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Abstract. Propositionalization is the process of summarizing relational
data into a tabular (attribute-value) format. The resulting table can next
be used by any propositional learner. This approach makes it possible
to apply a wide variety of learning methods to relational data. However,
the transformation from relational to propositional format is generally
not lossless: different relational structures may be mapped onto the same
feature vector. At the same time, features may be introduced that are
not needed for the learning task at hand. In general, it is hard to define
a feature space that contains all and only those features that are needed
for the learning task. This paper presents LazyBum, a system that can
be considered a lazy version of the recently proposed OneBM method for
propositionalization. LazyBum interleaves OneBM’s feature construction
method with a decision tree learner. This learner both uses and guides
the propositionalization process. It indicates when and where to look for
new features. This approach is similar to what has elsewhere been called
dynamic propositionalization. In an experimental comparison with the
original OneBM and with two other recently proposed propositionaliza-
tion methods (nFOIL and MODL, which respectively perform dynamic
and static propositionalization), LazyBum achieves a comparable accu-
racy with a lower execution time on most of the datasets.

Keywords: LazyBum · Inductive Logic Programming · Propositional-
ization.

1 Introduction

There is a renewed interest in analyzing data stored in relational databases. In
2017, Tan et al. proposed the “One Button Machine” (OneBM) [15], which au-
tomatically constructs features from a relational database. In ILP terms, one
would say that OneBM performs propositionalization [14]. It summarizes a re-
lational database into a single table by defining features that are derived from
the database by joining multiple tables. It handles one-to-many and many-to-
many relationships by using specific aggregation functions that aggregate the
information in a set of multiple related tuples into a single tuple.



An obvious disadvantage of propositionalization is that there is usually a loss
of information: the resulting table provides a summary of the original database,
from which that database cannot uniquely be reconstructed. Defining more fea-
tures means that less information is lost.

Viewed from an ILP perspective, propositionalization is equivalent to defining
a (usually relatively small) set of clauses, and associating with each clause one
particular feature. A typical ILP system searches a space that is much larger than
the number of features typically constructed by propositionalization approaches.

In this paper, we propose a variant of OneBM that performs dynamic, or
“lazy”, propositionalization. It considers the same types of features as OneBM,
but constructs these features in a lazy manner that is guided by the learner. We
begin by only considering that are based on the target table. But when another
table’s relevance to the learner becomes more evident, it expands its feature
space to consider features based on information contained in that table.

The gradual expansion of the feature table is somewhat similar to how ILP
systems gradually construct longer clauses by first constructing shorter ones
and considering only the promising ones for extension. An important difference,
however, is that ILP systems, when evaluating a clause, typically re-evaluate
the whole clause, which includes re-discovering answer substitutions for the sub-
clause that has already been evaluated earlier. The lazy propositionalization
methods proposed in this paper caches these instantiations.

The hypothesis underlying this paper is that a method like OneBM can be
made more efficient in both memory and time by implementing a lazy version of
its feature construction, without a loss of accuracy. At the same time, one might
hope that it is faster than ILP systems that use the same implicit search space.

The remainder of this paper is structured as follows. Section 2 briefly presents
OneBM. Section 3 introduces our new algorithm, including two available strate-
gies for defining new features, and discusses related work. Section 4 experimen-
tally compares this algorithm to other propositionalization approaches, in terms
of predictive and run-time performance, and Section 5 presents conclusions.

2 OneBM

The “One Button Machine” or OneBM [15] is a relational learning system that
works on data stored in a relational database. It takes as input a set of tables,
connected with each other through foreign keys. A single attribute is selected to
serve as the target attribute, and the table containing this attribute is called the
target table. OneBM produces as output a modified target table that contains
newly constructed features which summarize the other tables. Figure 1 shows
an example of what the input may look like.

The OneBM paper defines a “joining path” as a sequence of tables T0
c1−→

T1
c2−→ T2

c3−→ · · ·Tk 7→ A where T0 is the target table, ci is the condition on
which Ti−1 and Ti are (equi-)joined, and A is an attribute of the last table in
the sequence. Note that this definition considers the projection onto one single
attribute at the end as part of the “joining path.” In this paper, we will use the
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Fig. 1. An example database representing teachers and students in a fictional school.
Professor is the target table and the target attribute is popular.

term “join path”, or J-path, for the joining path without the final projection,
and “join-project path”, or JP-path, for the joining path as originally defined.
Given a T0-tuple t, we will write t.P for the set of Tk-tuples associated with it
through the join path P , and t.P.A for the multiset of A-values in t.P .

Figure 2 shows, for the database shown in Figure 1 and the JP-path Professor
PID−−−→ Course

CID−−−→ Enrolled
SID−−→ Student 7→ Grade, the multiset of grades asso-

ciated with Prof. Lupin (we use PID as shorthand notation for Professor .PID =
Course.PID here, and similar for CID and SID).

If all the joins in P are one-to-one or many-to-one, then t.P.A is guaranteed
to be a singleton; otherwise, it is not. In the first case, we call P determinate,
and in the second case we call it non-determinate.

OneBM derives features from JP-paths as follows. A determinate path defines
one feature, whose value (for a given tuple t) is the single element of t.P.A. A
non-determinate path defines a fixed-sized feature vector whose components are
defined by predefined aggregation functions applied to t.P.A. Which aggregation
functions are used depends on the type of A. If A is numerical, the feature vector
contains the mean, variance, min, max, sum and count of the numbers in the
multiset. If A is categorical, the feature vector contains the cardinality of the
multiset and the corresponding set (in SQL terms, the count and count distinct
functions). OneBM defines other aggregation functions for values that are texts,
timestamps, etc.

The features defined by a JP-path can be collected using a single SQL query.
For example, the multiset from Figure 2 and its corresponding features can be
computed using the following SQL query:

SELECT count(grade), sum(grade), average(grade),

variance(grade), min(grade), max(grade)

FROM Professor

JOIN Course ON Professor.PID = Course.PID
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Fig. 2. The multiset of grades for students taking one of professor Lupin’s courses.
OneBM transforms this multiset to multiple features for Lupin. Example transforma-
tions include the average and standard deviation.

JOIN Enrolled ON Course.CID = Enrolled.CID

JOIN Student ON Student.SID = Enrolled.SID

GROUP BY Professor.PID

OneBM defines the depth of a table Ti, d(Ti), as the length of the shortest
join path between T0 and Ti. It has two options for generating join paths: in
“forward-only” mode, consecutive tables must be increasingly farther from the
target table (that is, i < j ⇒ d(Ti) < d(Tj)), whereas in “full” mode this
restriction is dropped, allowing for what the authors of OneBM call “backward
traversal”.

Given a database, OneBM constructs a table that contains for each join path
all the defined features. As the number of join paths can grow exponentially with
their length, OneBM has a MaxDepth parameter that limits this length.

OneBM uses a relatively restrictive bias. For instance, it does not mix selec-
tions into the join path, as, e.g., Van Assche et al. do [25]. Doing so would result
in an exponential blowup of the already large feature table.

The lazy version of OneBM that we propose does not attempt to lift this
restriction or address any other limitations; it constructs features lazily, but in
all other respects is meant to behave as much as possible like OneBM. It is
currently limited to numerical and categorical values, and only implements the
forward-only approach.

3 LazyBum

Our lazy version of OneBM is called Lazy Button Machine, or LazyBum. The
main motivation for developing LazyBum is that, by constructing all features in
advance, OneBM may invest much work into computing features that afterwards
will not be used by the learner. LazyBum takes a more cautious approach: it
first computes features based on short join paths, and only extends join paths
when (1) the simpler features turn out to be insufficient, and (2) there is reason
to believe the extension will help. In principle, LazyBum can construct every
feature that OneBM can construct, as it explores the same feature space. In
practice, it avoids constructing the large majority of them.



As the lazy feature construction somehow needs to be informed about which
tables are useful additions to the current path, it is natural to integrate a learning
system into the feature construction process. LazyBum is based on relational
decision tree learning (such as Tilde [1] or Relational Probability Trees [20]).

3.1 The LazyBum Algorithm

LazyBum learns a decision tree in a top-down fashion. When deciding on the
test to include in a node, it evaluates possible tests using a “local data table”
(LDT), which just like in traditional tree learning contains all instances sorted
into this node, with one row per instance. Unlike traditional tree learning, the
LDT does not have a fixed schema (set of attributes) as the learner may extend
the schema with new features as needed. Each LDT is associated with a decision
tree node and contains all the features constructed along the path from the root
to that node. We now explain the learning process in detail.

At the root node of the tree, the LDT is the target table extended with all
features derived from join paths of length 1 (i.e., the tables directly connected to
the target table). LazyBum uses information gain to select the most informative
feature in the LDT to split on. If a good enough split is found, it splits the LDT
into two subsets of rows based on this: one for each child. If no good split can
be found, LazyBum tries to extend the LDT by introducing new features. These
new features are defined by extending some of the join paths used to build the
current LDT. Information from the current decision tree branch can guide the
selection of which join paths to extend, which is discussed in Subsection 3.2.
LazyBum finds the best split based on the new features, and splits the extended
LDT into two subsets. If none of the new features is good enough, the node is
turned into a leaf. This procedure is recursively repeated for all subsets created.
Algorithm 1 summarizes the entire procedure.

The way LDTs are extended is somewhat similar to the way in which the
relational decision tree learner Tilde extends its clausal queries. In Tilde, a query
Q is associated with the current node (Q contains all the tests from the root to
this node), and this query is extended with one or more literals, chosen among
many candidates. After the most informative extension e is found, the set of
instances satisfying Q (i.e., all instances at this node) is partitioned into a subset
of instances that satisfy Q∧ e, and a subset of instances that do not. Important
differences between Tilde and LazyBum are:

– In Tilde, for each candidate extension e, the query Q ∧ e is evaluated. This
means the sub-query Q is computed many times. The “query pack” imple-
mentation of Tilde [2] avoids this to some extent: within a single node, the
search for all answer substitutions for query Q is done only once, not once
for each extension.
While query packs avoid rerunning Q multiple times inside one node, Q
must still be rerun in that node’s children. LazyBum differs in this respect.
LazyBum caches the join paths corresponding to a node’s LDT. A join path
is cached using the primary keys identifiers of the tables on its path, for



Algorithm 1 Main LazyBum algorithm.

Require:
MaxDepth, max tree depth,
MinInst , minimum nb of instances in a leaf
MinIG, minimum information gain threshold

1: procedure grow tree(node N , table LDT )
2: if depth(N) = MaxDepth or #rows(LDT ) < MinInst then
3: Make N a leaf node
4: else
5: Find the test τ with highest information gain to split LDT on
6: if IG(τ) > MinIG then
7: Split LDT into tables LDTL, LDTR

8: Turn N into an inner node with children NL, NR

9: Call grow tree(NL, LDTL) and grow tree(NR, LDTR)
10: else
11: if table LDT can be extended then
12: LDT ext ← extend data table(LDT , N)
13: Find the test τ with highest information gain to split LDT ext on
14: if IG(τ) > MinIG then
15: Split LDT ext in tables LDT ext

L , LDT ext
R

16: Make N an inner node with children NL, NR

17: Call grow tree(NL, LDT
ext
L ) and grow tree(NR, LDT

ext
R )

18: else
19: Make N a leaf node
20: else . LDT cannot be extended
21: Make N a leaf node

the instances in the LDT. When extending a node’s LDT, it reuses the join
paths of its ancestor nodes to avoid recomputing these joins. Only the joins
with the extension tables need to be calculated. This is similar to caching all
answer substitutions of Q ∧ e for all possible extensions e, and reusing the
cached results in all child nodes.

In addition, when extending a LDT, LazyBum derives all features for each
join path extension and adds them to the LDT. Therefore, if a feature is
relevant but not chosen immediately because a better feature exists, this
feature will appear in the LDT for all descendant nodes and hence can be
used as split criteria in one of these nodes (without having to be recomputed).
In comparison, Tilde with query packs does not cache the ‘features’ it does
not split on for use in child nodes.

– Tilde uses a more flexible language bias, largely specified by the user, whereas
LazyBum uses a predefined and more restrictive bias. LazyBum’s bias is
intended to be restrictive enough to make the storage of the LDT feasible.

3.2 LDT Extension Strategies

We call two tables neighbors if they are connected by a foreign key relationship.



LazyBum defines two different strategies for extending an LDT. Let P =
T0 → T1 → · · · → Tk be a J-path used to construct the LDT. A table is called a
candidate for extension of P if (a) it does not occur in P and (b) it neighbors on
Tk. In the unrestricted strategy, every path used to construct the current LDT
gets extended with each candidate for extension. In the restricted strategy,
only those paths get extended from which at least one feature actually occurs
in an ancestor node of the decision tree node currently being considered. Hence,
the decision tree guides the selections of which join paths should be extended.
The difference between the two strategies is that for the unrestricted strategy,
it suffices that the features defined by the join path have been introduced in
the LDT, while for the restricted strategy they must also have been used at
least once. The motivation for the latter condition is that LazyBum should
preferentially introduce relevant features, and the underlying assumption is that
tables are more likely to be relevant if their neighbors are.

The LDT is then extended by considering for each extended J-path all JP-
paths (that is, considering each attribute of the newly added tables), computing
the features defined by these JP-paths, and adding these features to the LDT.
Table 1 lists the aggregation functions that are currently used by LazyBum. Most
of them speak for themselves. The “contains” aggregation function introduces
for each possible value of a categorical domain a Boolean feature that is true if
and only if the value occurs in the multiset. To avoid problems with “categorical”
variables that have a very large domain (e.g., because they are in fact strings),
these features are only introduced for variables whose domain size is below both
an absolute threshold DomSizeabs and a relative threshold DomSizerel (relative
to the number of rows in the table).

Figure 3 illustrates how the schemas of LDTs are extended in the restricted
strategy, guided by their corresponding decision tree branches.
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Fig. 3. Example of a LDT schema extension in the restricted strategy based on the
splits chosen in the decision tree nodes, using the example database from Figure 1.
The partial decision tree shows the root node, its left child and its right child split-

ting on features from Professor , Professor
PID−−→ Course and Professor

MID−−−→ Movie,
respectively. The schemas of the LDTs of the root and its two children are the same.
For both left children of the roots two children, no good split is found and their LDTs
are extended.



Join result Data type aggregation function

single value
numerical

identity function
categorical

multi-set
numerical avg, standard deviation, variance, max, min, sum, count
categorical count, distinct count, contains

Table 1. The functions supported by LazyBum to aggregate multisets.

3.3 Special cases

Associative tables LazyBum normally extends join paths with a single table,
but there is one exception to this rule. Many-to-many relationships are usually
implemented with an intermediate associative table that does nothing else than
connect two other tables in an m-to-n manner (for an example, see the table
Enrolled in Figure 1). The intermediate table has no attributes of its own, and
is more of an implementation artifact than a conceptual table. For this reason,
when an intermediate table is selected, the tables it connects to is immediately
added as well. This is somewhat similar to lookahead in ILP.

Empty multisets For some tuples t and join paths P , t.P.A may be empty.
Not all aggregation functions are defined on the empty set. To deal with this,
LazyBum uses the following strategy when evaluating features to split on. For
any test, the instance set is split into three subsets Pass, Fail, and Undefined,
which respectively contain the instances that pass the test, fail the test, or are
untestable because the feature is undefined. This ternary partition is transformed
into a binary partition by merging Undefined with either Pass or Fail, depending
on which of these two yields the highest scoring test. If that test is eventually
chosen, the node stores which option was chosen, so that it can correctly handle
instances with undefined values at prediction time. Apart from this, LazyBum
also introduces a Boolean feature that indicate whether a multiset is empty or
not, as this by itself may be relevant information.

Missing values Missing values may occur in the input data. Missing values are
quite different from undefined values, and must be treated differently. When the
original database has missing values, these are included as separate elements in
t.P.A. Except for count and count distinct, all aggregation functions are com-
puted on the sub-multiset of the multiset that excludes missing values. When
that sub-multiset is empty, while the multiset itself is not, a default value is
included as the feature’s value.

3.4 Comparison with related work

Many propositionalization approaches have been proposed in the past and suc-
cesfully applied to various domains, such as information extraction and word
sense disambiguation [10,14,4,23,24]. To better position LazyBum with respect
to the state of the art, we categorize these approaches along four dimensions.



ILP vs Databases A first dimension is the perspective that they take. Some ap-
proaches take an ILP-based first-order logic perspective, other approaches take
a relational database perspective [11]. Although the logical and database repre-
sentations are strongly related, logic and database query engines are typically
optimized for different types of queries (essentially, determining the existence of
at least one answer substitution, versus computing the set of all answer substi-
tutions). LazyBum is set in the database setting. The motivation for this is that
the features it computes are indeed based on entire sets of answer substitutions.

Types of features We distinguish among three types of features. The first type
is existential features, which simply check the existence of an answer substitu-
tion of a particular type. These features are typically constructed by proposi-
tionalization approaches that are closely related to ILP learners. Examples of
such systems are LINUS [18], DINUS [17], SINUS [11], RSD [28], RelF [13] and
nFOIL [16]. They often focus on categorical attributes, with numerical attributes
getting discretized.

The second type of features is based on simple aggregation functions, which
summarize information in neighboring tables [21]. Most initial relational-database
oriented propositionalization approaches focus on this type of feature. Examples
of such systems are POLKA [9], RELAGGS [12], Deep Feature Synthesis [8] and
OneBM [15].

The third type of features consists of complex aggregates [25,26]. A complex
aggregate combines an aggregation function with a selection condition. The ILP
learners Tilde and FORF included in the ACE system [25] allow for complex
aggregates to be used. A recent propositionalization approach that considers
complex aggregates is MODL [3,4], which is included in the Khiops data mining
tool. MODL was designed to deal with a possibly infinite feature space. The
approach it takes is two-fold. First, it postulates a hierarchical prior distribution
over all possible constructed features. This prior distribution penalizes complex
features. It takes into account the recursive use of feature construction rules1,
being uniform at each recursion level. Second, it samples this distribution to
construct features.

LazyBum does not construct complex aggregates, but focuses on simple ag-
gregates as used in OneBM. However, LazyBum does build some features using
the existential quantifier.

Indirectly linked complementary tables This dimension is specific to database-
oriented propositionalization approaches and concerns how they handle comple-
mentary tables that are not directly connected to the target table. Like OneBM,
LazyBum joins tables over a path through the database, aggregating informa-
tion for each instance using a single aggregation function. In contrast, POLKA
and Deep Feature Synthesis use aggregation functions recursively, aggregating
in between joins. RELAGGS uses a form of identifier propagation similar to
CrossMine [27] to directly relate all complementary tables to the target table.

1 A constructed feature can be used as an argument for another construction rule.



Static vs. dynamic propositionalization Static propositionalization approaches
perform the following two-step process: (1) convert the relational database to a
data table, and (2) apply any propositional learner to the data table. In contrast,
dynamic approaches [5,7,16] interleave feature construction and model learning.
LazyBum is a dynamic version of OneBM, constructing a data table gradually,
as needed. LazyBum differs from existing dynamic propositionalization systems
like SAYU [5,7,6] and nFOIL [16] in three important ways. First, LazyBum
takes a database perspective, whereas SAYU and nFOIL come from an ILP-
perspective. Second, LazyBum considers a much wider array of aggregations
whereas prior approaches focus on existence [5,16] or possible simple counts [7].
Finally, LazyBum guides the propositionalization by learning a decision tree,
while nFOIL and SAYU use Bayesian network classifiers.

4 Evaluation

The goal of the empirical evaluation is to compare LazyBum’s predictive and
run-time performance to that of other propositionalization approaches.

4.1 Methodology

Table 2. The datasets used in the experiments.

Hepatitis UW-CSE University IMDb

# examples 500 278 38 12000

# classes 2 4 3 3

# rows (in total) 12927 712 145 442698

# tables 7 5 5 8

target table dispat person student movies

target variable type inphase intelligence rating

The following datasets were used in the evaluation, which were collected from
the CTU Prague Relational Dataset Repository [19]:

– The Hepatitis dataset describes patients with hepatitis B and C. The goal
is to predict the type of hepatitis.

– The UW-CSE dataset contains information about the University of Wash-
ington’s computer science department. The goal is to predict the phase a
person is in.

– The University dataset is a small dataset containing information about stu-
dents. The classification task is to predict the intelligence of a student.

– The IMDb (Internet Movie Database) dataset contains information relating
movies, directors and actors. A possible regression task is to predict the
rating of a movie, which is a real number between 0 and 10. We turned



this into a classification problem by divided the examples into 3 groups:
those with a rating lower than 3.3 (bad movies), those with a rating between
3.3 and 6.6 (average movies) and those with a rating higher than 6.6. The
original dataset contained 67245 instances, with 5219 bad, 39599 average
and 22427 good movies. From this dataset, we sampled 12000 examples,
with 4000 examples of each class.

The datasets vary in size and number of instances (Table 2). For each dataset, we
removed the feature columns from the main table, leaving only the primary key
and the target attribute (and foreign keys). This ensures that the systems must
use information from the secondary tables to result in a model that performs
better than a majority class predictor.

We compare two versions of LazyBum (using respectively the restricted and
unrestricted strategy) to the following alternative approaches:

– OneBM is the static propositionalization system on which LazyBum is based.
As the original OneBM could not be made available to us, we implemented
our own version, which shares the same code base as LazyBum. As a result,
our OneBM and LazyBum versions are able to generate the same features.

– MODL [3,4] is a recent static propositionalization approach included in the
Khiops data mining tool.

– nFOIL [16]. Like LazyBum, nFOIL performs dynamic propositionalization.
However, nFOIL uses a naive Bayes learner instead of a decision tree to guide
its search for features. nFOIL uses conjunctive clauses to represent features,
while LazyBum uses simple aggregation functions.

– Wordification [22] is another recent static propositionalization method. Each
instance in a dataset is viewed as a text document, with as words the con-
structed features. Wordification converts each instance in a feature vector
using a bag-of-words representation for its corresponding document.

– Tilde [1] is a relational decision learner; it produces a model but no propo-
sitionalization of the data. Since LazyBum is inspired by Tilde and uses a
decision tree learner to guide its feature construction, we compare with Tilde
as a baseline.

For each of the systems, we performed 10-fold cross-validation. The same
10 folds were used for all systems except for nFOIL and Tilde. For nFOIL and
Tilde, we used their builtin 10-fold cross-validation, which choose their own 10
folds. On each dataset, we measure both predictive accuracy and run-time per-
formance. However, OneBM, MODL and Wordification are static propositional-
ization approaches. They only flatten the database into a table without building
a predictive model, while LazyBum also learns a decision tree. To compare pre-
dictive accuracy for these methods with LazyBum, we learn a single decision tree
on their output tables. For OneBM and MODL, we used WEKA’s C4.5 decision
tree implementation. For Wordification, we used a default scikit-learn tree.

To compare run-time performance, we measure the model induction time,
averaged over the different folds. For OneBM, MODL and Wordification, this
includes both the propositionalization time and the time to learn a decision tree.



LazyBum and OneBM were run with their default parameter settings. For
LazyBum, this corresponds MinIG = 0.001, MaxDepth =∞ an MinInst = 3
(see algorithm 1). LazyBum and OneBM share their feature generation code,
which uses default thresholds DomSizeabs = 40 and DomSizerel = 0.2 for the
“contains” aggregation function.

For MODL, the number of constructed features was set to 1000. Its default
feature construction rules were used, without recoding the categorical or numer-
ical features, while keeping the initial target table attributes as features.

For Wordification, we based our experiments on the included sample scripts,
using the default weighting method.

Both nFOIL and Tilde were used with their default options. As input, nFOIL
expects a list of ground facts, together with a language bias of types and refine-
ment mode definitions. The datasets were converted by using each table row
as a predicate instance. In the rmode definitions used, primary and foreign key
attributes were marked as possible input variables (on which unification can be
performed), the other attributes were marked as output variables. If a regular
column has at most five different values, it was added as a possible selection con-
dition to the rmodes. For Tilde, we used the same language bias as for nFOIL.

4.2 Results

We had to modify the nFOIL setup for two datasets. For Hepatitis, nFOIL ran
for four days without finishing when using a language bias containing constants.
Hence, nFOIL’s reported results for Hepatitis use a language bias without con-
stants. For IMDb, the largest of the datasets, nFOIL always crashed, and Wordi-
fication did not succeed in propositionalising the first fold in eight hours, after
which it was canceled. At that point, it was using 15.5 gigabytes of memory.

Predictive accuracy When comparing propositionalization methods, both Lazy-
Bum versions have the highest accuracy on the UW-CSE and IMDb datasets
(Figure 4a). On Hepatitis, both LazyBum versions are almost as accurate as
nFOIL, and they outperform the static approaches. On University, the smallest
of our datasets, nFOIL and Tilde noticeably outperform all other approaches.
Inspecting their models for University shows that a large part of their generated
feature clauses or node queries contain multiple instances of some predicate.
That is, features contain self-joins of tables. In comparison, our LazyBum and
OneBM implementations only allow each table to occur once in a join path;
they cannot generate these features. This may be why nFOIL performs better
on University.

It is noteworthy that LazyBum outperforms OneBM+C4.5 on all datasets.
Given that LazyBum introduces a subset of the features that OneBM uses, the
only plausible explanation for this is that OneBM generates so many features
that it harms the performance of C4.5.

Run-time performance Tilde is faster than all other approaches on three out of
four datasets (Figure 4b). Tilde was 665 times slower than restricted LazyBum on



(a) Accuracies.

(b) Run times relative to restricted LazyBum.

Fig. 4. Accuracy and run-time measurements for each of the datasets. For OneBM,
MODL and Wordification, this includes both propositionalization and learning a tree
using C4.5 (averaged over the 10 folds).

Hepatitis. This is likely due to the high number of refinements for each clause,
as nFOIL did not even finish without modifying the language bias. Possibly
contributing to Tilde’s relative speed is that it does not propositionalize.

When comparing between the propositionalization methods, the restricted
LazyBum is between 1.2 and 35.8 times faster than its competitors. The smallest
speedups are for the University dataset, which is substantially smaller than the
other datasets. Remarkably, the restricted LazyBum is only noticeably faster
than the unrestricted version on the IMDb dataset. As IMDb is the largest
dataset, there is the most to gain from using fewer joins. For the smaller Uni-
versity and UW-CSE datasets, the restricted version is slightly slower due to
having a more complex extension strategy.

General discussion In summary, LazyBum always results in significant run time
improvements compared to the other propositionalization methods, while still
achieving equivalent predictive performance on three of the four datasets. While
Tilde often outperforms the propositionalizers in terms of both accuracy and
speed, it only produces a model, whereas the propositionalizers produce a table
that enables the generation of many different models. For the OneBM, MODL
and Wordification settings, most of the time is spent building the data table, with
the decision tree induction time being almost negligible in comparison. LazyBum
has the advantage of possibly not having to propositionalize the whole table.



5 Conclusion

We have implemented LazyBum, a lazy version of OneBM, a recently proposed
system for propositionalizing relational databases, and evaluated its performance
relative to OneBM and to several other propositionalization methods. Our ex-
perimental results suggest that LazyBum outperforms all other systems in terms
of speed, sometimes by an order of magnitude, and this usually without signifi-
cant loss of accuracy. Moreover, LazyBum systematically outperforms OneBM in
terms of accuracy, which can only be explained by the fact that OneBM’s eager
generation of (many irrelevant) features is harmful to the subsequent learning
process. These results suggest that lazy propositionalization by interleaving a
decision tree learner with the feature generation process is an effective approach
to mining relational data.
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