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Abstract

We investigate fair (market-consistent and actuarial) valuation of in-

surance liability cash-flow streams in continuous time. We first con-

sider one-period hedge-based valuations, where in the first step, an

optimal dynamic hedge for the liability is set up, based on the assets

traded in the market and a quadratic hedging objective, while in the

second step, the remaining part of the claim is valuated via an ac-

tuarial valuation. Then, we extend this approach to a multi-period

setting by backward iterations for a given discrete-time step h, and

consider the continuous-time limit for h → 0. We formally derive

a partial differential equation for the valuation operator which satis-

fies the continuous-time limit of the multi-period, discrete-time itera-

tions and prove that this valuation operator is actuarial and market-

consistent. We show that our continuous-time fair valuation operator

has a natural decomposition into the best estimate of the liability

and a risk margin. The dynamic hedging strategy associated with the

continuous-time fair valuation operator is also established. Finally,

the valuation operator and the hedging strategy allow us to study the

dynamics of the net asset value of the insurer.

Keywords: Optimal quadratic hedging, actuarial valuation, market-

consistent valuation, fair valuation, partial differential equation, best

estimate, risk margin, net asset value.
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1 Introduction

During the past decades, major changes have taken place in the way in-

surance liabilities are valuated. This is due to the emergence of solvency

regimes such as Swiss Solvency Test, Solvency II and C-ROSS (Chinese sol-

vency regulation) which are built on the paradigm that valuations should be

risk-based and take into account available information provided by financial

markets. One of the key changes has been the requirement of determining

market-consistent values for insurance liabilities in order to guarantee a bet-

ter matching between assets and liabilities (see e.g. Albrecher et al. (2018)).

Standard actuarial valuation is typically based on a diversification argu-

ment which justifies applying the law of large numbers among independent

policyholders who face i.i.d. risks. This valuation is performed under the

real-world measure P and defined as the expectation plus an additional risk

margin to cover any not fully diversified and non-diversifiable risk. Based

on historical data, the actuarial valuation involves a subjective judgement

concerning the choice of the model and its parameters. For a survey of the

classical insurance approach, we refer to Kaas et al. (2008) for non-life and

Norberg (2014) for life insurance.

Risk-neutral valuation is, on the other hand, market-driven, hence ob-

jective, and based on the idea of hedging and replication. By no-arbitrage

arguments, prices of contingent claims can be expressed as expectations under

a so-called risk-neutral measure Q. This approach dates back to the semi-

nal paper of Black & Scholes (1973) and was generalized to broad classes of

processes. For an overview, see Delbaen & Schachermayer (2006).

A large branch of literature investigated valuations in a market-consistent

setting, trying to extend the arbitrage-free pricing operators (initially de-

fined in a complete market) to the general set of non-hedgeable claims. Sev-

eral approaches were considered such as utility indifference pricing (Hodges

& Neuberger (1989)) or risk-minimization techniques (Föllmer & Schweizer

(1988), Černỳ & Kallsen (2009) and Delong (2013)). The notion of market-

consistency has been recently formalized by several authors as an extension
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of the notion of cash-invariance to all hedgeable claims, see e.g. Malamud

et al. (2008), Pelsser & Stadje (2014) and Dhaene et al. (2017).

It is important to notice that actuarial and risk-neutral valuations do not

contradict each other, but are two types of valuations applied to different

situations (diversifiable risks versus traded risks). In an insurance context,

in which risks are partially traded and diversifiable, building a valuation

framework which combines both approaches is primordial.

In this paper we investigate fair valuation of insurance liability cash-flow

streams in continuous time, starting from the work of Dhaene et al. (2017),

Barigou & Dhaene (2018) and Barigou et al. (2018) in discrete time. In line

with these papers, we define a fair valuation as a valuation which is actuarial

(mark-to-model for claims independent of financial market evolutions) and

market-consistent (mark-to-market for any hedgeable part of a claim). We

first consider the one-period hedge-based valuations introduced by Dhaene

et al. (2017), where in the first step, an optimal dynamic hedge for the liability

is set up, based on the assets traded in the market and a quadratic hedging

objective, while in the second step, the remaining part of the claim is valuated

via an actuarial valuation. Then, we extend this approach to a multi-period

setting by backward iterations for a given discrete-time step h, and consider

the continuous-time limit for h→ 0. We formally derive a partial differential

equation (PDE) for the valuation operator which satisfies the continuous-

time limit of the multi-period, discrete-time iterations and prove that this

valuation operator is actuarial and market-consistent. We show that our

continuous-time fair valuation operator has a natural decomposition into

the best estimate of the liability and a risk margin. The dynamic hedging

strategy associated with the continuous-time fair valuation operator is also

established. Finally, the valuation operator and the hedging strategy allow

us to study the dynamics of the net asset value of the insurer. We focus

on the theory of fair valuation of insurance liability cash-flow streams in

continuous time. Examples relevant for practice and detailed interpretations

can be found in Delong et al. (2018).
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We note that Pelsser (2010), Pelsser & Stadje (2014) and Pelsser & Ghale-

hjooghi (2016) also consider continuous-time valuation of insurance liabili-

ties, taking into account both actuarial and market-consistent considerations.

However, all these papers investigate the valuation of a particular type of con-

tingent claims at a fixed future time and do not study hedging strategies. We

consider a general framework of insurance and financial cash-flows at random

times up to a terminal time and derive an optimal, dynamic investment strat-

egy for hedging the cash-flows. The one-period valuation operators proposed

in this research are also different from the ones proposed in Pelsser (2010),

Pelsser & Stadje (2014) and Pelsser & Ghalehjooghi (2016).

We should also mention the paper by Happ et al. (2015) who consider val-

uation of insurance liability cash-flow streams in a multi-period, discrete-time

model. The best estimate of liability is obtained by sequential local risk min-

imization which describes the dynamically hedgeable part of the insurance

cash-flows. These sequential risk minimization are obtained by orthogonal

L2 projections of the liability onto the space of hedgeable payoffs. Hence, the

best estimate of the liability is the market value of the hedgeable pay-off de-

rived from the orthogonal projection of the liability. The technical provision

is then defined as the arbitrage-free price (including risk premiums for the

non-hedgeable risks) of the insurance cash-flows. The multi-period valuation

operator from Happ et al. (2015) has some similarities with our multi-period

valuation operator, yet the constructions are different. Moreover, in this

paper we focus on the continuous-time valuation operator and its properties.

This paper is organized as follows. Section 2 describes the financial and

insurance model as well as the notions of market-consistent, actuarial and

fair valuations and hedging strategies in continuous time. In Section 3, we

present our one-period valuation problem and derive the optimal hedging

strategy for the liability by quadratic hedging. Section 4 introduces the multi-

period valuation operator by iterating the one-period valuation operator.

Section 5 investigates the continuous-time limit of the multi-period valuation

operator with quadratic one-period actuarial valuation operators (standard
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deviation and variance risk margins) used for valuating the non-hedgeable

part of the liability. Section 6 discusses extensions beyond quadratic one-

period actuarial valuations. All proofs are included in Section 7.

2 Financial and Insurance Model

Throughout the paper, we work on a probability space (Ω,F,P) equipped

with a filtration F = (Ft)0≤t≤T and a finite time horizon T < ∞. On

the probability space (Ω,F,P) we define a standard two-dimensional Brow-

nian motion (W1,W2) = (W1(t),W2(t), 0 ≤ t ≤ T ) and a càdlàg (right-

continuous with left limits) counting process N = (N(t), 0 ≤ t ≤ T ).

The Brownian motions (W1,W2) are used to model the financial risk and

the σ-algebra FW1,W2
t = σ(W1(u),W2(u), u ∈ [0, t]) contains all information

on the evolution of the financial assets up to and including time t. The

counting process N is used to model the insurance risk and the σ-algebra

FNt = σ(N(u), u ∈ [0, t]) contains information on the number of in-force

policies in the insurance portfolio up to and including time t. The insurance

risk is not traded in the market, and the financial risk contains a tradeable

and a non-tradeable component modelled with W1 and W2, respectively. We

assume:

(A1) The subfiltrations FW1,W2 = (FW1,W2
t )0≤t≤T and FN = (FNt )0≤t≤T are

independent, and we set F = FW1,W2 × FN .

Under assumption (A1) the financial risk is independent of the insurance

risk.

2.1 The financial market

The financial market consists of a risk-free asset R = (R(t), 0 ≤ t ≤ T ) and

two risky assets: Y = (Y (t), 0 ≤ t ≤ T ) and F = (F (t), 0 ≤ t ≤ T ). The
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price of the risk-free asset grows exponentially:

dR(t)

R(t)
= rdt, 0 ≤ t ≤ T, R(0) = 1. (2.1)

We assume that the prices of the risky assets Y and F are modelled with

correlated geometric Brownian motions and follow the dynamics

dY (t)

Y (t)
= µY dt+ σY dWY (t), 0 ≤ t ≤ T, Y (0) = y0, (2.2)

dF (t)

F (t)
= µFdt+ σFdWF (t), 0 ≤ t ≤ T, F (0) = f0, (2.3)

where µY , µF , σY , σF are non-negative real numbers denoting the drifts and

volatilities of the risky assets, respectively, while (WY ,WF ) denotes a corre-

lated two-dimensional Brownian motion with correlation coefficient ρ. We

define

WY (t) = W1(t), WF (t) = ρW1(t) +
√

1− ρ2W2(t), 0 ≤ t ≤ T. (2.4)

where (W1,W2) is the standard two-dimensional Brownian motion on (Ω,F,P),

i.e. W1 is independent of W2. We will use both (WY ,WF ) and (W1,W2) in

the sequel.

The insurance company can invest in the risk-free asset R and in the

risky asset Y . The risky asset F is not available for trading. The risky asset

F is the underlying investment fund for the contracts sold by the insurance

company.

2.2 The insurance portfolio

The insurance company holds a homogeneous portfolio which consists of n

identical insurance policies. All policyholders have the same age (or are

classified into the same age group) and are entitled to three types of benefits:

a continuous annuity benefit A paid in [0, T ] as long as the insured is alive, a

death benefit D paid at the moment that the insured dies (provided he dies in

[0, T ]) and a survival benefit S paid at terminal time T if the insured survives

7



 Electronic copy available at: https://ssrn.com/abstract=3276971 

that time. The benefits A,D and S are allowed to be time-dependent and

contingent on the values of the risky assets (Y, F ).

The process N counts the number of deaths in the insurance portfolio.

We assume:

(A2) The lifetimes of the policyholders (τk)k=1,...,n at policy inception are

independent and identically exponentially distributed, i.e.

P
(
τk > t

)
= e−

∫ t
0 λ(s)ds, k = 1, ..., n, 0 ≤ t ≤ T.

The function λ : [0, T ] 7→ (0,∞) is continuously differentiable, i.e.

λ ∈ C1([0, T ]), and strictly positive.

We have that

N(t) =
n∑
k=1

1{τk ≤ t}, 0 ≤ t ≤ T.

The deterministic function λ describes the mortality intensity of the policy-

holders in the insurance portfolio. We introduce the compensated counting

process Ñ = (Ñ(t), 0 ≤ t ≤ T ):

Ñ(t) = N(t)−
∫ t

0

(n−N(s−))λ(s)ds, 0 ≤ t ≤ T,

which is an F-martingale. The compensated counting process will be used

to construct the stochastic integral describing the non-hedgeable insurance

risk. We also introduce the process J = (J(t), 0 ≤ t ≤ T ):

J(t) = n−N(t), 0 ≤ t ≤ T,

which counts the number of in-force policies in the insurance portfolio.

The cash-flow stream of the benefit payments of the portfolio is modelled

by the process B = (B(t), 0 ≤ t ≤ T ). This process is described by the

following equation

B(t) =

∫ t

0

(n−N(u−))A(u, Y (u), F (u))du+

∫ t

0

D(u, Y (u), F (u))dN(u)

+(n−N(T ))S(Y (T ), F (T ))1t=T , 0 ≤ t ≤ T. (2.5)
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The process B is F-adapted. The general benefit stream (2.5) was consid-

ered in Møller & Steffensen (2007) who studied market-consistent valuation

methods in life insurance. Special cases of (2.5), and their fair values, are

investigated in details in Delong et al. (2018).

We assume:

(A3) The functions A : [0, T ]×(0,∞)×(0,∞) 7→ [0,∞), D : [0, T ]×(0,∞)×
(0,∞) 7→ [0,∞) and S : (0,∞) × (0,∞) 7→ [0,∞) are Lipschitz con-

tinuous and have linear growth in (y, f):

|A(t, y1, f1)− A(t, y2, f2)| ≤ K(|y1 − y2|+ |f1 − f2|),
|A(t, y, f)| ≤ K(1 + |y|+ |f |),

|D(t, y1, f1)−D(t, y2, f2)| ≤ K(|y1 − y2|+ |f1 − f2|),
|D(t, y, f)| ≤ K(1 + |y|+ |f |),

|S(y1, f1)− S(y2, f2)| ≤ K(|y1 − y2|+ |f1 − f2|),
|S(y, f)| ≤ K(1 + |y|+ |f |).

Moreover, the functions A and D are continuous in t and satisfy the

conditions:

|A(t1, y, f)− A(t2, y, f)| ≤ K|t1 − t2|(1 + |y|+ |f |),
|D(t1, y, f)−D(t2, y, f)| ≤ K|t1 − t2|(1 + |y|+ |f |),

2.3 Fair and arbitrage-free valuations in the combined

financial and insurance model

By paying the benefits from the process B, we observe that the insurer is

exposed to three sources of risk:

• Tradeable financial risk Y : The fluctuations of the risky asset Y impact

the payment process (2.5). This risk can be perfectly hedged by trading

in Y .
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• Non-tradeable financial risk F : The variations of the risky asset F

impact the benefit stream (2.5) as well. This risk can be partially

hedged by trading in Y , since Y and F are correlated. The higher the

absolute value of the correlation parameter, the better the hedge.

• Non-tradeable insurance riskN : The non-tradeable insurance risk arises

since the policyholders die at random times and the death-related bene-

fits have to be paid at unpredictable times. This risk cannot be hedged

since it is assumed to be independent of the financial market.

Our goal is to attach a fair value at any time t in [0, T ] to the future

claims from the benefit stream B and to find the dynamic hedging strategy

which underlies the fair value.

In the sequel we will use the notions of market-consistent, actuarial and

fair valuations and hedging strategies introduced by Dhaene et al. (2017)

and further studied by Barigou & Dhaene (2018) and Barigou et al. (2018)

in a multi-period, discrete time setting. Hereafter, we adapt these notions

to our continuous-time model. To do so, we consider two particular cases of

the benefit stream B. First, we consider the case in which the benefits are

only contingent on the tradeable financial risk Y :

BY (t) =

∫ t

0

A(u, Y (u))du+ S(Y (T ))1t=T , 0 ≤ t ≤ T. (2.6)

Secondly, we consider the case in which the benefits are only contingent on

the non-tradeable insurance risk N :

BN(t) =

∫ t

0

(n−N(u−))A(u)du+

∫ t

0

D(u)dN(u)

+(n−N(T ))S1t=T , 0 ≤ t ≤ T. (2.7)

The process BY can be perfectly replicated by trading in Y and will be

called a hedgeable process. The process BN is independent of the financial

risks (Y, F ) and will be called an orthogonal process. Clearly, the process

BY is FW1,W2-adapted and the process BN is FN -adapted.
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Definition 2.1. Let ϕB(t,T ](t) denote the value at time t ∈ [0, T ] of the future

claims from the process B. For each t ∈ [0, T ], the operator ϕB(t,T ](t) maps a

σ
(
1{u ≥ t}W1(u),1{u ≥ t}W2(u), u ∈ [0, T ]

)
×σ
(
1{u ≥ t}N(u), u ∈ [0, T ]

)
-

measurable random variable into an Ft-measurable random variable. We will

say that

• the valuation operator ϕ is market-consistent if for any process B and

any hedgeable process BY , as defined in (2.6), we have that

ϕB(t,T ]+BY (t,T ](t) = ϕB(t,T ](t) + ϕBY (t,T ](t),

with

ϕBY (t,T ](t) = EQ̂
[ ∫ T

t

e−r(u−t)dBY (u)|FW1
t

]
, 0 ≤ t ≤ T, (2.8)

where Q̂ denotes the unique equivalent martingale measure for the traded

risky asset Y ,

• the valuation operator ϕ is actuarial if for any orthogonal process BN ,

as defined in (2.7), we have that

ϕBN (t,T ](t) = EP
[ ∫ T

t

e−r(u−t)dBN(u)|FNt
]

+RMact
BN (t,T ](t), 0 ≤ t ≤ T, (2.9)

where, for each t ∈ [0, T ], the operator RMact
BN (t,T ](t) maps a σ

(
1{u ≥

t}N(u), u ∈ [0, T ]
)
-measurable random variable into an FNt -measurable

random variable.

• the valuation operator ϕ is fair if it is market-consistent and actuarial.

The definition of the valuation operator for the benefit stream as a mea-

surable mapping is taken from Cheridito et al. (2006). The market-consistency

condition (2.8) imposes that the claims which can be replicated by traded

assets should be valuated at the price of their perfect hedge, since they do

not carry any risk. The mark-to-model condition (2.9) corresponds to the
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traditional actuarial valuation of insurance liabilities. It postulates that any

orthogonal process, which is independent of the financial risk, should be val-

uated by an operator which only takes into account the information about

the insurance risk, and the value of an orthogonal process is determined by

the expected discounted future benefits and a risk loading. Let us note that

any valuation operator ϕ can be decomposed into the conditional expected

value, under the real-world measure P, of the discounted benefits and another

valuation operator RM which we call a risk margin valuation operator. The

risk margin valuation operator RM is called actuarial if RM reduces to an

actuarial risk margin RMact as defined (2.9) when applied to an orthogonal

benefit stream BN . The definition of the risk margin RMact is very general.

We can have some obvious examples:

RMact
BN (t,T ](t) = SDP

[ ∫ T

t

e−r(u−t)dBN(u)|FNt
]
,

RMact
BN (t,T ](t) = V aRP

1−β

[ ∫ T

t

e−r(u−t)dBN(u)|FNt
]
, (2.10)

as well as more sophisticated valuation operators:

RMact
BN (t,T ](t) = EP

[ ∫ T

t

e−r(u−t)g(u,N(u))du|FNt
]
, (2.11)

where g is a deterministic function used to quantify the local risk of the

benefit stream BN . Since the risk of BN is generated by the process N , the

function g only depends on N . The valuation operator (2.11) is an example

of a so-called g-expectation and a dynamic risk measure, see Rosazza Gianin

(2006).

After having considered desirable properties that a valuation operator

should have, we introduce similar properties for the hedging operator.

Definition 2.2. Let (θB(t,T ](s), t ≤ s ≤ T ) denote the hedging strategy in the

risky asset Y for the future claims from the process B (the amount of money

invested in the risky asset Y ). We will say that
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• the strategy θ is market-consistent if for any process B and any hedge-

able process BY we have that

θB(t,T ]+BY (t,T ](s) = θB(t,T ](s) + vy(s, Y (s))Y (s), t ≤ s ≤ T, (2.12)

where v(t, y) = EQ̂[
∫ T
t
e−r(u−t)dBY (u)|Y (t) = y] and Q̂ denotes the

unique equivalent martingale measure for the traded risky asset Y ,

• the strategy θ is actuarial if for any orthogonal process BN we have that

θBN (t,T ](s) = 0, t ≤ s ≤ T, (2.13)

• the strategy θ is fair if it is market-consistent and actuarial.

The notions of market-consistent, actuarial and fair strategies were first

introduced in Dhaene et al. (2017) in a single-period setting and further

generalized in Barigou et al. (2018) in a dynamic discrete setting.

The market-consistency condition (2.12) imposes the natural condition

that any hedgeable claim should be hedged by its replicating hedging strat-

egy. Let us remark that the second term in (2.12) is the delta-hedging strat-

egy for BY , which is the replicating strategy for BY . The condition (2.13)

imposes that any orthogonal process is hedged with a risk-free investment,

which seems reasonable since the orthogonal process is independent of the

financial risks (Y, F ).

We now describe the equivalent martingale measures in our combined

financial and insurance model and the dynamics of the risk factors under an

equivalent martingale measure. Let us define

dQ
dP
|Ft = Mζ,χ(t), 0 ≤ t ≤ T,

dMζ,χ(t)

Mζ,χ(t−)
= −

(µY − r
σY

)
dW1(t) + ζ(t)dW2(t) + χ(t)dÑ(t), (2.14)

where (ζ, χ) are predictable, Markov processes with respect to the natural

filtration FY,F,N = FY,F × FN generated by (Y, F,N) and they satisfy the

13
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conditions:

supt∈[0,T ] E
[ ∫ T

t
|ζ(s)|2ds

∣∣FY,F,Nt

]
≤ K,

−1 + ε ≤ |χ(t)| ≤ K, 0 ≤ t ≤ T, ε > 0. (2.15)

By Lemma 1 in Morlais (2010) the process Mζ,χ is a P-martingale and

can be used to define the equivalent probability measure. Moreover, from

Theorem 3.1 in Kazamaki (2006) and boundedness of χ we conclude that

E[|Mζ,χ(T )|q] <∞ for some q > 1. By Girsanov’s theorem we deduce that

WQ
1 (t) = W1(t) +

∫ t

0

(µY − r
σY

)
ds, 0 ≤ t ≤ T,

WQ
2 (t) = W2(t)−

∫ t

0

ζ(s)ds, 0 ≤ t ≤ T,

and

ÑQ(t) = N(t)−
∫ t

0

(n−N(s−))λ(s)(1 + χ(s))ds, 0 ≤ t ≤ T,(2.16)

are Q-Brownian motions and a Q-compensated counting process, respec-

tively. By (2.2)-(2.4) we also have the following dynamics for the risky assets

(Y, F ):

dY (t)

Y (t)
= rdt+ σY dW

Q
Y (t), 0 ≤ t ≤ T,

dF (t)

F (t)
=

(
µF −

µY − r
σY

σFρ

+σF
√

1− ρ2ζ(t)
)
dt+ σFdW

Q
F (t), 0 ≤ t ≤ T, (2.17)

where WQ
Y ,W

Q
F are correlated with correlation coefficient ρ.

Arbitrage-free pricing theory tells us that the claims from the process B

should be priced by

ϕB(t,T ](t) = EQ
[ ∫ T

t

e−r(s−t)dB(s)|Ft
]
, 0 ≤ t ≤ T,

for some equivalent martingale measure Q. Specifying the equivalent mar-

tingale measure Q for pricing B is equivalent to specifying the risk premiums

14
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(ζ, χ) for the non-tradeable financial and insurance risks. Let us recall that

in our model the non-tradeable financial risk F is correlated with the trade-

able financial risk Y . The part of the non-tradeable financial risk, which is

correlated with the tradeable financial risk, is priced with the risk premium
µY −r
σY

σFρ. The independent part of the non-tradeable financial risk is priced

with the risk premium ζ. In addition to the non-tradeable financial risk,

we have an independent non-tradeable insurance risk. Under an equivalent

martingale measure Q the counting process N with intensity λ(t) becomes

a counting process with a new intensity (1 + χ(t))λ(t), where χ denotes a

risk premium for the independent non-tradeable insurance risk. Since the

processes (ζ, χ) are used to price the non-tradeable risks, their values are

subjective and related to the pricing mechanism applied by the investor and

his risk aversion preferences.

For pricing the general benefit stream B we can choose FY,F,N -predictable

processes (ζ, χ). E.g. if the insurer offers a death guarantee which value

depends on (Y, F ), then it may make sense to assume that the risk premium

for the insurance risk depends on the risky assets (Y, F ) – a deep in-the-money

death guarantee could potentially increase the mortality intensity under the

pricing measure. However, when we price an orthogonal process BN , then

measurability restrictions on (ζ, χ) are natural. We assume:

(A4) If the equivalent martingale measure (2.14) is used for pricing the or-

thogonal benefit stream BN , then ζ = 0 and χ should be an FN -

predictable, Markov process.

Finally, let us consider a very special case of Q. Let us define

dQ̂
dP
|Ft = M̂(t), 0 ≤ t ≤ T,

dM̂(t)

M̂(t)
= −

(µY − r
σY

)
dW1(t). (2.18)

Then Q̂ is the unique equivalent martingale measure for the traded risky

asset Y in the complete market consisting of (R, Y ). The dynamics of the
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counting process and the risky assets are in this case given by (2.16)-(2.17)

with ζ(t) = χ(t) = 0.

3 The one-period valuation operator and dy-

namic hedging strategies

Let us start with the benefit stream B which only includes claims at the

terminal time T . In this case, the benefit stream (2.5) takes the form

B(t) = (n−N(T ))S(Y (T ), F (T ))1t=T , 0 ≤ t ≤ T.

We define

4B(T ) = (n−N(T ))S(Y (T ), F (T )),

which specifies the benefits from the process B to be paid at the terminal

time T . We consider the one-period valuation operator % for the benefit

stream B:

%(B) = VB(0) + π
(

(4B(T )− VB(T ))e−rT
)
, (3.1)

where VB(t) denotes the time-t value of a hedging portfolio for the claims

from the process B (for t = 0, T ), and π denotes a one-period actuarial

valuation operator. The hedging portfolio VB could be e.g. derived by mini-

mizing the mean-square hedging error for the terminal claims 4B(T ) under

the real-world measure. The actuarial valuation π is next applied to the dis-

counted remaining non-hedgeable risks. The valuation operator (3.1) splits

the valuation of the benefit stream B into two parts: VB(0) gives the value

of the hedgeable part of B and π gives the value of the non-hedgeable part

of B.

The one-period valuation operator (3.1) was introduced by Dhaene et al.

(2017), and next studied in a multi-period setting by Barigou & Dhaene
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(2018) and Barigou et al. (2018). In particular, the multi-period iterations

ϕ4B(T )(T ) = 4B(T ),

ϕB(t,T ](t) = %
(∫ t+h

t

dB̃(s)
)
, t = 0, h, ..., T − h,

B̃(s) = ϕB(t+h,T ](t+ h)1{s = t+ h}, t ≤ s ≤ t+ h, (3.2)

were investigated in Barigou et al. (2018). The iterations (3.2) allow us to

define the values of the future claims from the process B at the discrete times

t = 0, ..., T − h, T .

In this paper we modify the approach from Dhaene et al. (2017), Barigou

& Dhaene (2018) and Barigou et al. (2018) as follows:

• We allow for annuity, death and survival benefits described by the

process B in (2.5).

• We allow for dynamic trading in the financial market. This assumption

is consistent with continuous-time financial models.

• We assume that the hedging strategy is predictable with respect to the

filtration F = FW1,W2 × FN generated by the financial and insurance

risks. This implies, in particular, that the new information on the

financial and the insurance risk updates the hedging strategy.

• We change the optimization functional for deriving the one-period hedg-

ing portfolio so that the optimal, dynamic hedging strategy is fair.

• We take the limit h → 0 in (3.2) and derive a PDE for the valuation

operator which satisfies the continuous-time limit of the multi-period,

discrete-time iterations (3.2) with quadratic one-period actuarial valu-

ation operators.

• We deduce the dynamic hedging strategy which underlies our continuous-

time valuation operator.
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• We discuss the structure of the derived PDE and we propose a PDE

for a general continuous-time valuation operator in our continuous-time

model with dynamic hedging.

As mentioned in the introduction, our research is also closely related to

the research by Pelsser (2010), Pelsser & Stadje (2014) and Pelsser & Ghale-

hjooghi (2016). A detailed comparison is presented at the end of Section

5.

In this paper we use the one-period valuation operator (3.1), but we face

the problem of hedging annuity, death and survival benefits from (2.5). Let us

discuss the hedging portfolio and the hedging problem for the benefit stream

B. We note that the valuation operator (3.1) quantifies the non-hedgeable

risks and measures the capital deficiency only at the terminal time T . We

follow this approach. We separate the benefit stream B, which consists of

benefits to be paid in (0, T ], into two parts. Let B(0, T ) denote the benefits

from B to be paid in (0, T ] excluding the terminal benefits to be paid at time

T , and 4B(T ) denote the terminal benefits from B to be paid at time T .

We clearly have

B(0, T ) =

∫ T

0

(n−N(t−))A(t, Y (t), F (t))dt+

∫ T

0

D(t, Y (t), F (t))dN(t),

4B(T ) = (n−N(T ))S(Y (T ), F (T )),

B(T ) = B(0, T ] = B(0, T ) +4B(T ). (3.3)

Let θ = (θ(t), 0 ≤ t ≤ T ) denote an F-predictable stochastic process

which describes the amount invested in the risky asset Y . Let V θ = (V θ(t), 0 ≤
t ≤ T ) denote the value of the hedging portfolio under the strategy θ. The

process V θ can also be interpreted as the wealth process of the insurer. The

dynamics of the hedging portfolio V θ is described with the SDE:

dV θ(t) = θ(t)(µY dt+ σY dWY (t)) + (V θ(t)− θ(t))rdt
−(n−N(t−))A(t, Y (t), F (t))dt−D(t, Y (t), F (t))dN(t), (3.4)

and the terminal claims 4B(T ) are subtracted from V θ(T ) at time T . The

hedging portfolio V θ is continuously rebalanced with the dynamic hedging
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strategy θ. The hedging strategy θ is continuously updated with the new

information on the financial and insurance risks. The goal is to construct a

hedging portfolio, given by (3.4), such that the hedging error at the terminal

time T for the terminal claims 4B(T ) is minimal in a mean-square sense.

In this paper we construct the optimal dynamic hedging strategy in the

following way. Let Q denote an element of the set of equivalent martingale

measures for the combined insurance and financial market, which is defined

in (2.14). We find the hedging portfolio and the hedging strategy which mini-

mize the mean-square hedging error at the terminal time under an equivalent

martingale measure, i.e. we solve:

inf
θ
EQ[|4B(T )− V θ(T )|2

]
, Q ∼ P,

V θ satisfies the dynamics (3.4). (3.5)

The optimal hedging strategy and the optimal hedging portfolio are denoted

by θ∗B(0,T ),4B(T ) and V ∗B(0,T ),4B(T ), or simply by θ∗B and V ∗B. We will mostly

use B(0, T ) and 4B(T ) instead of B (or B(0, T ]), since we need to separate

the claims as in (3.3).

Proposition 3.1. We consider the claims from the process B, which are

separated in accordance with (3.3). Suppose that (A1)-(A4) hold and let us

choose an equivalent martingale measure Q defined in (2.14). We assume

there exist functions (vk)k=0,...,n

vk(t, y, f) = EQ
t,y,f,k

[ ∫ T

t

e−r(u−t)dB(u)
]
,

(t, y, f) ∈ [0, T ]× (0,∞)× (0,∞), k ∈ {0, ..., n},

such that vk ∈ C1,2,2([0, T ) × (0,∞) × (0,∞)) ∪ C([0, T ] × (0,∞) × (0,∞)),

for each k ∈ {0, ..., n}.
We consider the optimization problem (3.5). The initial value of the hedging

portfolio is given by

V ∗B(0,T ),4B(T )(0) = vn(0, Y (0), F (0)), (3.6)
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and the optimal dynamic hedging strategy is given by

θ∗B(0,T ),4B(T )(t) = vJ(t−)y (t, Y (t), F (t))Y (t)

+v
J(t−)
f (t, Y (t), F (t))F (t)

σF
σY
ρ, 0 ≤ t ≤ T. (3.7)

Remark 3.1. a) The expected value Et,y,f,k[·] denotes the conditional expected

value E[·|Y (t) = y, F (t) = f, J(t) = k].

b) The collection of functions (vk)k=0,...,n gives us the arbitrage-free price of

the benefit stream B under the pre-specified equivalent martingale measure

Q. It is standard in financial mathematics to assume that such functions

are smooth, or that the solutions to the PDEs used for option pricing are

smooth, and satisfy some growth conditions, see e.g. Heath & Schweizer

(2000), Proposition 4.3 in El Karoui et al. (1997) or Proposition 1 in Cont

& Voltchkova (2005).

c) Assumption (A4) is not needed in the proof, but this assumption is very

reasonable, as already discussed, and we will need it in Proposition 3.4.

The quadratic hedging objective (3.5) under an equivalent martingale

measure might be criticized since the insurer is interested in valuating losses

and profits in the real-world. One can construct the hedging portfolio and

the dynamic hedging strategy by minimizing the mean-square hedging error

under the real-world measure:

inf
θ
EP[|4B(T )− V θ(T )|2

]
,

V θ satisfies the dynamics (3.4), (3.8)

as in Dhaene et al. (2017), Barigou & Dhaene (2018), Barigou et al. (2018).

Proposition 3.2. We consider the claims from the process B, which are

separated in accordance with (3.3). Let (A1)-(A4) hold and let Q̂ denote the

unique equivalent martingale measure for the tradeable risky asset Y defined

in (2.18). We assume there exist functions (vk)k=0,...,n

vk(t, y, f) = EQ̂
t,y,f,k

[ ∫ T

t

e−r(u−t)dB(u)
]
,

(t, y, f) ∈ [0, T ]× (0,∞)× (0,∞), k ∈ {0, ..., n},
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such that vk ∈ C1,2,2([0, T ) × (0,∞) × (0,∞)) ∪ C([0, T ] × (0,∞) × (0,∞)),

for each k ∈ {0, ..., n}.
We consider the optimization problem (3.8). The initial value of the hedging

portfolio is given by

V ∗B(0,T ),4B(T )(0) = vn(0, Y (0), F (0)), (3.9)

and the optimal dynamic hedging strategy is given by

θ∗B(0,T ),4B(T )(t) = vJ(t−)y (t, Y (t), F (t))Y (t) + v
J(t−)
f (t, Y (t), F (t))F (t)

σF
σY
ρ

−
(µY − r

σ2
Y

)(
V ∗B(0,T ),4B(T )(t−)− vJ(t−)(t, Y (t), F (t))

)
0 ≤ t ≤ T. (3.10)

Let us compare the optimal hedging strategies (3.10) and (3.7).

Proposition 3.3. (i) The optimal dynamic hedging strategy from Proposition

3.1 derived by minimizing the mean-square hedging error under a martingale

measure is market-consistent and actuarial,

(ii) The optimal dynamic hedging strategy from Proposition 3.2 derived by

minimizing the mean-square hedging error under the real-world measure is

market-consistent but not actuarial.

Remark 3.2. In the literature we can also find hedging strategies derived

by minimizing a time-consistent mean-variance hedging error and hedging

strategies derived by minimizing an instantaneous mean-variance hedging er-

ror (both under the real-world measure), see e.g. Hu et al. (2012) and Chapter

10.4 in Delong (2013). Such strategies are market-consistent, but they are

not actuarial. The proof is beyond the scope of this paper.

The proposition and the remark above justify our choice of the hedging

error under an equivalent martingale measure as the objective used in con-

structing the dynamic hedging strategy for the benefit stream B, at least in

the class of quadratic hedging errors. To support our choice we also note that

the optimal dynamic hedging strategy from Proposition 3.1 is a delta-hedging

strategy - a type of hedging strategies commonly used in practice. Hence, in
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the sequel we assume that the hedging strategy and the hedging portfolio in

the valuation operator (3.1) are derived by solving the optimization problem

(3.5).

Proposition 3.4. Let us consider the one-period valuation operator (3.1)

where the initial value of the hedging portfolio and the dynamic hedging strat-

egy are characterized in Proposition 3.1. We assume that the one-period

actuarial valuation operator π satisfies the conditions of normalization and

translation-invariance:

π(0) = 0, π(ξ + a) = π(ξ) + a, (3.11)

for any random variable ξ and constant a. The one-period valuation operator

(3.1) is market-consistent and actuarial, hence it is fair.

We find it more convenient to represent the actuarial valuation operator

π as the expected value operator under the real-world measure P and the

actuarial risk margin, i.e. we assume

π(ξ) = EP[ξ] +RM [ξ], (3.12)

where the risk margin valuation operator RM is an actuarial risk margin

valuation operator which satisfies (2.9). The actuarial risk margin RM fulfills

the conditions implied by (3.11), i.e.

RM [0] = 0, RM [ξ + a] = RM [ξ].

We focus on standard deviation and variance under P as the one-period

actuarial risk margins.

4 The multi-period iterated valuation opera-

tor

Let us consider the one-period valuation operator % from Proposition 3.4.

In this section we introduce the multi-period valuation operator by iterating
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the one-period valuation operator %. Let T = {0, h, ..., T − h, T} with fixed

h. Let us recall that by ϕB(t,T ](t) we denote the price at time t of the future

claims from the process B. The price ϕB(t,T ](t) at t ∈ T is defined by the

following backward iterations:

ϕ4B(T )(T ) = 4B(T ),

ϕB(t,T ](t) = %t

(∫ t+h

t

dB̃(s)
)
, t = 0, h, ..., T − h,

B̃(s) =

∫ s

t

(n−N(u−))A(u, Y (u), F (u))du

+

∫ s

t

D(u, Y (u), F (u))dN(u)

+ϕB(t+h,T ](t+ h)1{s = t+ h}, t ≤ s ≤ t+ h, (4.1)

where the valuation operator %t is defined in Proposition 3.4, and it is now

defined conditional on the information available in the filtration Ft. As in

(3.3) we separate the benefit stream B̃ into B̃(t, t + h) and 4B̃(t + h). We

have

B̃(t, t+ h) =

∫ t+h

t

(n−N(u−))A(u, Y (u), F (u))du

+

∫ t+h

t

D(u, Y (u), F (u))dN(u) = B(t, t+ h),

4B̃(t+ h) = ϕB(t+h,T ](t+ h).

In the sequel ϕB(t,T ](t) is simply denoted by ϕ(t).

In order to apply the iterations (4.1) and calculate the price ϕ(t) at t ∈ T
we have to solve a sequence of optimal hedging problems of the form (3.5) in

our multi-period model. The insurer, in the period [t, t+h], has to optimally

hedge the claims from the process B which arrive on (t, t+h] and the value of

the future claims ϕ(t+ h) at the terminal time t+ h. The solutions to these

hedging problems are given by Proposition 3.1. By the Markov property we

23



 Electronic copy available at: https://ssrn.com/abstract=3276971 

have that ϕ(t) = ϕJ(t)(t, Y (t), F (t)). Let

vk(s, y, f)

= EQ
s,y,f,k

[ ∫ t+h

s

e−r(u−s)dB(u) + e−r(t+h−s)ϕJ(t+h)(t+ h, Y (t+ h), F (t+ h))
]
,

(s, y, f) ∈ [t, t+ h]× (0,∞)× (0,∞), k ∈ {0, ..., n}. (4.2)

By Proposition 3.1, the optimal hedging strategy θ∗B(t,t+h),ϕ(t+h) for the period

[t, t+ h] is given by

θ∗B(t,t+h),ϕ(t+h)(s) = vJ(s−)y (s, Y (s), F (s))Y (s)

+v
J(s−)
f (s, Y (s), F (s))F (s)

σF
σY
ρ, t ≤ s ≤ t+ h.(4.3)

By (4.1) and Proposition 3.4 we study the following iterations

ϕ(t) = V ∗B(t,t+h),ϕ(t+h)(t)

+πt

((
ϕ(t+ h)− V ∗B(t,t+h),ϕ(t+h)(t+ h)

)
e−rh

)
, t = 0, h, ..., T − h,

where V ∗B(t,t+h),ϕ(t+h) denotes the optimal hedging portfolio given by (3.4)

on [t, t + h] with the optimal hedging strategy θ∗B(t,t+h),ϕ(t+h). Using the

decomposition of the one-period actuarial valuation operator (3.12), we end

up with the backward, discrete-time equation:

ϕ(t) = V ∗B(t,t+h),ϕ(t+h)(t) + EP
[(
ϕ(t+ h)− V ∗B(t,t+h),ϕ(t+h)(t+ h)

)
e−rh|Ft

]
+RM

[(
ϕ(t+ h)− V ∗B(t,t+h),ϕ(t+h)(t+ h)

)
e−rh|Ft

]
, t = 0, h, ..., T − h.

(4.4)

Let us introduce the discrete-time process

X [t,t+h](s) = ϕ(s)− V ∗B(t,t+h),ϕ(t+h)(s), s ∈ {t, t+ h}. (4.5)

The process ϕ should give us a fair price of the future benefits, or in other

words it should give us the value of the technical provision the insurer

should hold in order to cover the future benefits. Consequently, the pro-

cess NAV (s) = −X(s) determines the excess of the assets over the technical
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provision, and is called the net asset value. The net asset value NAV , de-

rived from (4.5), results from valuating the future benefits with the operator

ϕ, rebalancing the available wealth with the hedging strategy θ∗ and covering

the arriving benefits from B. Using the assumptions on the actuarial risk

margin from Proposition 3.4, we can deduce the key pricing equation in our

multi-period, discrete-time model with dynamic hedging in the sub-periods:

E
[
X [t,t+h](t+ h)e−rh −X [t,t+h](t)|Ft

]
+RM

[
X [t,t+h](t+ h)e−rh −X [t,t+h](t)|Ft

]
= 0, t = 0, h, ..., T − h, (4.6)

or

πt
(
X [t,t+h](t+ h)e−rh −X [t,t+h](t)

)
= 0, t = 0, h, ..., T − h.

In terms of net asset value, this can be written as

πt
(
NAV (t)−NAV (t+ h)e−rh

)
= 0, t = 0, h, ..., T − h. (4.7)

From (4.7) we conclude that our iterated valuation principle (4.1) yields a

price of the future benefits at times t = 0, h, ..., T − h such that the change

in the net asset value in each sub-period [t, t + h], after the application of

the hedging strategy to the hedgeable part of the benefits, has an actuarial

price equal to zero.

We remark that conditions (4.6)-(4.7) on the net asset value can also be

expressed as

E
[
NAV (t+ h)e−rh|Ft

]
−NAV (t)

= RM
[
NAV (t)−NAV (t+ h)e−rh|Ft

]
. (4.8)

From an asset-liability point of view, any profitable insurance company should

satisfy

E
[
NAV (t+ h)e−rh|Ft

]
−NAV (t) > 0, (4.9)

which means that we expect that the insurance company grows at a rate

higher than the risk-free rate r. Clearly, the growth rate is related to the

premiums collected. From (4.8) we observe that the expected growth rate is
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related to the value of the risk margin which covers the non-hedgeable risks,

since

RM
[
NAV (t)−NAV (t+ h)e−rh|Ft

]
= RM

[(
ϕ(t+ h)− V ∗B(t,t+h),ϕ(t+h)(t+ h)

)
e−rh|Ft

]
. (4.10)

The higher the risk margin (which is a part of the premium – the price ϕ),

the higher the expected growth of the net asset value. Let us note that

in practice the insurer at time t + h should earn the risk margin which is

included in the technical provision at time t, since the risk margin represents

a safety buffer over the best estimate of the liability. Clearly, the higher

the risk margin set at time t as a part of the technical provision, the higher

the expected surplus of the technical provision at time t+ h over the claims

(B(t, t + h), ϕ(t + h)) paid in (t, t + h], and the higher the expected profit

earned by the insurance company (we assume that the technical provision is

financed with the premiums collected from the policyholders). This property

is reflected in our equations (4.8)-(4.10) and agrees with intuition.

In practical applications our valuation operator would work as follows.

At time t the insurer sets the hedging portfolio V ∗B(t,t+h),ϕ(t+h)(t) on the asset

side. The valuation operator (4.4) gives us the price of the future benefits or,

in other words, the technical provision which the insurer should set at time

t on the liability side. Since ϕB(t,T ](t) > V ∗B(t,t+h),ϕ(t+h)(t) due to the actuar-

ial risk margin applied to the non-hedgeable risks (and possible differences

between the expected value of the future benefits and the expected future

value of the hedging portfolio), the insurer must set an additional capital

on the asset side equal to ϕB(t,T ](t)− V ∗B(t,t+h),ϕ(t+h)(t) at time t. This addi-

tional capital is invested in the risk-free bank account. The net asset value

at time t is equal to zero. During the period (t, t + h] the hedging portfo-

lio V ∗B(t,t+h),ϕ(t+h) is rebalanced with the strategy θ∗B(t,t+h),ϕ(t+h), the capital

ϕB(t,T ](t) − V ∗B(t,t+h),ϕ(t+h)(t) earns the risk-free rate and the insurer covers

the benefits from the process
∫ t+h
t

dB(s). At time t+h the price of the future

benefits ϕB(t+h,T ](t+h) and the net asset value are recalculated. The capital
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from the risk margin, set at time t, will be used only in adverse scenarios

to cover the non-hedgeable benefits from
∫ t+h
t

dB(s) and the non-hedgeable

change in the price of the future benefits: ϕB(t+h,T ](t + h) − ϕB(t,T ](t). In

the average scenario the insurer will earn the risk margin, accumulated with

the risk-free rate, in the period [t, t+ h]. The equations (4.7)-(4.10) confirm

what we observe in practice. We remark that adding the additional capital

ϕB(t,T ](t) − V ∗B(t,t+h),ϕ(t+h)(t) to the assets and investing it in the risk-free

bank account does not change NAV (t+h)e−rh−NAV (t), hence (4.8)-(4.10)

remain valid.

Finally, let us recall that under Solvency II regulation, the solvency capital

requirement over one year (h = 1) at time t is defined by

P(NAV (t)−NAV (t+ 1)e−r ≥ SCRt | Ft) = β, (4.11)

with β = 0.5% as the confidence level. This can be written as

V aR1−β
[
NAV (t)−NAV (t+ 1)e−r | Ft

]
= SCRt. (4.12)

If the actuarial valuation πt in (4.1) is chosen to be the Value-at-Risk at

confidence level 1− β, from (4.7) we find that

0 = πt
(
NAV (t)−NAV (t+ 1)e−r

)
= V aR1−β

[
NAV (t)−NAV (t+ 1)e−r | Ft

]
,

which means that SCRt is zero by (4.12). This conclusion is obvious. If the

insurer already prices the benefits with the actuarial risk margin such that

the capital given by the operator (4.4) is sufficient to cover the benefits at the

confidence level β = 0.5%, then there is no need to keep additional solvency

capital above the technical provision determined by (4.4).
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5 Continuous-time limit of the multi-period

iterated valuation operator and the continuous-

time valuation operator

In the previous section we define the price ϕB(t,T ](t) of the future benefits

from the process B at times t ∈ {0, h, ..., T − h, T} by using the one-period

valuation operator (3.1) and the iterations (4.1). We would like to extend

the definition of the price ϕB(t,T ](t) to all times t ∈ [0, T ]. The goal is to take

h→ 0 in (4.4) and transform the backward, discrete-time equation (4.4) into

a continuous-time equation (differential equation) with a terminal condition.

We study the discrete-time pricing equation (4.6) which involves the net

asset value of the insurer. We fix the period [t, t + h]. We extend (4.5) and

we introduce the continuous-time process

X [t,t+h](s) = ϕ(s)− V ∗B(t,t+h),ϕ(t+h)(s), t ≤ s ≤ t+ h, (5.1)

where ϕ denotes the continuous-time valuation operator which gives the price

of the future benefit payments from the process B at any time t ∈ [0, T ]. We

characterize the continuous-time valuation operator ϕ as a function which

satisfies the continuous-time limit of the discrete-time pricing equation (4.6)

as h→ 0.

By the Markov property we have that ϕ(t) = ϕJ(t)(t, Y (t), F (t)). We can

write the dynamics for the process X [t,t+h] on [t, t+h]. Applying Itô’s lemma,
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we find

dX [t,t+h](s) =
{

(ϕ
J(s−)
t (s, Y (s), F (s)) + ϕJ(s−)y (s, Y (s), F (s))Y (s)µY

+ϕ
J(s−)
f (s, Y (s), F (s))F (s)µF

+ϕ
J(s−)
yf (s, Y (s), F (s))Y (s)F (s)σY σFρ

+
1

2
ϕJ(s−)yy (s, Y (s), F (s))Y 2(s)σ2

Y +
1

2
ϕ
J(s−)
ff (s, Y (s), F (s))F 2(s)σ2

F

−θ∗B(t,t+h),ϕ(t+h)(s)(µY − r)− V ∗B(t,t+h),ϕ(t+h)(s)r

+J(s−)A(s, Y (s), F (s))
}
ds

+
(
ϕJ(s−)y (s, Y (s), F (s))Y (s)− θ∗B(t,t+h),ϕ(t+h)(s)

)
σY dWY (s)

+ϕ
J(s−)
f (s, Y (s), F (s))F (s)σFdWF (s) +D(s, Y (s), F (s))dN(s)

+
(
ϕJ(s−)−1(s, Y (s), F (s))− ϕJ(s−)(s, Y (s), F (s))

)
dN(s)

=
{
X [t,t+h](s)r + ϕ

J(s−)
t (s, Y (s), F (s)) + ϕJ(s−)y (s, Y (s), F (s))Y (s)µY

+ϕ
J(s−)
f (s, Y (s), F (s))F (s)µF

+ϕ
J(s−)
yf (s, Y (s), F (s))Y (s)F (s)σY σFρ

+
1

2
ϕJ(s−)yy (s, Y (s), F (s))Y 2(s)σ2

Y +
1

2
ϕ
J(s−)
ff (s, Y (s), F (s))F 2(s)σ2

F

−θ∗B(t,t+h),ϕ(t+h)(s)(µY − r)− ϕJ(s−)(s, Y (s), F (s))r

+J(s−)A(s, Y (s), F (s))

+
(
ϕJ(s−)−1(s, Y (s), F (s)) +D(s, Y (s), F (s))

−ϕJ(s−)(s, Y (s), F (s))
)
J(s−)λ(s)

}
ds

+
(
ϕJ(s−)y (s, Y (s), F (s))Y (s) + ϕ

J(s−)
f (s, Y (s), F (s))F (s)

σF
σY
ρ

−θ∗B(t,t+h),ϕ(t+h)(s)
)
σY dW1(s)

+ϕ
J(s−)
f (s, Y (s), F (s))F (s)σF

√
1− ρ2dW2(s),

+
(
ϕJ(s−)−1(s, Y (s), F (s)) +D(s, Y (s), F (s))

−ϕJ(s−)(s, Y (s), F (s))
)
dÑ(s), t ≤ s ≤ t+ h. (5.2)
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Looking at (5.2), we can conclude that the risk of the process X [t,t+h] is in-

duced by the three stochastic integrals with respect to the Brownian motions

and the compensated counting process. From (4.3) we expect that

θ∗B(t,t+h),ϕ(t+h)(s) ∼ ϕJ(s−)y (s, Y (s), F (s))Y (s)

+ϕ
J(s−)
f (s, Y (s), F (s))F (s)

σF
σY
ρ, t ≤ s ≤ t+ h,

for sufficiently small h. Consequently, for sufficiently small h, the risk of the

process X [t,t+h] is only induced by the two stochastic integrals with respect to

the Brownian motion W2 and the compensated counting process Ñ . These

two stochastic integrals cannot be hedged by trading in Y in the financial

market – they model the non-hedgeable financial and insurance risks to which

the insurer is exposed. Consequently, the actuarial risk margin valuation

operator in the limit h→ 0 in (4.6) should only be applied to the second and

third stochastic integral from (5.2).

It is common to measure the risk of a stochastic process with its quadratic

variation, at least the risk of a process in a quadratic sense. Hence, we expect

that the actuarial risk margin valuation operator in the limit h→ 0 in (4.6)

should act on the integrals:[ ∫ ·
t

ϕ
J(u−)
f (u, Y (u), F (u))F (u)σF

√
1− ρ2dW2(u)du

]
=

∫ ·
t

(
ϕ
J(u−)
f (u, Y (u), F (u))

)2
F 2(u)σ2

F

(
1− ρ2

)
du, (5.3)

and [ ∫ ·
t

(
ϕJ(u−)−1(u, Y (u), F (u)) +D(u, Y (u), F (u))

−ϕJ(u−)(u, Y (u), F (u))
)
dÑ(u)

]
=

∫ ·
t

(
ϕJ(u−)−1(u, Y (u), F (u)) +D(u, Y (u), F (u))

−ϕJ(u−)(u, Y (u), F (u))
)2
dN(u). (5.4)

Moreover, the quadratic covariation between the last two stochastic integrals

in (5.2) is zero. The first integral (5.3) measures (in a quadratic sense) the

30



 Electronic copy available at: https://ssrn.com/abstract=3276971 

non-hedgeable risk that the value of the benefit payments changes due to a

change in the independent component of the risky asset F . The integrand

in (5.3) is the delta-hedging perfect replication strategy for the independent

component of the risky asset F . This delta-hedging strategy cannot be ap-

plied by the insurer since F is not traded. The second integral (5.4) measures

(in a quadratic sense) the non-hedgeable risk that a policyholder dies: in case

of death, the death benefit is paid and the price of the future claims is re-

calculated for the in-force policies. The integrand in (5.4) is the sum at risk

to which the insurer is exposed in the event of the policyholder’s death. The

integrand in (5.4) can also be interpreted as the super-replication strategy

for the insurance risk. This super-replication strategy cannot be applied by

the insurer since its cost is too high to bear.

We can prove that the first term in (4.6) converges to

lim
h→0

Et,y,f,k
[
X [t,t+h](t+ h)e−rh −X(t,t+h)(t)

]
h

= ϕkt (t, y, f) + ϕky(t, y, f)yr + ϕkf (t, y, f)f
(
µF −

µY − r
σY

σFρ
)

+ϕkyf (t, y, f)yfσY σFρ+
1

2
ϕkyy(t, y, f)y2σ2

Y +
1

2
ϕkff (t, y, f)f 2σ2

F

+kA(t, y, f)

+
(
ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f)

)
kλ(t)− ϕk(t, y, f)r. (5.5)

If the variance is chosen as the one-period actuarial risk margin in (4.4), then

one can prove that the second term in (4.6) converges to

lim
h→0

V art,y,f,k
[
X [t,t+h](t+ h)e−rh −X [t,t+h](t)

]
h

=
(
ϕkf (t, y, f)

)2
f 2σ2

F (1− ρ2)
+
(
ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f)

)2
kλ(t). (5.6)

If the standard deviation is chosen as the one-period actuarial risk margin,
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then we clearly have that

lim
h→0

√
V art,y,f,k

[
X [t,t+h](t+ h)e−rh −X [t,t+h](t)

]
h

=

√(
ϕkf (t, y, f)

)2
f 2σ2

F (1− ρ2) +
(
ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f)

)2
kλ(t).

(5.7)

As we expected, the continuous-time limits of the one-period variance

and standard deviation risk margins in (4.6) depend on the processes which

govern the quadratic variations (5.3)-(5.4).

We are now ready to state our key result.

Theorem 5.1. a) Let us consider the one-period valuation operator from

Proposition 3.4 and the multi-period valuation operator defined by the back-

ward iterations (4.1) of the one-period valuation operator with step h. We

choose the equivalent martingale measure Q̂ from (2.18) for the one-period

mean-square hedging problem, and variance or standard deviation as the one-

period actuarial risk margin:

RM(ξ) =
1

2
γV ar[ξ], or RM(ξ) =

1

2
γ
√
h
√
V ar[ξ],

where γ denotes a risk aversion coefficient. We investigate the discrete-time

pricing equation (4.6).

b) Let us consider the PDEs

ϕkt (t, y, f) + ϕky(t, y, f)yr + ϕkf (t, y, f)f
(
µF −

µY − r
σY

σFρ
)

+ϕkyf (t, y, f)yfσY σFρ+
1

2
ϕkyy(t, y, f)y2σ2

Y +
1

2
ϕkff (t, y, f)f 2σ2

F

+kA(t, y, f) +
(
ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f)

)
kλ(t)− ϕk(t, y, f)r

+Φk
(
t, ϕkf (t, y, f)fσF

√
1− ρ2, ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f)

)
= 0,

(t, y, f) ∈ [0, T )× (0,∞)× (0,∞),

ϕk(T, y, f) = kS(y, f), (y, f) ∈ (0,∞)× (0,∞), (5.8)
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for k ∈ {0, ..., n}, where Φk(t, x1, x2) = 1
2
γ(x21+x22kλ(t)) for the variance risk

margin and Φk(t, x1, x2) = 1
2
γ
√
x21 + x22kλ(t) for the standard deviation risk

margin.

c) We assume that there exist unique solutions (ϕk)k=0,...,n to the PDEs (5.8)

such that ϕk ∈ C1,2,2([0, T ) × (0,∞) × (0,∞)) ∪ C([0, T ] × (0,∞) × (0,∞))

and the mixed derivatives ϕktx, ϕ
k
tf ∈ C([0, T ) × (0,∞) × (0,∞)), for each

k ∈ {0, ..., n}. Moreover, we assume the growth conditions

|ϕk(t, y, f)| ≤ K(1 + |y|p + |f |p), for some p ≥ 1,

|ϕky(t, y, f)|+ |ϕkf (t, y, f)| ≤ K(1 + |y|p + |f |p), for some p ≥ 1,

Under a)-c), the continuous-time valuation operator ϕ := (ϕk)k=0,...,n deter-

mined by the PDEs (5.8) satisfies the continuous-time limit of the discrete-

time pricing equation (4.6) as h→ 0.

Remark 5.1. a) For the one-period valuation operator (3.1) we choose Q̂
in (3.5) when we solve the one-period mean-square hedging problems under

the martingale measure. This choice of the martingale measure simplifies

the proof. The proof of the theorem with an arbitrary equivalent martingale

measure Q used in the one-period hedging problems is beyond the scope of this

paper. More importantly, from a practical point of view we strongly believe

that it is reasonable not to include any assumptions on the risk premiums

for the non-hedgeable risks when we solve our hedging problems and set the

value of the hedging portfolio as the price of the hedgeable part of the benefit

stream (i.e. we should choose ζ(t) = χ(t) = 0 in (2.14)). We recall that the

choice of the risk premiums in (2.14) for pricing the non-hedgeable risks is

subjective and we believe that these risk premiums should be implied by the

subjective one-period actuarial valuation operator rather than being included

in the equivalent martingale measure Q used for determining the hedging

portfolio. This way we can disentangle hedgeable and non-hedgeable parts

of the benefit stream and price them separately, see the interpretation of the

one-period valuation operator (3.1).
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b) As pointed out by Pelsser & Ghalehjooghi (2016), if we use the standard

deviation risk margin, then we must use
√
h
√
V ar[ξ] in order to have the

convergence for h→ 0.

c) As far as the smoothness and growth conditions for ϕk are concerned, we

refer to the remark after Proposition 3.1. We point out that we refrain from

making any growth assumptions on the second order derivatives as pointed

out by Cont & Voltchkova (2005).

We now discuss three crucial properties of the valuation operator ϕ de-

termined by the PDEs (5.8).

Theorem 5.2. Let us consider the continuous-time valuation operator ϕ

from Theorem 5.1.

(i) The valuation operator has the representation:

ϕk(t, y, f) = EQ̂
t,y,f,k

[ ∫ T

t

e−r(s−t)dB(s) +

∫ T

t

e−r(s−t)Φ(s)ds
]
,

(t, y, f) ∈ [0, T ]× (0,∞)× (0,∞), k ∈ {0, ..., n}, (5.9)

where Φ(s) is a shorthand notation for

ΦJ(s)
(
s, ϕ

J(s)
f (s, Y (s), F (s))F (s)σF

√
1− ρ2,

ϕJ(s)−1(s, Y (s), F (s)) +D(s, Y (s), F (s))− ϕJ(s)(s, Y (s), F (s))
)
,

(ii) In addition we assume that the processes

ζV (t) =
1

2
γϕ

J(t−)
f (t, Y (t), F (t))F (t)σF

√
1− ρ2,

χV (t) =
1

2
γ
(
ϕJ(t−)−1(t, Y (t), F (t)) +D(t, Y (t), F (t))

−ϕJ(t−)(t, Y (t), F (t))
)
,

and

ζSD(t) =
1

2
γ

ζV (t)√(
ζV (t)

)2
+
(
χV (t)

)2
J(t−)λ(t)

,

χSD(t) =
1

2
γ

χV (t)√(
ζV (t)

)2
+
(
χV (t)

)2
J(t−)λ(t)

,
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satisfy the conditions from (2.15). In this case, the valuation operator has

the representation:

ϕk(t, y, f) = EQ̃
t,y,f,k

[ ∫ T

t

e−r(s−t)dB(s)
]
,

(t, y, f) ∈ [0, T ]× (0,∞)× (0,∞), k ∈ {0, ..., n},(5.10)

where Q̃ denotes the equivalent martingale measure defined by (2.14) with the

risk premiums (ζV , χV ) in the case of the one-period variance risk margin,

and with the risk premiums (ζSD, χSD) in the case of the one-period standard

deviation risk margin. If χV (t) < 0 for some t, then the representation

(5.10) holds only for sufficiently small γ so that (2.15) is satisfied. The risk

premiums satisfy the measurability assumption (A4).

(iii) The valuation operator is market-consistent and actuarial, hence it is

fair.

Remark 5.2. We can show that the risk premiums (ζSD, χSD) satisfy (2.15)

under the assumptions from Theorem 5.1. The discussion when (ζV , χV )

satisfy (2.15) is beyond the scope of this paper. Point (ii) and the case

χV (t) < 0 indicate that our continuous-time valuation operator may yield

arbitrage prices, see Delong et al. (2018) for an example.

The representation (5.9) is relevant for insurance, while the representation

(5.10) is typical in finance. We focus on (5.9). If we look at the proof that

leads to the PDEs (5.8), in particular, if we look at the limits (5.6)-(5.7), then

we can conclude that the term Φ in the PDEs (5.8) is the continuous-time

limit of the one-period actuarial risk margin RM . We can call Φ an instan-

taneous actuarial risk margin, and
∫

Φ(s) is the integrated instantaneous

actuarial risk margin. The expected value of the integrated instantaneous

actuarial risk margin is called the total actuarial risk margin. We note that

the operator Φ becomes independent of the risky financial assets (Y, F ) when

the valuation operator ϕ is applied to an orthogonal process BN , hence it sat-

isfies (2.9), and this property justifies its name as an instantaneous actuarial

risk margin, see also point (iii) in Theorem 5.2.
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The representation (5.9) says that our continuous-time valuation operator

ϕ values liabilities as the best estimate of the liability plus the total actuarial

risk margin for the liability:

ϕB = Fair V alue of B

= Best Estimate of B + Total Actuarial Risk Margin for B.

The best estimate of a liability is the expected value of the future claims

from the liability, where the expected value is taken under the measure Q̂
given by (2.18). Let us recall that the equivalent martingale measure Q̂
results from choosing ζ(t) = χ(t) = 0 in (2.14). It agrees with intuition that

the best estimate assumptions for the non-tradeable financial and insurance

risks should not include any risk premiums for these risks, see also Happ et al.

(2015). We can observe that the best estimate of a liability contingent on

the hedgeable financial risk coincides with the market cost of the investment

portfolio which perfectly replicates the claims. The best estimate of a liability

contingent on the independent, non-hedgeable financial and insurance risks

is the expected cost, under the real-world measure P, of the non-hedgeable

claims to be paid. Intuitively, the best estimate of a liability contingent on

the hedgeable and non-hedgeable financial and insurance risks consists of the

market cost of the replicating portfolio for the hedgeable part of the claims

and the expected, real-world, cost of the non-hedgeable claims left after the

application of the hedging portfolio. The total actuarial risk margin, or the

integrated instantaneous actuarial risk margin, gives us the capital which the

insurer will need to set aside during the duration of the insurance portfolio

in order to cover the non-hedgeable financial and insurance risks in adverse

scenarios. In contrast, the one-period actuarial risk margin, from which we

start in (4.1), provides the capital which the insurer needs to set aside for the

next period of length h in order to cover the non-hedgeable risks in adverse

scenarios. These interpretations agree with valuation rules from the Solvency

II Directive.

The calculations leading to Theorem 5.1 allow us to define the hedging
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strategy which underlies the continuous-time limit of the multi-period iter-

ated valuation operator (4.1).

Theorem 5.3. Let us consider the continuous-time valuation operator ϕ

from Theorem 5.1. The hedging strategy which underlies the valuation ϕ is

given by

ϑ∗(t) = ϕJ(t−)y (t, Y (t), F (t))Y (t)+ϕ
J(t−)
f (t, Y (t), F (t))F (t)

σF
σY
ρ, 0 ≤ t ≤ T.

The hedging strategy ϑ∗ is market-consistent and actuarial, hence it is fair.

Equation (5.2) gives us the dynamics of the net asset value in the period

[t, t + h] if the optimal hedging strategy θ∗B(t,t+h),ϕ(t+h) is applied on [t, t +

h]. Let us derive the dynamics of the net asset value in the whole period

[0, T ] during which the available assets are continuously rebalanced with

the hedging strategy ϑ∗ and the liabilities are continuously priced with the

valuation operator ϕ. LetX(s) = ϕ(s)−V ∗(s), where ϕ denotes the valuation

operator defined in Theorem 5.1 and V ∗ is the hedging portfolio given by (3.4)

under the strategy ϑ∗ from Theorem 5.3. From (5.2) and (5.8) we can deduce

the dynamics of X(s):

dX(s) = X(s)rds− Φ(s)ds

+ϕ
J(s−)
f (s, Y (s), F (s))F (s)σF

√
1− ρ2dW2(s)

+
(
ϕJ(s−)−1(s, Y (s), F (s)) +D(s, Y (s), F (s))

−ϕJ(s−)(s, Y (s), F (s))
)
dÑ(s), 0 ≤ s ≤ T. (5.11)

Let us recall that NAV (t) = −X(t). By the martingale property of the

stochastic integrals we find

E[NAV (t)e−r(t−s)|Fs]

= NAV (s) + E
[ ∫ t

s

e−r(u−s)Φ(u)du|Fs
]
, 0 ≤ s ≤ t ≤ T. (5.12)

At each time t ∈ [0, T ), the insurer must hold an additional capital (the

instantaneous actuarial risk margin) determined by Φ(t) which protects the
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insurer against adverse scenarios in the evolution of the non-hedgeable claims

dB(t) and the non-hedgeable change in the value of the claims dϕ(t) in an

infinitesimal period of time dt. The evolution of the non-hedgeable risks

is described with the two stochastic integrals in (5.11), see also (5.3)-(5.4).

These two stochastic integrals describe the risk that the value of the ben-

efit payments changes due to a change in the non-hedgeable, independent

component of the risky asset F and the risk that in the case of the non-

hedgeable, independent event of the policyholder’s death the insurer pays

the death benefit and recalculates the value of the benefit payments for the

in-force policies. Please note that the instantaneous actuarial risk margin

Φ offsets the differentials of the stochastic integrals for the non-hedgeable

risks in (5.11). At time t = 0 the expected cost (i.e. the best estimate) of

providing the additional capitals Φ till maturity of the insurance portfolio is

equal to EQ̂[
∫ T
0
e−rsΦ(s)ds] and is a part of the technical provision (5.9) – the

total actuarial risk margin. As time t goes by, the technical provision (the

value of the benefit stream), the best estimate of the liability and the cost

of financing the future instantaneous actuarial risk margins are recalculated.

From (5.12) we see that the insurer earns, on average, a risk-free rate on the

net asset value and the instantaneous actuarial risk margins accumulated

with the risk-free rate. The instantaneous actuarial risk margins are released

from the technical provision (5.9) as time passes and, on average, they are

not used to cover the losses since the realized loss on the hedgeable risk is

always zero and the expected loss on the non-hedgeable risks is also zero,

both under P and Q̂ (the expected value of the stochastic integrals in (5.11)

is zero). These interpretations in the continuous-time model agree with the

interpretations we presented in Section 4 in the discrete-time, multi-period

model.

Let us compare our results with the results from Pelsser (2010) and Pelsser

& Ghalehjooghi (2016). These authors investigate the benefit stream

B(t) = S(Y (T ), F (T ))1{t = T}, (5.13)

which is a special case of our general benefit stream (2.5). Pelsser (2010)
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and Pelsser & Ghalehjooghi (2016) propose a completely different one-period

valuation operator %, called a two-step valuation operator. They define

the multi-period valuation operator by the iterations (4.1), take the limit

h → 0 and derive a PDE. Interestingly, for the benefit stream (5.13) and

variance/standard deviation one-period valuation operator applied to the

non-hedgeable risk our system of PDEs (5.8) reduces to a single PDE which

agrees with the PDE derived by Pelsser (2010) and Pelsser & Ghalehjooghi

(2016). However, the valuation principle from these authors does not give

a hedging strategy for the claims B, whereas our Theorem 5.3 does. More-

over, our results from Theorems 5.2-5.3 are linked to multi-period hedging

problems from which the fair price of the claims B is derived.

6 Continuous-time valuation operator – be-

yond quadratic actuarial risk margins

When we look at the structure of the PDE (5.8), the discrete-time pric-

ing equation (4.6) and the formulas (5.5)-(5.7), we can conclude that the

last term Φ in the PDE is the continuous-time limit of the one-period ac-

tuarial risk margin RM , and the remaining terms are the continuous-time

limit of the one-period expected value pricing principle. In the previous

section we called Φ an instantaneous actuarial risk margin. The instanta-

neous actuarial risk margins Φ which we derived for the one-period stan-

dard deviation and variance risk margins act on ϕkf (t, y, f)fσF
√

1− ρ2 and

ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f). These two terms can be related to the

non-hedgeable part of the process X [t,t+h], or to the non-hedgeable part of

the net asset value process, see (5.2)-(5.4). Since in the previous section we

used quadratic actuarial risk margins to quantify the non-hedgeable risks, it

is natural to use the quadratic variation of the process X [t,t+h] to define the

instantaneous actuarial risk margin for the non-hedgeable risks. However, in

the theory of stochastic processes and in applications, power variations are

also used, see Theorem 2.2 in Barndorff-Nielsen et al. (2006) and Theorem
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2.2 in Jacod (2008). Consequently, if we decide to quantify the non-hedgeable

risks in Lq-norm, then we should use q-power variations of the processX [t,t+h].

We would choose the instantaneous actuarial risk margin

Φk(t, x1, x2) =
1

2
γ
(
|x1|q + |x2|qkλ(t)

)1/q
,

and apply it to ϕkf (t, y, f)fσF
√

1− ρ2, ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f).

Let us remark that Rosazza Gianin (2006) and Barrieu & Karoui (2005),

among others, develop dynamic risk measures which are defined as solutions

to backward stochastic differential equations (BSDEs), see also Pelsser &

Stadje (2014). In their framework, our F-adapted benefit stream B would be

valued at any time t ∈ [0, T ] with the process Y which is a solution to the

BSDE

Y(t) =

∫ T

t

dB(s) +

∫ T

t

(
g
(
s,Z2(s),U(s)

)
− µY − r

σY
Z1(s)− Y(s−)r

)
ds

−
∫ T

t

Z1dW1(s)−
∫ T

t

Z2(t)dW2(s)−
∫ T

t

U(t)dÑ(s), 0 ≤ t ≤ T, (6.1)

where g is interpreted as an instantaneous risk measure or a local preference-

based pricing rule for the non-hedgeable risks. Consequently, new dynamic

risk measures can be constructed with BSDEs and instantaneous risk mea-

sures. From the proof of Proposition 3.1, we find that in our Markovian

model the solution to the BSDE (6.1) is given by

Y(t) = φJ(t)(t, Y (t), F (t))

= EQ̂
[ ∫ T

t

e−r(s−t)dB(s) +

∫ T

t

e−r(s−t)g
(
s,Z2(s),U(s)

)
ds|Ft

]
,

Z1(t) = φJ(t−)y (t, Y (t), F (t))Y (t)σY + φ
J(t−)
f (t, Y (t), F (t))F (t)σFρ,

Z2(t) = φ
J(t−)
f (t, Y (t), F (t))F (t)σF

√
1− ρ2,

U(t) = φJ(t−)−1(t, Y (t), F (t)) +D(t, Y (t), F (t))− φJ(t−)(t, Y (t), F (t)),

and the dynamic risk measure φ induced by the BSDE has exactly the same

representation as our continuous-time valuation operator (see point (i) of

Theorem 5.2).
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Consequently, we propose to price the benefit stream B with the operator

ϕ which satisfies the system of PDEs:

ϕkt (t, y, f) + ϕky(t, y, f)yr + ϕkf (t, y, f)f
(
µF −

µY − r
σY

σFρ
)

+ϕkyf (t, y, f)yfσY σFρ+
1

2
ϕkyy(t, y, f)y2σ2

Y +
1

2
ϕkff (t, y, f)f 2σ2

F

+kA(t, y, f) +
(
ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f)

)
kλ(t)− ϕk(t, y, f)r

+Φk
(
ϕkf (t, y, f)fσF

√
1− ρ2, ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f)

)
= 0,

(t, y, f) ∈ [0, T )× (0,∞)× (0,∞),

ϕk(T, y, f) = kS(y, f), (y, f) ∈ (0,∞)× (0,∞), (6.2)

for k ∈ {0, ..., n}, where Φ denotes some instantaneous actuarial risk margin

applied to the non-hedgeable part of the insurer’s net asset value process.

The operator Φ locally quantifies the non-hedgeable risks which are present in

the evolution of the insurer’s net asset value. The instantaneous risk margin

Φ should be interpreted as the continuous-time limit of the one-period risk

margin RM used in the multi-period iterated valuation operator (4.4). For

continuous-time limits of some static risk measures we refer to Stadje (2010).

Our previous calculations and elaborations justify the PDE (6.2). We can

conclude that the valuation operator arising as the continuous-time limit of

the multi-period iterated valuation operator (4.4) with the optimal mean-

square hedging portfolio and an arbitrary one-period actuarial risk margin

should satisfy the PDEs (6.2) with some function Φ.

Proposition 6.1. Let us define the continuous-time valuation operator ϕ

with the PDEs (6.2) with an arbitrary function Φ : {0, ..., n}×[0, T ]×R×R 7→
[0,∞) such that Φk(t, 0, 0) = 0 and Φ satisfies the polynomial growth

|Φk(t, x1, x2)| ≤ K(1 + |x1|p + |x2|p), for some p ≥ 1.

In case all assumptions from Theorem 5.1 are satisfied, we have that the

valuation operator ϕ and the corresponding hedging strategy ϑ∗ satisfy all

properties from Theorems 5.2 and 5.3.
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Finally, we note that the standard deviation or variance instantaneous

risk margin (quadratic variation) penalizes both losses and gains on the net

asset value process (5.2). In applications, we might prefer to use asymmetric

instantaneous actuarial risk margins Φ which only penalize losses on the net

asset value process.

7 Proofs of the results

Proof of Proposition 3.1: Since the claims A,D, S satisfy (A3) and (Y, F )

are geometric Brownian motions, we can show that E[|B(T )|q] < ∞ for all

q ≥ 2. LetMζ,χ denote the martingale (2.14) which defines Q. We know that

E[|Mζ,χ(T )|l] < ∞ for some l > 1, and we can prove that EQ[|B(T )|q] < ∞
for all q ≥ 2. The property of predictable representation gives us∫ T

0

e−rtdB(t) = EQ
[ ∫ T

0

e−rtdB(t)
]

+

∫ T

0

Z1(t)dW
Q
1 (t)

+

∫ T

0

Z2(t)dW
Q
2 (t) +

∫ T

0

U(t)dÑQ(t). (7.1)

From Theorem 5.1 in El Karoui et al. (1997) we conclude that

EQ[( ∫ T

0

|Z1(t)|2dt
)q/2]

<∞,

for all q ≥ 2. Since the martingaleN ζ′,χ′
which defines the derivative dP

dQ |Ft =

N ζ′,χ′
(t) also satisfies E[|N ζ′,χ′

(T )|l] < ∞ for some l > 1, we can show that

the process Z1 is square integrable under P.

By Theorem 10.1.1 in Delong (2013) the optimal hedging strategy is given

by θ∗B(0,T ),4B(T )(t) = Z1(t)
σY

ert. Recalling the arguments from above and the

function v defined in this proposition, we deduce that the process M(t) =

vJ(t)(t, Y (t), F (t))e−rt +
∫ t
0
e−rudB(u) is a Q-martingale with the representa-

tion (7.1). Since v is a smooth function on [0, T −ε]×(0,∞)×(0,∞), we can

apply Itô’s formula to the process M on [0, T − ε]. The form of the optimal

hedging strategy (3.7) on [0, T − ε] can be found by comparing the stochastic
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integral with respect to W1 from M with the stochastic integral with respect

to W1 from (7.1). We have

E
[ ∫ T−ε

0

∣∣∣vJ(t−)y (t, Y (t), F (t))Y (t) + v
J(t−)
f (t, Y (t), F (t))F (t)

σF
σY
ρ
∣∣∣2dt]

≤ E
[ ∫ T

0

∣∣∣Z1(t)

σY
ert
∣∣∣2dt] <∞,

and we can define the strategy (3.7) on [0, T ] by the Fatou’s lemma and ε→ 0.

We also conclude that the optimal hedging strategy is square integrable. �

Proof of Proposition 3.2: We refer the reader to Chapter 10.2 in Delong

(2013) and the proof of Proposition 3.1. �

Proof of Proposition 3.3: (i) Let us consider B̃(t) = BY (t) +B(t) where

BY is a hedgeable process and B is an arbitrary process. By the additivity

property of the expected value operator, we get vk
B̃

(t, y, f) = vkBY (t, y, f) +

vkB(t, y, f), where v is defined in Proposition 3.1. Moreover, vkBY (t, y, f) =

vBY (t, y). By the definition of the optimal hedging strategy θ∗
B̃

from (3.7), we

conclude that condition (2.12) is satisfied. For an orthogonal process BN we

have vkBN (t, y, f) = vkBN (t) (since χ is FN -predictable and Markov by (A4)).

Consequently, θ∗BN (t) = 0 and condition (2.13) is satisfied.

(ii) We use the results from the proof of (i). We note that the optimal

hedging strategy from (3.10) is a linear function of the hedging portfolio,

with a constant slope and an intercept which is additive with respect to

the benefit stream B̃ = BY + B. From the linear SDE (3.4) describing

the dynamics of the hedging portfolio with the additive benefit stream B̃ =

BY + B, we can conclude that V ∗
B̃

(t) = V ∗BY (t) + V ∗B(t). By (3.10) we find

θ∗
B̃

(t) = θ∗BY (t) + θ∗B(t). Since BY is hedgeable, V ∗BY (T ) = vBY (T, Y (T )) and

(2.12) is satisfied.

We give an example showing that the optimal hedging strategy (3.10) is

not actuarial. Let us assume that the insurer is exposed to the orthogo-

nal process BN which only includes the constant survival benefits S = 1.

From Proposition 3.2 we can conclude that vkBN (t, y, f) = vkBN (t), θ∗BN (0) = 0
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and V ∗BN (0) = EQ̂[e−rT (n − N(T ))] = ne−rT e−
∫ T
0 λ(s)ds. However, at some

latter time t we may have V ∗BN (t) < EQ̂[e−r(T−t)(n − N(T ))|Ft] = (n −
N(t))e−r(T−t)e−

∫ T
t λ(s)ds) = v

J(t)

BN (t), since the insurance risk may evolve dif-

ferently from the way the insurer expected at time t = 0 and the risk-

free investment is not sufficient to cover the reserve at time t (less poli-

cyholders have died on [0, t] than the insurer expected at time t = 0 and

N(t) < n(1 − e−
∫ t
0 λ(s)ds)). If µY > r, then the insurer can reduce the defi-

ciency in the reserve and can reduce the mean-square hedging error at the

terminal time T by investing in the risky asset Y . Consequently, the optimal

dynamic hedging strategy (3.10) is not actuarial. �

Proof of Proposition 3.4: Let us consider B̃(t) = BY (t) +B(t) where

BY is a hedgeable process and B is an arbitrary process. By Propositions

3.1 and 3.3, we know that θ∗
B̃

(t) = θ∗BY (t) + θ∗B(t) and the optimal hedging

strategies do not depend on the value of the hedging portfolio. Consequently,

from the linear SDE (3.4) describing the dynamics of the hedging portfolio

with the additive benefit stream B̃ = BY +B, we can conclude that V ∗
B̃

(t) =

V ∗BY (t) + V ∗B(t). Since BY can be perfectly replicated with V ∗BY , we have

4B̃(T )− V ∗
B̃

(T ) = 4B(T )− V ∗B(T ). From (3.1) we deduce

%(B̃) = V ∗BY (0) + V ∗B(0) + π
((
4B(T )− V ∗B(T )

)
e−rT

)
= ρ(B) + V ∗BY (0).

By Proposition 3.1 we find V ∗BY (0) = EQ[
∫ T
0
e−rsdBY (s)] = EQ̂[

∫ T
0
e−rsdBY (s)].

If B(t) = 0, then %(B) = 0 by the first condition in (3.11), and %(B̃) =

%(BY ) = V ∗BY (0). We can conclude that the valuation operator (3.1) satisfies

(2.8).

Let BN denote an orthogonal process. By Propositions 3.1 and 3.3, θ∗BN (t) =

0 and V ∗BN (T ) = V ∗BN (0)erT −
∫ T
0
er(T−s)dBN(s) +4BN(T ). Substituting the

formula for V ∗BN (T ) into the definition of the valuation operator (3.1), using

the second condition in (3.11) and the assumption that π is actuarial, we can

easily prove that the valuation operator (3.1) satisfies (2.9). �

Proof of Theorem 5.1: We study the terms on the left hand side of equa-
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tion (4.6) and we choose the variance as the one-period actuarial risk margin

RM . We consider the process X [t,t+h] given by (5.1) where ϕ denotes the

continuous-time valuation operator. Let us fix (t, y, f, k) ∈ [0, T )× (0,∞)×
(0,∞) × {0, ..., k}. We fix sufficiently small h < 1 such that t + h < T and

we consider the interval [t, t+h]. Consequently, we always have s ∈ [t, t+h].

- Step 1: We collect some results which we will often use in the sequel. By

equations (2.16)-(2.17), we have the following properties under the measures

P and Q̂: the processes Y and F are geometric Brownian motions, the count-

ing process N has intensity λ(t) and N is independent of (Y, F ). We con-

sider Y , but the same results hold for F . Let Y t,y denote the process Y

which starts at time t from y. We have Y t,y(s) = yeµ(t−s)−
1
2
σ2(s−t)+σW (s−t) =

yeµ(t−s)M t,1(s), and M is an exponential martingale. By Doob’s inequality

we find that

E
[

sup
s∈[t,t+h]

|Y t,y(s)|q
]
≤ K|y|qE[|M t,1(t+ h)|q]

= K|y|qe
1
2
(q2−q)σ2h ≤ K|y|q, q ≥ 2.

We can also show that

E
[

sup
s∈[t,t+h]

|Y t,y+α(s)− Y t,y(s)|q
]
≤ K|α|q, q ≥ 2,

E
[

sup
s∈[t,t+h]

|Y t,y(s)− y|q
]

= |y|qE
[

sup
s∈[t,t+h]

∣∣∣eµ(s−t)(1 +

∫ s

t

M t,1(u)σdW (u)
)
− 1
∣∣∣q]

≤ K|y|qE
[

sup
s∈[t,t+h]

{∣∣∣eµ(s−t) − 1
∣∣∣q +

∣∣∣eµ(s−t) ∫ s

t

M t,1(u)σdW (u)
∣∣∣q}]

≤ K|y|q
(
h+ E

[∣∣∣ ∫ t+h

t

∣∣M t,1(u)σ
∣∣2du∣∣∣q/2])

≤ K|y|qh
(

1 + E
[

sup
u∈[t,t+h]

|M t,1(u)|q
])
≤ K|y|qh, q ≥ 2,

where we use the Burkholder-Davis-Gundy inequality. The same moment

estimates hold under Q̂. We can note that the mapping (t, y, s) 7→ Y t,y(s) is
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a.s continuous. Moreover, d
dy
Y t,y(s) = Y t,y(s)

y
. We can also prove that

E
[

sup
s∈[t,t+h]

|J t,k(s)− k|q
]

= E
[
|J t,k(t+ h)− k|q

]
≤ KE

[
|J t,k(t+ h)− k|

]
= KE

[ ∫ t+h

t

J t,k(u)λ(u)du
]
≤ Kh, q ≥ 2.

- Step 2: We investigate the function (4.2). We define

vk(s, y, f)

= EQ̂
s,y,f,k

[ ∫ t+h

s

e−r(u−s)dB(u) + e−r(t+h−s)ϕJ(t+h)(t+ h, Y (t+ h), F (t+ h))
]

= EQ̂
[
k

∫ t+h

s

e−r(u−s)A(u, Y s,y(u), F s,f (u))e−
∫ u
s λ(z)dzdu

+k

∫ t+h

s

e−r(u−s)D(u, Y s,y(u), F s,y(u))e−
∫ u
s λ(z)dzλ(u)du

+e−r(t+h−s)
k∑
i=0

ϕi(t+ h, Y s,y(t+ h), F s,f (t+ h))Pr(J(t+ h) = i|J(t) = k)
]
,

where we use the independence between N and (Y, F ) from Step 1. The func-

tion (s, y, f) 7→ vk(s, y, f) is finite and continuous on [t, t+h]×(0,∞)×(0,∞)

by Step 1), the growth and continuity conditions for A,D, ϕi, boundedness

of λ and the uniform integrability of (Λs̃,ỹ,f̃ )(s̃,ỹ,f̃)∈[s−ε,s+ε]×[y−ε,y+ε]×[f−ε,f+ε]
where vk(s, y, f) = EQ̂[Λs,y,f ], see Lemma 2 from Heath & Schweizer (2000).

From Theorem 1 in Heath & Schweizer (2000) we can conclude that vk ∈
C1,2,2([t, t + h) × (0,∞) × (0,∞)) ∪ C([t, t + h] × (0,∞) × (0,∞)), for each

k ∈ {0, ..., n}. Consequently, we can apply Proposition 3.1.

- Step 3: The hedging strategy θ∗B(t,t+h),ϕ(t+h) is given by (4.3). Let us denote

θ∗B(t,t+h),ϕ(t+h) by θ∗. We derive a more explicit formula for θ∗. We will

calculate the derivative vky . The derivative vkf can be calculated in the same
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way. We consider α < 1. Let

∇Aα(u)

=
A(u, Y s,y+α(u), F (u))− A(u, Y s,y(u), F (u))

α
,

∇ϕiα

=
ϕi(t+ h, Y s,y+α(t+ h), F (t+ h))− ϕi(t+ h, Y s,y(t+ h), F (t+ h))|

α
,

for u ∈ [s, t + h] and i ∈ {0, ..., n}. By the Lipshitz property of A we have

the estimate

|∇Aα(u)| ≤ K
supu∈[s,t+h]|Y s,y+α(u)− Y s,y(u)|

α
.

By Fubini’s theorem, we have that EQ̂[
∫ t+h
s
∇Aα(u)du] =

∫ t+h
s

EQ̂[∇Aα(u)]du.

We can show that supu∈[s,t+h] EQ̂[∇Aα(u)] ≤ supu∈[s,t+h]

√
EQ̂[|∇Aα(u)|2] ≤

K by the moment estimates from Step 1. Hence, by the dominated conver-

gence theorem we can take the limit α→ 0 under the integral
∫ t+h
s

EQ̂[∇Aα(u)]du.

Using again the moment estimates from Step 1, we can deduce that

sup
α∈[0,1)

EQ̂[|∇Aα(u)|2] ≤ K,

for each fixed u ∈ [s, t + h]. Consequently, by the uniform integrability of

(∇Aα(u))α we can take the limit α→ 0 under EQ̂[∇Aα(u)] for each fixed u ∈
[s, t+h]. Recall that z 7→ A(., z, .) is Lipschitz and has a countable number of

non-differentiable points, the law of Y t,y(u) is absolutely continuous and y 7→
Y t,y(u) is differentiable by Step 1. Therefore, we can define the derivative

d

dy
A(u, Y s,y(u), F (u)) = Ay(u, Y

s,y(u), F (u))
Y s,y(u)

y
, a.s.,

for u ∈ [s, t + h]. Analogously, we can define d
dy
D(u, Y s,y(u), F (u)). By the

mean value theorem and the growth conditions for ϕi, we have the estimate

|∇ϕiα|

≤ K
(
1 + |Y s,y+α(t+ h)|p + |Y s,y(t+ h)|p

)supu∈[s,t+h]|Y s,y+α(u)− Y s,y(u)|
α

.
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By the moment estimates from Step 1, the sequence (∇ϕiα)α is uniformly

integrable, since supα∈[0,1) EQ̂[|∇ϕiα|2] ≤ K. Hence, we can take the limit

α→ 0 under the expected value EQ̂[∇ϕiα].

Collecting all the results, we conclude that

θ∗(t) = θ∗,k(s, y, f)

= EQ̂
s,y,f,k

[ ∫ t+h

s

e−r(u−s)Ay(u, Y (u), F (u))Y (u)(n−N(u))du

+

∫ t+h

s

Dy(u, Y (u), F (u))Y (u)dN(u)

+e−r(t+h−s)ϕJ(t+h)y (t+ h, Y (t+ h), F (t+ h))Y (t+ h)
]

+EQ̂
s,y,f,k

[ ∫ t+h

s

e−r(u−s)Af (u, Y (u), F (u))F (u)(n−N(u))du

+

∫ t+h

s

Df (u, Y (u), F (u))F (u)dN(u)

+e−r(t+h−s)ϕ
J(t+h)
f (t+ h, Y (t+ h), F (t+ h))F (t+ h)

]σF
σY
ρ, (7.2)

where we use the assumption that (z1, z2) 7→ ϕi(t+ h, z1, z2) is continuously

differentiable for t+ h < T .

- Step 4: Let ϑ∗,k(s, y, f) = ϕky(s, y, f)y + ϕkf (s, y, f)f σF
σY
ρ. We will derive

estimates for θ∗,k(s, y, f), ϑ∗,k(t, y, f), |θ∗,k(s, y, f)−ϑ∗,k(s, y, f)|. We will only

focus on the terms in θ∗ and ϑ∗ which contain derivatives with respect to y.

The derivatives with respect to f can be treated in the same way.

From the growth condition for ϕk we deduce the first estimate

|ϑ∗,k(s, y, f)| ≤ K(1 + |y|p + |f |p)(|y|+ |f |)
≤ K(1 + max{|y|p+1, |f |p+1}) ≤ K(1 + |y|p+1 + |f |p+1). (7.3)

Since A and D are Lipschitz, their derivatives are bounded. Hence, we can
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conclude that∣∣∣ ∫ t+h

s

e−r(u−s)Ay(u, Y (u), F (u))Y (u)(n−N(u))du

+

∫ t+h

s

Dy(u, Y (u), F (u))Y (u)dN(u)

+e−r(t+h−s)ϕJ(t+h)y (t+ h, Y (t+ h), F (t+ h))Y (t+ h)
∣∣∣

≤ K
(

sup
u∈[s,t+h]

|Y (u)|h+ sup
u∈[s,t+h]

|Y (u)||J(t+ h)− J(s)|

+1 + sup
u∈[s,t+h]

|Y (u)|p+1 + sup
u∈[s,t+h]

|F (u)|p+1
)
,

≤ K
(

1 + sup
u∈[s,t+h]

|Y (u)|p+1 + sup
u∈[s,t+h]

|F (u)|p+1
)

·
(
1 + h+ |J(t+ h)− J(s)|

)
, (7.4)

where again we use the growth condition for ϕk and estimates similar to (7.3).

By (7.2), (7.4), the moment estimates from Step 1) and the independence

between (Y, F ) and N , we get the second estimate

|θ∗,k(s, y, f)| ≤ K(1 + |y|p+1 + |f |p+1)(1 + h). (7.5)

Let us introduce the following stopping times:

T1 = inf{s ≥ t : |Y t,y(s)− y| ≥ ε},
T2 = inf{s ≥ t : |F t,f (s)− y| ≥ ε},
T3 = inf{s ≥ t : |J t,k(s)− y| ≥ 1},
T = T1 ∧ T2 ∧ T3,

where we fix sufficiently small ε < 1 such that y − ε > 0, f − ε > 0 for

the pair (y, f) investigated in (4.6). Consequently, ε depends on (y, f). By

Chebyshev’s inequality and the moment estimates from Step 1, we deduce
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that

P(T ≤ t+ h) ≤ P
(

sup
s∈[t,t+h]

|Y t,y(s)− y| ≥ ε
)

+P
(

sup
s∈[t,t+h]

|F t,f (s)− y| ≥ ε
)

+ P
(

sup
s∈[t,t+h]

|J t,k(s)− k| ≥ 1
)

≤
E
[

sups∈[t,t+h] |Y t,y(s)− y|2
]

ε2
+

E
[

sups∈[t,t+h] |F t,f (s)− y|2
]

ε2

+E
[

sup
s∈[t,t+h]

|J t,k(s)− k|2
]
≤ Ky,fh, (7.6)

where Ky,f denotes a constant which depends on the pair (y, f).

We now investigate the key term which we will use in the proof of the con-

vergence of (4.6). We notice that

Et,y,f,k
[ ∫ t+h

t

∣∣∣θ∗,J(s)(s, Y (s), F (s))− ϑ∗,J(s)(s, Y (s), F (s))
∣∣∣ds]

≤ Et,y,f,k
[ ∫ t+h

t

∣∣∣ ∫ t+h

s

e−r(u−s)Ay(u, Y (u), F (u))Y (u)(n−N(u))du

+

∫ t+h

s

Dy(u, Y (u), F (u))Y (u)dN(u)
∣∣∣ds

+

∫ t+h

t

e−r(t+h−s)
∣∣∣ϕJ(t+h)y (t+ h, Y (t+ h), F (t+ h))Y (t+ h)

−ϕJ(s)y (s, Y (s), F (s))Y (s)
∣∣∣ds]

+ the terms with f − derivatives
= Et,y,f,k

[
H1{T ≤ t+ h}+H1{T > t+ h}

]
, (7.7)

where we use the optimal hedging strategy (7.2), Fubini’s theorem and the

property of conditional expectations. By (7.4), the growth condition for ϕk,
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the moment estimates from Step 1 and (7.6), we derive

Et,y,f,k
[
H1{T ≤ t+ h}

]
≤ KEt,y,f,k

[(
1 + sup

u∈[t,t+h]
|Y (u)|p+1 + sup

u∈[t,t+h]
|F (u)|p+1

)
1{T ≤ t+ h}

]
h

≤ K

√
Et,y,f,k

[
1 + sup

u∈[t,t+h]
|Y (u)|2p+2 + sup

u∈[t,t+h]
|F (u)|2p+2

]
·
√
P
(
T ≤ t+ h

)
h

≤ Ky,f (1 + |y|2p+2 + |f |2p+2)
√
hh = Ky,fh

3/2. (7.8)

If T > t + h, then J(s) = k (or equivalently dN(s) = 0), Y (s) ∈ [y − ε, y +

ε], F (s) ∈ [f−ε, f+ε] for s ∈ [t, t+h]. Since ϕk is continuously differentiable

in [0, T )× (0,∞)× (0,∞) by our assumption, then we can conclude that the

derivatives of the function ϕky(t, y, f) with respect to t, y and f are bounded

on [t, t+ h]× [y− ε, y+ ε]× [f − ε, f + ε] by a constant Kt,y,f which depends

on (t, y, f). We point out that this constant is not affected when we take the

limit h → 0. To be more precise, first we fix h0 such that t + h0 < T , next

we find a global constant Kt,y,f on [t, t+h0]× [y− ε, y+ ε]× [f − ε, f + ε], and

finally we take the limit h→ 0, h ≤ h0 in (4.6). By the mean value theorem
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and the growth conditions for ϕk, we can conclude that∣∣∣ϕJ(t+h)y (t+ h, Y (t+ h), F (t+ h))Y (t+ h)− ϕJ(s)y (s, Y (s), F (s))Y (s)
∣∣∣1{T > t+ h}

≤
{∣∣∣ϕky(t+ h, Y (t+ h), F (t+ h))Y (t+ h)− ϕky(t+ h, Y (t+ h), F (t+ h))Y (s)

∣∣∣
+
∣∣∣ϕky(t+ h, Y (t+ h), F (t+ h))Y (s)− ϕky(s, Y (t+ h), F (t+ h))Y (s)

∣∣∣
+
∣∣∣ϕky(s, Y (t+ h), F (t+ h))Y (s)− ϕky(s, Y (s), F (t+ h))Y (s)

∣∣∣
+
∣∣∣ϕky(s, Y (s), F (t+ k))Y (s)− ϕky(Y (s), Y (s), F (s))Y (s)

∣∣∣}1{T > t+ h}

≤
{
K
(
1 + |Y (t+ h)|p + |F (t+ h)|p

)
|Y (t+ h)− Y (s)|

+Kt,y,fY (s)h

+Kt,y,f |Y (t+ h)− Y (s)|Y (s) +Kt,y,f |F (t+ h)− F (s)|Y (s)
}

1{T > t+ h}

≤ Kt,y,f

(
1 + sup

u∈[t,t+h]
|Y (u)|p + sup

u∈[t,t+h]
|F (u)|p

)
·
(
h+ sup

u∈[t,t+h]
|Y (t+ h)− Y (u)|+ sup

u∈[t,t+h]
|F (t+ h)− F (u)|

)
≤ Kt,y,f

(
1 + sup

u∈[t,t+h]
|Y (u)|p + sup

u∈[t,t+h]
|F (u)|p

)
·
(
h+ sup

u∈[t,t+h]
|Y (u)− Y (t)|+ sup

u∈[t,t+h]
|F (u)− F (t)|

)
.

Combining the above estimate with∣∣∣ ∫ t+h

s

e−r(u−s)Ay(u, Y (u), F (u))Y (u)(n−N(u))du

+

∫ t+h

s

Dy(u, Y (u), F (u))Y (u)dN(u)
∣∣∣1{T > t+ h}

≤ K sup
u∈[t,t+h]

|Y (u)|h,

and using the moment estimates from Step 1, we find

Et,y,f,k
[
H1{T > t+ h}

]
≤ Kt,y,fh

3/2. (7.9)

Collecting (7.7), (7.8) and (7.9), we establish the convergence

lim
h→0

Et,y,f,k
[1

h

∫ t+h

t

∣∣∣θ∗,J(s)(s, Y (s), F (s))− ϑ∗,J(s)(s, Y (s), F (s))
∣∣∣ds] = 0. (7.10)
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By the dominated convergence theorem (justified by (7.3) and the moment

estimates from Step 1) and the differentiability of the Lebesgue integral, we

find that

lim
h→0

Et,y,f,k
[1

h

∫ t+h

t

ϑ∗,J(s)(s, Y (s), F (s))ds
]

= ϕky(t, y, f)y + ϕkf (t, y, f)f
σF
σY
ρ. (7.11)

- Step 5: We can now take the limits of the terms on the left hand side

of equation (4.6). We divide the equation (4.6) by h. We deal with the

first term in (4.6). The optimal hedging strategy θ∗B(t,t+h),ϕ(t+h) is given by

(7.2), and the dynamics of the hedging portfolio is given by (3.4). Since

ϕk ∈ C1,2,2([t, t+h]× (0,∞)× (0,∞)) by our assumption, then we can apply

Itô’s formula to derive the dynamics of X [t,t+h]. The dynamics of X [t,t+h] on

[t, t+ h] is given by (5.2). We have

Et,y,f,k
[
X [t,t+h](t+ h)e−rh −X [t,t+h](t)

]
h

=
Et,y,f,k

[
X [t,t+h](t+ h)e−r(t+h) −X [t,t+h](t)e−rt

]
h

ert

=
Et,y,f,k

[ ∫ t+h
t

(
− re−rsX [t,t+h](s)ds+ e−rsdX [t,t+h](s)

]
h

ert. (7.12)

From the proof of Proposition 3.1 we can conclude that the optimal hedging

strategy θ∗B(t,t+h),ϕ(t+h) is square integrable on [t, t+h]. This square integrabil-

ity, together with the growth conditions for D,ϕk and the moment estimates

from Step 1, allows us to conclude that the three stochastic integrals in (5.2)

are martingales with expected values equal to zero. We can write (7.12) as

Et,y,f,k
[
−
∫ t+h
t

e−rsθ∗,J(s)(s, Y (s), F (s))(µY − r)ds
]

h
ert

+
Et,y,f,k

[ ∫ t+h
t

e−rsΨJ(s)(s, Y (s), F (s))ds
]

h
ert, (7.13)

where Ψ collects all the remaining terms. We use (7.10) and (7.11), and

we conclude that the limit h → 0 of the first term in (7.13) is equal to
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−ϑ∗,k(t, y, f)(µY − r). Since the function ϕk satisfies the PDE (5.8), we have

Ψk(s, y, f) = ϕky(s, y, f)y(µ− r) + ϕkf (s, y, f)f
µY − r
σY

σFρ

−Φk
(
ϕkf (s, y, f)fσF

√
1− ρ2, ϕk−1(s, y, f) +D(s, y, f)− ϕk(s, y, f)

)
,

and, using the growth condition for ϕk, we can derive the estimate

|Ψk(s, y, f)| ≤ K
(
1 + |y|2p+2 + |f |2p+2

)
,

By the dominated convergence theorem (justified by (7.14) and the moment

estimates from Step 1) and the differentiability of the Lebesgue integral, we

can derive that the limit for h → 0 of the second term in (7.13) is equal to

Ψk(t, y, f). The limit (5.5) is proved.

- Step 6: We now deal with the second term in (4.6). It is clear that

V ar[ξ] =
(
E[(ξe−rt)2]− (E[ξe−rt])2

)
e2rt. (7.14)

We start with the second term in (7.14). Using the dynamics (5.2), equations

(7.12)-(7.13) and applying the Burkholder-Davis-Gundy inequality, we can
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derive

Et,y,f,k
[

sup
s∈[t,t+h]

∣∣X [t,t+h](s)e−rs −X [t,t+h](t)e−rt
∣∣q]

= Et,y,f,k
[

sup
s∈[t,t+h]

∣∣∣− ∫ s

t

e−ruθ∗,J(u−)(u, Y (u), F (u))(µY − r)du

+

∫ s

t

e−ruΨJ(u−)(u, Y (u), F (u))du

+

∫ s

t

e−ru
(
θ∗,J(u−)(u, Y (u), F (u))− ϑ∗,J(u−)(u, Y (u), F (u))

)
σY dW1(u)

+

∫ s

t

e−ruϕ
J(u−)
f (u, Y (u), F (u))F (u)σF

√
1− ρ2dW2(u),

+

∫ s

t

e−ru
(
ϕJ(u−)−1(u, Y (u), F (u)) +D(u, Y (u), F (u))

−ϕJ(u−)(u, Y (u), F (u))
)
dÑ(u)

∣∣∣q]
≤ KEt,y,f,k

[
h

∫ t+h

t

∣∣θ∗,J(u)(u, Y (u), F (u))
∣∣qdu

+h

∫ t+h

t

∣∣ΨJ(u)(u, Y (u), F (u))
∣∣qdu

+
∣∣∣ ∫ t+h

t

∣∣θ∗,J(u)(u, Y (u), F (u))− ϑ∗,J(u)(u, Y (u), F (u))
∣∣2du∣∣∣q/2

+
∣∣∣ ∫ t+h

t

∣∣ϕJ(u)f (u, Y (u), F (u))F (u)|2du
∣∣∣q/2

+
∣∣∣ ∫ t+h

t

∣∣ϕJ(u)−1(u, Y (u), F (u)) +D(u, Y (u), F (u))

−ϕJ(u)(u, Y (u), F (u))
∣∣2dN(u)

∣∣∣q/2],
for any q ≥ 2. By the growth conditions for A,D, ϕk,Ψk, the moment esti-

mates from Step 1) and the estimates (7.3), (7.5), we can conclude that

Et,y,f,k
[

sup
s∈[t,t+h]

∣∣X [t,t+h](s)e−rs −X [t,t+h](t)e−rt
∣∣q] ≤ Ky,fh, q ≥ 2. (7.15)

The estimate (7.15) and the limit (5.5) now yield

lim
h→0

(
Et,y,f,k

[
X [t,t+h](t+ h)e−r(t+h) −X [t,t+h](t)e−rt

])2
h

e2rt = 0. (7.16)
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We investigate the first term in (7.14):

Et,y,f,k
[∣∣X [t,t+h](t+ h)e−r(t+h) −X [t,t+h](t)e−rt

∣∣2]
= Et,y,f,k

[∣∣X [t,t+h](t+ h)e−r(t+h)
∣∣2

−2X [t,t+h](t+ h)e−r(t+h)X [t,t+h](t)e−rt +
∣∣X [t,t+h](t)e−rt

∣∣2]
= 2Et,y,f,k

[ ∫ t+h

t

(
X [t,t+h](s)e−rs −X [t,t+h](t)e−rt

)
·
(
− re−rsX [t,t+h](s)ds+ e−rsdX [t,t+h](s)

)]
+Et,y,f,k

[ ∫ t+h

t

e−2rsd[X [t,t+h], X t,t+h]](s)
]

:= 2Eh
1 + Eh

2 , (7.17)

where we apply Itô formula to |X [t,t+h](s)e−rs
∣∣2 and use the dynamics of the

discounted process X [t,t+h](s)e−rs.

First, we consider Eh
1 . By (7.5) and the moment estimates from Step

1), we can prove that Et,y,f,k[
∫ t+h
t
|θ∗,J(s)(s, Y (s), F (s))|qds] < ∞ for any

q ≥ 2. This integrability condition together with the growth conditions for

D,ϕk and estimate (7.15) yield that the stochastic integrals with respect to

Brownian motions and the compensated counting process which we have in

Eh
1 , see (5.2), are square integrable martingales and their expected values are

equal to zero. Using (7.13) we have

|Eh
1 | ≤

√
Et,y,f,k

[
sup

s∈[t,t+h]

∣∣X [t,t+h](s)e−rs −X [t,t+h](t)e−rt
∣∣2]

·
√

Et,y,f,k
[

sup
s∈[t,t+h]

|θ∗,J(s)(s, Y (s), F (s))|2 + sup
s∈[t,t+h]

|ΨJ(s)(s, Y (s), F (s))|2
]
h

≤ Ky,f

√
hh,

where in the last line we use the estimates (7.5),(7.15), (7.14) and the moment

estimates from Step 1). Hence, we conclude that

lim
h→0

1

h
Eh

1 = 0. (7.18)

We finally deal with Eh
2 . We can calculate the quadratic variation and we
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find that

Eh
2 = Et,y,f,k

[ ∫ t+h

t

e−2rs
(∣∣θ∗,J(s)(s, Y (s), F (s))− ϑ∗,J(s)(s, Y (s), F (s))

∣∣2
+
∣∣ϕJ(s)f (s, Y (s), F (s))

∣∣2F 2(s)σ2
F (1− ρ2)

+
∣∣ϕJ(s)−1(s, Y (s), F (s)) +D(s, Y (s), F (s))

−ϕJ(s)(s, Y (s), F (s))
∣∣2(n−N(s))λ(s)

)
ds
]
.

As in (7.10), we can deduce that

lim
h→0

Et,y,f,k
[1

h

∫ t+h

t

∣∣θ∗,J(s)(s, Y (s), F (s))− ϑ∗,J(s)(s, Y (s), F (s))
∣∣2ds] = 0.

By the dominated convergence theorem and the differentiability of the Lebesgue

integral, we derive the limit:

lim
h→0

1

h
Eh

2 = e−2rt
((
ϕkf (t, y, f)

)2
f 2σ2

F (1− ρ2)

+
(
ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f)

)2
kλ(t)

)
. (7.19)

We collect (7.14), (7.16)-(7.19) and we get the desired limit (5.6). �

Proof of Theorem 5.2: (i) The representation (5.9) is a Feynman-Kac

formula for the PDEs (5.8). The dynamics of (Y, F, J) under Q̂ are given

by (2.16)-(2.18). By the growth conditions for A,D, S, ϕk,Φk and the mo-

ment estimates from Step 1) in the proof of Theorem 5.1, we can show that

the random variable inside the expected value in (5.9) has finite moments

of all orders under Q̂. Consequently, the process ϕJ(t)(t, Y (t), F (t))e−rt +∫ t
0
e−rsdB(s) +

∫ t
0
e−rsΦ(s)ds is a Q̂-martingale. Since ϕk is smooth, we can

apply Itô’s formula and the drift term of the martingale under Q̂ must be

zero, see also the proof of Proposition 3.1.

(ii) By our assumption, the risk premiums ζV , χV , ζSD, χSD satisfy (2.15)

and, consequently, we can define the equivalent probability measure dQ̃
dQ̂ |FT =

Mζ,χ(T ) for (ζ, χ) ∈ {(ζV , χV ), (ζSD, χSD)}. The dynamics of (Y, F, J) under

Q̃ are given by (2.17)-(2.18). Since EQ̂[|Mζ,χ(T )|l] < ∞ for some l > 1 and
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B(T ) has finite moments of all orders under Q̂, the random variable inside

the expected value in (5.10) has finite moments of all orders under Q̃. We

next proceed as in point (i) and we check that

Φk
(
ϕkf (t, y, f)fσF

√
1− ρ2, ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f)

)
=

1

2
γ
(
ϕkf (t, y, f)fσF

√
1− ρ2ζ(t)

+
(
ϕk−1(t, y, f) +D(t, y, f)− ϕk(t, y, f)

)
kλ(t)χ(t)

)
.

We can also deduce that (A4) is satisfied, see point (iii).

(iii) Let us consider B̃(t) = BY (t) + B(t) where BY is a hedgeable process

and B is an arbitrary process. Let ϕ̃ denotes the valuation operator which

satisfies the PDEs (5.8) for the benefit stream B̃. Similarly, ϕY and ϕ are

the valuation operators for BY and B, respectively. Since BY only depends

on Y , we expect that ϕY,k(t, y, f) = ϕY (t, y) and the PDEs (5.8) reduce to

ϕYt (t, y) + ϕYy (t, y)yr +
1

2
ϕYyy(t, y)y2σ2

Y + A(t, y)− ϕY (t, y)r = 0,

ϕ(T, y) = S(y). (7.20)

By Theorem 1 in Heath & Schweizer (2000) there exists a unique solution to

(7.20) with the representation

ϕY (t, y) = EQ̂
t,y

[ ∫ T

t

e−r(s−t)dBY (s)
]
.

By direct substitution and additivity of derivatives, we can also show that

the functions ψk(t, y, f) = ϕY (t, y) +ϕk(t, y, f) satisfy the PDEs (5.8) for B̃.

Consequently, ψk(t, y, f) = ϕ̃k(t, y, f) and the valuation operator is market-

consistent.

For an orthogonal process BN we expect that ϕB
N ,k(t, y, f) = ϕB

N ,k(t). The

system of PDEs (5.8) reduces to

ϕkt (t) + kA(t) +
(
ϕk−1(t) +D(t)− ϕk(t)

)
kλ(t)− ϕk(t)r

+Φk
(
t, 0, ϕk−1(t) +D(t)− ϕk(t)

)
= 0,

ϕk(T ) = kS. (7.21)
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Clearly, ϕ0(t) = 0. If the PDEs (7.21) have solutions (ϕk)k=1,...,n, which are

derived recursively, then we can conclude that ϕk indeed only depends on

(t, k) and the future claims A,D, S from the benefit stream BN . We now use

(5.9). For the standard deviation risk margin we have

ϕk(t) = EP
t,k

[ ∫ T

t

e−r(s−t)dBN(s)

+
1

2
γ

∫ T

t

e−r(s−t)
∣∣ϕJ(s−)−1(s) +D(s)− ϕJ(s−)(s)

∣∣√J(s−)λ(s)ds
]

= EP
t,k

[ ∫ T

t

e−r(s−t)dBN(s)
]

+RMact
BN (t,T ](t),

and for the variance risk margin we find

ϕk(t) = EP
t,k

[ ∫ T

t

e−r(s−t)dBN(s)

+
1

2
γ

∫ T

t

e−r(s−t)
∣∣ϕJ(s−)−1(s) +D(s)− ϕJ(s−)(s)

∣∣2J(s−)λ(s)ds
]

= EP
t,k

[ ∫ T

t

e−r(s−t)dBN(s)
]

+RMact
BN (t,T ](t),

where in both cases the risk margin valuation operator RMact
BN (t,T ] is actuarial.

More precisely, it takes the form (2.11) and the valuation operator is actuarial

since (2.9) holds. �

Proof of Theorem 5.3: The formula for ϑ∗ is deduced from (7.10) and

(7.11). Using the properties of the valuation operator ϕ discussed in the

proof of Theorem 5.2, we can easily prove that our hedging strategy ϑ∗ is

market-consistent and actuarial. �
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