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Abstract: Purpose/objective: Precise delineation of organs at risk (OARs) 

in head and neck cancer (HNC) is necessary for accurate radiotherapy. 

Although guidelines exist, significant interobserver variability (IOV) 

remains. The aim was to validate a 3D convolutional neural network (CNN) 

for semi-automated delineation of OARs with respect to delineation 

accuracy, efficiency and consistency compared to manual delineation.  

 

Material/Methods: 16 OARs were manually delineated in 15 new HNC patients 

by two trained radiation oncologists (RO) independently, using 

international consensus guidelines. OARs were also automatically 

delineated by applying the CNN and corrected as needed by both ROs 

separately. Both delineations were performed two weeks apart and blinded 

to each other. IOV between both ROs was quantified using Dice similarity 

coefficient (DSC) and average symmetric surface distance (ASSD). To 

objectify network accuracy, differences between automated and corrected 

delineations were calculated using the same similarity measures.  

 

Results: Average correction time of the automated delineation was 33% 

shorter than manual delineation (23 vs 34 minutes)(p<10-6). IOV improved 

significantly with network initialisation for nearly all OARs (p<0.05), 

resulting in decreased ASSD averaged over all OARs from 1.9 to 1.2 mm. 

The network achieved an accuracy of 90% and 84% DSC averaged over all 

OARs for RO1 and RO2 respectively, with an ASSD of 0.7 and 1.5 mm, which 

was in 93% and 73% of the cases lower than the IOV. 

 

Conclusion: The CNN developed for automated OAR delineation in HNC was 

shown to be more efficient and consistent compared to manual delineation, 

which justify its implementation in clinical practice. 
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Dear Editor-in-Chief, 
 
We are pleased to submit our original research paper entitled “Benefits of deep learning for delineation 
of organs at risk in head and neck cancer” by Julie van der Veen, Siri Willems, Sarah Deschuymer, David 
Robben, Wouter Crijns, Frederik Maes, and Sandra Nuyts for consideration for publication in Radiotherapy 
and Oncology.   
 
In this manuscript, we validated the use of a convolutional neural network for delineation of organs at 
risk  in head and neck cancer. This network was based on manual delineation of 16 organs at risk in 70 
patients, using international consensus guidelines of Brouwer et al. (2015) and Christianen et al. (2011). 
We showed that this network performs well, creating delineations that only need small corrections 
before they can be used for treatment planning. In addition to this, delineation of organs at risk is more 
time efficient and results in less interobserver variability between experiences radiation oncologists.  
 
We believe that this manuscript is appropriate for publication by Radiotherapy and Oncology because 
the guidelines used for creating the network were also published in the Green Journal. Artificial 
intelligence is a hot topic and here we show its clinical implications. We anticipate that this manuscript is 
not only timely, but will also appeal to a wide readership.  
 
This manuscript has not been published and is not under consideration for publication elsewhere and we 
declare that it comprises original unpublished work. All authors have agreed with submission in its 
present form. All authors declare that they have no competing interests.    
 
If you feel that the manuscript is appropriate for your journal, we suggest professor dr. Jesper Eriksen 
(Aarhus University Hospital) because of his expertise in radiotherapy and head and neck cancer and his 
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Abstract 14 

Purpose/objective: Precise delineation of organs at risk (OARs) in head and neck cancer (HNC) is necessary for 15 
accurate radiotherapy. Although guidelines exist, significant interobserver variability (IOV) remains. The aim 16 
was to validate a 3D convolutional neural network (CNN) for semi-automated delineation of OARs with respect 17 
to delineation accuracy, efficiency and consistency compared to manual delineation.  18 
 19 
Material/Methods: 16 OARs were manually delineated in 15 new HNC patients by two trained radiation 20 
oncologists (RO) independently, using international consensus guidelines. OARs were also automatically 21 
delineated by applying the CNN and corrected as needed by both ROs separately. Both delineations were 22 
performed two weeks apart and blinded to each other. IOV between both ROs was quantified using Dice 23 
similarity coefficient (DSC) and average symmetric surface distance (ASSD). To objectify network accuracy, 24 
differences between automated and corrected delineations were calculated using the same similarity 25 
measures.  26 
 27 
Results: Average correction time of the automated delineation was 33% shorter than manual delineation (23 vs 28 
34 minutes)(p<10-6). IOV improved significantly with network initialisation for nearly all OARs (p<0.05), 29 
resulting in decreased ASSD averaged over all OARs from 1.9 to 1.2 mm. The network achieved an accuracy of 30 
90% and 84% DSC averaged over all OARs for RO1 and RO2 respectively, with an ASSD of 0.7 and 1.5 mm, 31 
which was in 93% and 73% of the cases lower than the IOV. 32 
 33 
Conclusion: The CNN developed for automated OAR delineation in HNC was shown to be more efficient and 34 
consistent compared to manual delineation, which justify its implementation in clinical practice. 35 
  36 
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Introduction 37 

 38 
Ranked as the seventh most common cancer and cause of cancer death worldwide, the burden of 39 
head and neck cancer (HNC) on society and the health sector should not be underestimated [1]. 40 
Radiotherapy (RT) plays an important role in the curative treatment of HNC and allows organ 41 
preservation and improved function preservation in selected cases, compared to surgery. 42 
Intensification of RT regimens by means of altered fractionation and concomitant chemotherapy 43 
have been beneficial for overall survival and loco-regional control [2,3], although disease recurrence 44 
remains an issue [4,5]. At the same time, intensification of RT regimens has induced an increase in 45 
acute and late toxicity, limiting further treatment intensification [6]. To compensate for this, 46 
implementation of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy 47 
(VMAT) have allowed the dose delivered to the tumour to be shaped, resulting in better sparing of 48 
normal and critical tissue, decreasing toxicity [7]. Proton therapy has the potential to spare organs at 49 
risk (OARs) even more due to its more favourable dose-depth characteristics, including a sharp 50 
localized high dose delivery at the Bragg peak, with a low exit dose [8]. Adaptive radiotherapy, with 51 
the intention of sparing normal tissue even better and still provide sufficient coverage of target 52 
volumes (TVs) is also finding its way to RT centres worldwide. 53 
 54 
The drawback of these newer techniques however, is that delineation is time consuming due to the 55 
complex head and neck anatomy. Delineation of OARs alone can take up to one hour, and of TVs up 56 
to two hours [9], which will be more for unexperienced radiation oncologists (ROs). On top of that, 57 
correct delineation is essential for optimal treatment planning and is one of the weakest links in the 58 
chain of actions needed to treat a patient with RT. Firstly, it is mainly performed manually and 59 
therefore susceptible to intra- and inter-observer variability (IOV) [10]. Secondly, variations in OAR 60 
delineation may influence the treatment plan, including the dose to OARs, which can also impact 61 
results of multicentre trials [11–13]. Thirdly, delineation errors remain present during the entire RT 62 
course so their impact can be larger than expected. IOV in TV and OAR delineation affect quality of 63 
RT, treatment outcomes and evaluation of clinical research [14,15]. The introduction of delineation 64 
guidelines for OARs has improved IOV [16], although Brouwer et al. [10] showed that there was still 65 
room for improvement.  66 
 67 
In previous research, automated segmentation using machine learning approaches has been widely 68 
investigated to overcome drawbacks of manual segmentation procedures in medical imaging [17]. 69 
Available algorithms in current RT software are mainly atlas-based methods, which incorporate prior 70 
knowledge in the form of atlases and are registered to the daily images using deformable image 71 
registration (DIR). In particular for HNC patients, atlas-based models achieved acceptable results for 72 
segmentation of OARs [18,19]. Recently, deep learning approaches based on convolutional neural 73 
networks are gaining popularity thanks to their successes in many segmentation tasks in medical 74 
imaging [20,21], including RT [22–25].  75 
 76 
Precise delineation of OARs in HNC is necessary for accurate radiotherapy treatment planning, 77 
correct interpretation of dose volume histograms (DVH) and reduction of therapeutic variability. The 78 
aim of this study was to evaluate the potential of a 3D convolutional neural network (CNN) for 79 
automated delineation of OARs most commonly delineated in HNC patients, which could 80 
significantly reduce delineation time and the burden of human intervention and IOV. The clinical 81 
implementation of the validated automated delineation tools could eventually result in a shorter 82 
interval between simulation and start of RT, affect treatment capacity and facilitate paradigm shifts 83 
such as online adaptive planning. 84 
 85 
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Methods 86 

Data acquisition 87 

Patients were recruited between August and November 2018 and included consecutive patients 88 
with a newly diagnosed HNC, scheduled for RT and without total laryngectomy. In total, 15 patients 89 
were included in the study (see Table 1 for patient characteristics). Each patient underwent a 90 
contrast-enhanced planning CT scan in the supine position with custom thermoplastic mask 91 
for immobilization, according to the conventional clinical protocol. The CT images were made on a 92 
multidetector-row spiral CT scanner (Somatom Sensation Open, 40 slice configuration; Siemens 93 
Medical Solutions, Erlangen, Germany). The acquisition parameters were: 120 kvP / 230 mAs (quality 94 
reference mAs with CARE Dose4D), no gantry tilt, spiral mode, rotation time 1s, 40 detector rows at 95 
0.6mm intervals, table speed 21.6mm/rotation (pitch=0.9), reconstruction interval 3mm using 96 
Kernel B30s medium smooth, matrix size 512×512, pixel spacing 0.97×0.97mm. 97 
 98 

3D convolutional neural network 99 

A 3D CNN was previously developed and trained for automated delineation of 16 OARs in planning 100 
CT images of HNC patients based on a training set of 70 cases delineated according to international 101 
consensus guidelines [26,27] (see appendix A for more details). This CNN was applied to all 15 102 
images in this study. The computation time needed by the CNN to automatically delineate all 16 103 
OARs was about 3 minutes per image [28]. We refer to the original, unmodified delineations 104 
generated by the CNN as “automated delineations” further on.  105 
 106 

Study design 107 

Two ROs (JV and SD), well trained in delineation of OARs for HNC RT and familiar with the 108 
delineation guidelines [26,27], each delineated the 16 OARs on all 15 CT scans twice using Eclipse 109 
(Varian Medical Systems, Palo Alto, CA) in 2 separate, uninterrupted sessions for each patient: once 110 
manually (“manual delineations”) and once by modifying and correcting the presented automated 111 
delineations generated by the CNN (“corrected delineations”) (Figure 1). The 2 delineation sessions 112 
by the same RO for the same patient were performed with an average interval of 15.5 days, with 113 
manual delineations being performed in the 1st session for about half of the cases and in the 2nd 114 
session for the other half, and blinded for any other delineation result to avoid observer bias. All 115 
delineations were verified and approved without modification by a third expert in HNC RT (SN) to 116 
ensure their clinical validity. 117 
 118 

Validation 119 
The benefits of the use of a CNN based automated delineation tool in clinical practice were assessed 120 
in terms of its accuracy, impact on IOV and time efficiency.  121 
 122 

Accuracy 123 

The accuracy of the automated delineation tool was assessed for each 3D OAR separately by 124 
comparing it to the corrected delineations using the Dice Similarity Coefficient (DSC) and the 125 
Average Symmetric Surface Distance (ASSD). DSC is a measure for the overlap between two 126 
delineations A and B, yielding a value of 1 in case of perfect overlap and a value of 0 if no overlap: 127 

       
      

       
 

 128 
with     and     the volumes of each delineation and       the volume of their intersection. ASSD 129 
represents the mean distance between two delineations A and B in mm:  130 
 131 

           
             

 
 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immobilization
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 132 
           

     
    
    

          

 133 
with        the 3D distance between point a on delineation A and point b on delineation B. Both 134 
DSC and ASSD provide an indication for the amount of corrections necessary for clinical approval.  135 
 136 

Variability 137 
The impact of the use of the automated delineation tool on IOV between different observers was 138 
assessed for each 3D OAR separately by computing DSC and ASSD between the manual delineations 139 
and between the corrected delineations made by both ROs (with larger DSC and smaller ASSD 140 
indicating less IOV). In addition, IOV for the same observer was assessed by comparing manual 141 
delineations and corrected delineations made by the same RO.  142 
 143 

Efficiency 144 
The efficiency of the automated delineation tool was quantified by comparing the time needed for 145 
manual delineation to the time needed for correction of the automated delineations. Both ROs 146 
recorded the total delineation time per patient for each of the 2 delineation sessions. This included 147 
the time for adjusting window settings, navigating between slices and creating or correcting all 148 
delineations for all 16 OARs. 149 
 150 
Statistical Analysis 151 
Statistically significant differences for DSC and ASSD were assessed with a two-sided, paired 152 
Wilcoxon signed rank test, using significance level α=0.05. To asses reduction in delineation time, a 153 
one-sided, Wilcoxon signed rank test was used, using significance level α=0.05. 154 

Results 155 

Accuracy 156 
Examples of manual and automated delineations are shown in Figure 2. Mean DSC and ASSD for 157 
automated versus corrected delineations for each OAR are summarised in Table 2. Based on DSC, 158 
the network performed best for brainstem, left cochlea, mandible, parotid glands, submandibular 159 
glands and spinal cord (DSC>90%). The average corrections necessary for clinical acceptance were 160 
below 1 mm for cochleae, glottic larynx, mandible, right parotid gland, middle pharyngeal 161 
constrictor muscle (PCM) and right submandibular gland (ASSD<1mm). Average corrections for all 162 
other structures were below 2 mm.  163 
 164 
Figure 3 plots for each 3D OAR separately the extent of the corrections made to the automated 165 
delineations versus IOV of the manual delineations, both quantified by ASSD, which shows that the 166 
accuracy of the automated delineation tool was better than the manual delineation variability for 167 
most OAR (grey shaded area; RO1: 93% of OARs; RO2: 72%). 168 
 169 

Observer variability 170 

Table 3 represents IOV (intra and inter) as assessed by DSC and ASSD. IOV for the corrected 171 
delineations is significantly lower than IOV for the manual delineations for almost all OARs. The left 172 
cochlea did not show a significant reduction in IOV with DSC and both cochleae showed no 173 
improvement with ASSD. The oral cavity and brainstem showed no significant improvement in DSC 174 
but ASSD reduced significantly. For most OARs, IOV for the corrected  delineations is smaller than 175 
intra-observer variability.  176 
 177 
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Time  178 

The time needed to correct the automated delineations was for both ROs significantly shorter than 179 
the time needed for manual delineation (RO1: 17 vs 30 minutes; RO2: 27 vs 38 minutes; mean: 23 vs 180 
34 minutes, p<10-6). Manual delineation time per patient ranged from 22 to 44 minutes, correction 181 
time ranged from 13 to 33 minutes, and time gain ranged from 6 to 19 minutes (33% on average).  182 

Discussion 183 

 184 
The aim of this study was to evaluate the benefits for clinical practice of the use of an automated 185 
delineation tool with respect to delineation accuracy, efficiency and reduction of IOV. Automated 186 
delineation was performed by a 3D CNN, which was trained using manual expert delineations of 16 187 
OARS of HNC patients in agreement with international consensus guidelines of Brouwer et al. [26] 188 
and Christianen et al. [27].  189 
 190 
Increased delineation efficiency by the use of the tool was demonstrated by the reduction in the 191 
time needed to correct the automated delineations versus the time needed for manual delineation. 192 
Even though one of the ROs was faster in both manual delineation and correction of automated 193 
delineations, both ROs delineated faster using the automated delineations. The average time 194 
needed per patient to verify and correct the complete 3D delineations for all 16 OARs together was 195 
23 minutes, but could be as short as 13 minutes, i.e. less than 1 minute per 3D structure.  196 
 197 
The accuracy of the CNN was examined by comparing the automated delineations to the corrected 198 
delineations. Table 2 shows that overall only small corrections needed to be made for the 199 
delineations to be clinically acceptable (ASSD<1.1 mm on average). Figure 3 shows that for most 200 
OARs, the differences between the automated and the corrected delineations were smaller than 201 
interobserver variability obtained with manual delineation, i.e. the delineation variability as typically 202 
observed in clinical practice. Two sets of outliers can be observed in Figure 3. A first set of outliers, in 203 
the top left corner, involves few automated delineations that needed relatively large corrections 204 
(between 4 and 6 mm on average) for some individual OARs, namely one left-sided submandibular 205 
gland (1), one left parotid gland (2), one inferior PCM (3) and one supraglottic larynx (4). For outliers 206 
(1) and (2), this was due to nearby enlarged lymph nodes, which were mistakenly delineated in the 207 
same volume as the OARs. For outlier (3), this patient had a low supraglottic larynx tumour 208 
originating in the left ary-epiglottic fold. Outlier (4) was a patient with an oropharyngeal tumour, 209 
invading the base of tongue, which made delineation of the cranial part of the supraglottic larynx 210 
challenging. The CNN thus sporadically showed some difficulty with adenopathies or primary 211 
tumours near OARs. Scatter due to dental fillings did not impact the accuracy as illustrated in Figure 212 
2, likely because such artefacts were also present in some of the images in the training set. 213 
 214 
A second set of outliers, in the bottom right corner of Figure 3, involves the spinal cord, which shows 215 
a large IOV between the manual delineations and large differences in the corrections made by RO2. 216 
Upon inspection of the contours, it was found that different cranial and caudal borders were used by 217 
the ROs. According to the guidelines, the cranial border of the spinal cord should be the tip of the 218 
dens of C2, but the ROs differed on the tip location from 1-3 CT slices (3-6 mm difference). The 219 
caudal border of the spinal cord showed even more variation between ROs, from the bottom of the 220 
CT scan to the cranial border of T3 (30-93 mm difference). According to the guidelines, the caudal 221 
border of the spinal cord should reach to the upper edge of T3, although for caudal tumours it 222 
should reach 5 cm under the planning target volume (PTV). To accommodate for these different 223 
cases, the CNN was trained to delineate the spinal cord to the most caudal slice of the planning CT 224 
scan. One of the ROs systematically corrected the automated delineations with respect to the caudal 225 
border of the spinal cord, while the other did not. On axial planes, however, no differences in spinal 226 
cord delineations were observed, as illustrated in Figure 2.  227 
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 228 
As shown in Table 3, IOV as quantified by DSC and ASSD reduced significantly for most OARs by using 229 
automated delineations. ASSD decreased significantly for all OARs, except for both cochlea, which 230 
are very small structures (~ 1 ml) for which DSC and ASSD are very susceptible to small delineation 231 
differences. DSC did not improve significantly for brainstem and oral cavity, while ASSD did. This is 232 
because DSC is volume dependent and for these large OARs only large delineation differences will 233 
impact DSC. Moreover, IOV between manual delineations was already small for oral cavity when 234 
measured with DSC (94% on average) and an improvement in DSC to 96% using the automated 235 
delineations was therefore not significant. The spinal cord unexpectedly showed one of the worst 236 
DSC and ASSD results compared to the other OARs. This is mainly due to the difference in caudal 237 
border chosen by one of the ROs as already explained above, resulting in an underestimation of the 238 
benefit of automated delineation on IOV for this structure. However, this difference is not clinically 239 
relevant: even though it has an influence on DVH, it has no impact on plan creation, evaluation and 240 
acceptance because the maximum (Dmax) and not the average dose (Dmean) to the spinal cord is taken 241 
into account. In a serial OAR, like the spinal cord, loss of function in one part will cause the entire 242 
organ to stop functioning. A high dose to a small volume can cause serious toxicity and therefore the 243 
risk of damage is dominated by Dmax. In a parallel OAR like the salivary glands, loss of function in one 244 
part of the OAR can be compensated by an unaffected part. Therefore, there is a threshold 245 
volume effect and the risk of injury, in this case resulting in xerostomia, is dominated by 246 
the Dmean over the whole OAR. Mucosa, like that of the oral cavity, is neither serial nor parallel, but 247 
behaves clinically like a parallel OAR, as desquamation of a large area of mucosa is more problematic 248 
than a small area [29]. The requirements and importance of correct OAR delineation and its impact 249 
on treatment planning thus depends on the type of OAR. 250 
 251 
Automated delineation of OARs on HNC planning CT scans using a CNN was previously investigated 252 
by Ibragimov et al. [21]. They concluded that their method performed better or comparable to state-253 
of-the-art algorithms and commercial software for spinal cord, mandible, larynx and pharynx, and 254 
inferior for parotid- and submandibular glands. The average DSCs they found ranged between 69% 255 
and 90%, for pharynx and mandible respectively. Our CNN outperformed their results for all OARs, 256 
except for spinal cord (DSC 87% vs 76%). However, Ibragimov et al. did not delineate the spinal cord 257 
itself but the spinal canal, which is the bony structure through which the spinal cord runs and which 258 
is easier to detect and delineate than the spinal cord. Moreover, their DSC values were only 259 
calculated on the length of the spinal cord that could be affected during treatment, whereas in our 260 
study the entire delineated structure was considered.  261 
 262 
The main strength of our study is the use of international consensus guidelines [26,27] to train the 263 
CNN to delineate a large number of OARs (16), including the different PCMs and laryngeal sub-264 
volumes. In case delineation guidelines were to be modified in the future, the CNN could be easily 265 
retrained to adapt to these changes. A possible limitation is that the contours used to train the CNN 266 
in this study were delineated by only one RO, possibly introducing some observer bias despite 267 
following consensus guidelines. Nevertheless, the use of the automated delineation tool was shown 268 
to result in a shorter delineation time for both ROs in this study and in less IOV between them.  269 
 270 
The implementation of this tool in clinical practice could be especially beneficial to ROs in training to  271 
reduce delineation time, and facilitate the recognition of OARs, thus benefitting training and 272 
resulting in a steeper learning curve. Moreover, with more efficient OAR delineation, more time 273 
could be spent on other aspects of RT, such as delineation of TVs and clinical follow-up of patients. 274 
Automated delineation is also very relevant for adaptive RT regimens. When patient anatomy or 275 
tumour volume change during treatment, re-contouring is very labour-intensive and automated 276 
delineation could make this process significantly more efficient. Although with photon therapy not 277 
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all HNC patients are eligible for adaptive RT, the need for adaptive RT will presumably be higher for 278 
proton therapy [30,31].  279 

 280 

Conclusion 281 

Validation in clinical setting of a CNN trained for automated delineation of OARs in HNC patients 282 
based on international consensus guidelines showed that automated delineation is not only 283 
significantly more efficient than manual delineation, but also reduces IOV. The automated 284 
delineations mainly require only minor corrections to be approved for treatment planning.   285 
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Table 1: Tumour site and TNM staging for the 15 HNC patients in the study. 

 Patient Site T N p16 

1 oropharynx 4a 3b NS 

2 parotid left (postoperative) 4a 2b 

 3 supraglottic 2 3b 

 4 oropharynx 1 1 + 

5 oropharynx + hypopharynx 2 / 4 0 / 2b - 

6 oral cavity  1 2b 

 7 oropharynx 2 1 - 

8 oropharynx 3 2 + 

9 oral cavity (postoperative) 2 N2c 

 10 oropharynx (postoperative) 2 1 + 

11 hypopharynx 2 1 

 12 oropharynx 1 1 + 

13 oropharynx 4 2 + 

14 larynx 4a 0 

 15 larynx 3 0   

 

Abbreviations: TNM: tumour staging according to the TNM-8 staging system (2017); T: clinical tumour stage; N: clinical 
nodal stage; p16: p16 protein expression, correlated with human papilloma virus status; NS: not specified 

 

Table 1



Table 2: Evaluation of accuracy of CNN based automated OAR delineation as perceived by each observer (Acc1, Acc2). The 
automated delineation is compared to the corrected delineation made by each observer (RO1, RO2) for each 3D OAR 
separately by computing their DSC and ASSD. Volumes for manual, automated and corrected OAR delineations are reported 

as well. All values are reported as mean  STD for all patients (n=15) and for both observers for manual and corrected 
volumes.  

 Acc1 (RO1) Acc2 (RO2) Volume (ml) 

OARs DSC  
(%) 

ASSD 
(mm) 

DSC  
(%) 

ASSD 
(mm) 

Manual Automated Corrected 

Brainstem 94.9±2.1 0.7±0.2 98.1±1.6 1.7±0.6 228.8±44.4 263.1±32.4 231.1±41.7 

Cochlea left 98.7±1.1 0.1±0.1 95.1±7.2 1.1±0.5 0.8±0.2 1.6±0.6 1.2±0.4 

Cochlea right 96.4±8.4 0.2±0.2 80.0±25.8 1.1±0.4 1.0±0.3 1.4±0.7 1.2±0.4 

U Esophagus 83.1±17.2 1.3±0.9 79.3±17.9 2.0±1.3 49.4±17.8 49.8±17.5 49.4±14.7 

Glottic larynx 76.8±16.1 0.7±0.6 64.4±14.7 1.3±0.6 38.0±15.9 26.6±11.4 35.8±15.7 

Mandible 98.8±0.6 0.2±0.1 91.2±2.2 0.7±0.2 620.2±106.2 596.5±116.7 619.3±117.2 

Oral cavity 93.1±7.3 1.3±0.8 85.4±10.1 2.1±1.0 1040.0±196.3 1025.3±234.0 1087.8±223.6 

S Glottic larynx 74.2±23.7 1.5±1.1 67.1±23.5 2.1±1.3 160.6±49.5 124.2±47.9 156.8±45.0 

PG left 96.1±2.9 0.9±1.1 93.4±5.3 1.3±1.3 276.9±86.1 275.5±81.1 276.5±86.5 

PG right 96.1±3.3 0.5±0.3 92.9±5.2 0.9±0.5 303.1±104.0 281.7±88.4 290.3±95.7 

PCM inferior 80.1±23.7 1.3±1.3 71.3±21.0 1.7±1.1 43.8±9.7 41.7±15.9 44.4±13.3 

PCM middle 84.1±1.0 0.6±0.3 76.4±10.0 1.1±0.4 50.3±17.9 43.2±13.8 48.2±16.7 

PCM superior 82.9±15.4 0.8±0.5 75.5±13.0 1.2±0.4 84.4±25.2 73.5±26.4 80.3±21.0 

SG left 96.5±4.9 1.0±1.2 91.4±8.3 1.4±1.2 91.1±28.5 90.3±41.0 87.7±27.9 

SG right 98.2±2.7 0.3±0.2 95.1±7.0 0.6±0.6 92.7±31.5 77.2±31.3 85.4±28.4 

Spinal cord 97.8±3.1 0.2±0.2 92.8±3.6 3.6±2.3 136.3±23.7 166.8±32.8 152.2±28.5 

Abbreviations: OARs: organs at risk; DSC: Dice similarity coefficient; ASSD: average symmetric surface distance; STD: 
standard deviation; RO: radiation oncologist; PCM: pharyngeal constrictor muscles; PG: parotid gland; SG: submandibular 
gland; U: upper; S: supra. 
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Table 3: Evaluation of intra- and inter-observer variability between the manual and the corrected automated OAR 
delineations. Intra-observer variability (IOV1, IOV2) is assessed by comparing the manual to the corrected delineations for 
each 3D OAR for either observer separately (RO1, RO2) using DSC and ASSD. Inter-observer variability (IOVm, IOVc) is 
assessed by comparing the delineations of RO1 to those of RO2 for each 3D OAR for the manual and corrected delineations 

separately. All values are reported as mean  STD for all patients (n=15). Statistically significant differences (p < 0.05) in 
inter-observer variability for the corrected versus the manual delineations (IOVc vs IOVm) are indicated in bold. 

 Intra (manual vs corrected) Inter (RO1 vs RO2) 

  IOV1 (RO1) IOV2 (RO2) IOVm (manual) IOVc (corrected) 

 DSC (%) ASSD 
(mm) 

DSC (%) ASSD 
(mm) 

DSC (%) 
ASSD 
(mm) 

DSC (%) 
ASSD 
(mm) 

Brainstem 90.0±4.1 1.6±0.2 90.4±3.8 1.4±0.4 68.1±11.7 2.2±0.5 70.8±11.9 1.6±0.6 

Cochlea left 57.5±20.0 1.2±0.4 71.1±17.9 0.7±0.3 48.7±13.4 1.1±0.3 53.9±17.7 1.1±0.5 

Cochlea right 72.2±19.3 1.1±0.3 69.0±17.8 0.8±0.3 51.4±12.0 1.1±0.4 63.3±19.8 1.0±0.4 

U Esophagus 81.1±11.3 1.6±0.3 77.4±18.1 1.5±0.6 64.3±15.3 2.0±0.6 79.3±16.5 1.1±0.7 

Glottic larynx 88.2±4.8 1.1±0.2 81.8±15.6 1.0±0.3 73.1±17.8 1.4±0.4 89.8±9.0 0.9±0.3 

Mandible 91.9±4.3 1.2±0.2 95.4±3.1 0.7±0.2 93.7±2.9 1.2±0.2 98.8±1.4 0.7±0.2 

Oral cavity 84.7±7.5 2.5±0.4 91.5±6.0 2.0±0.7 94.0±4.7 2.9±0.6 96.2±3.2 1.6±0.7 

S Glottic larynx 87.7±5.4 1.5±0.2 87.1±10.0 1.4±0.5 86.3±10.9 1.8±0.4 93.9±3.2 1.3±0.4 

PG left 81.3±22.2 1.8±0.5 83.8±22.8 1.5±0.4 88.8±3.4 1.7±0.1 93.7±5.2 0.8±0.6 

PG right 88.0±5.9 1.9±0.4 91.2±3.9 1.5±0.5 89.1±3.3 1.8±0.3 95.1±3.8 0.7±0.4 

PCM inferior 79.2±7.3 1.8±0.3 82.0±7.9 1.5±0.4 76.0±8.2 1.7±0.3 87.7±7.8 1.2±0.5 

PCM middle 75.8±8.8 1.5±0.2 78.3±7.9 1.2±0.4 71.5±7.2 1.5±0.2 86.4±8.2 0.8±0.3 

PCM superior 70.0±10.4 1.8±0.3 69.8±13.0 1.5±0.5 53.5±8.0 2.1±0.3 77.6±12.7 1.2±0.5 

SG left 77.5±30.5 1.6±0.3 78.9±31.2 1.3±0.4 86.5±6.5 1.5±0.2 92.7±7.9 0.8±0.6 

SG right 79.0±31.3 1.5±0.2 80.2±32.0 1.3±0.4 88.4±3.9 1.4±0.2 96.0±5.3 0.4±0.6 

Spinal cord 77.6±6.7 1.2±0.2 84.9±6.5 1.1±0.4 70.8±6.8 4.4±1.9 75.7±6.5 3.7±2.3 

Abbreviations: OARs: organs at risk; DSC: dice similarity coefficient; ASSD: average symmetric surface distance; STD: 
standard deviation; RO: radiation oncologist; PCM: pharyngeal constrictor muscles; PG: parotid gland; SG: submandibular 
gland; U: upper; S: supra. 
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Figure 1: Overview of study design. Automated delineations (A) of 16 OARs in conventional planning CT images of 15 HNC 
patients were corrected by 2 different ROs (RO1: C1, RO2: C2) and were also manually delineated by the same ROs (RO1: 
M1, RO2: M2) in different delineation sessions. Accuracy of automated delineation was assessed by comparing automated 
and corrected contours for each RO (Acc1: C1 vs A, Acc2: C2 vs A). Intra-observer variability was assessed by comparing 
corrected and manual delineations by the same RO (IOV1: C1 vs M1, IOV2: C2 vs M2). Inter-observer variability was assessed 
by comparing corrected and manual delineations by different ROs (IOVc: C1 vs C2, IOVm: M1 vs M2). 
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Figure 1: Illustration of intra- and inter-observer variability between manual delineations (Am - Cm) and corrected 
delineations (Ac - Cc),  for both observers (RO1, RO2). Notice a decrease in IOV in Ac compared to Am, and Bc compared to Bm, 
even with scatter artefacts. The decrease in IOV observed in Cc compared to Cm is due to a difference in delineation by RO2, 
independent of the network. Figures D1 and D2 show the difference in cranial and caudal border selection by the two ROs for 
brainstem and spinal cord. 

Caption figure 2



Legend figure 2
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Figure 1: Network accuracy, corrections needed by radiation oncologist 1 (A) and 2 (B) vs manual interobserver variability. 
Network accuracy quantified by average corrections needed before the automated delineations were clinically acceptable. 
This was compared to interobserver variability between manual delineations. Each data point represents an organ at risk 
from one patient. For all structures in the grey zone, the corrections are smaller than variability in clinical practice.  
Abbreviations: ASSD: average symmetric surface distance; mm: millimetres; Acc: accuracy of network; RO: radiation 
oncologist; PCM: pharyngeal constrictor muscles; PG: parotid gland; SG: submandibular gland; U: upper; S: supra; IOVm: 
manual interobserver variability. 
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Highlights 

 Validation of automated delineation of organs at risk in head and neck cancer  

 Automated delineation is more time efficient  

 Automated delineation reduces interobserver variability 
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