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Abstract. Tensor decompositions play an important role in a variety of applications, such as
signal processing and machine learning. In practice, the tensor can be incomplete or very large,
making it difficult to analyse and process using conventional tensor techniques. In this paper we
focus on the basic Canonical Polyadic Decomposition (CPD). We propose an algebraic framework for
finding the CPD of tensors that have missing fibers. This includes extensions of multilinear algebraic
as well as generic uniqueness conditions originally developed for the CPD of fully observed tensors.
Computationally, we reduce the CPD of a tensor with missing fibers to relatively simple matrix
completion problems via a matrix EigenValue Decomposition (EVD). Under the given conditions, the
EVD-based algorithm is guaranteed to return the exact CPD. The derivation establishes connections
with so-called coupled CPDs, an emerging concept that has proven of great interest in a range of
array processing and signal processing applications. It will become clear that relatively few fibers
are needed in order to compute the CPD. This makes fiber sampling interesting for large scale
tensor decompositions. Numerical experiments show that the algebraic framework may significantly
speed up more common optimization-based computation schemes for the estimation of the CPD of
incomplete noisy data tensors.
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1. Introduction. Tensor methods have found many applications in psychomet-
rics, chemometrics, signal processing, machine learning, data compression, and so on;
see [9, 36] and references therein. In practice, the low-rank properties of a tensor may
not be easy to directly exploit. An example is the Canonical Polyadic Decomposition
(CPD) model with missing entries, which is commonly used in the context of tensors
with incomplete, corrupt and large scale data (e.g., [26, 49, 1, 55, 36]). In this paper we
focus on the problem of determining the CPD of an incomplete tensor in which fibers
are missing. The problem of CPD with missing fibers appears in chemometrics due
to scattering [49], in EEG processing based on time-frequency-measurement analysis
where some of the electrodes are malfunctioning [1], and in NMR spectroscopy due
to nonuniform sampling [33, 51, 59, 32]. A more recent application of fiber sampled
CPD is tensor-based graph clustering in which higher-order network structures are ex-
ploited [52]. However, no uniqueness conditions have been proposed in the mentioned
applications. To the best of our knowledge, the first formal study of fiber sampled
CPD was carried out by the authors in the conference paper [39] in the context of
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sensor array processing. We note in passing that a problem related to CPD with miss-
ing fibers is tensor completion (e.g., [20]). The difference is that the latter problem is
concerned about finding the missing entries of the incomplete tensor and not neces-
sarily about finding the factors of an underlying CPD. Another notable difference is
that many of the existing matrix/tensor completion methods (e.g., [7, 34, 35, 20, 58])
usually rely on probabilistic sampling conditions while the proposed fiber sampling
method relies on an easy-to-check deterministic condition.

As our first contribution, we present a new algebraic framework for CPD with
missing fibers. In particular, we provide a coupled CPD [37, 38] interpretation that
reduces the problem into a set of relatively simple matrix completion problems. The
approach leads to a new easy-to-check and yet powerful uniqueness condition.

As our second contribution, we explain that if the presented uniqueness condition
is satisfied, then the CPD of a tensor with missing fibers can be determined via a
matrix EigenValue Decomposition (EVD), despite the missing fibers. As mentioned
in [9, 36], the CPD has found many applications, ranging from signal processing and
statistics to chemometrics and psychometrics. The presented framework for CPD
of tensors that have missing fibers is relevant for many of these applications. We
will in particular consider the tensor completion problem where we want to find the
CPD of a large scale tensor that has low rank and where only a subset of its fibers
are observed. Numerical experiments demonstrate that the proposed EVD-based
method can provide an efficient initialization for more conventional optimization-
based methods for incomplete tensor decompositions, which is of practical interest.

The paper is organized as follows. The rest of the introduction presents the
notation. Section 2 reviews the necessary algebraic prerequisites. In Section 3 we
present the algebraic framework for CPD with missing fibers, which leads to a new
determinististic uniqueness condition that is relatively easy to check. In Section 4
we develop an algorithm that transforms the CPD problem with missing fibers into
a simultaneous matrix diagonalization problem, which in turn is transformed into
simple matrix completion problems via a matrix EVD. In Section 5 we explain that
fiber sampling can be used to compute the CPD of a large-scale tensor via the coupled
CPD of a set of smaller-scaled tensors. Numerical experiments are reported in Section
6 where it is demonstrated that the subsampling sampling scheme can be used to
find the CPD of a large-scale low-rank tensor without a significant loss in terms
of performance, even when less than one percent of tensor entries are used in the
computation.

Notation. Vectors, matrices and tensors are denoted by lower case boldface,
upper case boldface and upper case calligraphic letters, respectively. The rth col-
umn, conjugate, transpose, conjugate-transpose, inverse, Moore-Penrose pseudoin-
verse, Frobenius norm, determinant, rank, range and kernel of a matrix A are denoted
by ar, A

∗, AT , AH , A−1, A†, ‖A‖F , |A|, rA, range (A) and ker (A), respectively.

Let A ∈ Cm×p and B ∈ Cn×q, then the Kronecker product of A and B is defined
as

A⊗B :=




a11B · · · a1pB
...

. . .
...

am1B · · · ampB


 ∈ C

mn×pq,

in which (A)mn = amn. Similarly, let A ∈ Cm×p and B ∈ Cn×p, then the Khatri–Rao
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product of A and B is defined as

A⊙B := [a1 ⊗ b1 . . . ap ⊗ bp ] ∈ C
mn×p.

Let C2
R = R(R−1)

2 , then the second compound matrix of A ∈ CI×R is denoted by

C2 (A) ∈ C
C2

I×C2
R . It is the matrix containing the determinants of all 2×2 submatrices

of A; see [25] for further details. As an example, if A ∈ C3×3, then

C2 (A) =




|[ a11 a12
a21 a22 ]| |[ a11 a13

a21 a23 ]| |[ a12 a13
a22 a23 ]|

|[ a11 a12
a31 a32

]| |[ a11 a13
a31 a33

]| |[ a12 a13
a32 a33

]|

|[ a21 a22
a31 a32 ]| |[ a21 a23

a31 a33 ]| |[ a22 a23
a32 a33 ]|


 ∈ C

3×3.

The symbol ∗ denotes the Hadamard product, e.g., in the case of third-order tensors,
we have that

(A ∗ B)ijk = aijkbijk.

The outer product of, say, three vectors a, b and c is denoted by a ◦ b ◦ c, such that
(a ◦ b ◦ c)ijk = aibjck.

The number of non-zero entries of a vector x is denoted by ω(x) in the tensor
decomposition literature, dating back to the work of Kruskal [29]. Let diag (a) ∈ CJ×J

denote a diagonal matrix that holds a column vector a ∈ CJ×1 or a row vector a ∈
C1×J on its diagonal. In some cases a diagonal matrix is holding row k ofA ∈ CI×J on

its diagonal. This will be denoted byDk (A) ∈ CJ×J . Let IN ∈ CN×N and e
(N)
n ∈ CN

denote the identity matrix and the unit vector with unit entry at position n and zeros
elsewhere, respectively. MATLAB index notation will be used for submatrices of a
given matrix. For example, A(1:k,:) represents the submatrix of A consisting of the
rows from 1 to k of A. Submatrices constructed from two row vectors of a matrix will
play an important role in this paper. The submatrix consisting of the i1-th and i2-th
row of A ∈ CI×R is denoted by A(i1,i2) := A([i1, i2], :) ∈ C2×R. Vectors extracted
from a tensor X ∈ CI×J×K will also play an important role. In particular, the mode-
3 fiber xij • ∈ CK , defined by (xij •)k = xijk , will occur frequently throughout the
paper.

2. Algebraic Prerequisites.

2.1. Canonical Polyadic Decomposition (CPD). Consider the third-order
tensor X ∈ CI×J×K . We say that X is a rank-1 tensor if it is equal to the outer
product of non-zero vectors a ∈ CI , b ∈ CJ and c ∈ CK such that xijk = aibjck.
A Polyadic Decomposition (PD) is a decomposition of X into a sum of rank-1 terms
[24, 6]:

X =

R∑

r=1

ar ◦ br ◦ cr. (2.1)

The rank of a tensor X is equal to the minimal number of rank-1 tensors that yield
X in a linear combination. Assume that the rank of X is R, then (2.1) is called
the CPD of X . Let us stack the vectors {ar}, {br} and {cr} into the matrices
A = [a1, . . . , aR] ∈ CI×R, B = [b1, . . . ,bR] ∈ CJ×R and C = [c1, . . . , cR] ∈ CK×R.
The matrices A, B and C will be referred to as the factor matrices of the PD or CPD
of X in (2.1).



4

2.1.1. Matrix Representation. Let X(i··) ∈ CJ×K denote the matrix such
that (X(i··))jk = xijk, then X(i··) = BDi (A)CT and we obtain the following matrix
representation of (2.1):

C
IJ×K ∋ X :=

[
X(1··)T , . . . ,X(I··)T

]T
= (A⊙B)CT . (2.2)

2.1.2. Uniqueness. The rank-1 tensors in (2.1) can be arbitrarily permuted and
scaled provided that the overall rank-1 term remains the same. We say that the CPD
is unique when it is only subject to these trivial indeterminacies. CPD uniqueness
has been intensively studied in recent years, see [12, 13, 17, 36] and references therein.

2.1.3. Basic CPD: all factor matrices have full column rank. In many
practical problems, all three factor matrices of the CPD can be assumed to have full
column rank. This will be referred to as the “basic CPD” problem. It is well-known
that the CPD in (2.1) with full column rank A, B and C is unique and can be
computed via an EVD involving only two matrix slices of X (e.g., [24, 30]). Let us
briefly elaborate on the latter property since it will play an important role in this
paper. In detail, from the matrix factorization X(i··) = BDi (A)CT we obtain the
standard (generalized) EVD relation

X(i1··) ·F ·Di2 (A) = X(i2··) · F ·Di1 (A) , 1 ≤ i1 6= i2 ≤ I, (2.3)

where F = (CT )†. (Here we assume for simplicity that the generalized eigenvalues are
distinct; see [30, 48] for the extension to the case of repeated generalized eigenvalues
where ai1rai2s = ai1sai2r for some r 6= s.) In our setting, it will become clear that the
recovery of F via the EVD (2.3) will be sufficient to guarantee the uniqueness and
the recovery of A, B and C. It is not difficult to see that once F is known, then A,
B and C follow. In Section 4.3.1 we provide details on how this can be implemented.

2.1.4. More general CPD: only one factor matrix is required to have
full column rank. For the tensor with missing fibers problem that will be discussed
in this paper, it will become clear that the assumption that all factor matrices have
full column rank will turn out to be too restrictive. We will now consider the more
relaxed case where only one factor matrix of the CPD is required to have full column
rank. For this case the following necessary and sufficient uniqueness condition was
obtained in [28] and later reformulated in terms of compound matrices in [12]. It
makes use of the vector

f(d) = [d1d2, d1d3, . . . , dR−1dR]
T ∈ C

C2
R . (2.4)

Note that f(d) consists of all distinct entries dr · ds of d⊗ d with r < s.
Theorem 2.1. Consider the PD of X ∈ CI×J×K in (2.1). Assume that C has

full column rank. The rank of X is R and the CPD of X is unique if and only if the
following implication holds

(C2 (A)⊙ C2 (B))f(d) = 0 ⇒ ω(d) ≤ 1 (2.5)

for all structured vectors f(d) of the form (2.4). Generically1, the implication holds
if and only if R ≤ (I − 1)(J − 1) [47, 8, 15].

1A generic property is a property that holds everywhere except for a set of Lebesgue measure
zero. In particular, a generic tensor decomposition property is a property that holds with probability
one if the entries of the factor matrices are randomly drawn from continuous distributions.
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In practice, condition (2.5) can be hard to check. Observe that if C2 (A)⊙C2 (B)
in (2.5) has full column rank, then f(d) = 0 and the condition is immediately satisfied.
This fact leads to the following easy-to-check uniqueness condition, which is only
sufficient.

Theorem 2.2. Consider the PD of X ∈ C
I×J×K in (2.1). If

{
C has full column rank,

C2 (A)⊙ C2 (B) has full column rank,
(2.6)

then the rank of X is R and the CPD of X is unique [28, 10, 12]. Generically,
condition (2.6) is satisfied if C2

R ≤ C2
IC

2
J and R ≤ K [10, 44].

The matrix C2 (A) ⊙ C2 (B) has full column rank if and only if the (C2
R × C2

R)
matrix (C2 (A)⊙C2 (B))H(C2 (A)⊙C2 (B)) = C2(A

HA) ∗C2(B
HB) is nonsingular.

Consequently, checking condition (2.6) essentially amounts to checking if the latter
(C2

R × C2
R) matrix is nonsingular.

In contrast to the “basic CPD”, the CPD with only a single full column rank
factor cannot directly be computed via a matrix EVD. Fortunately, under condition
(2.6) the “more general CPD” of X can be converted into a “basic CPD” of an
(R × R × R) tensor M of rank R, even in cases where max(I, J) < R [10, 14]. As
already mentioned in Section 2.1.3, the latter CPD can be computed by means of a
standard EVD. In Section 4.2 it will be explained how to construct the tensor M
from X and how to retrieve the CPD factor matrices A, B and C of X from the CPD
of M.

2.2. Coupled CPD. We say that a collection of tensors X (n) ∈ CIn×Jn×K ,
n ∈ {1, . . . , N}, admits an R-term coupled PD if each tensor X (n) can be written as
[37]:

X (n) =
R∑

r=1

a(n)r ◦ b(n)
r ◦ cr , n ∈ {1, . . . , N}, (2.7)

with factor matrices

A(n) = [a
(n)
1 , . . . , a

(n)
R ] ∈ C

In×R,

B(n) = [b
(n)
1 , . . . ,b

(n)
R ] ∈ C

Jn×R,

C = [c1, . . . , cR] ∈ C
K×R.

We define the coupled rank of {X (n)} as the minimal number of coupled rank-1 tensors

a
(n)
r ◦b(n)

r ◦cr that yield {X (n)} in a linear combination. Assume that the coupled rank
of {X (n)} is R, then (2.7) will be called the coupled CPD of {X (n)}. We mention that
the more recent coupled CPD framework has already found interesting applications in
engineering and science, such as in multidimensional harmonic retrieval [41, 42] and
in sensor array processing [43].

2.2.1. Matrix Representation. The coupled PD or CPD of {X (n)} given by
(2.7) has the following matrix representation

X =




X(1)

...

X(N)


 =




A(1) ⊙B(1)

...

A(N) ⊙B(N)


CT ∈ C

(
∑

N
n=1 InJn)×K . (2.8)
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2.2.2. Uniqueness. The coupled rank-1 tensors in (2.7) can be arbitrarily per-
muted and the vectors within the same coupled rank-1 tensor can be arbitrarily scaled
provided the overall coupled rank-1 term remains the same. We say that the coupled
CPD is unique when it is only subject to these trivial indeterminacies. Uniqueness
conditions for the coupled CPD were derived in [37]. Theorem 2.3 extends Theorem
2.2 to coupled CPD. It makes use of the matrix

G(N) =




C2(A
(1))⊙ C2(B

(1))
...

C2(A
(N))⊙ C2(B

(N))


 ∈ C(

∑N
n=1 C2

In
C2

Jn
)×C2

R . (2.9)

Theorem 2.3. Consider the coupled PD of X (n) ∈ C
In×Jn×K , n ∈ {1, . . . , N}

in (2.7). If
{
C in (2.8) has full column rank,

G(N) in (2.9) has full column rank,
(2.10)

then the coupled rank of {X (n)} is R and the coupled CPD of {X (n)} is unique [37].

Generically, condition (2.10) is satisfied if C2
R ≤

∑N

n=1 C
2
In
C2

Jn
and R ≤ K.

Furthermore, if condition (2.10) is satisfied, then the coupled CPD of {X (n)} can
be converted into the CPD of an (R×R×R) tensor M of rank R [37], which in turn
can be computed by means of a standard EVD. Again, more details will be provided
in Section 4.2.

The objective of this paper is to extend the results discussed in this section to the
case of tensors that are not fully observed. More precisely, in Section 3 we extend the
sufficient uniqueness conditions stated in Theorems 2.1–2.3 to the case of tensors that
have missing fibers. Likewise, in Section 4 we extend the algebraic algorithms associ-
ated with Theorems 2.2 and 2.3 to the case of missing fibers. In Section 5 we discuss
fiber subsampling variants that are of interest for large scale tensor decompositions.

3. Uniqueness of CPD of tensor with missing fibers. In this section a
link between low-rank decompositions of tensors that have missing fibers and coupled
decompositions is presented. In particular, we consider the CPD of a tensor that
has missing fibers. The overall idea is to interpret a tensor with missing fibers as a
collection of (possibly partially overlapping) full tensors.

3.1. CPD with missing fibers. Consider the CPD model with missing entries:

Y = W ∗ X = W ∗

(
R∑

r=1

ar ◦ br ◦ cr

)
, (3.1)

where Y ∈ CI×J×K denotes the observed incomplete tensor andW ∈ {0, 1}I×J×K is a
binary tensor where ′0′ and ′1′ indicate that the corresponding entry of X is unknown
and known, respectively. The goal is to recover the CPD factors {ar}, {br}, {cr}
of X , observing Y. In this section we focus on the special case of missing mode-3
fibers. We say that the tensor X ∈ CI×J×K is missing a fiber if for some pair (i, j) ∈
{1, . . . , I}× {1, . . . , J} the mode-3 vector xij • ∈ CK of X , defined by (xij •)k = xijk ,
is unobserved. (We note in passing that we could just as well have considered missing
mode-1 or mode-2 fibers of X .) A key observation is that in the case of missing
fibers, W in (3.1) has a particular structure. Namely, if the fiber xpq • is missing,
then wpqk = 0, ∀k ∈ {1, . . . ,K}. The structure of W obviously affects the conditions
under which the CPD of X may be recovered, observing Y.
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3.2. Necessary conditions for the uniqueness of the CPD. Recall that a
necessary condition for uniqueness of the CPD factor matrix C in (2.2) is that A⊙B
has full column rank (e.g., [45]). Here we extend the condition to the case of missing
entries. From (2.2), we know that (3.1) has following matrix representation

Y = W ∗X = W ∗
(
(A⊙B)CT

)
. (3.2)

Let yk, wk and xk denote the kth column of Y, W and X, respectively. Then
expression (3.2) can be written as

yk = wk ∗ xk = diag (wk) (A⊙B)c̃k, k ∈ {1, . . . ,K}, (3.3)

where C̃ = [c̃1, . . . , c̃k] = CT . From (3.3) it is clear that C can only be unique if the
matrices {diag (wk) (A⊙B)} have full column rank. Indeed, if diag (wk) (A⊙B)
does not have full column rank, then for any x ∈ ker (diag (wk) (A⊙B)) we have
diag (wk) (A⊙B) c̃k = diag (wk) (A⊙B) (c̃k + x). The following proposition sum-
marizes the result.

Proposition 3.1. Consider the PD of X ∈ CI×J×K in (2.1) observed via Y ∈
CI×J×K in (3.1). A necessary condition for uniqueness of the factor matrix C is that
diag (wk) (A⊙B) in (3.3) has full column rank for every k ∈ {1, . . . ,K}.

In the special case of missing fibers {xpq •}, the indicator pattern diag (wk) is the
same for every column xk of X, i.e., diag (w1) = diag (wk), ∀k ∈ {1, . . . ,K}. Assume
that IJ − F fibers of X are missing, then relation (3.2) reduces to

Ysub = SW1X = ΦΦΦ(A,B)CT ∈ C
F×K , (3.4)

where Ysub is the observed submatrix of Y, ΦΦΦ(A,B) := SW1
(A ⊙ B) ∈ CF×R and

SW1
∈ CF×IJ is the row-selection matrix that selects the F rows of X that have not

been zeroed by DW1
. The necessary condition for recovery of C from Ysub reduces

now to ΦΦΦ(A,B) having full column rank. Note that ST
W1

ΦΦΦ(A,B) = diag (w1) (A⊙B).
Besides the uniqueness of the CPD factor C of Ysub, we also consider whether

there is more than one choice of matrices A and B to obtain ΦΦΦ(A,B). Let ϕϕϕr ∈ CIJ

denote the rth column of diag (w1) (A⊙B). Then we define the matrix P(r) ∈ CI×J

with missing entries according to

p
(r)
ij =

{
(ϕϕϕr)(i−1)I+j , if (w1)(i−1)I+j = 1,

indeterminate, if (w1)(i−1)I+j = 0.
(3.5)

The support of P(r), denoted by P(r), consists of all pairs (i, j) for which the entry

p
(r)
ij of P(r) is determined: (i, j) ∈ P(r) if (w1)(i−1)I+j = 1, i.e., if xij • is observed.

The term arb
T
r can be obtained by looking for a rank-1 matrix that completes

P(r). Clearly, the rank-1 matrix arb
T
r completes P(r), meaning that in our setting a

rank-1 completion matrix always exists. However, if there exists a row or a column
of P(r) containing only indeterminate entries, then there exists an alternative rank-1

matrix ãrb̃
T

r that completes P(r), which is not identical to arb
T
r . Hence, every row

and column of P(r) must at least have one determinate entry. More formally, for A
and B in ΦΦΦ(A,B) to be unique, it is necessary that P(r) has the property
{
∀i ∈ {1, . . . , I}, ∃ j

′

∈ {1, . . . , J} : p
(r)

ij
′ is determinate ⇔ (w1)(i−1)I+j

′ = 1,

∀j ∈ {1, . . . , J}, ∃ i
′

∈ {1, . . . , I} : p
(r)

i
′
j
is determinate ⇔ (w1)(i′−1)I+j = 1.

(3.6)
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On the other hand, it is also clear that since the rank-1 matrix arb
T
r contains

I + J − 1 free variables, P(r) must contain at least I + J − 1 determinate entries for
the completion to be unique.

3.3. Sufficient condition for one factor matrix. In the rest of the paper
we limit the study to the cases where C in (3.2) has full column rank, which is
most often the case in practice. Theorem 3.2 below extends a well-known sufficient
uniqueness condition [28] to the case of missing fibers. In short, it states that if none
of the column vectors ΦΦΦ(A,B) in (3.4) can be written as a linear combination of its
remaining vectors, then C can be uniquely recovered from Ysub. Theorem 3.2 below
makes use of the binary diagonal matrix Dsel ∈ {0, 1}C

2
IC

2
J×C2

IC
2
J which holds the

vector dsel ∈ {0, 1}C
2
IC

2
J on its diagonal, i.e., Dsel = diag (dsel). The entries of the

vector

dsel = [d(1,2),(1,2), d(1,2),(1,3), . . . , d(I−1,I),(J−1,J)]
T (3.7)

are given by

d(u,v),(p,q) =

{
1, if fibers xup •,xuq •,xvp • and xvq • are observed,

0, otherwise.

Theorem 3.2. Consider a tensor X ∈ CI×J×K , partially observed as Y = W∗X ,
and its PD given by (2.1). Assume that C has full column rank. Let Dsel = diag (dsel)
in which dsel is defined as in (3.7). The rank of X is R and the factor matrix C is
unique if the following implication holds

Dsel(C2 (A)⊙ C2 (B))f(d) = 0 ⇒ ω(d) ≤ 1 (3.8)

for all structured vectors f(d) of the form (2.4). Generically, the rank of X is R and
the factor matrix C is unique if

R ≤ F − (I + J) and R ≤ K, (3.9)

where F = ω(w1) denotes the number of observed fibers.
Proof.

Sufficiency of condition (3.8). Let the triplet (Â, B̂, Ĉ) be an alternative de-

composition of (2.1) composed of R̂ ≤ R terms so that

Y = ΦΦΦ(A,B)CT = ΦΦΦ(Â, B̂)Ĉ
T
. (3.10)

Using Kruskal’s permutation lemma [29] (see also [45]), uniqueness of C can be estab-
lished.2 Briefly, in cases where C has full column rank, Kruskal’s permutation lemma

states that if ω(CT z) ≤ ω(Ĉ
T
z) for every vector z ∈ CK such that ω(Ĉ

T
z) ≤ 1,

then C = ĈΠΠΠ∆C, where ΠΠΠ is an (R × R) column permutation matrix and ∆C is an
(R × R) nonsingular diagonal matrix. In more detail, it will be that condition (3.8)
implies that ΦΦΦ(A,B) has full column rank. This fact together with the assumption

that C has full column rank implies that Ĉ must also have full column rank (recall

2Kruskal’s permutation lemma is not limited to cases where C has full column rank. In fact, it
allows us to extend Theorem 3.2 to cases where C does not have full column rank.
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that R̂ ≤ R ≤ K). Denote d = CT z and d̂ = Ĉ
T
z. Kruskal’s permutation lemma

now guarantees uniqueness of C if ω(d) ≤ ω(d̂) for every ω(d̂) ≤ R − r
Ĉ
+ 1 = 1.

Thus, we only have to verify that this condition holds for the two cases ω(d̂) = 0 and

ω(d̂) = 1.

Case ω(d̂) = 0. Let us first consider the case ω(d̂) = 0 ⇔ Ĉ
T
z = 0K . At the end

of this subsection it will be explained that condition (3.8) implies that any column of
ΦΦΦ(A,B) can only be written as a trivial linear combination of its columns. In detail,
assume that there exists a vector d ∈ CR with properties ω(d) ≥ 2 and ΦΦΦ(A,B)d = 0,
then it will be shown that the latter property implies thatDsel(C2 (A)⊙C2 (B))f(d) =
0, which contradicts condition (3.8). We conclude that if condition (3.8) is satisfied,
then ΦΦΦ(A,B)d = 0 ⇒ ω(d) ≤ 1, which in turn implies that ΦΦΦ(A,B) has full column
rank. Hence, we know from (3.10) that

ΦΦΦ(A,B)CT z = ΦΦΦ(Â, B̂)Ĉ
T
z = 0 ⇔ CT z = 0K ,

where we took into account that d̂ = Ĉ
T
z = 0K . In other words, we must have that

d = CT z = 0K for all z ∈ CK such that ω(d̂) = 0. We conclude that the inequality

condition 0 = ω(CT z) ≤ ω(Ĉ
T
z) = 0 in Kruskal’s permutation lemma is satisfied.

Case ω(d̂) = 1. Consider again a vector z ∈ CK so that from (3.10) we obtain

ΦΦΦ(A,B)CT z = ΦΦΦ(Â, B̂)Ĉ
T
z ⇔ ΦΦΦ(A,B)d = ΦΦΦ(Â, B̂)d̂, (3.11)

where d = CT z and d̂ = Ĉ
T
z. Assume that the vector z ∈ CK is chosen so that

ω(d̂) = ω(Ĉ
T
z) = 1. Reshaping the vector given by (3.11) into an (I × J) matrix

yields

W(··•) ∗

(
R∑

r=1

arb
T
r dr

)
= W(··•) ∗

(
R∑

r=1

ârb̂
T

r d̂r

)
, (3.12)

where W(··•) ∈ {0, 1}I×J is the binary matrix defined according to

(W(··•))ij =

{
1, if fiber xij • is sampled,

0, otherwise.

Since ω(d̂) = 1 all observed (2 × 2) submatrices of (3.12) must be rank deficient. In
other words, the second-order minors of all observed (2 × 2) submatrices of (3.12)
must vanish. The second-order minors of (3.12) are of the form

∣∣∣∣∣∣∣∣∣∣

R∑

r=1

w
(··•)
i1j1

ai1rbj1r · dr

R∑

r=1

w
(··•)
i1j2

ai1rbj2r · dr

R∑

r=1

w
(··•)
i2j1

ai2rbj1r · dr

R∑

r=1

w
(··•)
i2j2

ai2rbj2r · dr

∣∣∣∣∣∣∣∣∣∣

. (3.13)

We will now provide a condition in terms of vanishing second-order minors. In words,
we will interpret the incomplete tensor decomposition of Y with missing fibers as a set
of C2

IC
2
J coupled 2×2×K tensor decompositions and only retain the complete tensors
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within this set. More formally, let Γ denote the set of all quadruples (i1, i2, j1, j2) with
properties i1 < i2 and j1 < j2 so that card (Γ) = C2

IC
2
J . The elements in Γ will be

used to index submatrices of A and B. Namely, if γ = (i1, i2, j1, j2), then

A(i1,i2) := A([i1, i2], :) ∈ C
2×R and B(j1,j2) := B([j1, j2], :) ∈ C

2×R .

In words, A(i1,i2) consists of the i1-th and the i2-th rows of A. (Similarly for B(j1,j2).)

Note that we are essentially interpreting the CPD of X =
∑R

r=1 ar◦br◦cr as a coupled
CPD involving all possible tensors of the form X (i1,i2,j1,j2) := X ([i1, i2], [j1, j2], :) =∑R

r=1 a
(i1,i2)
r ◦b(j1,j2)

r ◦ cr. (More details about this interpretation will be provided in
the proof of Theorem 3.3.) The vanishing of the second-order minors implies that for

every γ ∈ Γ with property w
(··•)
i1j1

= w
(··•)
i1j2

= w
(··•)
i2j1

= w
(··•)
i2j2

= 1, the observed (2 × 2)
minor of (3.12) must satisfy the relation

∣∣∣∣∣

R∑

r=1

a(i1,i2)r b(j1,j2)T
r dr

∣∣∣∣∣ = 0 . (3.14)

Stacking the equations (3.14) as rows of the matrix G ∈ CC2
IC

2
J×C2

R in accordance to
the lexicographical rule yields:

Gf(d) = 0 , (3.15)

where f(d) = [d1d2, d1d3, . . . , dR−1dR]
T ∈ C

C2
R and

G =




w(1,2),(1,2) · C2

(
A(1,2)

)
∗ C2

(
B(1,2)

)

w(1,2),(1,3) · C2

(
A(1,2)

)
∗ C2

(
B(1,3)

)

...

w(I−1,I),(J−1,J) · C2

(
A(I−1,I)

)
∗ C2

(
B(J−1,J)

)




= Dsel(C2 (A)⊙ C2 (B)), (3.16)

in which the binary diagonal matrix Dsel is defined according to (3.7). Condition (3.8)

now implies that the inequality condition ω(CT z) = ω(d) ≤ ω(Ĉ
T
z) = ω(d̂) = 1

in Kruskal’s permutation lemma is satisfied. We conclude that condition (3.8) is
sufficient for the uniqueness of C.

From relations (3.14)–(3.15) it is also clear that there cannot exist a vector d ∈ CR

with properties ω(d) ≥ 2 and ΦΦΦ(A,B)d = 0, since it would imply that Gf(d) = 0
and thereby contradict condition (3.8). This also explains that if condition (3.8) is
satisfied, then ΦΦΦ(A,B) has full column rank.

Generic sufficiency of condition (3.8). For generic A, B and C we can resort
to an algebraic geometry based tool for checking generic uniqueness of structured
matrix factorizations of the form Y = MCT , in which the entries of the matrix M
can be parameterized by rational functions [16]. More precisely, in our setting where
C generically has full column rank, the decomposition of Y = diag (w1) (A ⊙B)CT

with M = diag (w1) (A ⊙ B) is generically unique if the number of parameterized

rank-1 terms is bounded by R ≤ N̂− l̂−1 [16, Theorem 1], where l̂ is an upper bound
on the number of variables needed to parameterize the vector diag (w1) (a ⊗ b), and
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N̂ is a lower bound on the dimension of the vector space spanned by the vectors in
the set

{diag (w1) (a⊗ b) | a ∈ C
I , b ∈ C

J}. (3.17)

Clearly, l̂ = I + J − 1 is a valid upper bound, i.e., l̂ can be taken equal to the
number of free variables in a ⊗ b. It is well-known that the matrix A ⊙ B with
columns ar = [1 xr . . . xI−1

r ]T and br = [1 xI
r . . . x

(J−1)I
r ]T is a Vandermonde

matrix with full rank if xr 6= xs, ∀r 6= s. This implies that the vectors in the set
{a ⊗ b | a ∈ CI , b ∈ CJ} span the entire IJ-dimensional space. Consequently, we
also know that the vectors in the set (3.17) also span the entire ω(w1)-dimensional

space, i.e., N̂ = ω(w1), which in turn leads to the inequality condition (3.9).
A problem with Theorem 3.2 is that it may be difficult to check condition (3.8),

which requires us to verify that all vectors in the kernel of Dsel(C2 (A)⊙C2 (B)) are
structured vectors of the form f(d) with property ω(d) ≤ 1. For generic factor matrices
A, B and C, condition (3.8) generically holds if the condition (3.9) is satisfied. Note
that the generic condition (3.9) is easy to check but that it is not necessary. For
example, if I = J = K = R = 2 and all fibers have been sampled (ω(w1) = 4),
then condition (3.9) is not satisfied, despite the fact that the CPD is obviously unique
(e.g., condition (2.6) in Theorem 2.2 is satisfied). Note also that if Dsel(C2 (A) ⊙
C2 (B)) has full column rank, then obviously ω(d) = 0 and consequently ω(d) ≤ 1,
implying that condition (3.8) is automatically satisfied. Based on this fact, an easy-
to-check sufficient condition is stated in Theorem 3.3 that can also be used in the
case of deterministic (non-generic) factor matrices. The proof of Theorem 3.3 will be

explained in terms of a coupled CPD of the submatrices X(n) extracted from X, each
admitting the factorization X(n) = (A(n) ⊙B(n))CT .

Theorem 3.3. Consider a tensor X ∈ CI×J×K , partially observed as Y = W∗X ,
and its PD given by (2.1). Let Dsel = diag (dsel) in which dsel is defined as in (3.7).
If

{
C has full column rank,

Dsel(C2 (A)⊙ C2 (B)) has full column rank,
(3.18)

then the rank of X is R and the factor matrix C is unique. Generically, condition
(3.18) is satisfied if C2

R ≤ ω(dsel) and R ≤ K.
Proof. Consider all C2

IC
2
J possible 2 × 2 × K subtensors of Y of the form

Y(u,v),(p,q) = Y([u, v], [p, q], :) with matrix representations

Y(u,v),(p,q) = D(u,v),(p,q)(A
(u,v) ⊙B(p,q))CT ,

where A(u,v) = A([u, v], :) ∈ C
2×R, B(p,q) = B([p, q], :) ∈ C

2×R and D(u,v),(p,q) is the
associated submatrix of DW1

. Construct tensors Z(u,v),(p,q) ∈ C2×2×K with matrix
representation

Z(u,v),(p,q) = S(u,v),(p,q)Y(u,v),(p,q) = S(u,v),(p,q)(A
(u,v) ⊙B(p,q))CT , (3.19)

where S(u,v),(p,q) ∈ R4×4 is given by

S(u,v),(p,q) =

{
I4, if fibers xup •,xuq •,xvp • and xvq • are sampled,

0, otherwise.
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The coupled CPD of {Z(u,v),(p,q)} has the following matrix representation




Z(1,2),(1,2)

Z(1,2),(1,3)

...
Z(I−1,I),(J−1,J)


 =




S(1,2),(1,2)(A
(1,2) ⊙B(1,2))

S(1,2),(1,3)(A
(1,2) ⊙B(1,3))
...

S(I−1,I),(J−1,J)(A
(I−1,I) ⊙B(J−1,J))


CT . (3.20)

The matrix (2.9) associated with {Z(u,v),(p,q)} takes the form (3.16). Due to Theorem
2.3, we can conclude from (3.16) that if condition (3.18) is satisfied, then the rank of
X is R and the factor matrix C is unique.

We now explain that condition (3.18) is generically satisfied if C2
R ≤ ω(dsel) and

R ≤ K. The latter inequality is obvious. The former inequality follows from the
fact that C2 (A) ⊙ C2 (B) generically has full column rank if C2

IC
2
J ≥ C2

R [44] (i.e.,
the row-dimension of C2 (A)⊙C2 (B) exceeds its column-dimension). The result now
immediately follows if C2

R ≤ ω(dsel), implying that the number of non-zeroed rows of
Dsel(C2 (A)⊙ C2 (B)) still exceeds the column-dimension.

As in Theorem 2.2, checking if the (C2
IC

2
J × C2

R) matrix Dsel(C2 (A) ⊙ C2 (B))
has full column rank is equivalent to checking if the smaller (C2

R × C2
R) matrix

(Dsel(C2 (A)⊙ C2 (B)))H(Dsel(C2 (A)⊙ C2 (B))) =
∑

1≤i1<i2≤I

∑

1≤j1<j2≤J

w(i1,i2),(j1,j2)C2

(
A(i1,i2)HA(i1,i2)

)
∗ C2

(
B(j1,j2)HB(j1,j2)

)

is nonsingular, where we recall that w(i1,i2),(j1,j2) corresponds to a diagonal entry of
Dsel, defined according to (3.7).

3.4. Sufficient uniqueness condition for overall CPD. Note that if the full
column rank matrixC is unique, then ΦΦΦ(A,B) = Ysub(C

T )† is also unique. Thus, the
remaining problem of determining whether A and B are unique reduces to checking
if the partial matrix P(r) given by (3.5) admits a unique rank-1 completion for every
r ∈ {1, . . . , R}.

Intuitively, an incomplete matrix Y = W∗X has a unique rank-1 completion if X
has rank 1 and the indicator pattern of W is “connected” in the sense that Y cannot
be partitioned into “disconnected” rank-1 submatrices. As an example, consider the
incomplete rank-1 matrix

Y = W ∗X =

[
Y11 Y12

Y21 Y22

]
=




x11 x12 ∗ ∗
x21 x22 α ∗
∗ ∗ x33 x34

∗ ∗ x43 x44


 ,

where Ymn ∈ C2×2 and ∗ denotes an indeterminate entry. If α = ∗, then the rank-

1 completion of Y is not unique, as explained next. The matrix
[
a
c

][
b

d

]T
yields a

rank-1 completion of Y for every tuple {a,b, c,d} with properties Y11 = abT and
Y22 = cdT . This means that the tuple {βa, β−1b, ζc, ζ−1d} with β 6= ζ yields the

rank-1 completion
[
βa
ζc

][
β−1

b

ζ−1
d

]T
of Y. Since

[
a
c

][
b

d

]T
is not related to

[
βa
ζc

][
β−1

b

ζ−1
d

]T

up to scaling/counterscaling the rank-1 completion of Y is not unique. On the other
hand, if α = x23, then there is an additional constraint on this tuple. More precisely,
if Y22 = cdT , then we must have that a2d1 = y23 = x23. This connection makes
that the rank-1 submatrices Y11 and Y22 are dependent on each other. It is now
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expected that the rank-1 completion of Y is unique. This assessment is confirmed by
a result proposed in [22] where a necessary and sufficient condition for the existence
and the uniqueness of a rank-1 completion of an incomplete matrix was obtained.
The basic idea in [22] is to think of an incomplete matrix, say P(r) defined by (3.5),
as holding the weights associated with the edges of a weighted bipartite graph. In
our setting we already assume that there exists a rank-1 completion of P(r), i.e., the
existence question has already been answered. For the uniqueness result it suffices to
associate the incomplete matrix with an unweighted bipartite graph, denoted by P (r).
The two groups of vertices associated with P (r) are the row indices 1, . . . , I and the
column indices 1, . . . , J . Let P(r) denote the edge set associated with the bipartite
graph P (r). For our purpose, the weight of the edge associated with (i, j) ∈ P(r) is

given by p
(r)
ij , as defined in (3.5). We adapt the result from [22] to our setting in

Lemma 3.4 below. Lemma 3.4 considers the restriction of P(r) of which the support

is P̃(r) = {(i, j) ∈ P(r) | p
(r)
i,j 6= 0}.

Lemma 3.4. An incomplete rank-1 matrix P(r) defined by (3.5), with support
P(r) and satisfying property (3.6), admits a unique rank-1 completion if and only if

P̃ (r) is a connected graph. (3.21)

Property (3.6) ensures that every row and every column of P(r) has been sampled at

least once while the restriction to P̃(r) ensures that the sampled entries are nonzero.
Since C has full column rank, Theorems 3.2 and 3.3 and Proposition 5.1 ensure the
uniqueness of ΦΦΦ(A,B), which in turn ensures the existence of a rank-1 completion

of P(r). Hence, if condition (3.21) is satisfied we also know that the factor matrices
A and B are unique. Since a bipartite graph is a simple graph, condition (3.21)
can easily be checked via the properties of the incidence or adjacency matrix of the
restricted bipartite graph P̃ (r) (e.g., [3]).

To illustrate the importance of condition (3.21), we consider the tensor Y =
W ∗ X ∈ C5×6×K with frontal slices of the form depicted in Figure 3.1 (right) in
which the observed fibers of X correspond to the following two subtensors of X :

X (1) := X ([1 3 5], [1 3 6], :) ∈ C
3×3×K ,

X (2) := X ([2 4], [2 4 5], :) ∈ C
2×3×K .

The fibers associated with X (1) and X (2) are surrounded by squared and triangular
frames, respectively. In order to ensure that the CPD of X can be recovered from the
incomplete tensor Y, additional fibers of X need to be considered. In this example,
the fiber x12 • surrounded by a diamond shaped frame in Figure 3.1 (right) ensures
that the tensors X (1) and X (2) are “connected”. Not including x12 • would lead to a
non-unique CPD of X . The reason is that the bipartite graph P̃ (r) associated with

P̃(r) = {(m, 1), (m, 3), (m, 6), (n, 3), (n, 4), (n, 5)}
n∈{2,4,6}
m∈{1,3,5} with property (1, 2) /∈ P̃(r)

is not connected. Thanks to the extra fiber x12 •, the combination of condition (3.9)
and Lemma 3.4 generically guarantees the uniqueness of the CPD of X if R ≤ 5 and
R ≤ K, despite the fact that only 16 out of 30 fibers have been sampled.

Formally, the combination of Theorem 3.2 and Lemma 3.4 yield the following
overall uniqueness condition, which is an extension of the sufficient condition stated
in Theorem 2.1 to the missing fibers case.
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+
x51k

+ + + + +
x56k

+ + + + + +

bc + + + + +

bc bc + + + +

bc x11k bc bc + + +
x16k

rs+x51k bc rs+ bc bc rs+x56k

bc ut+ bc ut+ ut+ bc

rs+ bc rs+ bc bc rs+
bc ut+ bc ut+ ut+ bc

rs+x11k ld+ rs+ bc bc rs+x16k

Fig. 3.1. Tensor with intrinsically missing fibers (left) and a sparsely fiber sampled tensor
(right), where ’+’ represents an observed fiber and ’©’ represents an unobserved fiber. The two
subtensors X (1) and X (2) in the tensor X are denoted by ’ �’ and ’△’. The ’♦’ fiber connects the
two grids and ensures that the overall CPD is unique.

Theorem 3.5. Consider the PD of X ∈ CI×J×K in (2.1) observed via Y ∈
C

I×J×K in (3.1). Let Dsel = diag (dsel) in which dsel is defined as in (3.7) and let

P̃ (r) be the restricted bipartite graph of P(r) defined by (3.5) and with property (3.6).
Assume that C has full column rank. The rank of X is R and the CPD of X is unique
if

{
Dsel(C2 (A)⊙ C2 (B))f(d) = 0 ⇒ ω(d) ≤ 1, ∀d ∈ C

R, (3.22a)

P̃ (r) is a connected graph for every r ∈ {1, . . . , R}, (3.22b)

where f(d) is a structured vector of the form (2.4).
Even though Theorem 3.5 provides a sufficient uniqueness condition for the cases

where C has full column rank, it may be hard to check whether the implication in
(3.22a) holds. In contrast, the combination of Theorem 3.3 and Lemma 3.4 lead to the
following sufficient overall uniqueness condition, which just requires checking whether
Dsel(C2 (A)⊙ C2 (B)) in (3.22a) has full column rank.

Theorem 3.6. Consider the PD of X ∈ C
I×J×K in (2.1) observed via Y ∈

CI×J×K in (3.1). Let Dsel = diag (dsel) in which dsel is defined as in (3.7) and let

P̃ (r) be the restricted bipartite graph of P(r) defined by (3.5) and with property (3.6).
If





C in (2.1) has full column rank,

Dsel(C2 (A)⊙ C2 (B)) has full column rank,

P̃ (r) is a connected graph for every r ∈ {1, . . . , R},

(3.23)

then the rank of X is R and the CPD of X is unique.
Theorem 3.6 can be interpreted as a generalization of Theorem 2.2 to the case of

missing fibers.
Let us end this section by comparing the uniqueness conditions stated in Theorems

3.5 and 3.6 on an example. Consider the tensor Y = W ∗ X ∈ C5×6×K with frontal
slices of the form in Figure 3.1 (left) where the fibers x11 •,x21 •,x31 •,x21 •,x22 • and
x13 • are missing. (The dotted lines in the figure will first be used in Section 5.2.)
Since the tensor is incomplete, CPD-specific uniqueness conditions and algorithms do
not apply (e.g., Theorem 2.2). Conditions (3.22a)–(3.22b) in Theorem 3.5 generically
guarantee the uniqueness of the CPD of X despite the missing fibers if R ≤ 13 and R ≤
K. In more detail, the inequalities in (3.9) ensure that condition (3.22a) is generically
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satisfied, which in turn ensures the uniqueness of ΦΦΦ(A,B) and C. Lemma 3.4 states
that if the graph connectivity condition (3.22b) in Theorem 3.5 is satisfied, then A
and B are also unique. By a similar reasoning Theorem 3.6 generically guarantees
the uniqueness of the CPD of X if R ≤ 11 and R ≤ K.

4. An algorithm for CPD of tensor with missing fibers. In [10] an algo-
rithm was proposed to compute the “more general CPD” discussed in Section 2.1.4,
where only one factor matrix is required to have full column rank. It was further
elaborated on in [14]. In [38] it was extended to coupled decompositions. In this
section we will extend the algorithm to the case of missing fibers. The presented al-
gebraic algorithm will rely on Theorem 3.6. Before discussing it in detail, we provide
a roadmap and explain the overall idea.
Step 1: By capitalizing on the low-rank structure of the (IJ × K) matrix Ysub =

SW1
X = ΦΦΦ(A,B)CT we will in Section 4.1 first compress it to a smaller

(IJ × R) matrix UsubΣΣΣsub whose columns form a basis for range (ΦΦΦ(A,B)).
The matrix UsubΣΣΣsub can be found via the SVD of Ysub.

Step 2: Next, by capitalizing on the Khatri-Rao structure of A ⊙ B we will find
ΦΦΦ(A,B) = SW1

(A⊙B) from range (UsubΣΣΣsub). More precisely, in Section 4.2
we will explain that the knowledge of range (ΦΦΦ(A,B)) enables us to transform
the original CPD problem with missing fibers, with possibly I < R and/or
J < R, into the rank-R CPD of an (R×R×R) tensor

M =

R∑

r=1

gr ◦ gr ◦ nr ∈ C
R×R×R, (4.1)

in which the factor matrix G = [g1, . . . ,gR] has the property ΦΦΦ(A,B) =
UsubΣΣΣsubG. In other words, ΦΦΦ(A,B) and C = (ΦΦΦ(A,B)†Ysub)

T can be
obtained once the CPD of M has been found. To compute the basic CPD
(4.1) in the exact case, only two matrix slices of M are needed. Indeed, let

M(··k) ∈ CR×R denote a matrix slice of M such that (M(··k))ij = (M)ijk ,

then M(··k) = GDk (N)GT and we obtain the (generalized) EVD relation

M(··k1) · F ·Dk2 (N) = M(··k2) · F ·Dk1 (N) , 1 ≤ k1 6= k2 ≤ R, (4.2)

where F = G−T . In the inexact case, the result obtained from the EVD
(4.2) can be used to initialize an optimization-based method that computes
a refined estimate of G via the CPD of M. The optimization-based method
uses all R matrix slices M(··1), . . . ,M(··R), and not just two matrix slices
M(··k1) and M(··k2).

Step 3: Finally, in Section 4.3 we will explain that from ΦΦΦ(A,B) we can determine
A and B via a set of R decoupled rank-1 matrix completion problems.

As a final note, we mention that it in the context of inexact tensor decompositions,
it is common practice to use an exact decomposition method for the initialization of
an optimization-based method. Thus, in our setting, the CPD factors A,B and C
obtained via the above three steps can be used to initialize an optimization-based
method that further refines the estimates by fitting the factors to the observed tensor
Y given by (3.1).

4.1. Step 1: Find basis for range (ΦΦΦ(A,B)). Assume that the conditions in
Theorem 3.6 are satisfied, which implies that ΦΦΦ(A,B) in (3.4) has full column rank.
This further implies that a basis for ΦΦΦ(A,B) can easily be found via for instance an
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SVD. Let Ysub = UsubΣΣΣsubV
H
sub denote the compact SVD of Ysub given by (3.4)

where Usub ∈ CF×R and Vsub ∈ CK×R are columnwise orthonormal and ΣΣΣsub ∈
CR×R is diagonal. We know that range (Ysub) = range (UsubΣΣΣsub) and that there
exists a nonsingular matrix F ∈ CR×R such that

UsubΣΣΣsub = ΦΦΦ(A,B) ·FT and V∗
subF

−1 = C. (4.3)

The left equation is of the same form as (3.4) but it only involves R ≤ K columns.
From (4.3) it is clear that once the unknown matrix F will have been found, ΦΦΦ(A,B)
and C will immediately follow. In the next step we explain how to obtain F from
UsubΣΣΣsub. As a matter of fact, F−T will assume the role of G in the roadmap (Step
2).

4.2. Step 2: From CPD with missing fibers, possibly also with I < R
and/or J < R, to basic CPD. In Section 4.2.1 we review the procedure presented
in [10, 14] to transform a CPD, possibly with I < R and/or J < R, into a basic CPD
that involves only nonsingular factor matrices. Next, in Section 4.2.2 we explain how
to extend it to the case of missing fibers.

4.2.1. Algebraic EVD method for CPD of fully observed tensor. Con-
sider the rank-R tensor

X =
R∑

r=1

ar ◦ br ◦ fr ∈ C
I×J×R, (4.4)

where for simplicity we have set K = R (i.e., we assume that a compression has
been carried out if K is larger than R). Let X = (A ⊙ B)FT denote its ma-
trix representation. The overall idea is to look for rank-one structured vectors in
range (X) = range (A⊙B). Concretely, we look for vectors g1, . . . ,gR with property
Xgr = ar⊗br. Thanks to the structure ofX, the matrix G = [g1, . . . ,gR] = F−T can
be found from range (X) if condition (2.10) in Theorem 2.3 is satisfied, as explained
in [10, 14] and reviewed in this section.

Consider first the rank-1 tensor X (R=1) = a ◦ b ◦ f ∈ CI×J×R. The basic idea in
[10, 14] is to exploit the rank-1 property of X (R=1), i.e., we have that

∣∣∣∣∣
x
(R=1)
i1,j1,k

x
(R=1)
i1,j2,k

x
(R=1)
i2,j1,k

x
(R=1)
i2,j2,k

∣∣∣∣∣ = ai1ai2bj1bj2fkfk − ai1ai2bj1bj2fkfk = 0, (4.5)

where 1 ≤ j1 < j2 ≤ J , 1 ≤ i1 < i2 ≤ I and 1 ≤ k ≤ K. Relation (4.5) just states
that all 2-by-2 minors of the rank-1 matrix fkab

T vanish.
Let us now consider the rank-R tensor X given by (4.4). Consider also the

expression

xi1j1k1xi2j2k2 + xi1j1k2xi2j2k1 − xi1j2k1xi2j1k2 − xi1j2k2xi2j1r1 , (4.6)

where 1 ≤ i1 < i2 ≤ I, 1 ≤ j1 < j2 ≤ J and 1 ≤ k1, k2 ≤ R. Let us stack
the set of expressions (4.6) into the matrix R2(X ) ∈ CC2

IC
2
J×R2

, defined as follows.

Let βk1,k2 = (k2 − 1)R + k1 and αi1,i2,j1,j2 = (j1(2j2−j1−1)−2)I(I−1)
4 + i1(2i2−i1−1)

2 so
that the (αi1,i2,j1,j2 , βk1,k2)-th entry of R2(X ) is equal to (4.6). Furthermore, let the

columns of R2(X ) ∈ CC2
IC

2
J×R2

be indexed lexicographically by the pair (k1, k2) so
that the column associated with the pair (k1, k2) precedes the column associated with
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the pair (k′1, k
′
2) if and only if either k′1 > k1 or k′1 = k1 and k′2 > k2. The column of

R2(X ) ∈ CC2
IC

2
J×R2

given by the pair (k1, k2) is equal to

Vec (C2(X (:, :, k1) + X (:, :, k2))− C2(X (:, :, k1))− C2(X (:, :, k2))) . (4.7)

From (4.7) it can be verified that R2(X ) has C2
R+1 distinct columns and that its rows

correspond to vectorized symmetric matrices. From (4.6) one can also obtain that
[14]:

R2(X ) = (C2(A)⊙ C2(B))ΨΨΨ2(F)
T , (4.8)

where the columns of ΨΨΨ2(F) ∈ CR2×C2
R are also lexicographically indexed by the

pair (k1, k2) so that the column of ΨΨΨ2(F) associated with the pair (k1, k2) is given
by 1

2 (fk1 ⊗ fk2 + fk2 ⊗ fk1), 1 ≤ k1 < k2 ≤ R. Taking into account that all (2 × 2)
minors of a rank-1 matrix vanish (cf. Eq. (4.5)) vanish, a technical derivation allows
us to verify that g1 ⊗ g1, . . . ,gR ⊗ gR ∈ ker (R2(X )). Furthermore, if condition
(2.6) in Theorem 2.2 is satisfied, then it can be shown that the linearly independent
vectors g1 ⊗ g1, . . . ,gR ⊗ gR are the only rank-1 structured vectors in ker (R2(X )).
Consequently, the subspace

W := ker (R2(X )) ∩ range(πS) = ker(ΨΨΨ2(F)
T ) ∩ range(πS) = range (G⊙G) (4.9)

is R-dimensional, where range(πS) denotes the subspace of vectorized symmetric ma-
trices. The symmetry restriction in (4.9) on the vectors in ker (R2(X )) is obtained by

the symmetrization mapping πS : CR2

→ CR2

, defined as

πS(Vec (F)) = Vec
(
(F+ FT )/2

)
, F ∈ C

R×R.

Let the columns of M = [m1, . . . ,mR] constitute a basis for W , then we can conclude
from (4.9) that there exists a nonsingular matrix N ∈ CR×R such that

M = (G⊙G)NT , (4.10)

where G = F−T . Clearly, (4.10) corresponds to a matrix representation of the basic
CPD ofM in (4.1), which in the exact case can be computed via an EVD as mentioned
in Section 2.1.3. In other words, once M in (4.10) is obtained from for instance the
SVD of R2(X ), G follows. In the next section we will extend the above procedure to
the case of missing fibers and provide details on how to compute M from R2(X ).

4.2.2. Extension to the case of missing fibers. Observe that each row of
R2(X ) in (4.8) depends only on two rows of A and B. This is the key property that
allows us to extend the approach in Section 4.2.1 to the case of missing fibers. More
precisely, each of the C2

IC
2
J rows of R2(X ) is constructed from a distinct (2× 2×R)

subtensor of X . In the missing fibers case we will just work with the ω(dsel) (2 ×

2 × R) subtensors that are observed. Briefly, let Sred ∈ Cω(dsel)×C2
IC

2
J denote the

row-selection matrix that selects the rows of R2(X ) that are observed. The missing
fibers version of (4.8) is then

Rred := SredR2(X ) = Sred(C2 (A)⊙ C2 (B)) ·ΨΨΨ2(F)
T . (4.11)

Since we assume that condition (3.23) is satisfied, Sred(C2 (A) ⊙ C2 (B)) has full
column rank. Consequently, in the case of missing fibers, we can just obtain a ba-
sis for the subspace W by working with Rred in (4.11) instead of R2(X ) in (4.9).
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Since the rows of the matrix Rred are vectorized symmetric matrices, we have that

range
(
RT

red

)
⊆ range(πS). Consequently, a set of R basis vectors m1, . . . ,mR ∈ CR2

for W can be obtained from a submatrix of Rred with C2
R+1 distinct columns. In more

detail, define the set SR = {(r1, r2) : 1 ≤ r1 ≤ r2 ≤ R} in which the C2
R+1 elements

are ordered lexicographically and consider the mapping f : N2 → {1, 2, . . . , C2
R+1}

that returns the position of its argument in the set SR. Let Qred ∈ C
ω(Dsel)×C2

R+1

denote a matrix consisting of the C2
R+1 distinct columns of Rred and constructed as

follows:

Qred = [Q(1) , 2 ·Q(2)], (4.12)

where

Q(1) = [Rred(:, f(1, 1)), . . . ,Rred(:, f(R,R))], (4.13)

Q(2) = [Rred(:, f(1, 2)),Rred(:, f(1, 3)), . . . ,Rred(:, f(R− 1, R))]. (4.14)

A basis {mr} forW can now be built from the R right singular vectors associated with
the R smallest singular values ofQred. Alternatively, since ker(Qred) = ker(QH

red·Qred)
the basis can also be found from the R eigenvectors associated with the R smallest
eigenvalues of the matrix QH

red · Qred. Let the columns of M constitute a basis for
ker(Qred), then it admits the factorization (4.10), which clearly corresponds to a

matrix representation of the CPD M =
∑R

r=1 gr ◦ gr ◦ nr ∈ C
R×R×R in which

G = [g1, . . . ,gR] = F−T . As mentioned earlier, the latter CPD can be computed
via an EVD, implying that F can be recovered by means of standard linear algebra
methods (e.g., [21]).

4.3. Step 3: From basic CPD to factor matrices A,B,C. After F−1 has
been found we obtain ΦΦΦ(A,B) and C via (4.3). What remains is to compute A and
B. We will now explain how to extract the remaining unknown factors A and B from
ΦΦΦ(A,B). In order to make it clear how this step is carried out, let us first review how
it can be done in the case where no fibers are missing.

4.3.1. Rank-1 factorization method for finding factor matrices A and
B. Recall first that if all fibers of X have been sampled, then ΦΦΦ(A,B) = A⊙B and
relation (4.3) simplifies to

P := UsubΣΣΣsubG
T = A⊙B and V∗

subG = C, (4.15)

where G = F−1 has been obtained via relation (4.10). Let P(r) ∈ CI×J denote the
reshaped version of the rth column of P so that

P(r) = arb
T
r , r ∈ {1, . . . , R}. (4.16)

Note that P(r) is equal to the matrix given by (3.5) with all entries of the matrix
observed. From (4.16) it is clear that the pair {ar,br} can be obtained via the rank-

1 factorization of P(r). In the inexact case, this is achieved via the rank-1 matrix
approximation

min
‖ar‖F=1,b

‖P(r) − arb
T
r ‖

2
F , r ∈ {1, . . . , R}. (4.17)

In the next section it will become clear that in the case of missing entries, the best
rank-1 matrix approximation (4.17) cannot directly be used. We will now discuss an
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alternative approach that can easily be extended to the case of missing entries. From
(4.16) it is clear that the columns of P(r) are all proportional to ar, i.e.,

ar ∈ R(r) :=

J⋂

j=1

range
(
p
(r)
j

)
, r ∈ {1, . . . , R}. (4.18)

Let the columns of N
(r)
j ∈ CI×(I−1) form a basis for the orthogonal complement of

p
(r)
j , then

range (ar) ∈
J⋂

j=1

range
(
p
(r)
j

)
⇔ N

(r)H
j ar = 0, ∀j ∈ {1, . . . , J}. (4.19)

It is now clear that the vector ar in (4.16) can also be obtained by solving the set of
homogeneous linear equations in (4.19), i.e.,

aH
r [N

(r)
1 , . . . ,N

(r)
J ] = 0, r ∈ {1, . . . , R}.

In the inexact case, ar can be obtained from the SVD of the ((I − 1)J × I) matrix

[N
(r)T
1 , . . . ,N

(r)T
J ]T . Alternatively, ar can found by solving the eigenvalue problem

min
‖ar‖F=1

J∑

j=1

‖N
(r)H
j ar‖

2
F = min

‖ar‖F=1
aHr




J∑

j=1

N
(r)
j N

(r)H
j


ar, r ∈ {1, . . . , R}, (4.20)

which only involves the smaller (I × I) matrix
∑J

j=1 N
(r)
j N

(r)H
j . Once ar has been

obtained from (4.20), br follows immediately. In the next section we will explain that
this approach is also appropriate for the case of missing entries.

4.3.2. Extension to the case of missing fibers. Assume now that some of

the entries of P(r) = [p
(r)
1 , . . . ,p

(r)
J ] are missing (i.e., ∃ (i, j) /∈ P(r)). Then {ar,br}

cannot be found from a best rank-1 approximation of P(r). We will now develop an
efficient subspace method for the case of missing entries that again reduces to a best
rank-1 approximation of a matrix. More precisely, will now explain how to find the
subspace R(r) in (4.18) using the incomplete matrix P(r). The derivation will make
use of several variables which are listed in Table 4.1.

Every column p
(r)
j of P(r) generates a subspace of dimension Icj,r+1 if we consider

scaled versions of p
(r)
j and if moreover we let the indeterminate entries of p

(r)
j vary.

Let z
(r)
j ∈ CI denote the column vector in which the indeterminate entries of p

(r)
j

have been replaced by zeros. Further, let the indeterminate entries of p
(r)
j be indexed

by υ(1), . . . , υ(Icj,r). Then the columns of

P
(r)
j = [z

(r)
j , e

(I)
υ(1), . . . , e

(I)
υ(Ic

j,r
)] ∈ C

I×(1+Ic
j,r)

constitute a basis for range
(
P

(r)
j

)
. Since ar ∈ range

(
P

(r)
j

)
, ∀j ∈ Θ(r), we have that

ar ∈ S(r) :=
⋂

j∈Θ(r)

range
(
P

(r)
j

)
. (4.21)

Next we explain that if the conditions in Theorem 3.6 are satisfied, then R(r) = S(r)

so that ar can be recovered from the subspace S(r).
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Variable Description

p
(r)
j jth column of the (I × J) incomplete matrix P(r) = [p

(r)
1 , . . . ,p

(r)
J ].

Θ(r) The column index set of the non-zero columns in P(r), i.e.,

Θ(r) = {j ∈ {1, . . . , J} | p
(r)
j 6= 0}.

Ij,r Number of determinate entries of column vector p
(r)
j .

Icj,r Number of indeterminate entries of p
(r)
j . (Icj,r = I − Ij,r .)

υ(i) Index of the ith indeterminate entry of p
(r)
j , i.e., entry p

(r)
υ(i),j is unknown

for every i ∈ {1, . . . , Icj,r}.

µ(i) Index of the ith determinate entry of p
(r)
j , i.e., p

(r)
µ(i),j = aµ(i),rbj,r, ∀i ∈

{1, . . . , Ij,r}.

z
(r)
j Vector in which the indeterminate entries of p

(r)
j have been replaced by

zeros, i.e., z
(r)
ij = p

(r)
ij if i ∈ {µ(1), . . . , µ(Ij,r)} and z

(r)
ij = 0 otherwise.

Table 4.1

Overview of the variables used in Section 4.3.2.

Dimension and range of subspace S(r) =
⋂

j∈Θ(r) range(P
(r)
j ). We know that

under the conditions in Theorem 3.6 the rank-1 completion of P(r) is unique. This
implies that S(r) = range (ar) = R(r). Indeed, if S(r) 6= range (ar), then there exist
scalars αj ∈ C, j ∈ Θ(r), and a vector ãr ∈ S(r) with property ãr /∈ range (ar) such

that p
(r)
j = w̃

(r)
j ∗ (ãrαj), ∀j ∈ Θ(r), where w̃

(r)
ij = 1 if z

(r)
ij 6= 0 and zero elsewhere.

This leads to an alternative rank-1 completion of P(r), contradicting Theorem 3.6.
To summarize, if the conditions in Theorem 3.6 are satisfied, then the subspace S(r)

is one-dimensional so that ar can be found.
Recovery of ar. Similar to (4.19), we know from (4.21) that

ar ∈ S(r) ⇔ N
(r)H
j ar = 0, ∀j ∈ Θ(r), (4.22)

where the columns ofN
(r)
j ∈ C

I×(I−1−Ic
j,r) form a basis for the orthogonal complement

of P
(r)
j . The vector ar can now be obtained from the SVD of the ((

∑
j∈Θ(r)(I − 1−

Icj,r)× I) matrix [N
(r)T
1 , . . . ,N

(r)T
J ]T . Note that for every j ∈ Θ(r), the columns of

Z
(r)
j = [z

(r)
j /‖z

(r)
j ‖F , e

(I)
υ(1), . . . , e

(I)
υ(Ic

j,r
)] ∈ C

I×(1+Ic
j,r)

constitute an orthonormal basis for range
(
P

(r)
j

)
. This property together with the

equivalence relation in (4.22) now implies that (e.g., [53]):

arg min
‖ar‖F=1

∑

j∈Θ(r)

‖N
(r)H
j ar‖

2
F = arg max

‖ar‖F=1
‖aHr Z

(r)
total‖

2
F , r ∈ {1, . . . , R}, (4.23)

where Z
(r)
total = [Z

(r)
1 , . . . ,Z

(r)
J ] ∈ C

I×
∑

j∈Θ(r) (1+Ic
j,r). Consequently, the dominant left

singular vector of Z
(r)
total is a basis vector for S(r). Thus, denoting the dominant

left singular vector of Z
(r)
total by u(r), we can also set ar = u(r). Furthermore, if

I <
∑

j∈Θ(r)(1 + Icj,r), then, since range
(
Z

(r)
total

)
= range

(
Z

(r)
total · Z

(r)H
total

)
, u(r) can

also be found as the dominant eigenvector of the smaller matrix Z
(r)
total · Z

(r)H
total =∑

j∈Θ(r) Z
(r)
j · Z

(r)H
j ∈ CI×I .
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Recovery of br from P(r) given ar. Define âr = ar([µ(1), . . . , µ(Ij,r)]), where

µ(1), . . . , µ(Ij,r) denote the indices of the observed entries of p
(r)
j . Then the non-

zero entries of br follow from the relation bjr = âH
r ẑ

(r)
j /(âHr âr), j ∈ Θ(r), where

ẑ
(r)
j = [z

(r)
µ(1),j . . . , z

(r)
µ(Ij,r),j

]T is the part of z
(r)
j that is associated with the observed

entries of p
(r)
j .

4.4. Summary and discussion. The overall procedure is summarized as Algo-
rithm 1. If the conditions in Theorem 3.6 are satisfied, then Algorithm 1 is guaranteed
to find the decomposition in the exact case. Note also that in the exact case, the rank
R can be determined from the SVD of Ysub, i.e., R is equal to the rank of Ysub.

The complexity of solving the CPD problem in step 4 via an EVD is only of the
order O(R3). Hence, for large dimensions, the computational cost of Algorithm 1
will be dominated by the dimensionality reduction (i.e., step 1) and the construction
of Qred (i.e., steps 2 and 3). The complexity of step 1 can be significantly reduced
by utilizing randomized compression [23] or column/row/fiber subset selection [18]
factorization techniques. The complexity of steps 2 and 3 can be reduced by consid-
ering only part of the structure as in subsampling, cf. Section 5.2. As mentioned in
Section 2.1.3, the CPD in step 4 can be computed via an EVD, i.e., only two matrix
slices M(··k1) and M(··k2) of the tensor M with matrix factorization M = (G⊙G)NT

are needed. Likewise, as mentioned in Section 4.3.2, the rank-1 matrix completion
problem in step 8 can be reduced to an eigenvalue problem (e.g., [21]).

In the inexact case, we can refine the EVD solution obtained in step 4 by an
optimization-based method for CPD (e.g., [57]) that takes all the R matrix slices

{M(··r)} of the tensor M into account. Finally, in the inexact case, the output A,
B and C of Algorithm 1 can also be refined by an optimization-based method (e.g.,
[57]) that fits them to the tensor Y.

Algorithm 1 Algebraic method for CPD with missing fibers.

Input: Ysub = SW1
X of the form (3.4) and R.

1. Compute SVD Ysub = UsubΣΣΣsubV
H
sub.

2. Build Qred in (4.12) from UsubΣΣΣsub, i.e., set Rred = UsubΣΣΣsub in (4.13)–(4.14).
3. Collect in a matrix M the R right singular vectors associated with the R smallest

singular values of Qred.
4. Solve CPD problem M = (G⊙G)NT via EVD.
5. Compute C = V∗GT and ΦΦΦ(A,B) = UsubΣΣΣsubG

−1.
6. Compute [ϕϕϕ1, . . . ,ϕϕϕR] = ST

W1
ΦΦΦ(A,B).

7. Build P(r) defined by (3.5) from ϕϕϕr, r ∈ {1, . . . , R}.
8. Obtain {ar,br} via rank-1 matrix completion of P(r), r ∈ {1, . . . , R}.

Output: A, B and C.

A difference between Algorithm 1 and the more conventional optimization-based
Nonlinear Least Squares (NLS) methods (e.g., [1, 31, 36, 55, 56]) is that the former
is guaranteed to find the factor matrices in the exact case while the latter can better
take additive noise perturbation terms into account by fitting the data to the CPD
model in a least squares sense. Another difference is the computational complexity of
the two approaches. In Algorithm 1 the complexity is dominated by the construction
of Qred, which is of the order O(ω(dsel)R

2), and the computation of the CPD of
M via an EVD, which is of the order O(R3). In large-scale cases, NLS methods for
incomplete CPD typically have a complexity of the orderO(itCG·Nke·R) per iteration,
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in which Nke denotes the number of nonzero entries in Y and itCG is usually a small
number [56]. For small-scale problems where I = J = K, NLS methods for incomplete
CPD typically have a complexity of the order O(R2Nke + I3R3) per iteration [56].
Discussions about the complexity of optimization-based methods for the computation
of the CPD of an incomplete tensor can be found in [31, 56].

5. Fiber sampling and large-scale tensor decompositions. In Sections 3
and 4 we presented uniqueness conditions and an algorithm for the CPD of a tensor
with missing fibers. In this section we explain that the results can be used to find
the CPD of very large tensors (which can in principle be fully given). In short, we
will show that fiber sampling enables us to turn a large-scale tensor decomposition
problem into a small-scale tensor decomposition problem. An obvious application is
CPD-based tensor completion.

5.1. Motivation. A common way to deal with large-scale data sets in numerical
linear algebra is to employ randomized algorithms that sample a small subset of the
rows/columns of the given matrix (e.g., [19]). The reason why such a randomized
subset selection approach works is that a small sample of rows/columns contains a lot
of information about the row/column space of the given matrix. Likewise, in large
scale tensor decomposition problems it can be expensive to process the full tensor.
Fortunately, if (i) F ≥ I + J + R fibers of length K ≥ R have been (randomly)
sampled so that condition (3.9) is satisfied and (ii) the fibers have been sampled in
such a way that the graph connectivity condition (3.21) in Lemma 3.4 is satisfied,
then the CPD of X can generically be determined via its fiber sampled version Y.
Thus, only a fraction of the fibers are needed in order to find the CPD of X . More
concretely, assume that F observed fibers of X in (3.1) are taken into account. These
fibers can be stored in a matrix H ∈ CF×K with factorization

H =




xi1j1 •

...
xiF jF •


 = φφφH(A,B)CT , φφφH(A,B) =




ai1 • ∗ bj1 •

...
aiF • ∗ bjF •


 . (5.1)

Note that this fiber sampling approach only requires the storage of (K + 2)F values,
namely the KF entries of H and the 2F coordinates associated with the sampled
fibers. If (K + 2)F << IJK, then this is a significant reduction in terms of storage.
Since only F ≥ I + J − 1 fibers need to be sampled in order to obtain a connected
bipartite graph P (r), we can conclude from the preceding discussion that as a few
as F ≥ I + J + R mode-3 fibers can be sufficient to find the CPD of X . Observe
also that the computation of an R-term CPD amounts to solving a system of IJK
(rank-1 structured) equations in R(I + J + K − 1) variables. In the case of fiber
sampling, only FK of the equations are considered. In practice, we typically have
that R(I + J +K − 1) << IJK so that a significant reduction of the complexity is
possible with a limited loss of accuracy.

Besides guaranteeing uniqueness, we want to sample fibers in such a way that
the factor matrices A, B and C can be found with relative ease. In a way, this is
the opposite problem of the one we have dealt with in Sections 3 and 4. In Sections
3 and 4, we have extracted full subtensors X (n) from a partially observed tensor X .
The coupled CPD of {X (n)} has provided insight in the uniqueness and has led to
an EVD-based algorithm. We have considered subtensors of minimal size 2× 2 ×K
in order to maximally exploit the available structure. To reduce the computational
complexity, one could consider only a subset of the 2× 2×K subtensors of X . As a
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matter of fact, one could sample only larger subtensors and ignore the fine structure
that can only be captured by 2× 2 ×K subtensors. In the remainder of this section
we briefly formalize the approach. Determination of the optimal subtensor size and
“crosses” on which to sample is out of the scope of this paper. Finally, note that
fiber sampling can be used both in cases where tensor X in principle could be fully
observed and in cases where this is not posssible. (As an example of the latter, in some
applications parts of X do not make sense physically and hence need to be considered
as intrinsically missing.)

5.2. Result for fiber sampling. Let X (n) ∈ C
In×Jn×K denote a subtensor X

that consists of all fibers xij • on an In × Jn grid where

(i, j) ∈ {i1,n, . . . , iIn,n} × {j1,n, . . . , jJn,n} ⊂ {1, . . . , I} × {1, . . . , J}.

By sampling a set of N such subtensors X (n) ∈ CIn×Jn×K of X we obtain the coupled
PD

X (n) =
R∑

r=1

a(n)r ◦ b(n)
r ◦ cr , n ∈ {1, . . . , N}, (5.2)

where a
(n)
r ∈ CIn is a vector that consists of the entries i1,n, . . . , iIn,n of ar and

b(n)
r ∈ CJn is a vector that consists of the entries j1,n, . . . , jJn,n of br, i.e.,

a(n)r = [ai1,n , . . . , aiIn,n
]T ∈ C

In and b(n)
r = [bj1,n , . . . , bjJn,n

]T ∈ C
Jn .

For simplicity, the relations between the factors in {A(n)} and in {B(n)} are ignored.
We have now turned a large-scale CPD into a smaller-scaled coupled CPD. Proposition
5.1 below is the fiber sampling counterpart of Theorem 3.6. The derivation of the
uniqueness condition (5.3) in Proposition 5.1 is analogous to the derivation of the
uniqueness condition (3.23) in Theorem 3.6.

Proposition 5.1. Consider the PD of X ∈ CI×J×K in (2.1) observed via

Y ∈ CI×J×K in (3.1). Let G(N) in (2.9) be built from the factor matrices A(n) =

[a
(n)
1 , . . . ,a

(n)
R ] ∈ CIn×R and B(n) = [b

(n)
1 , . . . , b

(n)
R ] ∈ CJn×R in (5.2) and let P̃ (r) be

the restricted bipartite graph of P(r) defined by (3.5) and with property (3.6). If





C in (2.1) has full column rank,

G(N) in (2.9) has full column rank,

P̃ (r) is a connected graph for every r ∈ {1, . . . , R},

(5.3)

then the rank of X is R and the CPD of X is unique.
Note that the conditions ensuring uniqueness in Proposition 5.1 are more restric-

tive than in Theorem 3.6, i.e., condition (5.3) implies condition (3.23). This comes
as no surprise as in Proposition 5.1 uniqueness needs to be inferred from only a part
of X . Indeed, the matrix obtained by removing any redundant rows of G(N) in (5.3)
corresponds to a submatrix of Dsel(C2 (A)⊙C2 (B)) in (3.23). In other words, direct
sampling of full subtensors X (1), . . . ,X (N) of X is the same as only considering a
subset of the observed 2× 2×K subtensors of X .

As an example, consider again the tensor Y = W ∗ X ∈ C5×6×K with frontal
slices of the form in Figure 3.1 (left) where the fibers x11 •,x21 •,x31 •,x21 •,x22 • and
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x13 • are intrinsically missing. Let us now sample the following four subtensors of X :

X (1) = X (:, [4 5 6], :) ∈ C
5×3×K , X (3) = X ([3 4 5], [2 3 4 5 6], :) ∈ C

3×5×K ,

X (2) = X ([2 3 4 5], [3 4 5 6], :) ∈ C
4×4×K ,X (4) = X ([4 5], :, :) ∈ C

2×6×K ,

in which the associated frontal slices are bordered by dotted lines in Figure 3.1 (left).

If G(N) in (5.3) is constructed from the subtensors X (1) and X (2), then Proposition
5.1 generically guarantees the uniqueness of the CPD of X if R ≤ 8 and R ≤ K.
On the other hand, if G(N) is constructed from the subtensors X (1) and X (4), then
Proposition 5.1 now generically guarantees the uniqueness of the CPD of X if R ≤ 9
and R ≤ K. Finally, if G(N) is constructed from all four subtensors X (1), X (2), X (3)

and X (4), then Proposition 5.1 generically guarantees the uniqueness of the CPD of
X if R ≤ 11 and R ≤ K. The latter bound actually coincides with the upper bound
on R ensured by Theorem 3.6. (The reason that Theorem 3.6 and Proposition 5.1
yield the same upper bound on R is that the above coupled CPD of {X (n)}4n=1 takes
all the observed (2 × 2×K) subtensors of X into account.)

6. Numerical experiments. We demonstrate the behaviour of fiber sampling
based on synthetic data in MATLAB. We consider the CPD of an (I × J ×K) tensor

X =
∑R

r=1 ar ◦br ◦ cr. The goal is to estimate the factor matrices from the observed
tensor Y = W ∗ (X +N ), where W is a binary observation indicator tensor and N is
an unstructured perturbation tensor. The entries of the factor matrices in the CPD of
X and the perturbation tensor N are randomly drawn from a Gaussian distribution
with zero mean and unit variance. The (0, 1)-pattern ofW depends on the experiment.

The following Signal-to-Noise Ratio (SNR) measure will be used:

SNR = 10 log
(
‖W ∗X‖2F / ‖W ∗N‖2F

)
.

The performance evaluation will be based on the distance between a factor matrix A
and its estimate, Â. The distance is measured according to the criterion:

P (A) = min
ΠΛ

∥∥∥A− ÂΠΛ
∥∥∥
F
/ ‖A‖F ,

where Π and Λ denote a permutation matrix and a diagonal matrix, respectively.

6.1. Case 1: Systematically missing fibers. Consider the rank-R tensor
X ∈ C

5×6×K in which the fibers x11 •,x21 •,x31 •,x21 •,x22 • and x13 • are missing,
as depicted in figure 6.1 (left). We set R = 5 and K = 40. We will now investigate
the performance of Algorithm 1 in the presence of perturbation noise. In Algorithm
1 the CPD in Step 4 in will numerically be computed by the extended QZ method
[54] while the rank-1 matrix completion problem in Step 8 will numerically be solved
via the built-in svd.m function in MATLAB. We compare (i) Algorithm 1, (ii) a
subsampled version of Algorithm 1 in which only the four subtensors holding the

fibers {xij •}
j∈{1,2,3,4,5,6}
i∈{1,2} , {xij •}

j∈{2,3,4,5,6}
i∈{1,2,3} , {xij •}

j∈{3,4,5,6}
i∈{1,2,3,4} and {xij •}

j∈{4,5,6}
i∈{1,2,3,4,5}

of X , as depicted in figure 3.1(left) are used in the computation of C, and (iii) the
randomly initialized NLS method sdf nls.m in [57]. The methods will be referred
to as ’Algorithm 1’, ’Subsampled Algorithm 1’ and ’NLS’, respectively. In addition,
we also consider the NLS method initialized by estimates obtained by Algorithm 1
and the Subsampled Algorithm 1. They will be referred to as ’Algorithm 1-NLS’ and
’Subsampled Algorithm 1-NLS’. The fiber sampling pattern and the mean P (A) values
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over 100 trials as a function of SNR can be seen in figure 6.1(right). We observe that
the algebraic Algorithm 1 and Subsampled Algorithm 1 methods performed about the
same. The reason is that the Subsampled Algorithm 1 method already exploits all
(2× 2×K) rank-1 structured subtensors of X . We also observe that the optimization
based NLS method is sensitive w.r.t. its initialization and that initialization by a
Algorithm 1 method leads to a considerable improvement. We can even observe that
at high SNR the algebraic algorithms, which were derived for an exact decomposition,
obtain a better precision than the NLS algorithm that tries to minimize the difference
between the tensor and its CPD approximation.

6.2. Case 2: Small sized tensor with randomly missing fibers. Consider
now a rank-5 tensor X ∈ CI×J×K with I = J = K = 50. We randomly sample
15 percent of the fibers of X . All the row border fibers x11 •, . . . ,xI1 • and all the
column border fibers x11 •, . . . ,x1J • are also sampled. This is just one way to ensure
that the graph connectivity condition in Theorem 3.6 is satisfied. In total, 459 out
of 2500 fibers are sampled. For the Subsampled Algorithm 1, N = 10 subtensors
Y(1), . . . ,Y(N) of size (10 × 10 × K) are randomly selected from Y.3 This means
that not more than 100 fibers are used in the computation of C. In other words,
the Subsampled Algorithm 1 solves the CPD recovery problem via a coupled CPD of
Y(1), . . . ,Y(N) that have fibers missing. The fiber sampling pattern and mean P (A)
values over 100 trials as a function of SNR can be seen in figure 6.2. The algebraic
Algorithm 1 performs better than the Subsampled Algorithm 1. The reason is the
latter does not take all the low-rank structure of Y into account. On the other hand,
we observe that the loss of accuracy as a consequence of using fewer fibers in the
Subsampled Algorithm 1 is very moderate. Furthermore, the Subsampled Algorithm
1 typically ran more than 50 times faster than Algorithm 1. Again, we observe that
the optimization based NLS method is sensitive w.r.t. its initialization and that
both Algorithm 1 and Subsampled Algorithm 1 provided good starting values that
significantly improved the performance.

6.3. Case 3: Medium sized tensor with randomly missing fibers. Con-
sider a rank-10 tensor X ∈ CI×J×K with dimensions I = J = K = 100. We ran-
domly sample about 46 percent of the fibers of X . Again, all the row border fibers
x11 •, . . . ,xI1 • and all the column border fibers x11 •, . . . ,x1J • are sampled. In total,
4609 out of 10000 fibers are sampled. Using all 4609 fibers in the construction of Qred

in Step 2 in Algorithm 1 is considered to be too costly. Consequently, we only consider
the subsampled version of Algorithm 1 in which N = 10 subtensors Y(1), . . . ,Y(N) of
size (10× 10×K) are randomly selected from Y and used in the construction of Qred

and computation of C. (Note that all 4609 fibers are still used in the subsequent com-
putation ofA andB.) We also consider the NLS method cp wopt.m in [2] that uses the
4609 sampled fibers in the computation of all the CPD factor matrices. The method
can be seen as a representation for the more commonly used optimization-based pro-
cedures for decomposing an incomplete tensor; see [1, 55, 56, 36] for references and
details. It will be referred to as ’CP WOPT’. The mean P (A) and median P (A)
values over 100 trials as a function of SNR can be seen in figure 6.3. Here the median
P (A) value is less affected by outliers in which CP WOPT did not perform well due to
its dependence on the initialization. We also observe that the Subsampled Algorithm
1-NLS and CP WOPT methods perform about the same and that the initialization

3More strategic and data dependent sampling schemes could be considered (e.g., [18, 50, 23, 5, 4]),
but that is outside the scope of the paper.
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by the algebraic Subsampled Algorithm 1 can provide a good starting value for an
iterative optimization method. The Subsampled Algorithm 1 typically ran more than
7 times faster than Subsampled Algorithm 1-NLS, which in turn typically ran more
than 5 times faster than CP WOPT.

6.4. Case 4: Subsampling of large tensor. Consider a rank-10 tensor X ∈
C

I×J×K with large dimensions I = J = K = 1000. Note that storage of the full
(1000× 1000× 1000) tensor in double precision floating-points would require 8 giga-
bytes and that the algebraic Algorithm 1 for the computation of its CPD would have
a complexity of the order O(I2J2R2) = 1010. More practical is to sample N = 5 sub-
tensors X (1), . . . ,X (N) of size (10×10×K) from X . In order to guarantee the recovery
of the CPD factors of X , the row border fibers x11 •, . . . ,xI1 • and the column border
fibers x11 •, . . . ,x1J • are also sampled. In total I + J − 1 +

∑N
n=1(InJn) = 2499 out

of IJ = 1.000.000 possible fibers are sampled. Note that in this subsampling scheme
only the

∑N
n=1(InJn) = 500 fibers of X that correspond to the fibers in X (1), . . . ,X (N)

are used in the computation of C. We also refine the estimate of C obtained by Al-
gorithm 1 using the basic Alternating Least Squares (ALS) method for coupled CPD
of X (1), . . . ,X (N). The latter method will be referred to as ’Subsampled Algorithm
1-ALS’. The fiber sampling pattern and the mean P (A) values over 100 trials as
a function of SNR can be seen in figure 6.4. We observe that the algebraic ’Sub-
sampled Algorithm 1’ and refined ’Subsampled Algorithm 1-ALS’ methods perform
about same. The reason is that the coupled CPD of X (1), . . . ,X (N) is by itself highly
overdetermined and consequently little is gained by the extra ALS refinement step.
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Fig. 6.1. Fiber sampling pattern (a blue cross +++ at position (i, j) indicates that fiber xij • has
been sampled) and mean P (A) over 100 trials while SNR is varying from 10 to 40 dB, case 1.

7. Conclusion. In this paper we studied a fiber sampled version of the CPD.
This led to a generalization of the conventional CPD modeling framework to the
case of missing fibers, including uniqueness conditions and an algebraic algorithm.
More precisely, fiber sampling allowed us to reduce a tensor decomposition problem
involving missing fibers into simpler matrix completion problems via a matrix EVD.
We also explained that fiber sampling is of interest for large-scale low-rank tensor
decomposition problems where we deliberately sample only a few fibers. Numerical
experiments showed that the presented algebraic algorithm can efficiently provide
a good initialization for optimization-based methods commonly used for incomplete
tensor decompositions. Even though we limited the discussion to the CPD model, the
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Fig. 6.2. Fiber sampling pattern (a blue cross +++ at position (i, j) indicates that fiber xij • has
been sampled) and mean P (A) over 100 trials while SNR is varying from 10 to 40 dB, case 2.
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Fig. 6.3. Mean P (A) and median P (A) over 100 trials while SNR is varying from 10 to 40
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been sampled) and mean P (A) over 100 trials while SNR is varying from 10 to 40 dB, case 4.
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result can be extended to other low-rank tensor decomposition models, such as the
block term decomposition [11]. In the supplementary material in [40] we illustrate
this for fiber sampled block term and hierarchical rank decompositions.
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