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COMPUTING GRADED BETTI TABLES OF TORIC SURFACES
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Abstract. We present various facts on the graded Betti table of a projectively

embedded toric surface, expressed in terms of the combinatorics of its defining
lattice polygon. These facts include explicit formulas for a number of entries,

as well as a lower bound on the length of the quadratic strand that we conjec-

ture to be sharp (and prove to be so in several special cases). We also present
an algorithm for determining the graded Betti table of a given toric surface by

explicitly computing its Koszul cohomology, and report on an implementation

in SageMath. It works well for ambient projective spaces of dimension up to
roughly 25, depending on the concrete combinatorics, although the current

implementation runs in finite characteristic only. As a main application we
obtain the graded Betti table of the Veronese surface ν6(P2) ⊆ P27 in charac-

teristic 40 009. This allows us to formulate precise conjectures predicting what

certain entries look like in the case of an arbitrary Veronese surface νd(P2).

1. Introduction

Let k be a field of characteristic 0 and let ∆ ⊆ R2 be a lattice polygon, by which
we mean the convex hull of a finite number of points of the standard lattice Z2. We
write ∆(1) for the convex hull of the lattice points in the interior of ∆. Assume that
∆ is two-dimensional, write N∆ = |∆ ∩ Z2|, and let S∆ = k[Xi,j | (i, j) ∈ ∆ ∩ Z2],
so that PN∆−1 = ProjS∆. The toric surface over k associated with ∆ is the Zariski
closure of the image of

ϕ∆ : (k∗)2 ↪→ PN∆−1 : (a, b) 7→ (aibj)(i,j)∈∆∩Z2 .

We denote it by X∆ and its ideal by I∆. It was proved by Koelman [31] that I∆
is generated by quadratic and cubic binomials, where quadrics suffice if and only if
|∂∆ ∩ Z2| > 3. Here ∂∆ denotes the boundary of ∆.

Our object of interest is the graded Betti table of X∆, which gathers the expo-
nents appearing in a minimal free resolution

· · · →
⊕
q≥2

S∆(−q)β2,q →
⊕
q≥1

S∆(−q)β1,q →
⊕
q≥0

S∆(−q)β0,q → S∆�I∆ → 0

of the homogeneous coordinate ring of X∆ as a graded S∆-module, obtained by
taking syzygies. Traditionally one writes βp,p+q in the pth column and the qth row.
Alternatively and often more conveniently, the Betti numbers βp,p+q are the dimen-
sions of the Koszul cohomology spaces Kp,q(X∆,O(1)), which will be described in
detail in Section 2.2. The graded Betti table of X∆ depends on the unimodular
equivalence class of ∆ only (see Section 2.1 for a precise definition of unimodular
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equivalence, which will be denoted by ∼=) and is known1 by specialists to be of the
form

(1.1)

0 1 2 3 . . . N∆ − 4 N∆ − 3

0 1 0 0 0 . . . 0 0

1 0 b1 b2 b3 . . . bN∆−4 bN∆−3

2 0 cN∆−3 cN∆−4 cN∆−5 . . . c2 c1

,

where omitted entries are understood to be 0, and all c`’s vanish if and only if
∆(1) = ∅. It is a standard observation that the antidiagonal differences b`−cN∆−1−`
can be told from the Hilbert function of X∆. As explained in Section 2.3 this can
be made explicit as follows: for ` = 1, . . . , N∆ − 2 one has

(1.2) b` − cN∆−1−` = `

(
N∆ − 1

`+ 1

)
− 2

(
N∆ − 3

`− 1

)
vol(∆)

where vol denotes the Euclidean volume and it is understood that bN∆−2 = cN∆−2 =
0.

In this paper, we study how the entries of (1.1) relate to the combinatorics of ∆.
The main result available in the existing literature is a formula due to Hering [29]
and Schenck [44], which expresses the number of vanishing c`’s in terms of the
number of lattice points on the boundary of ∆; see formula (1.3) below for a precise
statement. The goal of this paper is to add new such entries to this dictionary. Our
methods are elementary, but rely on an interplay between algebra, combinatorics,
geometry, and explicit computations in SageMath [43]. There are three families
of unimodular equivalence classes which play an exceptional role throughout this
paper: these are represented by the polygons dΣ, dΥ and Υd depicted in Figure 1,
where d ranges over the positive integers.

(0, 0) (d, 0)

(0, d)

dΣ

lw(dΣ) = d

(dΣ)(1) ∼= (d− 3)Σ

(−d,−d)

(d, 0)

(0, d)

dΥ

lw(dΥ) = 2d

(dΥ)(1) ∼= (d− 1)Υ

(−1,−1)

Υd

lw(Υd) = d + 1

Υ
(1)
d
∼= (d− 1)Σ

(0, d)

(d, 0)

Figure 1. Three recurring families of polygons, along with some com-
binatorial properties. Here lw denotes the lattice width (see Section 2.1

for a definition). The formula for (dΣ)(1) assumes d ≥ 3.

1The main inputs are that X∆ is arithmetically Cohen–Macaulay [14, Ex. 9.2.8] and projec-

tively normal [14, Cor. 2.2.13 & Thm. 2.4.1]. From this one finds that the last non-zero column has

index N∆− 3 by Auslander–Buchsbaum [18, Thm. A.2.15] and that the index of the last non-zero
row equals regX∆ − 1 [18, p. 55], an explicit formula for which can be derived from [18, Cor. 4.8]

or more directly from [29, Prop. IV.5]; see also [32, §0].
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1.1. Explicit determination of eight entries. As a first contribution we present
explicit formulas for eight entries of the graded Betti table:

Theorem 1.1. On the cubic strand (i.e., the row q = 2) one has

c1 = N∆(1) , c2 =

{
(N∆ − 3)(N∆(1) − 1) if ∆(1) 6= ∅,
0 if ∆(1) = ∅,

cN∆−3 =


0 if |∂∆ ∩ Z2| > 3,

1 if |∂∆ ∩ Z2| = 3 and dim ∆(1) = 2,

N∆ − 3 if |∂∆ ∩ Z2| = 3 and dim ∆(1) ≤ 1,

and if ∆ 6∼= Σ then one has

c3 = (N∆ − 4)
(

(N∆ − 3) vol(∆)− (N∆−1)(N∆−2)
2 +B∆

)
where

B∆ =


0 if dim ∆(1) = 2, ∆ 6∼= Υ2,

1 if dim ∆(1) = 1 or ∆ ∼= Υ2,

(N∆ − 1)/2 if dim ∆(1) = 0,

N∆ − 2 if ∆(1) = ∅.

On the quadratic strand (i.e., the row q = 1) one has

b1 =
(
N∆−1

2

)
− 2 vol(∆), b2 = 2

(
N∆−1

3

)
− 2(N∆ − 3) vol(∆) + cN∆−3,

bN∆−3 =

{
0 if ∆(1) 6= ∅,
N∆ − 3 if ∆(1) = ∅,

and if ∆ 6∼= Σ then one has bN∆−4 = (N∆ − 4)B∆.

Of course, thanks to our formula (1.2) for the antidiagonal differences, the formulas
for b1, b2 and bN∆−4, bN∆−3 can be seen as mere consequences to those for c1,
c2, c3 and cN∆−3, and vice versa (modulo some rewriting using Pick’s theorem).
Similarly, in the range where we can apply the vanishing statements implied by
Theorem 1.3 and Hering and Schenck’s formula (1.3) below, we can use (1.2) to
give explicit formulas for several more entries. E.g., if 1 ≤ ` ≤ |∂∆ ∩ Z2| − 2 then
b` just equals the right-hand side of (1.2).

Remark 1.2. Note that if one fixes a value of ` ∈ Z≥1 and a two-dimensional
lattice polygon ∆ along with all its dilations d∆ for increasing values of d, then
because |∂(d∆) ∩ Z2| tends to infinity, eventually b` will be equal to the right-
hand side of (1.2). Using Pick’s theorem it is easy to rewrite this right-hand side
as a polynomial expression in d for large enough values of d, thereby confirming
a special case of [45, Thm. 1.1]. The same remark applies to the c`’s, now using
Theorem 4.1 along with Theorem 1.3 applied to dΣ, a unimodular copy of which is
always contained in d∆.

1.2. Length of the quadratic strand. A second goal of this paper is to provide
a combinatorial interpretation for the number of zeroes at the end of the quadratic
strand. Unfortunately we are unable to provide a definite answer, but we present
the following partial result, which involves the lattice width lw(∆) of ∆. This is a
well-known combinatorial invariant whose definition will be recalled in Section 2.1.

Theorem 1.3. If ∆ 6∼= Σ,Υ then one has
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min{ ` | bN∆−` 6= 0 } ≤


lw(∆) + 1 if ∆ ∼= dΣ for some d ≥ 2,

lw(∆) + 1 if ∆ ∼= Υd for some d ≥ 2,

lw(∆) + 1 if ∆ ∼= 2Υ,

lw(∆) + 2 in all other cases.

Moreover:

• If N∆ ≤ 32 then the bound is met.
• If a certain non-exceptional lattice polygon ∆ (i.e. not of the form dΣ,Υd, 2Υ)

meets the bound then so does every lattice polygon containing ∆ and having
the same lattice width. In particular if lw(∆) ≤ 6 then the bound is met.
† If ∆ = Γ(1) for some larger lattice polygon Γ and if Green’s canonical

syzygy conjecture holds for smooth curves on X∆ (known to be true if
H0(X∆,−KX∆) ≥ 2) then the bound is met.

Here we note that the excluded cases ∆ ∼= Σ,Υ are pathological: the Betti tables
are

0

0 1

1 0

2 0

resp.

0 1

0 1 0

1 0 0

2 0 1

,

i.e., the entire quadratic strands are zero.
As will be explained in Section 3.1, the upper bound min{ ` | bN∆−` 6= 0 } ≤

lw(∆)+2 follows from the fact that our toric surface X∆ is naturally contained in a
rational normal scroll of dimension lw(∆)+1, which is known to have non-zero linear
syzygies up to column p = N∆ − lw(∆) − 2 by exactness of the Eagon-Northcott
complex, see e.g. [18, Cor. A2.62]. Then also X∆ must have non-zero linear syzygies
up to that point, yielding the desired bound. In the exceptional cases dΣ, Υd and
2Υ we can prove the sharper bound min{ ` | bN∆−` 6= 0 } ≤ lw(∆)+1 by following a
slightly different argument, using explicit computations in Koszul cohomology, for
the details of which we refer to Section 3.2.

Sharpness in the cases where N∆ ≤ 32 is obtained by explicit verification, based
on the data from [7] and using the algorithm described in Section 7; this covers
more than half a million unimodular equivalence classes of small lattice polygons.
Sharpness in the cases where lw(∆) ≤ 6 relies on this exhaustive verification, along
with the classification of inclusion-minimal lattice polygons having a given lattice
width, which is elaborated in [13]. Our third sharpness result, marked with a dagger
symbol †, will not be addressed in the current paper, even though it is actually the
reason why we came up with this research question in the first place. We note
that to date, Green’s canonical syzygy conjecture [25] for curves in toric surfaces
remains open in general, but the cases where H0(X∆,−KX∆) ≥ 2 are covered
by recent work of Lelli-Chiesa [33], which allows one to deduce sharpness for all
multiples of Υ, for all multiples of Σ, for all polygons [0, a] × [0, b] with a, b ≥ 1,
and so on. The details of this are discussed in a subsequent paper [12], which is
devoted to syzygies of curves in toric surfaces; for the sake of conciseness we have
chosen to keep the present document as curve-free as possible. Finally, we know
of a few further sporadic cases where the bound is met, for which we refer to the
Ph.D. thesis of the fourth listed author [34, p. 43]. These cases cover all polygons
of the form Υd, allowing us to conclude that sharpness holds for each of the three
(families of) exceptional lattice polygons.
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Remark 1.4. Besides with Green’s canonical syzygy conjecture, there is also a
connection with Green and Lazarsfeld’s gonality conjecture [26], a proof of which
was recently found by Ein and Lazarsfeld [17]. Indeed, because S∆/I∆ is Cohen-
Macaulay one can view (1.1) as the graded Betti table of a generic hyperplane
section of X∆, which is a curve of genus N∆(1) that is embedded by a linear system
of degree 2 vol(∆) and rank N∆ − 2. By [11, Cor. 6.2] the gonality of this curve
equals lw(∆), unless ∆ ∼= 2Υ, dΣ for some d ≥ 2 in which case it equals lw(∆)− 1.
Assuming that the degree 2 vol(∆) is ‘sufficiently large’ when compared to the
genus, the gonality conjecture predicts that the bound stated in Theorem 1.3 is
sharp. This is apart from the cases where ∆ ∼= Υd for some d ≥ 2, where the
prediction is off by 1, which just means that 2 vol(∆) = 2 vol(Υd) is not large
enough here, see [8]. But in the other cases one sees that the gonality conjecture
is potentially useful for establishing further sharpness results. Unfortunately the
best currently known quantifications of ‘sufficiently large’ are inadequate for this
purpose. Indeed, the leading result is Rathmann’s bound [41], which in our case
reads that 2 vol(∆) ≥ 4N∆(1) − 3; here it is assumed that N∆(1) ≥ 2. By Pick’s
theorem Rathmann’s bound is equivalent to |∂∆ ∩ Z2| ≥ 2N∆(1) − 1, which by a
result of Haase and Schicho [28, Lem. 11] is only possible when dim ∆(1) ≤ 1 or
N∆ ≤ 19, and in both cases we already know that sharpness holds. But in view
of recent work by Farkas and Kemeny [20] it is to be expected that Rathmann’s
bound will be improved at some point in the future. Such an event would shed a
new light on this discussion.

In fact we view the above sharpness results as evidence towards our conjecture
that the upper bound stated in Theorem 1.3 is met for all two-dimensional lattice
polygons ∆:

Conjecture 1.5. If ∆ 6∼= Σ,Υ then one has min{ ` | bN∆−` 6= 0 } = lw(∆) + 2,
unless

∆ ∼= dΣ for some d ≥ 2 or ∆ ∼= Υd for some d ≥ 2 or ∆ ∼= 2Υ

in which case it is lw(∆) + 1.

In other words we believe that the number of zeroes at the end of the quadratic
strand equals lw(∆) − 1, unless ∆ is of the form dΣ, Υd or 2Υ, in which case it
equals lw(∆) − 2. An informal way of reading Conjecture 1.5 is that the bound
coming from the natural ambient rational normal scroll is usually sharp. This is in
the philosophy of Green’s Kp,1 theorem [1, Thm. 3.31] that towards the end of the
resolution, ‘most’ linear syzygies must come from the smallest ambient variety of
minimal degree, in the sense of [19].

Conjecture 1.5 can be seen as a dual statement to the formula

(1.3) min{ ` | cN∆−` 6= 0 } = |∂∆ ∩ Z2|
describing the number of leading zeroes on the cubic strand; here we assume ∆(1) 6=
∅, so that the minimum is well-defined. Note that this formula can be viewed as
a vast generalization of Koelman’s aforementioned result on the degrees of the
generators of I∆. A proof of (1.3) can be found in the Ph.D. thesis of Hering
[29, Thm. IV.20], who built on an observation due to Schenck [44] and invoked a
theorem of Gallego–Purnaprajna [23, Thm. 1.3]. Also note that Theorem 1.3 and
formula (1.3) together imply that if one considers all dilations d∆ of a given two-
dimensional lattice polygon ∆, then the number of a`’s and b`’s that vanish is in
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O(d). Indeed, we clearly have |∂(d∆) ∩ Z2| ∈ O(d) while also lw(d∆) ∈ O(d) by a
result of Fejes Tóth and Makai Jr. [21]. Since the length of the range 1, . . . , N∆− 3
is in Θ(d2), this means that asymptotically for d → ∞ a proportion of 1 of the
relevant Betti numbers are non-vanishing, thereby confirming a result by Ein and
Lazarsfeld on asymptotic syzygies [16, Thm. A] in the case of toric surfaces.

1.3. Algorithmic determination of the graded Betti table. Finally, our third
contribution is an algorithm for determining the graded Betti table of X∆ ⊆ PN∆−1

upon input of a lattice polygon ∆, by explicitly computing its Koszul cohomology.
The details can be found in Section 7, but in a nutshell the ingredients are as
follows. The most dramatic speed-up comes from incorporating the torus action,
which decomposes the cohomology spaces into eigenspaces, one for each bidegree
(a, b) ∈ Z2, all but finitely many of which are trivial. Another important speed-
up comes from toric Serre duality, enabling a meet-in-the-middle approach where
one fills the graded Betti table starting from the left and from the right simulta-
neously. A third speed-up comes from the explicit formula for the antidiagonal
differences given in (1.2), thanks to which it suffices to determine half of the graded
Betti table only. Moreover if

∣∣∂∆ ∩ Z2
∣∣ is large (which is particularly the case for

the Veronese polygons dΣ) then many of these entries come for free using Hering
and Schenck’s formula (1.3). A fourth theoretical ingredient is a combinatorial
description of certain exact subcomplexes of the Koszul complex that can be quo-
tiented out, resulting in smaller vector spaces, thereby making the linear algebra
more manageable. Because this seems interesting in its own right, we have devoted
the separate Section 6 to it. Final ingredients include sparse linear algebra, using
symmetries, and working in finite characteristic. More precisely, most of the data
gathered in this article, some of which can be found in Appendix A, are obtained
by computing modulo 40 009, the smallest prime number larger than 40 000.

By semi-continuity the entries of the graded Betti table cannot decrease upon
reduction of X∆ modulo some prime number. Therefore working in finite charac-
teristic is fine for proving that certain entries are zero, as is done in our partial
verification of Conjecture 1.5. But entries that are found to be non-zero might a
priori be too large, even though we expect this to be a very rare event (see Section 7
for an example). Therefore the non-zero entries of some of the graded Betti tables
given in Appendix A are conjectural. For technical reasons our current implemen-
tation does not straightforwardly adapt to characteristic zero, but we are working
on fixing this issue. Although it would come at the cost of some efficiency, this
should enable us to confirm all of the data from Appendix A in characteristic zero.

In view of the wide interest in syzygies of Veronese modules [5, 15, 24, 37, 39,
40, 42], the most interesting new graded Betti table that we obtain is that of
X6Σ ⊆ P27, i.e. the image of P2 under the 6-uple embedding ν6, in characteristic
40 009. Up to 5Σ this data was recently gathered (in characteristic zero) by Greco
and Martino [24]. An extrapolating glance at these Betti tables naturally leads to
the following conjecture:

Conjecture 1.6. Consider the graded Betti table of the d-fold Veronese surface
XdΣ. If d ≥ 2 then the last non-zero entry on the quadratic strand is

bd(d+1)/2 =
d3(d2 − 1)

8
,
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while if d ≥ 3 then the first non-zero entry on the cubic strand is

cg =

(
N(dΣ)(1) + 8

9

)
where N(dΣ)(1) = |(dΣ)(1) ∩ Z2| = (d− 1)(d− 2)/2.

In fact, about a year after we submitted the current paper, a generalization of
the latter statement was proven by the fourth listed author [35], while the former
statement has been put in the broader context of Schur functors by Bruce, Erman,
Goldstein and Yang [4, Conj. 6.6].
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the Flemish Government — department EWI. After submitting a first version of
this paper to arXiv, we learned that a group of researchers at the University of
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although here too the result is conjectural, using linear algebra over the reals rather
than mod p. We thank Juliette Bruce for getting in touch with us on this, and for
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2. Preliminaries and first facts

2.1. Combinatorial notions. If ∆ and ∆′ are lattice polygons, we say that they
are unimodularly equivalent (denoted by ∆ ∼= ∆′) if they are obtained from one
another using a transformation from the affine group AGL2(Z), that is a map of
the form

R2 → R2 : (x y) 7→ (x y)A+ (a b) with A ∈ GL2(Z) and a, b ∈ Z.

Unimodularly equivalent polygons yield projectively equivalent toric surfaces, which
have the same graded Betti table. So we are interested in lattice polygons up to
unimodular equivalence only.

The central combinatorial notion of this article is the lattice width. If ∆ is
a non-empty lattice polygon, then the lattice width of ∆, denoted lw(∆), is the
minimal height d of a horizontal strip R × [0, d] in which ∆ can be mapped using
a unimodular transformation. If ∆ = ∅ then we define lw(∆) = −1. Remark that
lw(∆) = 0 if and only if ∆ is zero- or one-dimensional. For the sake of example, the
lattice widths associated with our three recurring families of lattice polygons can
be found in Figure 1. In general, the lattice width can be computed recursively;
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see [9, Thm. 4] or [38, Thm. 13]: if ∆ is two-dimensional then

(2.1) lw(∆) =

{
lw(∆(1)) + 3 if ∆ ∼= dΣ for some d ≥ 2,

lw(∆(1)) + 2 if not.

2.2. Koszul cohomology of toric surfaces. As is well-known, instead of using
syzygies, the entries of the graded Betti table can also be defined as dimensions of
Koszul cohomology spaces, which we now explicitly describe in the specific case of
toric surfaces. We refer to the book by Aprodu and Nagel [1] for an introduction to
Koszul cohomology, and to the books by Fulton [22] and Cox, Little and Schenck [14]
for more background on toric geometry.

For a lattice polygon ∆ we write V∆ for the space of Laurent polynomials∑
(i,j)∈∆∩Z2

ci,jx
iyj ∈ k[x±1, y±1],

which we view as functions on X∆ through ϕ∆. This equals the space H0(X∆, L∆)
of global sections of O(L∆), where L∆ is some very ample torus-invariant divisor
on X∆ satisfying O(L∆) ∼= O(1). More generally Vq∆ = H0(X∆, qL∆) for each
q ≥ 0.

Then the entry in the pth column and the qth row of the graded Betti table of
X∆ is the dimension of the Koszul cohomology space Kp,q(X∆, L∆), defined as the
cohomology in the middle of∧p+1

H0(X∆, L∆)⊗H0(X∆, (q − 1)L∆)
δ−→
∧p

H0(X∆, L∆)⊗H0(X∆, qL∆)

δ′−→
∧p−1

H0(X∆, L∆)⊗H0(X∆, (q + 1)L∆)

which can be rewritten as∧p+1
V∆ ⊗ V(q−1)∆

δ−→
∧p

V∆ ⊗ Vq∆
δ′−→
∧p−1

V∆ ⊗ V(q+1)∆.

Here the coboundary maps δ and δ′ are defined by

(2.2) v1 ∧ v2 ∧ v3 ∧ v4 ∧ · · · ⊗w 7→
∑

(−1)sv1 ∧ v2 ∧ v3 ∧ v4 ∧ · · · ∧ v̂s ∧ · · · ⊗ vsw

where s ranges from 1 to p+ 1 resp. 1 to p, and v̂s means that vs is being omitted.
In particular one sees that b` is the dimension of the cohomology in the middle of

(2.3)
∧`+1

V∆
δ−→
∧`

V∆ ⊗ V∆
δ′−→
∧`−1

V∆ ⊗ V2∆,

where we note that the left map is always injective. On the other hand c` is the
dimension of the cohomology in the middle of∧N∆−1−`

V∆ ⊗ V∆
δ−→
∧N∆−2−`

V∆ ⊗ V2∆
δ′−→
∧N∆−3−`

V∆ ⊗ V3∆,

for all ` = 1, . . . , N∆ − 3.

Duality. A more concise description of the c`’s is obtained using Serre duality.
Because the version that we will invoke requires us to work with smooth surfaces,
we consider a toric resolution of singularities X → X∆ and let L be the pullback of
L∆. Then L may no longer be very ample, but it remains globally generated by the
same global sections V∆. Let K be the canonical divisor on X obtained by taking
minus the sum of all torus-invariant prime divisors. By Demazure vanishing one
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has H1(X, qL) = 0 for all q ≥ 0, so that we can apply the duality formula from [1,
Thm. 2.25], which in our case reads

Kp,q(X,L)∨ ∼= KN∆−3−p,3−q(X;K,L),

where the attribute ‘;K’ denotes Koszul cohomology twisted by K (which is defined
as before, except that each appearance of ·⊗H0(X, qL) is replaced by ·⊗H0(X, qL+
K)). We conclude that

b` = dimK`,1(X∆, L∆) = dimK`,1(X,L) = dimKN∆−3−`,2(X;K,L),

c` = dimKN∆−2−`,2(X∆, L∆) = dimKN∆−2−`,2(X,L) = dimK`−1,1(X;K,L),

again for all ` = 1, . . . , N∆− 3. Using that H0(X, qL+K) = V(q∆)(1) for q ≥ 1 and

that H0(X,K) = 0 we find that b` is the cohomology in the middle of

(2.4)
∧N∆−2−`

V∆⊗V∆(1)
δ−→
∧N∆−3−`

V∆⊗V(2∆)(1)
δ′−→
∧N∆−4−`

V∆⊗V(3∆)(1)

and, more interestingly, that c` is the dimension of the kernel of

(2.5)
∧`−1

V∆ ⊗ V∆(1)
δ′−→
∧`−2

V∆ ⊗ V(2∆)(1) .

For example this gives a quick way of seeing that c1 = dim ker(V∆(1) → 0) = N∆(1) .

Bigrading. For (a, b) ∈ Z2 we call an element of∧p
V∆ ⊗ Vq∆

homogeneous of bidegree (a, b) if it is a k-linear combination of elementary tensors
of the form

xi1yj1 ∧ · · · ∧ xipyjp ⊗ xi
′
yj

′

satisfying (i1, j1) + · · · + (ip, jp) + (i′, j′) = (a, b). The coboundary morphisms δ
and δ′ send homogeneous elements to homogeneous elements of the same bidegree,
i.e. the Koszul complex is naturally bigraded. Thus the Koszul cohomology spaces
decompose as

Kp,q(X,L) =
⊕

(a,b)∈Z2

K(a,b)
p,q (X,L)

where in fact it suffices to let (a, b) range over (p+ q)∆ ∩ Z2. Similarly, we have a
decomposition of the twisted cohomology spaces

Kp,q(X;K,L) =
⊕

(a,b)∈Z2

K(a,b)
p,q (X;K,L)

where now (a, b) in fact runs over
(
p∆ + (q∆)(1)

)
∩ Z2. In particular also the b`’s

and the c`’s, and as a matter of fact the entire graded Betti table, decompose as
sums of smaller instances. We will write

b`,(a,b) = dimK
(a,b)
`,1 (X,L), b∨`,(a,b) = dimK

(a,b)
N∆−3−`,2(X;K,L),

c`,(a,b) = dimK
(a,b)
N∆−2−`,2(X,L), c∨`,(a,b) = dimK

(a,b)
`−1,1(X;K,L),

so that

b` =
∑

(a,b)∈Z2

b`,(a,b) =
∑

(a,b)∈Z2

b∨`,(a,b) and c` =
∑

(a,b)∈Z2

c`,(a,b) =
∑

(a,b)∈Z2

c∨`,(a,b).
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Example 2.1. For ∆ = 4Σ one can compute that c3 = dimK2,1(X;K,L) = 55,
which decomposes as the sum of the following numbers.

0

0 0

0 1 0

0 1 1 0

0 2 2 2 0

0 2 3 3 2 0

0 2 3 4 3 2 0

0 1 2 3 3 2 1 0

0 1 1 2 2 2 1 1 0

0 0 0 0 0 0 0 0 0 0

Here the entry in the ath column (counting from the left) and the bth row (counting
from the bottom) is the dimension c∨3,(a,b) of the degree (a, b) part. In other words

we think of the above triangle as being in natural correspondence with the lattice
points (a, b) inside 2∆ + ∆(1) = (1, 1) + 9Σ.

Duality versus bigrading. An interesting observation that came out of a joint dis-
cussion with Milena Hering is that duality respects the bigrading along the rule

K(a,b)
p,q (X,L)∨ ∼= K

σ∆−(a,b)
N∆−3−p,3−q(X;K,L),

where σ∆ denotes the sum of all lattice points in ∆. We postpone a proof to [2],
but note that taking dimensions yields the formulas

(2.6) b`,(a,b) = b∨`,σ∆−(a,b) and c`,(a,b) = c∨`,σ∆−(a,b).

These imply that Kp,q(X,L) is actually supported on the degrees (a, b) that are
contained in

(p+ q)∆ ∩
(
σ∆ − (N∆ − 3− p)∆− ((3− q)∆)(1)

)
,

and similarly that Kp,q(X;K,L) vanishes outside(
p∆ + (q∆)(1)

)
∩ (σ∆ − (N∆ − p− q)∆) .

The image below illustrates this for ∆ = 2Υ, p = 4, q = 1, where Kp,q(X;K,L) is
supported on 9Υ ∩ (−10Υ):

(−10, 10)

(10, 0)

(0, 10)

(9, 9)

(−9, 0)

(0,−9)

In principle this could be used to speed up our computation of the graded Betti
table, because it says that certain bidegrees can be omitted. Unfortunately the
vanishing happens in a range of bidegrees that is dealt with relatively easily anyway.
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Therefore, the computational advantage is negligible and we will not use this in our
algorithm.

2.3. Antidiagonal differences. We now prove the formula (1.2) from the intro-
duction, giving a closed expression for the antidiagonal differences b` − cN∆−1−`.
The default way to proceed would be to use that the Hilbert polynomial PX∆

(d) of
X∆ is given by the Ehrhart polynomial

(2.7) |d∆ ∩ Z2| = vol(∆)d2 +
|∂∆ ∩ Z2|

2
d+ 1.

We will give a slightly more convenient argument using Koszul cohomology.

Proof of (1.2). The proof relies on three elementary facts:

(i) Pick’s theorem,
(ii) for any bounded complex of finite-dimensional vector spaces Vj one has∑

j

(−1)j dimVj =
∑
j

(−1)j dimHj ,

where Hj is the cohomology of the complex at place j,
(iii) for all n, k,N ≥ 0 we have

∑n
j=0(−1)j

(
N
n−j
)(
j
k

)
= (−1)k

(
N−k−1
n−k

)
.

We compute

b` − cN∆−1−` =

`+1∑
j=0

(−1)j+1 dimK`−j+1,j(X∆, L∆)

(ii)
=

`+1∑
j=0

(−1)j+1 dim

(∧`+1−j
V∆ ⊗ Vj∆

)

=

`+1∑
j=0

(−1)j+1

(
N∆

`+ 1− j

)
Nj∆

(i)
= −

`+1∑
j=0

(−1)j
(

N∆

`+ 1− j

)
(j2 vol(∆) +

j

2

∣∣∂∆ ∩ Z2
∣∣+ 1)

(i)
= −

`+1∑
j=0

(−1)j
(

N∆

`+ 1− j

)
(j2 vol(∆) + j(N∆ − vol(∆)− 1) + 1)

= −
`+1∑
j=0

(−1)j
(

N∆

`+ 1− j

)(
2 vol(∆)

(
j

2

)
+ (N∆ − 1)

(
j

1

)
+

(
j

0

))
(iii)
= −2 vol(∆)

(
N∆ − 3

`− 1

)
+ (N∆ − 1)

(
N∆ − 2

`

)
−
(
N∆ − 1

`+ 1

)
= −2 vol(∆)

(
N∆ − 3

`− 1

)
+ `

(
N∆ − 1

`+ 1

)
,

which equals the desired expression. �

We note the following corollary to (1.2):
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Corollary 2.2. For all ` one has that b` ≥ cN∆−1−` if and only if

` ≤ (N∆ − 1)(N∆ − 2)

2 vol(∆)
− 1.

Remark 2.3. Note that 2 vol(∆) = 2N∆− |∂∆∩Z2| − 2 by Pick’s theorem. This is
typically ≈ 2N∆, so the point where the c`’s take over from the b`’s is about halfway
the Betti table. If |∂∆∩Z2| is relatively large then 2 vol(∆) becomes smaller when
compared to N∆, and the takeover point is shifted to the right.

2.4. Polygons without interior. The polygons for which ∆(1) = ∅ have the
following geometric characterization:

Lemma 2.4. The surface X∆ ⊆ PN∆−1 is a variety of minimal degree if and only
if ∆(1) = ∅.

Proof. By definition X∆ has minimal degree if and only if degX∆ = 1+codimX∆,
see e.g. [19]. By the above formula (2.7) for the Hilbert polynomial this can be
rewritten as

2 vol(∆) = N∆ − 2

which by Pick’s theorem holds if and only if ∆(1) = ∅. �

It follows that if ∆(1) = ∅ then the graded Betti table of X∆ is of the form
(2.8)

0 1 2 3 . . . N∆ − 4 N∆ − 3

0 1 0 0 0 . . . 0 0

1 0
(
N∆−2

2

)
2
(
N∆−2

3

)
3
(
N∆−2

4

)
. . . (N∆ − 4)

(
N∆−2
N∆−3

)
(N∆ − 3)

(
N∆−2
N∆−2

)
,

because the Eagon–Northcott complex is exact in this case; see for instance [18,
App. A2H]. It also follows that if ∆(1) 6= ∅ then bN∆−3 = 0; see [1, Thm. 3.31(i)].
From a combinatorial viewpoint the two-dimensional lattice polygons ∆ for which
∆(1) = ∅ were classified in [30, Ch. 4]: up to unimodular equivalence they are 2Σ
and the Lawrence prisms

(0, 0) (a, 0)

(b, 1)(0, 1)

for integers a ≥ b ≥ 0 with a > 0.

The respective corresponding X∆’s are the Veronese surface in P5 and the rational
normal surface scrolls of type (a, b). One thus sees that Theorem 1.3 and Conjec-
ture 1.5 are true if ∆(1) = ∅.

3. Bound on the length of the quadratic strand

This section is devoted to a proof of the upper bound stated in Theorem 1.3.

3.1. Bound through rational normal scrolls. Let ∆ ⊆ R2 be a two-dimensional
lattice polygon and apply a unimodular transformation in order to have ∆ ⊆ R ×
[0, d] with d = lw(∆). For each j = 0, . . . , d consider

mj = min{a | (a, j) ∈ ∆ ∩ Z2} and Mj = max{a | (a, j) ∈ ∆ ∩ Z2}.
These are well-defined, i.e., on each height j there is at least one lattice point in ∆,
see for instance [11, Lem. 5.2]. Recall that X∆ is the Zariski closure of the image of

ϕ∆ : (k∗)2 ↪→ PN∆−1 : (α, β) 7→ (αm0β0, αm0+1β0, . . . , αM0β0,
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αm1β1, αm1+1β1, . . . , αM1β1,

...

αmdβd, αmd+1βd, . . . , αMdβd).

It is clear that this is contained in the Zariski closure of the image of

(k∗)1+d ↪→ PN∆−1 : (α, β1, . . . , βd) 7→ (αm0β0, α
m0+1β0, . . . , α

M0β0,

αm1β1, α
m1+1β1, . . . , α

M1β1,

...

αmdβd, α
md+1βd, . . . , α

Mdβd)

where β0 = 1. This is a (d + 1)-dimensional rational normal scroll, spanned by
rational normal curves of degrees M0−m0, M1−m1, . . . , Md−md (some of these
degrees may be zero, in which case the ‘curve’ is actually a point). Its ideal is
obtained from I∆ by restricting to those binomial generators that remain valid if
one forgets about the vertical structure of ∆. More precisely, we associate to ∆ a
lattice polytope ∆′ ⊆ Rd+1 by considering for each (a, b) ∈ ∆∩Z2 the lattice point

(a, 0, 0, . . . , 1, . . . , 0), where the 1 is in the (b+ 1)st place (omitted if b = 0),

and taking the convex hull. For example:

(0, 0) (6, 0)

(7, 1)

(5, 2)(1, 2)

(0, 1) ∆

(0, 0, 0) (6, 0, 0)

(7, 1, 0)(0, 1, 0)

(5, 0, 1)(1, 0, 1)

∆′

Then our scroll is just the toric variety X∆′ associated with ∆′; this is unambigu-
ously defined because ∆′ is normal, as is easily seen using [6, Prop. 1.2.2]. We
denote its defining ideal viewed inside I∆ ⊆ S∆ by I∆′ .

As a generalization of (2.8), it is known that a minimal free resolution of the
coordinate ring S∆/I∆′ of a rational normal scroll is given by the Eagon–Northcott
complex, from which it follows that the graded Betti table of X∆′ has the following
shape:

0 1 2 3 . . . f − 2 f − 1

0 1 0 0 0 . . . 0 0

1 0
(
f
2

)
2
(
f
3

)
3
(
f
4

)
. . . (f − 2)

(
f

f−1

)
(f − 1)

(
f
f

)
where f = degX∆′ = N∆′ − d − 1 = N∆ − d − 1. Because all syzygies are linear,
this must be a summand of the graded Betti table of X∆, from which it follows
that

(3.1) min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 2.

Remark 3.1. The technique of proving non-vanishing results in Koszul cohomology
by embedding the variety of interest in a rational normal scroll, or in a more general
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determinantal variety, is of course not new. E.g., this yields the ‘easy’ parts of
Green’s conjecture and the Green–Lazarsfeld gonality conjecture. We refer to [18,
§8B.2] for a discussion.

3.2. Explicit construction of non-exact cycles. We can give an alternative
proof of (3.1) by explicitly constructing non-zero elements in Koszul cohomology.
From a geometric point of view this approach is less enlightening, but it allows us to
prove the sharper bound min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 1 in the cases ∆ ∼= dΣ,Υd

(d ≥ 2) and ∆ ∼= 2Υ. As we will see, the sharper bound for dΣ immediately implies
the sharper bound for Υd.

For ` = 1, . . . , N∆ − 3 recall that b` is the cohomology in the middle of∧`+1
V∆

δ−→
∧`

V∆ ⊗ V∆
δ′−→
∧`−1

V∆ ⊗ V2∆.

It is convenient to view this as a subcomplex of∧`+1
V∆ ⊗ VZ2

δZ2−→
∧`

V∆ ⊗ VZ2

δ′Z2−→
∧`−1

V∆ ⊗ VZ2 ,

where VZ2 = k[x±1, y±1]. In what follows we will abuse notation and describe the
basis elements of V∆ and VZ2 using the points (i, j) ∈ Z2 rather than the monomials
xiyj .

Our technique to construct an element of ker δ′ \ im δ will be to apply δZ2 to an

element of
∧̀ +1

V∆⊗VZ2 such that the result is in
∧̀
V∆⊗V∆. This result will then

automatically be contained in ker δ′, but it might land outside im δ. We first state
an easy lemma that will be helpful in proving that certain elements are indeed not
contained in im δ. Fix a strict total order < on ∆ ∩ Z2 and consider the bases

B = {P1 ∧ . . . ∧ P`+1 |P1 < . . . < P`+1, P1, . . . , P`+1 ∈ ∆ ∩ Z2},

B′ = {P1 ∧ . . . ∧ P` ⊗ P |P1 < . . . < P`, P, P1, . . . , P` ∈ ∆ ∩ Z2}
of
∧̀ +1

V∆ and
∧̀
V∆ ⊗ V∆, respectively.

Lemma 3.2. If x ∈
∧̀ +1

V∆ has n non-zero coordinates with respect to B, then
δ(x) has (`+ 1)n non-zero coordinates with respect to B′.

Proof. Write x =
∑n
i=1 aiPi,1∧. . .∧Pi,`+1, ai ∈ k\{0}, where the Pi,1∧. . .∧Pi,`+1’s

are distinct elements of B. Then

δ(x) =

n∑
i=1

`+1∑
j=1

(−1)jaiPi,1 ∧ . . . ∧ P̂i,j ∧ . . . ∧ Pi,`+1 ⊗ Pi,j

Each term in this sum is ±ai times an element of B′, and the number of terms is
(`+ 1)n, so we just have to verify that these elements of B′ are mutually distinct,
but that is easily done. �

Our alternative proof of the upper bound min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 2 now
goes as follows.

Alternative proof of (3.1). As before, we can assume that ∆ ⊆ R × [0, d] with
d = lw(∆). Let ` = N∆ − d − 2 and let P1, . . . , P`+1 be the points (i, j) ∈ ∆ for
which i > mj , indexed so that P1 < . . . < P`+1. Now consider

y = δZ2(P1 ∧ . . . ∧ P`+1 ⊗ (−1, 0))
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=

`+1∑
s=1

(−1)sP1 ∧ . . . ∧ P̂s ∧ . . . ∧ P`+1 ⊗ (Ps + (−1, 0)).

Clearly y ∈
∧̀
V∆⊗V∆ and therefore y ∈ ker δ′. So it remains to show that y /∈ im δ.

Suppose y = δ(x) for some x ∈
∧̀ +1

V∆. Since y has `+1 nonzero coordinates with
respect to the basis B′, by the previous lemma x has just one non-zero coordinate
with respect to the basis B. Therefore we can write

x = aP ′1 ∧ . . . ∧ P ′`+1, a ∈ k \ {0}, P ′1 < . . . < P ′`+1,

so that

y = δ(x) =

`+1∑
s=1

a(−1)sP ′1 ∧ . . . ∧ P̂ ′s ∧ . . . ∧ P ′`+1 ⊗ P ′s.

Comparing both expressions for y, we deduce that {P1, . . . , P`+1} = {P ′1, . . . , P ′`+1}.
This gives us a contradiction since the two expressions for y have a different bide-
gree. Summing up, we have shown that bN∆−d−2 6= 0, from which (3.1) follows. �

The same proof technique enables us to deduce a sharper bound in the excep-
tional cases dΣ (d ≥ 2) and 2Υ.

Lemma 3.3. If ∆ ∼= dΣ for some d ≥ 2 then min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 1.

Proof. We can of course assume that ∆ = dΣ. Recall that N∆ = (d+ 1)(d+ 2)/2
and that lw(∆) = lw(dΣ) = d. Let ` = N∆ − d− 1 = d(d+ 1)/2. Let P1, . . . , P` be
the elements of (d− 1)Σ ∩ Z2 and define

y = δZ2

(
(d− 1, 1) ∧ P1 ∧ . . . ∧ P`)⊗ (1, 0)− (d, 0) ∧ P1 ∧ . . . ∧ P` ⊗ (0, 1)

)
=
∑̀
s=1

(−1)s(d, 0) ∧ P1 ∧ . . . ∧ P̂s ∧ . . . ∧ P` ⊗ (Ps + (0, 1))

−
∑̀
s=1

(−1)s(d− 1, 1) ∧ P1 ∧ . . . ∧ P̂s ∧ . . . ∧ P` ⊗ (Ps + (1, 0)).

As in the previous proof, since y ∈
∧̀
V∆ ⊗ V∆ we have y ∈ ker δ′. The fact that

y /∈ im δ follows from the fact that the number of nonzero coordinates with respect
to B′ is 2`. If y were in the image, then by our lemma 2` should be divisible by
` + 1, hence ` ≤ 2. But ` = d(d + 1)/2 ≥ 3 because d ≥ 2: contradiction, and the
lemma follows. �

Lemma 3.4. If ∆ ∼= 2Υ then min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 1.

Proof. Here we can assume ∆ = 2Υ and note that N∆ = 10 and lw(∆) = lw(2Υ) =
4. With ` = N∆ − d− 1 = 5, in exactly the same way as before we see that

δZ2

(
(1, 0) ∧ (0, 1) ∧ (0, 0) ∧ (−1,−1) ∧ (−1, 0) ∧ (0,−1)⊗ (−1,−1)

+ (1, 0) ∧ (0, 1) ∧ (0, 0) ∧ (−1,−1) ∧ (0,−1) ∧ (−2,−2)⊗ (0, 1)

− (1, 0) ∧ (0, 1) ∧ (0, 0) ∧ (−1,−1) ∧ (−1, 0) ∧ (−2,−2)⊗ (1, 0)
)

is a non-zero cycle: it has 12 = 2(` + 1) terms, so if it were in im δ, then any
preimage should have two terms, and we leave it to the reader to verify that this
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again leads to a contradiction. Alternatively, the reader can just look up the graded
Betti table of X2Υ in Appendix A. �

Lemma 3.5. If ∆ ∼= Υd for some d ≥ 2 then min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 1.

Proof. From the combinatorics of Υd it is clear that if one restricts to those equa-
tions of XΥd

not involving X−1,−1, one obtains a set of defining equations for XdΣ.
Thus the quadratic strand of the graded Betti table of XdΣ is a summand of the
quadratic strand of the graded Betti table of X∆. From Lemma 3.3 we conclude
that

min{ ` | bN∆−` 6= 0 } ≤ min{ ` | bNdΣ−` 6= 0 }+ 1 ≤ lw(dΣ) + 2 = d+ 2.

The lemma follows from the observation that lw(∆) = d+ 1. �

Summarizing the results of this section, we conclude that the upper bound stated
in Theorem 1.3 indeed applies.

4. Pruning off vertices without changing the lattice width

In this section we provide the theoretical ingredients needed to establish the
second bullet point of Theorem 1.3, i.e., to prove that the bound is sharp for lattice
polygons of lattice width at most 6.

Theorem 4.1. Let ∆ be a two-dimensional lattice polygon and let p ≥ 1. Let P
be a vertex of ∆ and define ∆′ = conv(∆ ∩ Z2 \ {P}), where we assume that ∆′ is
two-dimensional. If Kp,1(X∆′ , L∆′) = 0 then also Kp+1,1(X∆, L∆) = 0.

Proof. Consider∧p+1
V∆′

δ1−→
∧p

V∆′ ⊗ V∆′
δ2−→
∧p−1

V∆′ ⊗ V2∆′

and ∧p+2
V∆

δ3−→
∧p+1

V∆ ⊗ V∆
δ4−→
∧p

V∆ ⊗ V2∆

where the δi’s are the usual coboundary maps. Assuming that ker δ2 = im δ1 we
will show that ker δ4 = im δ3. Suppose the contrary: we will find a contradiction.
Let L : Rn → R be a linear form that maps different lattice points in ∆ to different
numbers, such that P attains the maximum of L on ∆. This exists because P is a
vertex. For any x ∈

∧p+1
V∆ ⊗ V∆ define its support as the convex hull of the set

of Pj,i’s occurring when expanding x in the form

x =
∑
i

λiP1,i ∧ . . . ∧ Pp+1,i ⊗Qi.

Here as in Section 3 we take the notational freedom to write points rather than
monomials, and of course we do not write any redundant terms. Choose an x ∈
ker δ4 \ im δ3 such that the maximum that L attains on the support of x is minimal,
and let P ′ ∈ ∆ ∩ Z2 be the unique point attaining this maximum. Rearrange the
above expansion as follows:

(4.1) x =
∑
i

λiP
′∧P1,i∧ . . .∧Pp,i⊗Qi+ terms not containing P ′ in the ∧ part

where all Pj,i’s are in ∆′ and Qi ∈ ∆. We claim that in fact Qi ∈ ∆′, i.e. none
of the Qi’s equals P . Indeed, otherwise when applying δ4 the term −λiP1,i ∧ . . . ∧
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Pp,i⊗(P ′+Qi) of δ4(x) has nothing to cancel against, contradicting that δ4(x) = 0.
Let

(4.2) y =
∑
i

λiP1,i ∧ . . . ∧ Pp,i ⊗Qi ∈
∧p

V∆′ ⊗ V∆′ .

We have

0 = δ4(x) = −P ′ ∧ δ2(y) + terms not containing P ′ in the ∧ part.

Because terms of P ′ ∧ δ2(y) cannot cancel against terms without P ′ in the ∧ part,
δ2(y) must be zero, and therefore y ∈ im δ1 by the exactness assumption. So write
y = δ1(z) with

z =
∑
i

µiP
′
1,i ∧ . . . ∧ P ′p+1,i ∈

∧p+1
V∆′ .

Let P ′′ be the point occurring in this expression such that L(P ′′) is maximal. Since
there is no cancellation when applying δ1 one sees that P ′′ is in the support of y,
hence in the support of x and therefore L(P ′′) < L(P ′). This means that L achieves
a smaller maximum on the support of z than on the support of x. Finally, let

x′ = x+ δ3(P ′ ∧ z) = x− P ′ ∧ y − z ⊗ P ′.
Since x ∈ ker δ4 \ im δ3 we have x′ ∈ ker δ4 \ im δ3 and by (4.1) and (4.2) one
concludes that L will achieve a smaller maximum on the support of x′ than on the
support of x. This contradicts the choice of x. �

The theorem immediately implies the second bullet point of Theorem 1.3, except
for the claim that sharpness holds for all polygons ∆ with lw(∆) ≤ 6. In order to
settle this claim, we note the following.

Lemma 4.2. Let ∆ be a two-dimensional lattice polygon, let d = lw(∆), and
assume that removing an extremal lattice point makes the lattice width decrease,
i.e. for every vertex P ∈ ∆ it holds that

lw(conv(∆ ∩ Z2 \ {P})) < d.

Then there exists a unimodular transformation mapping ∆ into [0, d]× [0, d].

Proof. The cases where ∆(1) ∼= ∅ or where ∆(1) ∼= dΣ for some d ≥ 0 are easy
to verify. In the other cases lw(∆(1)) = lw(∆) − 2 = d − 2 and the lattice width
directions for ∆ and ∆(1) are the same [38, Thm. 13]. Assume that ∆ ⊆ R× [0, d],
fix a vertex on height 0 and a vertex on height d, and let P be any other vertex.
Then lw(conv(∆ ∩ Z2 \ {P})) ≤ d− 1, where we note that a corresponding lattice
width direction is necessarily non-horizontal, and that along such a direction the
width of ∆(1) is at most d − 2. But then equality must hold, and in particular it
must also concern a lattice width direction for ∆(1), hence it must concern a lattice
width direction for ∆. We conclude that ∆ has two independent lattice width
directions, and the lemma follows from the remark following [11, Lem. 5.2]. �

Let us call a lattice polygon ∆ as in the statement of the foregoing lemma
‘minimal’, and note that this attribute applies to each of the exceptional polygons
dΣ,Υd, 2Υ. In order to prove sharpness for a certain non-exceptional polygon ∆
it suffices to do this for any lattice polygon obtained by repeatedly pruning off
vertices without changing the lattice width. Thus the proof reduces to verifying
the case of a minimal lattice polygon, unless it concerns one of the exceptional cases
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dΣ,Υd, 2Υ, in which case one needs to stop pruning one step earlier (otherwise this
strategy has no chance of being successful).

In other words the above lemma implies that if sharpness applies to all lattice
polygons ∆ for which N∆ ≤ (d + 1)2 + 1, then it applies to all lattice polygons
∆ with lw(∆) ≤ d. This observation, along with our exhaustive verification in
the cases where N∆ ≤ 32, reported upon in Section 7, allows us to conclude that
sharpness holds as soon as lw(∆) ≤ 4. This fact will be used in the proof of our
explicit formula for bN∆−4. But one can do better: in a spin-off paper [13] devoted
to minimal polygons, the second and the fourth listed author show that if ∆ is a
minimal lattice polygon with lw(∆) ≤ d then

N∆ ≤ max
{

(d− 1)2 + 4, (d+ 1)(d+ 2)/2
}
.

From this, using a similar reasoning, the conjecture follows for lw(∆) ≤ 6, as
announced in the statement of Theorem 1.3.

5. Explicit formula for some entries of the graded Betti table

We are now ready to prove Theorem 1.1, thereby giving explicit formulas for eight
entries of the graded Betti table of X∆. Six of these entries are rather straightfor-
ward. Indeed, the formulas for b1 and c1 follow immediately from (1.2), where in
the latter case we use that 2 vol(∆)−N∆ +2 = N∆(1) by Pick’s theorem. The entry
cN∆−3 equals the number of cubics in a minimal set of generators of I∆, which was
determined in [10, §2]. Together with (1.2) this then gives the formula for b2. The
formula for bN∆−3 was discussed in Section 2.4, and the formula for c2 again follows
using (1.2) in combination with Pick’s theorem.

Thus we are left with proving the formulas for c3 and bN∆−4, which is a consid-
erably more difficult task. We will focus on bN∆−4, the formula for c3 then again
follows using (1.2). Recall that the statement distinguishes between the following
four cases: 

∆(1) = ∅,
dim ∆(1) = 0,

dim ∆(1) = 1 or ∆ ∼= Υ2,

dim ∆(1) = 2 and ∆ 6∼= Υ2.

We will treat these cases in the above order. The first case where ∆(1) = ∅ follows
trivially from (2.8), so we can skip it. Now recall from (2.4) that bN∆−4 is the
dimension of the cohomology in the middle of∧2

V∆ ⊗ V∆(1)
δ−→ V∆ ⊗ V(2∆)(1)

δ′−→ V(3∆)(1) .

Because K0,3(X;K,L) ∼= KN∆−3,0(X,L) = 0, where we use that ∆ 6∼= Σ, we have
that the map δ′ is surjective. In particular we obtain the formula

bN∆−4 = dim coker δ − |(3∆)(1) ∩ Z2|.

Case dim ∆(1) = 0. If dim ∆(1) = 0 then δ is injective, so

bN∆−4 = dim(V∆⊗V(2∆)(1))− dim(
∧2

V∆)− |(3∆)(1) ∩Z2| = (N∆− 4)(N∆− 1)/2,

as can be calculated using Pick’s theorem, thereby yielding Theorem 1.1 in this case
(alternatively, one can give an exhaustive proof by explicitly computing the graded
Betti tables of the toric surfaces associated with the 16 reflexive lattice polygons).
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Case dim ∆(1) = 1 or ∆ ∼= Υ2. The graded Betti table of XΥ2
can be found in

Appendix A, where one verifies that bNΥ2
−4 = b3 = 3, as indeed predicted by the

statement of Theorem 1.1. Therefore we can assume that dim ∆(1) = 1. The poly-
gons ∆ having a one-dimensional interior were explicitly classified by Koelman [31,
§4.3], but in any case it is easy to see that, using a unimodular transformation if
needed, we can assume that

∆ = conv{(m1, 1), (M1, 1), (m0, 0), (M0, 0), (m−1,−1), (M−1,−1)}
for some mi ≤Mi ∈ Z. Here m0 < M0 can be taken such that

∆ ∩ (Z× {0}) = {m0,m0 + 1, . . . ,M0} × {0}.
Write ∆(1) = [u, v]× {0}, then

(2∆)(1) = ∆ + ∆(1) = conv{(mi + u, i), (Mi + v, i) | i = 1, 0,−1}.
Now consider VZ = k[x±1] and define a morphism

f : V∆ ⊗ V(2∆)(1) → k[x−1, x0, x1]⊗ VZ
by letting (a, b) ⊗ (c, d) 7→ xbxd ⊗ (a + c), where again we abusingly describe the
basis elements of V∆, V(2∆)(1) and VZ using lattice points rather than monomials.
Note that

f(δ((a, b) ∧ (c, d)⊗ (e, 0))) = f((a, b)⊗ (c+ e, d)− (c, d)⊗ (a+ e, b)) = 0,

so im δ ⊆ ker f .
We claim that actually equality holds. First note that every element α ∈ ker f

decomposes into elements ∑
j

λj(aj , bj)⊗ (cj , dj)

for which ({bj , dj}, aj + cj) is the same for all j: indeed, terms for which these are
different cannot cancel out when applying f . Note that

∑
j λj = 0, so one can

rewrite the above as a linear combination of expressions either of the form

(a, b)⊗ (c, d)− (a′, b)⊗ (c′, d)︸ ︷︷ ︸ or of the form (a, b)⊗ (c, d)− (a′, d)⊗ (c′, b)︸ ︷︷ ︸
(i) (ii)

where a + c = a′ + c′, the points (a, b), (a′, b) resp. (a, b), (a′, d) are in ∆, and the
points (c, d), (c′, d) resp. (c, d), (c′, b) are in (2∆)(1). As for case (i), these can be
decomposed further as a sum (or minus a sum) of expressions of the form (a, b)⊗
(c, d)− (a+ 1, b)⊗ (c− 1, d), which can be rewritten as

δ((a, b) ∧ (c− e, d)⊗ (e, 0)− (a+ 1, b) ∧ (c− e, d)⊗ (e− 1, 0))

and therefore as an element of im δ, at least if e can be chosen in the interval
[max(u+ 1, c−Md),min(v, c−md)]. The reader can verify that this is indeed non-
empty, from which the claim follows in this case. As for (ii), with e chosen from
the non-empty interval [max(u, c′ −Mb),min(v, c′ −mb)] one verifies that

δ((c′ − e, b) ∧ (a′, d)⊗ (e, 0)) = (c′ − e, b)⊗ (a′ + e, d)− (a′, d)⊗ (c′, b),

allowing one to replace (ii) with an expression of type (i), and the claim again
follows.

Summing up, we have

bN∆−4 = dim im f − |(3∆)(1) ∩ Z2|
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=
∑

{i,j}⊆{−1,0,1}

|[mi +mj + u,Mi +Mj + v] ∩ Z| −
2∑

i′=−2

∣∣∣(3∆)(1) ∩ (Z× {i′})
∣∣∣ .

Each lattice point of (3∆)(1) = 2∆ + ∆(1) appears in an interval on the left, and
conversely. To see this it suffices to note that each lattice point of 2∆ arises as the
sum of two lattice points in ∆, which is a well-known property [27]. So all terms
with i+ j 6= 0 cancel out the terms with i′ 6= 0, and we are left with

|[m1 +m−1 + u,M1 +M−1 + v] ∩ Z|+ |[2m0 + u, 2M0 + v] ∩ Z|

−
∣∣∣(3∆)(1) ∩ (Z× {0})

∣∣∣ .
Term by term this equals(
|∂∆ ∩ Z2|+N∆(1) − 2− ε

)
+ (2(M0 −m0) +N∆(1))

− (2(M0 −m0) + (2− ε) +N∆(1))

where ε := (u−m0)+(M0−v) ∈ {0, 1, 2} denotes the cardinality of ∂∆∩(Z×{0}).
Because the above expression simplifies to N∆ − 4, this concludes the proof in the
dim ∆(1) = 1 case.

Case dim ∆(1) = 2 and ∆ 6∼= Υ2. Here our task amounts to proving that bN∆−4 = 0.
Note that our assumptions together with (2.1) imply that lw(∆) ≥ 3 and even that
lw(∆) ≥ 4 in the exceptional cases ∆ ∼= dΣ,Υd, 2Υ. Therefore Theorem 1.1 arises
as a consequence of Conjecture 1.5 in this case. Now recall from Section 4 that
we verified Conjecture 1.5 for all polygons in the range lw(∆) ≤ 4. Thus we can
assume that lw(∆) ≥ 5. But now we can reduce back to the case lw(∆) = 4
by gradually removing vertices and each time applying Theorem 4.1. This works
because removing a vertex reduces the lattice width by steps of at most 1, which
is an easy consequence of [38, Thm. 13].

6. Quotienting the Koszul complex

We now start working towards an algorithmic determination of the graded Betti
table of the toric surface X∆ ⊆ PN∆−1 associated with a given two-dimensional
lattice polygon ∆. Essentially, the method is about reducing the dimensions of
the vector spaces involved, in order to make the linear algebra more manageable.
This is mainly done by incorporating bigrading and duality. However, when dealing
with large polygons a further reduction is useful. In this section we show that the
Koszul complex always admits certain exact subcomplexes that can be described
in a combinatorial way. Quotienting out such a subcomplex does not affect the
cohomology, while making the linear algebra easier, at least in theory. For reasons
we don’t understand our practical implementation shows that the actual gain in
runtime is somewhat unpredictable: sometimes it is helpful, but other times the
contrary is true. But it is worth the try, and in any case we believe that the material
below is also interesting from a theoretical point of view.

We first introduce the subcomplex from an algebraic point of view, then rein-
terpret things combinatorially, and finally specify our discussion to the case of the
Veronese surfaces XdΣ. In the latter setting the idea of quotienting out such an
exact subcomplex is not new: for instance it appears in the recent paper by Ein,
Erman and Lazarsfeld [15, p. 2].
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6.1. An exact subcomplex. We begin with the following lemma, which should
be known to specialists, but we include a proof for the reader’s convenience.

Lemma 6.1. Let M be a graded module over k[x1, . . . , xN ] and suppose that the
multiplication-by-xN map M →M is an injection. Then the Koszul complexes

. . .→
∧p+1

V ⊗M →
∧p

V ⊗M →
∧p−1

V ⊗M → . . .

and

. . .→
∧p+1

W ⊗M/(xNM)→
∧p

W ⊗M/(xNM)→
∧p−1

W ⊗M/(xNM)→ . . .

have the same graded cohomology. Here V and W denote the degree one parts of
the polynomial rings k[x1, . . . , xN ] and k[x1, . . . , xN−1], respectively.

Proof. Denote by M ′ the graded module M/(xNM). For every p ≥ 0 we have a
short exact sequence

0 −→
(∧p

W ⊗M
)
⊕
(∧p−1

W ⊗M
)

α−→
∧p

V ⊗M β−→
∧p

W ⊗M ′ −→ 0,

by letting

α ( v1 ∧ . . . ∧ vp ⊗m, w1 ∧ . . . ∧ wp−1 ⊗m′ )
= v1 ∧ . . . ∧ vp ⊗ xNm + xN ∧ w1 ∧ . . . ∧ wp−1 ⊗m′

and β(v1 ∧ . . . ∧ vp ⊗m) = π(v1) ∧ . . . ∧ π(vp)⊗m, where π : V → W maps xi to
itself if i 6= N and to zero otherwise, and m denotes the residue class of m modulo
xNM . As usual if p = 0 then it is understood that

∧p−1
W ⊗M = 0. We leave

a verification of the exactness to the reader, but note that the injectivity of the
multiplication-by-xN map is important here.

On the other hand the spaces

Cp =
(∧p

W ⊗M
)
⊕
(∧p−1

W ⊗M
)

naturally form a long exact sequence . . . → C2 → C1 → C0 → 0 along the mor-
phisms

dp : Cp → Cp−1 : (a, b) 7→ (−b+ δp(a),−δp−1(b))

where δp and δp−1 are the usual coboundary maps, as described in (2.2). Exactness
holds because if dp(a, b) = 0 then dp+1(0,−a) = (a, b). Overall we end up with a
short exact sequence of complexes:

...
...

...

↓ ↓ ↓
0 →

∧p+1W ⊗M ⊕
∧pW ⊗M →

∧p+1 V ⊗M →
∧p+1 W ⊗M ′ → 0

↓ ↓ ↓
0 →

∧pW ⊗M ⊕
∧p−1W ⊗M →

∧p V ⊗M →
∧pW ⊗M ′ → 0

↓ ↓ ↓
...

...
...

This gives a long exact sequence in (co)homology, and the result follows from the
exactness of the left column. �
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Now we explain how to exploit the above lemma for our purposes. We can apply
it to the Koszul complex

. . .→
∧p+1

V∆ ⊗
⊕
i≥0

Vi∆ →
∧p

V∆ ⊗
⊕
i≥0

Vi∆ →
∧p−1

V∆ ⊗
⊕
i≥0

Vi∆ → . . .

as well as to the twisted Koszul complex

. . .→
∧p+1

V∆⊗
⊕
i≥1

V(i∆)(1) →
∧p

V∆⊗
⊕
i≥1

V(i∆)(1) →
∧p−1

V∆⊗
⊕
i≥1

V(i∆)(1) → . . .

These are complexes of graded modules over the polynomial ring whose variables
correspond to the lattice points of ∆. In both cases the variable correspond-
ing to whatever point P ∈ ∆ ∩ Z2 can be chosen as xN , because multiplica-
tion by xN will always be injective. Then the lemma yields that we can replace
Vi∆ by V(i∆)\((i−1)∆+P ) in the first complex, and that we can replace V(i∆)(1) by
V(i∆)(1)\(((i−1)∆)(1)+P ) in the second complex. In both cases we must also replace
the V∆’s in the wedge product by V∆\{P}. Splitting these complexes into their
graded pieces we conclude that Kp,q(X,L) can be computed as the cohomology in
the middle of∧p+1

V∆\{P} ⊗ V((q−1)∆)\((q−2)∆+P ) −→
∧p

V∆\{P} ⊗ V(q∆)\((q−1)∆+P )

−→
∧p−1

V∆\{P} ⊗ V((q+1)∆)\(q∆+P ),

and that the twisted Koszul cohomology spaces Kp,q(X;K,L) can be computed as
the cohomology in the middle of∧p+1

V∆\{P} ⊗ V((q−1)∆)(1)\((q−2)∆+P )(1) −→
∧p

V∆\{P} ⊗ V(q∆)(1)\((q−1)∆+P )(1)

−→
∧p−1

V∆\{P} ⊗ V((q+1)∆)(1)\(q∆+P )(1) .

Here for any A ⊆ Z2 we let VA ⊆ k[x±1, y±1] denote the space of Laurent polyno-
mials whose support is contained in A.

Remark 6.2. The coboundary morphisms are still defined as in (2.2), with the
additional rule that xiyj is considered zero in VA as soon as (i, j) /∈ A.

Remark 6.3. It is important to observe that the above complexes remain naturally
bigraded, and that this is compatible with the bigrading described in Section 2.2.

In other words, for any (a, b) ∈ Z2, also the spaces K
(a,b)
p,q (X,L) and K

(a,b)
p,q (X;K,L)

can be computed from the above sequences.

6.2. Removing multiple points. In some cases we can remove multiple points
from ∆ by applying Lemma 6.1 repeatedly. In algebraic terms this works if and
only if these points, when viewed as elements of V∆, form a regular sequence for
the graded module M , where M is either

⊕
i≥0 Vi∆ or

⊕
i≥1 V(i∆)(1) . The length

of a regular sequence is bounded by the Krull dimension of M , which is equal to 3.
So we can never remove more than three points. It is well-known that for graded
modules over Noetherian rings any permutation of a regular sequence is again a
regular sequence, so the order of removing points does not matter. Concretely,
after removing the points P1, . . . , Pm we get the complex

. . . −→
∧p+1

V∆\{P1,...,Pm} ⊗
Mq−1

P1Mq−2 + . . .+ PmMq−2
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−→
∧p

V∆\{P1,...,Pm} ⊗
Mq

P1Mq−1 + . . .+ PmMq−1
−→ . . .

where Mi denotes the degree i part of M . Here, as before, we abuse notation
and identify the points Pi ∈ ∆ with the corresponding monomials in V∆. So for
M =

⊕
i≥0 Vi∆ this gives

. . . −→
∧p+1

V∆\{P1,...,Pm} ⊗ V(q−1)∆\((P1+(q−2)∆)∪...∪(Pm+(q−2)∆))

−→
∧p

V∆\{P1,...,Pm} ⊗ Vq∆\((P1+(q−1)∆)∪...∪(Pm+(q−1)∆)) −→ . . .

while for M =
⊕

i≥1 V(i∆)(1) it gives

. . . −→
∧p+1

V∆\{P1,...,Pm} ⊗ V((q−1)∆)(1)\((P1+((q−2)∆)(1))∪...∪(Pm+((q−2)∆)(1)))

−→
∧p

V∆\{P1,...,Pm} ⊗ Vq∆\((P1+((q−1)∆)(1))∪...∪(Pm+((q−1)∆)(1))) −→ . . .

The question we study in this section is which sequences of points P1, . . . , Pm ∈
∆ ∩ Z2 are regular, where necessarily m ≤ 3.

We first study the problem of which sequences of two points are regular. As
for M =

⊕
i≥0 Vi∆, if we first remove a point P ∈ ∆ ∩ Z2 then we end up with

M/PM , whose graded components in degree q ≥ 1 are of the form Vq∆\(P+(q−1)∆),

while the degree 0 part is just V0∆. Multiplication by another point Q ∈ ∆∩Z2 in
M/PM corresponds to

Vq∆\(P+(q−1)∆)
·Q−→ V(q+1)∆\(P+q∆).

In order for the sequence P,Q to be regular this map has to be injective for all
q ≥ 1. This means that

((q∆\(P + (q − 1)∆)) +Q) ∩ (P + q∆) ∩ Z2 = ∅.
Subtracting P +Q yields

(q∆− P )\((q − 1)∆) ∩ (q∆−Q) ∩ Z2 = ∅,
eventually leading to the criterion

(6.1) P,Q is regular for
⊕
i≥0

Vi∆ ⇔

∀q ≥ 1 : (q∆− P ) ∩ (q∆−Q) ∩ Z2 ⊆ (q − 1)∆.

Similarly we find

P,Q is regular for
⊕
i≥1

V(i∆)(1) ⇔

∀q ≥ 1 : (q∆− P )(1) ∩ (q∆−Q)(1) ∩ Z2 ⊆ ((q − 1)∆)(1).

These criteria are strongly simplified by the equivalences 1. ⇐⇒ 2. ⇐⇒ 9. of the
following theorem:

Theorem 6.4. Let ∆ be a two-dimensional lattice polygon. For two distinct lattice
points P,Q ∈ ∆, the following are equivalent:

(1) P,Q is a regular sequence for
⊕

i≥0 Vi∆.

(2) P,Q is a regular sequence for
⊕

i≥1 V(i∆)(1) .

(3) (q∆− P ) ∩ (q∆−Q) ⊆ (q − 1)∆ for some q > 1.
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(4) (q∆− P ) ∩ (q∆−Q) ⊆ (q − 1)∆ for all q ≥ 1.
(5) ((q∆)◦−P )∩ ((q∆)◦−Q) ⊆ ((q− 1)∆)◦ for all q ≥ 1, where ◦ denotes the

interior for the standard topology on R2.
(6) ((q∆)(1) − P ) ∩ ((q∆)(1) −Q) ∩ Z2 ⊆ ((q − 1)∆)(1) ∩ Z2 for all q ≥ 1.
(7) (q∆− P ) ∩ (q∆−Q) ∩ Z2 ⊆ (q − 1)∆ ∩ Z2 for all q ≥ 1.
(8) Let ` be the line through P and Q. For both half-planes H bordered by `,

the polygon H ∩∆ is a triangle with P and Q as two vertices (this may be
degenerate, in which case it is the line segment PQ).

(9) ∆ is a quadrangle and P and Q are opposite vertices of this quadrangle
(this may be the degenerate case where ∆ is a triangle and P,Q are any
pair of vertices of ∆).

Proof. The equivalences 1. ⇐⇒ 7. and 2. ⇐⇒ 6. follow from the foregoing
discussion.
3. =⇒ 4.: assume that 3. holds for some q > 1. Let q′ ≥ 1, we show that it also
holds for q′. Let W ∈ (q′∆−P )∩ (q′∆−Q), we need to show that W ∈ (q′− 1)∆.

In case q′ > q, we define δ = (q − 1)/(q′ − 1) < 1. Now consider

W ∈ ((q′ − 1)∆ + (∆− P )) ∩ ((q′ − 1)∆ + (∆−Q))

δW ∈ ((q − 1)∆ + δ(∆− P )) ∩ ((q − 1)∆ + δ(∆−Q))

⊆ ((q − 1)∆ + (∆− P )) ∩ ((q − 1)∆ + (∆−Q))

= (q∆− P ) ∩ (q∆−Q) ⊆ (q − 1)∆.

We conclude that W ∈ (q′ − 1)∆.
If q′ < q, we find

W + (q − q′)∆ ⊆ [(q′∆− P ) ∩ (q′∆−Q)] + (q − q′)∆
⊆ (q′∆− P + (q − q′)∆) ∩ (q′∆−Q+ (q − q′)∆)

⊆ (q∆− P ) ∩ (q∆−Q) ⊆ (q − 1)∆.

Since W + (q − q′)∆ ⊆ (q − 1)∆, it follows that W ∈ (q′ − 1)∆.
4. =⇒ 5.: this holds by taking interiors on both sides and using the fact that

(A ∩B)◦ = A◦ ∩B◦.
5. =⇒ 6.: intersect with Z2 on both sides and use ∆◦ ∩ Z2 = ∆(1) ∩ Z2.
6. =⇒ 7.: let W ∈ (q∆− P ) ∩ (q∆−Q) ∩ Z2.

W +
(

(3∆)(1) ∩ Z2
)

=
(
W + (3∆)(1)

)
∩ Z2

⊆
[
q∆ + (3∆)(1) − P

]
∩
[
q∆ + (3∆)(1) −Q

]
∩ Z2

⊆
[
((q + 3)∆)(1) − P

]
∩
[
((q + 3)∆)(1) −Q

]
∩ Z2

⊆ ((q + 2)∆)(1) ∩ Z2.

Since (3∆)(1) must contain a lattice point, it follows that W ∈ (q − 1)∆ ∩ Z2.
7. =⇒ 8.: we show this by contraposition, so we assume that item 8. is not

satisfied for a half-plane H.
Let T a vertex of H ∩∆ at maximal distance from `, and assume for now that

this distance is positive. Let R be a vertex of H ∩∆, distinct from P , Q and T (the
fact that such an R exists follows from the assumption). Without loss of generality,
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P = O Q

T

R

`

H ∩∆

Figure 2. 7. =⇒ 8.

P = O Q TR

`

Figure 3. degenerate
case (where T may be
equal to Q)

we may assume that R lies in the half-plane bordered by the line PT that does not
contain Q. Choose coordinates such that the origin is P .

Equip R with barycentric coordinates

(6.2) R = αT + βQ+ γP = αT + βQ.

Because of the position of R, we know that 0 ≤ α ≤ 1 and β < 0.
Choose an integer q > max{1,−β−1}. Let W = qR. We claim that

W ∈
(
(q∆) ∩ (q∆−Q) ∩ Z2

)
\ (q − 1)∆,

contradicting 7. SinceR is a vertex ofH∩∆, we immediately haveW ∈
(
(q∆) ∩ Z2

)
\

(q − 1)∆. It remains to show that W ∈ q∆−Q. Using (6.2), we have

W +Q = qR+Q = qR+ β−1(R− αT )

= (q + β−1)R+ (−β−1α)T

This is a convex combination of qP = O, qR and qT because

q + β−1 ≥ 0, −β−1α ≥ 0,

and

(q + β−1) + (−β−1α) = q + β−1(1− α) ≤ q.
It follows that W +Q ∈ q∆.

In the degenerate case where T ∈ `, without loss of generality one can assume
that there is a vertex R such that R and Q lie on opposite sides of P = O. One
proceeds as above with α = 0 and β < 0.

8. =⇒ 9.: this follows immediately from the geometry: ∆ must be the union of
two triangles on the base PQ.

9. =⇒ 3.: we show this for q = 2. By assumption, the lattice polygon ∆ is a
convex quadrangle PRQS (possibly degenerated into a triangle, i.e. one of R or S
may coincide with P or Q). We need to show that

(2∆− P ) ∩ (2∆−Q) ⊆ ∆

The left hand side is clearly contained in the cones R̂PS and R̂QS, whose inter-
section is precisely our quadrangle PRQS = ∆. �

Now let us switch to regular sequences consisting of three points. We have the
following easy fact:
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R

S

P 2Q− P

2R− P

2S − P

2P −Q Q

2R−Q

2S −Q

∆

2∆−Q 2∆− P

Figure 4. 9. =⇒ 3. with q = 2

Lemma 6.5. Let P,Q,R ∈ ∆ ∩ Z2 be distinct. Then P,Q,R is a regular sequence
for M =

⊕
i≥0 Vi∆ (resp. M =

⊕
i≥1 V(i∆)(1)) if and only if

P,Q, Q,R, P,R

are regular sequences.

Proof. It is clearly sufficient to prove the ‘if’ part of the claim. Assume for simplicity
that M =

⊕
i≥0 Vi∆, the other case is similar. Since P,Q is regular, all we have to

check is that

Vq∆\((P+(q−1)∆)∪(Q+(q−1)∆))
·R−→ V(q+1)∆\((P+q∆)∪(Q+q∆))

is injective, or equivalently that

(q∆\((P + (q − 1)∆) ∪ (Q+ (q − 1)∆)) +R) ∩ ((P + q∆) ∪ (Q+ q∆)) = ∅.
This condition can be rewritten as

(6.3) q∆ ∩ ((q∆ + P −R) ∪ (q∆ +Q−R)) ⊆ (P + (q − 1)∆) ∪ (Q+ (q − 1)∆).

Since P,R is regular we know that q∆ ∩ (q∆ + P − R) ⊆ P + (q − 1)∆ by (6.1).
Similarly because Q,R is regular we have q∆ ∩ (q∆ + Q − R) ⊆ Q + (q − 1)∆.
Together these two inclusions imply (6.3). �

As an immediate corollary, we deduce using Theorem 6.4:

Corollary 6.6. Let ∆ be a two-dimensional lattice polygon. For three distinct
lattice points P,Q,R ∈ ∆, the following statements are equivalent:

(1) P,Q,R is a regular sequence for
⊕

i≥0 Vi∆.

(2) P,Q,R is a regular sequence for
⊕

i≥1 V(i∆)(1) .

(3) ∆ is a triangle with vertices P , Q and R.

6.3. Example: the case of Veronese embeddings. Let us apply the foregoing
to ∆ = dΣ for d ≥ 2, whose corresponding toric surface is the Veronese surface
νd(P2) with coordinate ring

(6.4) SdΣ
∼= k ⊕ VdΣ ⊕ V2dΣ ⊕ V3dΣ ⊕ V4dΣ ⊕ V5dΣ ⊕ . . .

By the foregoing corollary the sequence of points (0, d), (d, 0), (0, 0) is regular for
SdΣ. When one removes these points along the above guidelines, the resulting
graded module is

k ⊕ VdΣ\{(0,d),(d,0),(0,0)} ⊕ Vconv{(d−1,d−1),(2,d−1),(d−1,2)} ⊕ 0⊕ 0⊕ 0⊕ . . .



COMPUTING GRADED BETTI TABLES OF TORIC SURFACES 27

which can be rewritten as

(6.5) k ⊕ VdΣ\{(0,d),(d,0),(0,0)} ⊕ V(d,d)−(dΣ)(1) ⊕ 0⊕ 0⊕ 0⊕ . . .
We recall from the end of Section 6.1 that multiplication is defined by lattice addi-
tion, with the convention that the product is zero whenever the sum falls outside
the indicated range. In order to find the graded Betti table of νd(P2), it therefore
suffices to compute the cohomology of complexes of the following type:

(6.6)
∧`+1

VdΣ\{(0,d),(d,0),(0,0)} −→
∧`

VdΣ\{(0,d),(d,0),(0,0)} ⊗ VdΣ\{(0,d),(d,0),(0,0)}

−→
∧`−1

VdΣ\{(0,d),(d,0),(0,0)} ⊗ V(d,d)−(dΣ)(1)

Indeed, the cohomology in the middle has dimension dimK`,1(X,L) = b` and the
cokernel of the second morphism has dimension dimK`−1,2(X,L) = cN∆−1−`.

We can carry out the same procedure in the twisted case. The resulting graded
module is

k ⊕ V(dΣ)(1) ⊕ V(d,d)−dΣ\{(0,d),(d,0),(0,0)} ⊕ V{(d,d)} ⊕ 0⊕ 0⊕ . . .

For instance, one finds that K∨`,1(X,L) ∼= KN∆−3−`,2(X;K,L) is the cohomology
in the middle of∧N∆−`−2

V(dΣ)\{(0,d),(d,0),(0,0)} ⊗ V(dΣ)(1) −→∧N∆−`−3
VdΣ\{(0,d),(d,0),(0,0)} ⊗ V(d,d)−dΣ\{(0,d),(d,0),(0,0)}

−→
∧N∆−`−4

VdΣ\{(0,d),(d,0),(0,0)} ⊗ V(d,d).

As a side remark, note that this complex is isomorphic to the dual of (6.6). Thus this
gives a combinatorial proof of the duality formulaK∨`,1(X,L) ∼= KN∆−3−`,2(X;K,L)
for Veronese surfaces.

Let us conclude with a visualization of the point removal procedure in the case
where d = 3 (in the non-twisted setting). Figure 5 shows how the coordinate ring
gradually shrinks upon removal of (0, 3), then of (3, 0), and finally of (0, 0). The
left column shows the graded parts of the original coordinate ring (6.4) in degrees
0, 1, 2, 3, while the right column does the same for the eventual graded module
described in (6.5).

7. Computing graded Betti numbers

7.1. The algorithm. To compute the entries b` and c` of the graded Betti table
(1.1) of X∆ ⊆ PN∆−1 we use the formulas (2.3) and (2.5). In other words, we
determine the b`’s as

dim ker

(∧`
V∆ ⊗ V∆ →

∧`−1
V∆ ⊗ V2∆

)
− dim

∧`+1
V∆,

while the c`’s are computed as

dim ker

(∧`−1
V∆ ⊗ V∆(1) →

∧`−2
V∆ ⊗ V(2∆)(1)

)
.

Essentially, this requires writing down a matrix of the respective linear map and
computing its rank. As explained in Section 2.2 we can consider these expressions
for each bidegree (a, b) independently, and then just sum the contributions b`,(a,b)
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Figure 5. Removing three points for ∆ = 3Σ

resp. c∨`,(a,b). This greatly reduces the dimensions of the vector spaces and hence of

the matrices that we need to deal with.

Remark 7.1. The subtracted term in the formula for b` can be made explicit:

dim
∧`+1

V∆ =

(
N∆

`+ 1

)
.

However we prefer to compute its contribution in each bidegree separately (which
is easily done, see Section 7.2), the reason being that the b`,(a,b)’s are interesting in
their own right; see also Remark 7.2 below.

Speed-ups. Formula (1.2) allows us to obtain bN∆−1−` from c` and cN∆−1−` from b`,
so we only compute one of both. In practice we make an educated guess for what
we think will be the easiest option, based on the dimensions of the spaces involved.
Moreover, using Hering and Schenck’s formula (1.3) we find that c` vanishes as soon
as ` ≥ N∆ +1−|∂∆∩Z2|. For this reason the computation of b1, . . . , b|∂∆∩Z2|−2 can
be omitted, which is particularly interesting in the case of the Veronese polygons
dΣ, which have many lattice points on the boundary.

Remark 7.2. From the proof of formula (1.2) given in Section 2.3 we can extract
that

b`,(a,b) − cN∆−1−`,(a,b) =

`+1∑
j=0

(−1)j+1 dim

(∧`+1−j
V∆ ⊗ Vj∆

)
(a,b)

for each bidegree (a, b) ∈ Z2 and each ` = 1, . . . , N∆ − 2. Here the subscript on
the right hand side indicates that we consider the subspace of elements having
bidegree (a, b). As explained in Section 7.2, we can easily compute the dimensions
of the spaces on the right hand side in practice. Together with (2.6) this allows
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one to obtain the bigraded parts of the entire Betti table, using essentially the
same method. As an illustration, bigraded versions of some of the data gathered in
Appendix A have been made available on http://sage.ugent.be/www/jdemeyer/

betti/.

We use the material from Section 6 to reduce the dimensions further. As soon
as we are dealing with an n-gon with n ≥ 5, then by Theorem 6.4 we can remove
one lattice point only. In the case of a quadrilateral we can remove two opposite
vertices. In the case of a triangle we can remove its three vertices. For simple
computations we just make a random amenable choice. For larger computations
it makes sense to spend a little time on optimizing the point(s) to be removed, by
computing the dimensions of the resulting quotient spaces.

Remark 7.3. As we have mentioned before, from a practical point of view the effect
of removing lattice points is somewhat unpredictable. In certain cases we even
observed that, although the resulting matrices are of considerably lower dimension,
computing the rank takes more time. We currently have no explanation for this.

Another useful optimization is to take into account symmetries of ∆, which
naturally induce symmetries of multiples of ∆ and ∆(1). For example for b`, consider
a symmetry ψ ∈ AGL2(Z) of (`+ 1)∆ and let (a, b) be a bidegree. Then b`,(a,b) =

b`,ψ(a,b). The analogous remark holds for c`, using symmetries ψ of (`−1)∆+∆(1).
A final speed-up comes from computing in finite characteristic, thereby avoiding

inflation of coefficients when doing rank computations. This could affect the out-
come, for instance if ∆ = conv{(0, 0), (5, 3), (2, 5)} then the graded Betti table of
X∆ in characteristic zero is

0 1 2 3 4 5 6 7 8 9

0 1 0 0 0 0 0 0 0 0 0

1 0 36 160 315 288 45 0 0 0 0

2 0 1 9 36 129 414 441 244 72 9

while we observed that the entries 45 and 129 increase by 1 when considering X∆

over fields of characteristic 2 or 3. We believe that this event is extremely rare; in
fact the foregoing polygon is the only example of which we are currently aware, up
to unimodular equivalence. Nevertheless this speed-up comes at the cost of ending
up with conjectural graded Betti tables. However recall from the introduction that
the graded Betti numbers can never decrease, so the zero entries are rigorous (and
because of (1.2) the other entry on the corresponding antidiagonal is rigorous as
well).

Writing down the matrices. The maps we need to deal with are of the form

(7.1)
∧p

VA ⊗ VB
δ−→
∧p−1

VA ⊗ VC ,

where A, B and C are finite sets of lattice points and δ is as in (2.2), subject to
the additional rule mentioned in Remark 6.2. For a given bidegree (a, b), as a basis
of the left hand side of (7.1) we make the obvious choice

{xi1yj1 ∧ . . . ∧ xipyjp ⊗ xi
′
yj

′
| (i′, j′) = (a, b)− (i1, j1)− . . .− (ip, jp) and

{(i1, j1), . . . , (ip, jp)} ⊆ A and (i′, j′) ∈ B},

http://sage.ugent.be/www/jdemeyer/betti/
http://sage.ugent.be/www/jdemeyer/betti/
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where {(i1, j1), . . . , (ip, jp)} runs over all p-element subsets of A. In the implemen-
tation, we equip A with a total order < and take subsets such that (i1, j1) < . . . <

(ip, jp). We do not need to store the part xi
′
yj

′
since that is completely determined

by the rest (for a fixed bidegree). We use the analogous basis for the right hand
side of (7.1). We then compute the transformation matrix corresponding to the
map δ in a given bidegree, and determine its rank.

Note that the resulting matrix is very sparse: it has at most p non-zero entries
in every column, while the non-zero entries are 1 or −1. Therefore we use a sparse
data structure to store this matrix.

Implementation. We have implemented all this in Python and Cython, using Sage-
Math [43] with LinBox [36] for the linear algebra. In principle the algorithm should
work equally fine in characteristic zero (at the cost of some efficiency) but for
technical reasons our current implementation does not support this. For the im-
plementation details we refer to the programming code, which is made available at
https://github.com/jdemeyer/toricbetti.

7.2. Computing the dimensions of the spaces. Given finite subsets A,B ⊆ Z2,
computing the dimension of the space

∧p
VA ⊗ VB in each bidegree can be done

efficiently without explicitly constructing a basis. These dimensions determine the
sizes of the matrices involved. Knowing this size allows to estimate the amount of
time and memory needed to compute the rank. We use this to decide whether to
compute b` or cN∆−1−`, and which point(s) we remove when applying the material
from Section 6.

Namely, consider the generating function (which is actually a polynomial)

fA(X,Y, T ) =
∏

(i,j)∈A

(1 +XiY jT ).

Then the coefficient of XaY bT p is the dimension of the component in bidegree (a, b)
of
∧p

VA. The generating function for
∧p

VA ⊗ VB then becomes

fA,B(X,Y, T ) =
∏

(i,j)∈A

(1 +XiY jT ) ·
∑

(i,j)∈B

XiY j .

If we are only interested in a fixed p, we can compute modulo T p+1, throwing away
all higher-order terms in T .

7.3. Applications. As a first application we have verified Conjecture 1.5 for all
lattice polygons containing at most 32 lattice points with at least one lattice point in
the interior (namely we used the list of polygons from [7] and took those polygons
for which N∆ ≤ 32), thereby establishing the first bullet point of Theorem 1.3.
There are 583 095 such polygons; the maximal lattice width that occurs is 8. Apart
from the ten exceptional polygons 3Σ, . . . , 6Σ,Υ2, . . . ,Υ6 and 2Υ, we verified that
the entry bN∆−lw(∆)−1 indeed equals zero. In the exceptional cases, whose graded
Betti tables are gathered in Appendix A, we found that bN∆−lw(∆) equals zero. This
shows that the upper bound from Theorem 1.3, which was proven in Section 3, is
indeed sharp for each of these lattice polygons. The computation was carried out
modulo 40 009 and took 1006 CPU core-days on an Intel Xeon E5-2680 v3.

As a second application we have computed the graded Betti table of the 6-fold
Veronese surface X6Σ, which can be found in Appendix A. Currently the compu-
tation was done in finite characteristic only (again 40 009) and therefore some of

https://github.com/jdemeyer/toricbetti
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the non-zero entries are conjectural. The computation took 12 CPU core-days on
an IBM POWER8. This new data leads to the guesses stated in Conjecture 1.6,
predicting certain entries of the graded Betti table of XdΣ = νd(P2) for arbitrary
d ≥ 2.

• The first guess states that the last non-zero entry on the row q = 1 is given
by d3(d2 − 1)/8. This is true for d = 2, 3, 4, 5 and has been verified in
characteristic 40 009 for d = 6, 7. Recently, this guess has been put in the
broader context of Schur functors by Bruce, Erman, Goldstein and Yang [4,
Conj. 6.6].
• The second guess is about the first non-zero entry on the row q = 2, which

we believe to be (
N(dΣ)(1) + 8

9

)
.

Here we have less supporting data: it is true for d = 3, 4, 5 and has been
verified in characteristic 40 009 for d = 6. On the other hand our guess
naturally fits within the more widely applicable formula(

N∆(1) − 1 +
∣∣{ v ∈ Z2 \ {(0, 0)} |∆(1) + v ⊆ ∆ }

∣∣
N∆(1) − 1

)
,

which we have verified for a large number of small polygons. In fact, by now
we can replace the word ‘guess’ by ‘theorem’, because between the time of
submission and the time of publication of this document, the fourth listed
author has proven the above binomial formula in arbitrary characteris-
tic [35] (and extended it to normal toric varieties of arbitrary dimension).

Appendix A. Some explicit graded Betti tables

This appendix contains the graded Betti tables of X∆ ⊆ PN∆−1 for the instances
of ∆ that are the most relevant to this paper. The largest of these Betti tables were
computed using the algorithm described in Section 7. Because these computations
were carried out modulo 40 009 the resulting tables are conjectural, except for the
zero entries and the entries on the corresponding antidiagonal. The smaller Betti
tables have been verified independently in characteristic zero using the Magma
intrinsic [3], along the lines of [10, §2]. For the sake of clarity, we have indicated
the conjectural entries by an asterisk. The question marks ‘???’ mean that the
corresponding entry has not been computed.

Σ (N∆ = 3) : 2Σ (N∆ = 6) : 3Σ (N∆ = 10) :

0

0 1

1 0

2 0

0 1 2 3

0 1 0 0 0

1 0 6 8 3

2 0 0 0 0

0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0

1 0 27 105 189 189 105 27 0

2 0 0 0 0 0 0 0 1

4Σ (N∆ = 15) :

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 75 536 1947 4488 7095 7920 6237 3344 1089 120 0 0

2 0 0 0 0 0 0 0 0 0 0 55 24 3
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5Σ (N∆ = 21) :

0 1 2 3 4 5 6 7 8 · · ·
0 1 0 0 0 0 0 0 0 0

1 0 165 1830 10710 41616 117300 250920 417690 548080 · · ·
2 0 0 0 0 0 0 0 0 0

· · · 9 10 11 12 13 14 15 16 17 18

0 0 0 0 0 0 0 0 0 0 0

1 · · · 568854 464100 291720 134640 39780 4858 375 0 0 0

2 0 0 0 0 2002 4200 2160 595 90 6

6Σ (N∆ = 28) :

0 1 2 3 4 5 6 7 8 · · ·
0 1 0 0 0 0 0 0 0 0

1 0 315 4950 41850 240120 1024650 3415500 9164925 20189400 · · ·
2 0 0 0 0 0 0 0 0 0

· · · 9 10 11 12 13 14 · · ·
0 0 0 0 0 0 0

1 · · · 36989865 56831850 73547100 80233200 73547100 56163240 · · ·
2 0 0 0 0 0 0

· · · 15 16 17 18 19 20 21 · · ·
0 0 0 0 0 0 0 0

1 · · · 35102025 17305200 6177545∗ 1256310∗ 160398∗ 17890∗ 945∗ · · ·
2 0 48620∗ 231660∗ 593028∗ 473290∗ 218295∗ 69300

· · · 22 23 24 25

0 0 0 0 0

1 · · · 0 0 0 0

2 15525 2376 225 10

7Σ (N∆ = 36) :

· · · 26 27 28 29 30 31 32 33

0 0 0 0 0 0 0 0 0

1 · · · ??? 53352∗ 2058∗ 0 0 0 0 0

2 27821664∗ 8824410∗ 2215136 434280 64449 6832 462 15

Υ = Υ1 (N∆ = 4) : 2Υ (N∆ = 10) :

0 1

0 1 0

1 0 0

2 0 1

0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0

1 0 24 84 126 84 20 0 0

2 0 0 0 0 20 36 21 4

Υ2 (N∆ = 7) : Υ3 (N∆ = 11) :

0 1 2 3 4

0 1 0 0 0 0

1 0 7 8 3 0

2 0 0 6 8 3

0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0

1 0 30 120 210 189 105 27 0 0

2 0 0 0 21 105 147 105 40 6
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Υ4 (N∆ = 16) :

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 81 598 2223 5148 7920 8172 6237 3344 1089 120 0 0 0

2 0 0 0 0 55 450 2376 4488 4950 3630 1859 612 117 10

Υ5 (N∆ = 22) :

0 1 2 3 4 5 6 7 8 · · ·
0 1 0 0 0 0 0 0 0 0

1 0 175 1995 11970 47481 135660 290820∗ 476385∗ 597415∗ · · ·
2 0 0 0 0 0 120∗ 1575∗ 9555∗ 52650∗

· · · 9 10 11 12 13 14 15 · · ·
0 0 0 0 0 0 0 0

1 · · · 581724∗ 466102∗ 291720∗ 134640∗ 39780∗ 4858∗ 375∗ · · ·
2 172172∗ 291720∗ 338130∗ 291720∗ 194782∗ 102120∗ 39900

· · · 16 17 18 19

0 0 0 0 0

1 · · · 0 0 0 0

2 11305 2205 266 15

Υ6 (N∆ = 29) :

· · · 18 19 20 21 22 23 24 25 26

0 0 0 0 0 0 0 0 0 0

1 · · · ??? 160398∗ 17890∗ 945∗ 0 0 0 0 0

2 16095603∗ 7911490∗ 3140445∗ 995280 246675 46176 6150 520 21
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