ψi, ψj in decreasing order

for each ψi and construct index set Io;

(b) compute δi = MAC(ψi, ψIo(1)) −MAC(ψi, ψIo(2)), with δ ∈ [0, 1],

which is a measure for how clear an eigenfunction ψi is the best fit

for the corresponding reference eigenfunction ψ̂i;

(c) link ψi satisfying maxi(δi) to ψj satisfying maxjMAC(ψi, ψj);

(d) remove ψi and ψj from set of eigenfunctions to be reordered.

A more elaborate explanation of this algorithm, as well as an example of its

application is given by [51].

5. Case study 1: Linear oscillator with random excitation

5.1. Case presentation

This case study concerns a simple mass-spring-damper system, subjected to

a random excitation, as described by eq. (20). The mass m, damper c and spring

k are modeled as being deterministic, and their values are respectively taken to

be m = 1kg, c = 2N · s/m and k = 10N/m. The initial conditions are set as

x(0) = 0 m and ẋ = 0 m/s. The system is solved for x(t) for t ∈ [0, 20] s. The

excitation of the system is modeled as an imprecise Gaussian random field with

µIF = [0.5, 1.5] N , (σIF )2 = [
√

2, 2] N2 and LI = [2, 7.5] s, over a 1-dimensional

domain ΩF = [0, 20] s. Four types of covariance functions are considered:
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• exponential covariance:

ΓF = exp(
−|t2 − t1|

L
) (27)

with ti a time instance during the excitation.

• modified exponential covariance [52]:

ΓF = exp

(
−|t2 − t1|

L

)(
1 +
|t2 − t1|

L

)
(28)

• squared exponential covariance:

ΓF = exp(− (t2 − t1)2

L2
) (29)

• Whittle-Matérn covariance:

ΓF =
1

G(ν)2ν−1

(
√

2νd

)ν
Kν

(
√

2νd

)
(30)

with G(•) the gamma function, Kν the modified Bessel function of the

second kind, d = (t2− t1) the distance and ν a non-negative parameter of

the covariance. In this case, it is chosen as ν = 1.5.

5.2. Discretization of the imprecise random field

For each of the considered covariance functions, the effect of the interval on

the correlation length is studied. Hereto, the domain ΩF ⊂ R is discretized

into 100 equally spaced time intervals ΩF,e and F is considered constant over

each ΩF,e. The interval eigenvalue problem, as presented in eq. (2), is solved by

means of a Galerkin procedure assuming a single set of basis functions for ΩF

retaining the 9 first terms of the expansion.

Figure 3 illustrates the result of the optimization problem presented in eq.

(23). As can be noted, the procedure is capable of identifying those correlation

lengths in LI that produce a bound on
√
λiψi(r) that hold for the entire domain

Ω. Since a set of
√
λiψi(r) is used to bound the domain, rather than a single set

of bounds, it is ensured that the basis over Ω is still orthogonal, and hence, the

KL expansion retains its properties as explained in Section 2. Note that only
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the four first
√
λiψi(r) are shown for the sake of clarity. Therefore, it might

not be entirely clear that indeed each of the realizations is necessary to bound

all
√
λiψi(r) for each t ∈ Ωt.

Furthermore, the cardinality of L depends for the same correlation length

interval on the covariance function under consideration. For the exponential,

modified exponential, squared exponential and Whittle-Matérn covariance func-

tions with LI = [2, 7.5] s is respectively 6, 4, 7 and 10. This is directly linked to

the smoothness of the realizations of the underlying random field at the given

set of correlation lengths.

The effect of the width of the correlation length on the cardinality of L is

also illustrated in figure 4. In this figure, the upper bound L is kept constant

at 7.5 s, while the lower bound is gradually increased as

L = [2, 2.55, 3.11, 3.66, 4.22, 4.77, 5.33, 5.88, 6.44, 7, 7.2, 7.4, 7.45] s

in order to decrease the width of the interval. As this figure shows, in case

LI is wider, more terms are necessary to capture the non-monotonicity in the

KL basis. This is in fact logic since the interval on the correlation length both

affects the amplitude as the periodicity of the basis functions, as is illustrated

for the exponential kernel in figure 2, as well in figure 3 for all considered kernel

functions. Since the necessary number of deterministic model evaluations scales

exponentially with the cardinality of this set, this has large implications on the

computational cost of propagating the imprecise random field. Furthermore, it

may be noticed that the problem does not become monotonic, even when very

thin intervals on the correlation length are considered.

5.3. Propagation of the imprecise random field

As a final step in this illustrative example, the imprecise random field that is

discretized using the methodology presented in this paper is applied as a random

excitation to the linear oscillator. As stated in Section 4, the monotonicity of

the responses of a system depend on the quantity under consideration. This

condition is met for this specific model.
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(a) Exponential (b) Modified exponential

(c) Squared exponential
(d) Whittle-Matérn

Figure 3: Bounds on
√
λiψi(r), obtained by solving the optimization problem introduced in

eq. (23) in combination with Galerkin on four covariance functions on a 1-dimensional domain

ΩF = [0, 20] s discretized in 20 elements.

As a first example, consider the failure probability of this system as the

probability that the displacement of the mass exceeds a certain threshold xt

within the considered time. For the stochastic propagation, a Monte Carlo

simulation containing 5000 samples was used at each vertex ofH. The bounds on

the probability of failure are computed using the bounds on the basis functions,

as computed in the previous sections, and are compared with the bounds on the

probability of failure, computed using 150 samples of a Sobol sequence that was

generated in between the bounds of H, resulting in a total of 750, 0000 ODE
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Figure 4: Cardinality of the admissible set of correlation lengths as a function of the width of

the interval on LI .

solves. The same seed was used for the stochastic propagation of both sets.

The latter set is propagated to assert that indeed in this case the bounds on the

basis functions provide the analyst with the bounds on the failure probability.

Figure 5 shows the bounds on the probability of failure for different values

of xt. These bounds are computed by assessing the probability of failure given

each random time signal corresponding to a vertex of H. As can be noted,

propagating the bounds on the basis functions indeed bounds the probability of

failure of the linear oscillator at greatly reduced cost compared to propagating

the Sobol set. Indeed, in this case, only 60000 calls to the deterministic ODE

solver are necessary, as compared to 750, 000 for the propagation of the Sobol

set. Note that the lower bounds on the probability of failure are missing for high

threshold values. This is due to the rather limited set of Monte Carlo samples.

Furthermore, also in case the analyst is interested in the cumulative density

function of the response of the oscillator on a given time instant, the propaga-

tion of the parameters that yield the bounds of the basis functions bounds the

epistemic uncertainty of this response for this case study. This is illustrated

in figure 6. This figure shows p-boxes on displacement values of the oscilla-

tor, evaluated at t = 1 s, t = 4 s and t = 15 s, predicted by propagating the

bounds on the basis functions and fitting empirical cumulative density func-

tions to each of the random field propagations corresponding to a vertex of the

hyper-cubic uncertain hyper-parameter set. Also, for each realization of this
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Figure 5: Bounds on the probability of failure in case different threshold values are used.

hyper-parameter set, obtained by the Sobol sequence, an empirical cumulative

density function is fitted. As can be seen, the p-box that is obtained by propa-

gating the parameters that bound the basis functions of the imprecise random

field, also bounds the cumulative density functions in between those bounds.

This is a direct result from the fact that the model is a pure linear oscillator

subjected to a random excitation, and hence, is monotonic with respect to the

imprecise random field on the load. As such, the conditions for applying the

efficient propagation methodology are met.
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Figure 6: Bounds on the cumulative distribution of displacement values of the oscillator,

evaluated at t = 1 s, predicted by propagating the bounds on the basis functions, as well as

by propagating the Sobol set on the hyper-parameters.
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6. Case study 2: Vehicle suspension comfort estimation

The second case study is concerned with assessing the bounds on the comfort

of a vehicle suspension, given an imprecise random field description of the road

profile. Hereto, a quarter-car model is applied to model the car dynamics.

Also this system can be regarded as a linear transient dynamic system of the

form shown in eq. (20), and hence, the application of the method introduced in

Section 4 will yield the exact bounds on the responses of the model. For this

specific case, a state-space model is employed:

d

dt


xus − x0

ẋus

xs − xus
ẋs

 = A


xus − x0

ẋus

xs − xus
ẋs

+


−1

4ct
mus

0

0

 ẋ0 (31)

with xus the displacement of the unsprung mass, xs the displacement of the

sprung mass, •̇ the time derivative of •, mus and ms the unsprung and sprung

mass of a quarter of the car, cs and ct respectively the damping coefficients of

the suspension and tire, ks and kt respectively the stiffness coefficients of the

suspension and tire and the matrix A equal to:

A =


0 1 0 0

−4kt
mus

−4(cs+ct)
mus

4ks
mus

4cs
mus

0 −1 0 1

0 4cs
ms

−4ks
ms

−4cs
ms

 . (32)

The system is excited at the basis, with x0 modeling the vertical displacement

of the tire. The complete road profile is denoted x0(t). Four state variables

are considered, being respectively the tire deflection; the unsprung mass veloc-

ity; the suspension stroke, and sprung mass velocity. Typically, in the context

of assessing the comfort of a car, two parameters are of interest: the suspen-

sion stroke (i.e., the relative displacement of the car body with respect to the

unsprung mass) and the acceleration of the sprung mass (car body).

In this example, the suspension of the car is tuned for performance. The

parameters of the state-space model are listed in table 1. The dynamics of the
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car are simulated over a distance of 100 m, when the car is traveling at a speed of

10 m/s. The one-dimensional spatial domain is discretized into 200 equidistant

points and the time domain is discretized into time intervals of 0.005 s

Table 1: Parameters of the quarter car state-space model

Parameter Value

ms 325 kg

mus 65 kg

cs + ct 1898 N.s/m

kt 2325 N/m

ks 505 N/m

The uncertain road profile is modeled as a zero-mean imprecise Gaussian

random field with exponential covariance kernel. Imprecision is present in the

variance σ2 of the field, as well as in the correlation length L of the covariance

kernel. The former corresponds in this case to to the height of road roughness

values, whereas the latter corresponds to their spatial frequency. Specifically, the

intervals on the variance and correlation length are respectively set as (
√
σI)2 =

[0.0015; 0.003] m and LI = [2; 15] m.

A solution to the optimization problem introduced in eq. (23) indicates that

a set L with cardinality of 16 is necessary to capture all spatial variation. This

is a direct result from the comparably large interval on the correlation length

(see also figure 4 of case study 1). As such, 32 vertex combinations are needed

to propagate the epistemic uncertainty in the imprecise random field. The

stochastic propagation is performed by means of Monte Carlo simulation with

1000 samples. The results of this propagation are compared to a simulation

where the epistemic uncertainty is propagated using a Sobol set consisting of

500 samples in between the intervals on σI and LI .

Figure 7 illustrates those stochastic realizations of the Sobol set in the hyper-

parameters that yield an extremum in the acceleration profile of the sprung mass
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during the time interval [0, 2] s, as well as the extreme bounds [a(t); a(t)] that

are predicted by taking:

a(ti) = min a(ti | L ∪ T , θ) ∀ti ∈ [0, 2] s,∀θi, i = 1, . . . , N (33a)

a(ti) = max a(ti | L ∪ T , θ) ∀ti ∈ [0, 2] s,∀θi, i = 1, . . . , N (33b)

with L ∪ T denoting the vertex set of hyper-parameters that bound the basis

functions of the imprecise random field and N the number of stochastic real-

izations of the corresponding random field. As can be noted from this figure,

the bounds on the possible displacement profiles are captured perfectly by the

bounding of the basis functions at strongly reduced computational cost.

Figure 7: Bounds on the acceleration of the sprung mass, obtained by propagating the hyper-

parameter combinations that yield the bounds on the basis functions (in black), as well as

extremum-yielding realizations of the Sobol-set simulation (in red).

Figure 8 shows the fitted empirical cumulative distribution functions that

are obtained by only propagating those realizations in H that bound the basis

functions of the random field, as well as the result of propagating the Sobol set

at time instance t = 0.085 s and t = 1.5 s. It can be seen that propagating the

bounds on the basis functions indeed yields the exact bounds on the imprecise
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probabilistic description of the acceleration profile.

Figure 8: Bounds on the cumulative distribution function of the acceleration profile, as well

as the values that are obtained by propagating an imprecise random field by a Sobol set on

the hyper-parameters.

The interval on the maximal stroke during the simulated time period (i.e.,

the relative displacement between the sprung and unsprung mass of the car) is

[4.453e−05; 0.00901] m in case only those parameters inH that yield the bounds

on the basis functions are propagated, and [4.91e−05; 0.00794] m when a large-

space filling design between the intervals on those parameters is propagated. As

such, even when very large bounds are imposed on the uncertain road profile,

the proposed methodology is able to give an exact estimate of the bounds on

selected quantities of interest of the car dynamics.

From this example, it is clear that an analyst can efficiently compute the

bounds on possible comfort indicators of the car suspension, taking into account

a large set of possible road topologies. As such, in stead of starting from a

predefined road profile, the presented approach enables the assessment of the

suspension quality taking into account the impreciseness and randomness in the

definition of a road profile.
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7. Conclusions

The definition of covariance kernels and their parameters is often performed

based on limited data or the engineering judgement of the analyst. To over-

come this possible bias, this paper presents an approach to model and simulate

Gaussian random fields using the Karhunen-Loève expansion with imprecise co-

variance kernels. The problem is approached from an interval standpoint, and

an iterative procedure is proposed to generate a set of complete L2 bases that

effectively bound the realizations of the imprecise random field. A discussion

on when such approach is applicable is included, and specifically focussed on

transient dynamic problems. Also an approach to deal with potential eigen-

function cross-over, which inevitably occurs during the determination of the

bounds on the realizations, is adapted from structural dynamics and applied

to this context. A case study consisting of a linear oscillator, subjected to an

excitation that is modeled as a random field with imprecise covariance kernel is

included to illustrated the presented ideas. Furthermore, the dynamics of a car

suspension while driving over a road that is modeled as an imprecise random

field is studied. It is shown that the method is indeed capable of efficiently and

effectively computing the bounds on stochastic quantities of interest, such as

e.g., the probability of failure or cumulative density function of the response,

given the imprecision in the random field input. However, certain monotonicity

assumptions need to be fulfilled for the method to provide the exact bounds.

Future work will therefore focus on relaxing this need for complete monotonicity.
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