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Abstract 5 

Alkaline conditions have different impacts on proteins. Firstly, they can impact on the protein structure 6 

which then influences their solubility and other techno-functional properties. The former generally 7 

increases with the difference between pH and pI, and generally increases protein extraction yield. 8 

Secondly, chemical reactions can lead to negative nutritional effects by loss of essential amino acids such 9 

as lysine. Chemical reactions can also lead to additional crosslinks and to (un)desired color and flavor 10 

components. (Pseudo)cereal proteins are often exposed to alkaline conditions e.g. during pretzel 11 

production and extraction of rice and pseudo-cereal protein. 12 
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1. Introduction 16 

Alkaline conditions are used both to extract proteins from cereals and pseudo-cereals and/or to impact 17 

the color, flavor and/or texture of their end products (e.g. pretzels or alkaline noodles). Alkali increases 18 

the protein extraction yield by (1) breaking down the matrix in which the proteins are present and (2) 19 

making the protein more soluble. When further from their pI (generally a 4.5 to 5.0 range), proteins carry 20 

higher charge. This increases their solubility in aqueous media. High pH can however also induce changes 21 

in mostly the tertiary and quaternary structure of proteins and their composition. Changes can also occur 22 

during the often performed acidic precipitation afterwards. On top of that, the changes in structure 23 

and/or composition, including isomerization, crosslinking and degradation often have techno-functional 24 

and nutritional implications. 25 

2. Alkali mediated reactions 26 

2.1. Chemical reactions 27 

When combining alkaline with heat treatments, several amino acids become involved in chemical 28 

reactions. This not only impacts their nutritional value, it also affects the protein complexity as a result of 29 

the formation of more and additional types of crosslinks. An overview of the most important reaction 30 

mechanisms is shown in Figure 1. The occurrence of cross-links in cereal-based food products has recently 31 

been reviewed by Rombouts et al. [1] and Lambrecht et al. [2]. Under alkaline conditions, disulfide (SS) 32 

bond formation through sulfhydryl (SH, pKa of ca. 8.5) oxidation or SH-SS exchange reactions are favored. 33 

Also, β-elimination reactions of SS bonds occur which results in dehydroalanine (DHA) and cysteine 34 

residues. DHA can further react with cysteine to form lanthionine (LAN) or at pH values exceeding pH 10 35 

also with lysine to form lysinoalanine (LAL) cross-links. Lysine is an essential amino acid which is already 36 

limiting in cereals, and especially in wheat gluten [3]. Furthermore, alkaline conditions enhance Maillard 37 

reactions which in some cases lead to cross-link formation [1].  38 



 39 

Figure 1: Overview of some common reactions in or between amino acid ( ) chains which are enhanced 40 

by alkaline conditions. Disulfide (SS) bonds are formed via sulfhydryl (SH) oxidation or SH-SS exchange 41 

reactions. β-elimination reactions form SH and dehydroalanine groups which can further react to 42 

lanthionine (LAN). Lysinoalanine (LAL) is formed under more severe conditions. 43 

2.2. Reactions in model systems 44 

The impact of alkaline conditions on wheat gluten protein model systems has been intensively studied. 45 

Wheat gliadins, the monomeric wheat gluten proteins lacking free SH groups, cross-link through SS and 46 

DHA-derived cross-links during heating at alkaline pH after β-elimination reaction of intramolecular SS 47 

bonds [4]. The rate of the latter increases with pH [5]. Hydrothermal treatment of wheat gluten at pH 8.0 48 

yields to formation of LAN residues while both LAN and LAL residues are formed at pH 13.0 [4]. LAN 49 

formation in gliadin is little affected by pH as DHA has a strong tendency to react with SH groups [5]. Once 50 



free SH groups have been released, gliadin polymerizes according to first-order kinetics. The rate of gliadin 51 

polymerization increases with temperature and pH [6]. Inclusion of increasing levels of alkaline 52 

compounds (NaHCO3, Na2CO3 or NaOH) during wheat gluten extrusion enhances its polymerization, 53 

especially through formation of LAN, and impacts on its hardness, resilience and chewiness [7]. Alkaline 54 

treatment of wheat gluten prior to high-temperature compression molding enhances its cross-linking and 55 

the flexural strength of the formed bio-plastic. However, molding at high pH also degrades gluten [8].  56 

 57 

3. Production of protein isolates and its implications 58 

The main storage proteins in most cereals are prolamins (e.g. gliadins and glutenin subunits in wheat, zein 59 

in maize, hordein in barley) [9]. Prolamins have in general three conserved regions, with repetitive 60 

domains that are differ from species to species. This leads to specific enrichment of certain amino acids 61 

(e.g. histidine, glycine, methionine or phenylalanine) [10]. The three conserved regions are shared with 62 

2S albumins, probably via a common ancestral protein of the prolamin superfamily [9]. Unlike prolamins, 63 

2S albumins are soluble in water, but they lack the repetitive domains in between the conserved regions 64 

[10]. For oats and rice, the main storage proteins are related to the 11/12S globulins family [10]. As the 65 

2S albumins and 11/12S globulins were identified as the main storage proteins in the pseudocereals 66 

quinoa, buckwheat and amaranth [11], it can reasonably be assumed that most pseudo-cereal storage 67 

proteins are related to those in cereals but have different solubilities.  68 

3.1. Cereal protein 69 

The most common procedure to separate wheat (Triticum aestivum L.) storage proteins, i.e. gluten, from 70 

starch are by dough, dough-batter and batter methods. These rely on the network formation of the gluten 71 

proteins (gliadin and glutenin) [12]. However, alkaline extraction can be an option [12] as gluten proteins 72 

are highly soluble at high pH [13]. An optimal yield can be obtained around pH 11 [14]. Not much is known 73 

about changes of gluten during alkaline extractions, but there is evidence of changes of gluten proteins in 74 

other solvents [15, 16]. During alkaline extraction at ambient conditions, the amino acid composition does 75 

not change up to pH 11 [14, 17-19]. Yet, little is known about the effect of alkaline extraction on the 76 

techno-functionality of gluten. Isolates have emulsifying properties which are comparable to or even 77 

better than those of soy isolates [14, 18, 19]. 78 

Alkaline extraction of rice (Oryza sativa L.) protein is commonly used in the rice starch producing industry, 79 

and in some cases in combination with surfactants and peptidases [20, 21]. Even up to 97% of the proteins 80 



of milled rice can be extracted under alkaline conditions [22]. As the proteins are organized in protein 81 

bodies which are tightly associated with starch and bran tissues, additional mechanical and enzymatic 82 

treatments are often also applied [23, 24]. Alkaline extraction can enhance the digestibility and 83 

bioavailability of the rice proteins [25, 26]. Nevertheless, also here nutritional and techno-functional 84 

hazards are at play [21]. 85 

Proteins from barley ( Hordeum vulgare L.), rye (Secale cereale L.) and oat (Avena sativa L.) can also be 86 

extracted under alkaline conditions. Alkaline extraction at pH 11 has a strong effect on the secondary 87 

structure and techno-functional properties of barley proteins [27]. Rye and oat proteins are well soluble 88 

at pH 10.0 (rye) [28] and pH 9.2 (oat) [29]. Maize (Zea mays L.) proteins, mainly zein, are in practice not 89 

extracted in alkali but in alcohol containing media. This is because they contain higher levels of nonpolar 90 

than of charged amino acids. Only at pH of at least 11, zein becomes soluble [30].  91 

 92 

3.2.  Pseudo-cereal protein 93 

The interest in pseudo-cereal protein isolates has recently grown [31, 32]. Today, such isolates are almost 94 

exclusively obtained by alkaline extraction (pH 8.0-11.0) from defatted meal or flour and subsequent 95 

isoelectric precipitation (pH 4.0-5.5) [31]. The storage proteins in pseudo-cereals are related to those in 96 

cereals [11, 33] but have different solubility. In contrast to cereal proteins, those of pseudo-cereals such 97 

as amaranth, buckwheat or quinoa are mainly albumins and globulins [11]. Pseudo-cereals have a well-98 

balanced amino acid composition and higher biological value than most cereal and legume proteins [34].  99 

The alkaline extraction holds more important risks of nutritional losses for pseudo-cereals than for the 100 

already lower nutritional value cereal proteins. Various authors observed a positive linear effect of pH on 101 

protein solubility above the isoelectric point for both amaranth [35] and quinoa [36, 37] proteins. Indeed, 102 

high protein yield (71-76%) [32, 37] and purity (80-90%) [32, 38, 39] were reported when extracting at pH 103 

11.0. However, Ruiz et al. [40] observed an increased protein yield but decreased protein purity with 104 

increasing pH due to non-protein components co-precipitating. It should be noted that most authors 105 

studying the impact of alkaline extraction pH on protein yield and structure also included an additional 106 

isoelectric precipitation step (pH 4.0-5.5) in their protocols. Föste et al. [41] and Ruiz et al. [40] reported 107 

a protein loss of around 20-60% during such precipitation step. On the other hand, Martínez & Añón [39] 108 

and Srivastava & Roy [42] observed similar SDS-PAGE profiles after extraction at pH 9.0 and subsequent 109 



precipitation at pH 4.0-6.0, suggesting only a significant decrease in the amount but not in specific protein 110 

fractions during the precipitation step.  111 

In spite of the high protein yield and purity obtained with alkaline extraction solvents, their application 112 

also leads to extensive protein denaturation. The denaturation temperature (Td) hardly changes with 113 

extraction pH as Martínez & Añón reported only a slight decrease of Td with increasing pH. However, the 114 

denaturation enthalpy significantly decreases with increasing extraction pH [38, 39]. At pH values higher 115 

than 10.0, the degree of denaturation became so high that an endotherm could no longer be observed 116 

for both amaranth and quinoa [38] protein isolates. This is line with an increased degree of molecular 117 

dissociation and aggregation observed with size-exclusion high-performance liquid chromatography, a 118 

decrease in fluorescence emission intensity in combination with a shift of λmax to longer wavelengths, and 119 

an increase in the level of SS bonds, free and exposed SH groups for quinoa proteins extracted at pH 11.0 120 

and 12.0 [36]. In a similar way, extraction of amaranth protein at 11.0 leads to formation of large 121 

aggregates to a large degree based on hydrophobic interactions since they could be solubilized in sodium 122 

dodecyl sulfate containing buffer [39]. Considering this extensive protein denaturation at extreme alkaline 123 

pH conditions, most studies on pseudo-cereal protein isolates use mild alkaline extraction conditions (pH 124 

8.0-9.0), followed by precipitation at pH 4.5-5.5 [35, 38, 40, 43-50]. Several authors agree that protein 125 

denaturation and structural changes caused by alkaline pH result in modified thermal properties [40, 48], 126 

decreased protein solubility [38, 51, 52] and altered emulsifying, foaming [46, 53] and gelation [40, 47] 127 

behavior. However, the exact influence of alkaline extraction pH on protein structure-functional 128 

relationship remains to be investigated. 129 

 130 

4. The impact of alkali on cereal-based food production and products 131 

4.1. Pretzels 132 

Dipping or spraying extruded wheat dough with lye, usually 1.0% sodium hydroxide at about 85 to 93 °C 133 

for 10 to 25 seconds, prior to baking and drying results in pretzels with a unique flavor, hard texture and 134 

shiny surface [54, 55].The alkali treatment enhances protein hydrolysis, lowers the levels of reducing 135 

sugars, dissociates amylose-lipid complexes and gelatinizes starch granules at the dough surface [55]. In 136 

addition, it enhances protein network formation mainly through SS bonds and slightly by LAN cross-links 137 

[56]. Despite the high impact on flavor and color [55, 56], Maillard reactions cause little protein cross-138 

linking in alkaline-dipped pretzel dough. Baking further increases protein network formation in pretzels. 139 



Next to SS bonds, non-SS cross-links such as LAN and LAL impact the covalent protein network in baked 140 

pretzels [1, 56]. Dipping at higher temperatures, longer times or higher concentrations of sodium 141 

hydroxide increases protein cross-linking of alkaline-dipped dough and increases the levels of LAN and LAL 142 

in baked pretzels [56]. The covalent protein network of pretzels from dough dipped in water contains no 143 

LAN or LAL and is less developed than that of pretzel dough dipped in lye [56]. Furthermore, pretzels from 144 

water-dipped dough require more force to break than those from alkaline-dipped dough [55]. 145 

4.2. Alkaline noodles 146 

Kansui, usually a mixture of sodium and potassium carbonate, contributes to the flavor, texture and yellow 147 

color of alkaline noodles. About 1.0-1.5% kansui is used in fresh (i.e. uncooked) alkaline noodles resulting 148 

in pH values ranging from 9 to 11 depending on the type of alkaline salt and ionic strength used [57]. 149 

During noodle production and cooking, these levels of kansui enhance intermolecular SS bond formation 150 

in sheeted [58] or extruded noodles [59]. Also in other types of noodles low levels of alkaline salts (0.1%-151 

0.3%) can be used as quality improver [57]. While low kansui levels enhance SH-SS exchange reactions 152 

during cooking, high kansui levels additionally enhance LAN and LAL cross-linking [58]. Also in buckwheat 153 

containing noodles, the inclusion of alkali salts in the recipe enhances the formation of a more continuous 154 

protein network through SS and non-SS cross-links [60]. Kansui also increases the firmness and cooking 155 

loss of cooked noodles made with wheat [58, 61] or buckwheat [60]. In addition, alkali enhances the 156 

rheological properties of both wheat [61] or buckwheat containing fresh noodles [60].  157 

4.3. Tortillas 158 

For the preparation of tortillas, maize is treated in 1% Ca(OH)2 at high temperatures (hot lime) for many 159 

hours [62]. This process is called nixtamalization and aims to remove the pericarp. Nixtamalization 160 

however also affects the protein bodies [63]. The effect on the end product is that the treatment provides 161 

a typical ‘lime’ flavor, aroma and color [64]. Nevertheless, the alkaline treatment also leads to nutritional 162 

losses by the formation of LAL [65].  163 

5. Perspectives 164 

Alkaline conditions enhance protein unfolding and aggregation. Especially during heating, they favor the 165 

formation of SS bonds and DHA-derived cross-links. The consumption of the essential amino acid lysine in 166 

LAL formation decreases the nutritional value of protein. Both during extraction of proteins or heating 167 

food products, alkaline conditions impact the structure of (pseudo)-cereal proteins and thereby their 168 

functionality. In pretzels and noodle production, alkali enhances both covalent protein network formation 169 



and the quality (e.g. taste, color, texture) of the end product. Alkali is very effective at obtaining high 170 

extraction yields from pseudo-cereals and cereals. Research on the structure-function relationship of 171 

(pseudo-)cereal proteins can enhance the proper use of alkaline salts or alkali-extracted proteins as food 172 

ingredients. 173 
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