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ABSTRACT

We introduce supervised disparity estimation in which an operator can steer the disparity estimation process.
Instead of correcting errors, we view the estimation process as a constrained process where the constraints are
indicated by the user in the form of control points, scribbles and contours. Control points are used to obtain
accurate disparity estimates that can be fully controlled by the operator. Scribbles are used to force regions
to have a smooth disparity, while contours create a disparity discontinuity in places where diffusion or energy
minimization fail. Control points, scribbles and contours are propagated through the video sequence to create
temporally stable results.
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1. INTRODUCTION

Recently, 3D has received a lot of attention from various sides: more and more movie productions are released in
3D in the movie theaters, the first 3D broadcasting channels are announced, and display manufacturers present
various types of 3D displays, both stereoscopic and auto-stereoscopic. On stereoscopic displays, a viewer is
presented with two views (one for each eye) using special glasses (shutter-based, polarized, etc.). On auto-
stereoscopic displays, a larger number of views is typically generated (e.g. 9 or 15) and viewers do not have to
wear special glasses. Each view is sent in a different direction using a lenticular sheet on the display or barriers
in the display, such that the viewer’s two eyes automatically receive two different views. Such displays generally
also offer some (limited) ability to move around the sweet spot and look around objects. In order to display 3D
content on an auto-stereoscopic display, a disparity map is typically required. Similarly, if we want to re-purpose
stereoscopic 3D content (e.g. for different displays), disparity maps are extremely useful. This is particularly
relevant when adapting content created for viewing on a cinema screen to use on a TV or a mobile display.

1.1 Unsupervised disparity estimation (automated)

Automated disparity estimation from stereo input video has been widely investigated (see the work by Scharstein
and Szeliski' and the corresponding website* for an overview). Various approaches have been tested in the past,
ranging from pixel-wise dense estimation to sparse, feature-based matching. A good overview of the various
approaches is given by Brown et al.2 Recently, Markov Random Field approaches have been very popular and
successful for disparity estimation.? Such methods integrate multiple information sources into the estimation
process, such as disparity matching and smoothness using a graph cuts method,* or intensity matching and
segmentation cues using a belief propagation solution method.®

Lang et al. have proposed a method for disparity warping without requiring knowledge of a dense disparity
map.5 They use image warping techniques taking sparse disparity estimates and saliency measures into account.
A similar warping-based technique is presented by Chang et al.”

While the results using automated algorithms have strongly improved in recent years, they are typically not
sufficiently accurate for high quality estimation as it is typically required for broadcasting scenarios.® The main
causes for failure of such algorithms are homogeneous regions and objects with similar color. In homogeneous
regions, a large number of correspondences can be found with similar matching cost but varying disparity. It is
therefore difficult to determine the correct disparity. When objects with similar color overlap in the images, it
is very difficult to determine precisely the border and thus the disparity discontinuity between the objects.



(b) Right input image.
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(c) Left image with annotations. (d) Resulting disparity map.
Figure 1. Illustration of supervised disparity estimation. A disparity map (d) is estimated from a stereoscopic image pair
(a)-(b) and a set of user annotations (c). A super-pixel segmentation (green) forms the basis of the processing and is
shown to the user for information. Control points (red), scribbles (blue) and contours (yellow) are added by the user to
steer disparity estimation.

1.2 Supervised disparity estimation (semi-automated)

User interaction can be applied to overcome these problems and achieve any desired quality level. Taking user
input into account, the problem is changed from ‘maximizing quality of the disparity map given all available
information in a stereo video’ to ‘selecting effective user inputs that can lead to any desired quality of a disparity
map with a minimum amount of work’. Any quality level can now (in principle) be achieved by increasing the
amount of user input. To our knowledge, there is little previous work on supervised disparity estimation for the
purpose of view interpolation. Srivastava et al. have extended the learning-based algorithm by Saxena et al.”
to include interactivity in 3D estimation from monoscopic still images.!® After an automatic 3D reconstruction,
a user can first roughly indicate the foreground object(s) if present. Next, he can place scribbles to indicate
regions of the background that belong to the same plane. These constraints are then integrated in a Markov
Random Field approach. Lo et al. have developed a ‘stereoscopic copy and paste’ algorithm that allows a user to
interactively segment an object from one stereoscopic sequence and paste it into another one.!! Special attention
is given to disparity errors, occlusion handling and shadow generation. Note also that the warping algorithms
by Lang et al.5 and by Chang et al.” also allow interactive editing of the disparity mapping function. This is
different however from our focus here, where we try to interactively obtain a dense disparity map.

There have also been several attempts to combine user interaction with computer vision in order to derive
either a high quality segmentation or a high-quality 3D map using a monoscopic image sequence as input. For
the purpose of automated rotoscoping (the process of tracking contours in a video sequence), Agarwala et al.
showed how a user can interactively refine the position of curves, after which an automatic tracker is restarted.'?
Segmentation and matting from (foreground and background) scribbles was presented using geodesic distances
by Bai and Sapiro® and using minimization of a quadratic cost function by Levin et al.™ Russell and Torralba

*http://vision.middlebury.edu/stereo/



have developed LabelMe3D: a learning-based approach to infer 3D models from rough contours and semantic
labels given by a user.!®

VideoTrace is a system that generates 3D models from a single video using structure from motion analysis.'®

The shape of an object can be ‘traced’ by the user to produce polygons. VideoTrace does not require pixel-
accurate line input since it fits the input curves to local strong superpixel boundaries of a segmentation that is
computed in advance.

Efficient methods for semi-automated depth estimation from monoscopic input use manually annotated key-
frames and propagate depth between those key-frames.'”

1.3 This paper

In this paper, we target view-interpolation using stereo video as input. Instead of drawing disparity maps for key-
frames, we now draw various annotations to steer the disparity estimation algorithm. The concept is illustrated
in Figure 1. Typically, those annotations are applied at the locations that cause problems for a standard disparity
estimator. The actual disparity estimation is steered by these annotations. We present two disparity estimation
approaches. A first one performs actual disparity estimation only at indicated positions where reliable estimates
can be made. The disparity map for an entire frame is then computed using a diffusion approach similar to the
one used in our earlier work.!'® However, this time we solve for disparity values instead of object class labels.
Our second approach uses an energy minimization using a-expansion and graph cuts.*

Our processing is region-based and uses a segmentation into super-pixels as input for the algorithm. Disparity
maps are propagated over a sequence using a segment-based motion field. We derive the segment-based motion
by diffusing sparse motion vectors obtained using block matching over the segmentation map. This approach
differs from the segment-based motion estimation by Ernst et al.,'® where segments are used for matching. Unlike
VideoTrace, we can modify the geometry of super-pixels via the placement of contours. At the same time, these
contours modify the constraints between regions. Our contours do not need to be closed polygons, which means
that they only need to be placed at positions where disparity estimation fails.

This paper is structured as follows: An overview of our approach is given in Section 2.1. In Section 2.2, we
describe our segmentation algorithm. The actual disparity estimation algorithm is presented in Section 2.3, and
the different types of user annotation are described in Section 2.4. Section 2.5 discusses the propagation of user
annotations between frames. In Section 3, we describe the experiments performed to test our approach and the
results on different stereo sequences.

2. APPROACH
2.1 Overview

As already indicated above, various problems can occur when estimating a disparity map. First of all, erroneous
matches may be found between left and right images because of similar structures appearing in different parts of
the image. To address this, we will use disparity estimates for specific salient points that can be indicated (and
removed) by the user to guide the estimation for the rest of the image. These are typically the points on which
the disparity can be reliably estimated. Such points will be called control points in this paper.

A second issue is the breakup of an object consisting of parts with different colors. We use color similarity as a
strong grouping cue to keep pixels or segments together. However, this cue sometimes works counterproductively.
For instance, the walls of a house may get different disparity values from its roof, just because the walls are more
similar in color to the street than to the roof. We introduce scribbles as a solution, indicating that parts of the
image belong together and should get similar disparities.

Finally, separate objects with different disparities may get merged together because they have similar colors.
This can either lead to errors in the super-pixel segmentation, or to errors in the disparity estimation process.
These issues are addressed using object contours, which represent a discontinuity in the disparity map.

The operator can annotate a left image from a stereo video with such control points, scribbles and contours
(see Section 2.4 for details). After each modification of the annotation, the operator can recalculate and evaluate
the disparity map. The estimation of the disparity map is performed using either a diffusion process or a Markov



Random Field approach. In both methods, relations between neighboring regions are based on both image
properties and operator supplied annotations. The disparity estimation is explained in detail in Section 2.3,
after a description of our super-pixel segmentation algorithm in the next Section.

2.2 Segmentation

The use of super-pixels allows fast response in the editor when the annotation is updated. We use a region fitting
approach described by Oliver and Quegan®® in combination with the global energy minimization algorithm by
Duda et al.2! Initially, the segmentation consists of squares. The boundaries between these squares are iteratively
updated by proposing to move pixels that touch a boundary to a neighbor region.2® A proposed move is accepted
only if a total energy measure decreases. The energy consists of a term that measures for each pixel the deviation
of the pixel color from the mean region color combined with a term indicating boundary smoothness. More details
can be found in the work by Oliver and Quegan.?° Even with the smoothness constraint, it can happen that
long thin regions occur at the boundary between objects, often caused by blur introduced by the imaging process
(e.g. due to limited depth-of-field). To avoid long thin regions with multiple edges close together, the region
fitting step is done twice with a thin-region removal step in between. This process is described in earlier work.??
Specifically, after the first region fitting step, a majority filter is applied to the region label map in a local window
of 7 x 7 pixels around each pixel. This step removes thin regions from the segmentation by assigning a pixel the
region label that most frequently occurs in the local neighborhood of that pixel. However, the morphological
filter displaces edge positions. Region fitting is therefore done a second time to obtain a new local minimum.
For the second run, the region smoothness term is weighted more than for the first run to avoid that thin regions
can be introduced again.

2.3 Disparity estimation

The disparity estimation operates on the super-pixels of an over-segmentation. The disparity estimation consists
of two parts. First, matching is done on the control points. When the application is started, a set of robust control
points is automatically initialized. We first select the centers of super-pixel regions where the neighborhood has
sufficient contrast. For these points, we perform disparity estimation using block matching on a block of 15 x 15
pixels from the left image to the right image. We use an L; error norm to compute the match costs (sum of
absolute differences). Next, we take the corresponding pixel found in the right image, and perform the same
disparity estimation back to the left image (as it was also done for example by Fua?3). Only regions for which
the center maps back to the original pixel are kept as robust control points.

More control points can be entered later by the operator, or existing control points can be removed. The
disparity value for such manually entered control points is estimated using (only left-to-right) block matching
as described above and assigned to the region in which the control point falls. All control points provide a hard
constraint D, for the disparity of a region. If matching goes wrong, the operator can either remove the control
point and choose a new one, or manually correct the disparity at a control point, thereby keeping full control of
these disparities.

Given the known disparities at the typically small set of regions containing control points, we need to find
the unknown disparities at all other regions using the constraints specified between the regions.

We compare two approaches of finding a disparity for each region: disparity estimation by diffusion and
energy minimization using so-called a-expansion.*

2.3.1 Disparity estimation using diffusion

In the first approach we only use the disparities at control points and extrapolate from these regions using only
color similarity as a cue. This approach is simple, efficient and does not require explicit disparity estimation in
regions that do not contain control points. We can write the problem as a Dirichlet problem.?* Following the
notation used by Bendito et al.,?* let I' = (V, E) denote the region adjacency graph with vertex set V consisting
of the super-pixel regions, and with edge set E for the edges between pairs of neighboring regions. Let £ denote



the weighted Laplacian matriz of graph I'. This matrix of size |V| x |V| has non-zero entries £;; if region ¢ is a
neighbor of region j ((i,7) € E). The diagonal elements of such a matrix satisfy

Lii=-)Y Li. (1)

J#i
We now seek a predictor that satisfies
LD
(LD); = E]#z EJ J - D, = Vi e F, (2)
Ej;éi j
D; = D.p; Vie FC, (3)

where F is the subset of V containing the regions i for which the disparity D; is unknown, and F¢ =V \ F.
In other words, the regions in F© are the regions containing control points. The predictor honors the true
disparities at control points, while making the disparity field spatially consistent by requiring that the prediction
error in (2) is zero. This results in a set of linear equations (2)-(3). In order to solve these equations, we use an
iterative algorithm for updating the current solution for D;:
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The disparities D; of regions containing a control point (i € F¢) remain fixed at D.p ;. Initially, we set the

disparities for all regions in F' to zero. We then use 50 iterations of the above diffusion twice, where we run
through the disparity vector D in forward and reverse directions.

i€ F. (4)

The off-diagonal entries depend both on image properties and on the constraints imposed by the operator via
annotations. Color similarity between regions is used to spatially propagate disparity at control points to other
regions in the graph. Initially there are no annotations by the operator and the elements L;; are set to depend
on color similarity only:

Li;=g(i,j) = e~ ri=rjl+1gi=g;1+bi=b;]) (5)

where (7, g;, b;) is the mean color vector for region i with each component taking values from [0, 255] and « is
a parameter (we use a value of 0.1). In the absence of control points, scribbles and contours, the elements of
L;; are never modified. However, as soon as the operator draws an annotation, £;; is modified accordingly (see
Section 2.4).

2.3.2 Disparity estimation using a-expansion

In the second disparity estimation approach we also compute disparity measurements in regions that do not
contain control points. Following the notation of Szeliski et al.> we minimize the following energy function:

E= Edata + )\Esmooth- (6)

Our data term Fgqa4, consists of the per-region data cost of matching a block of 15 x 15 pixels between the left
and right image for a certain disparity. We use an L; error norm to compute the match cost, and normalize
it by the block size and maximum pixel values. The smoothness term is the sum over all pairs of neighboring
regions of a smoothness energy between the pair of regions. The smoothness energy between two regions is
computed as the difference between their estimated disparity values, normalized by the maximum difference. In
our experiments, we set A = 0.1. We use a-expansion as energy minimization method. Specifically we have
implemented the algorithm described by Boykov et al.* for a-expansion, and the algorithm described by Boykov
and Kolmogorov?® for graph-cuts. In our implementation, we adopted the table by Boykov et al.,* p. 1228 for
the weights assigned to the edges of the graph based on data energy and smoothness energy terms.

2.4 Annotation

We will now describe how user annotations (control points, scribbles and contours) can steer the disparity
estimation for both estimation methods.
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Figure 2. Illustration on how the scribble and contour annotations modify the region segmentation and elements of the
weighted Laplacian matriz in the diffusion-based disparity estimation algorithm. (a) Default situation where edge weights
result from color differences between adjacent regions (these weights range from 0 to 1). (b) A scribble connects two
regions with the result that weights are set to 1. (¢) A contour is drawn that splits both regions A and B in two, creating
four new regions C,D,E and F. The region pairs (C,E), (D,F) (C,F) and (D,E) receive weights of 0 thereby avoiding
disparity leakage across the contour. The region pairs (C,D) and (E,F) receive new color dependent weights.

2.4.1 Adding a control point

By placing a control point, the operator can select a position in the image that is likely to give a reliable disparity
estimate. Placing a control point in region 7 applies disparity estimation at that position and sets the disparity
value for that region correspondingly. In the diffusion algorithm, it also sets all the elements on row i of the
Laplacian matrix £ to 0. In the a-expansion algorithm, we set the link ¢; between any proposed disparity «
and the region node 7 to infinity, such that no new proposed disparity can be accepted anymore (using the same
notation as Boykov et al.?).

Most of the times the disparity is reliably estimated. However, it can happen that disparity estimation at
the control point fails. The operator can therefore use keyboard arrows to increase or decrease the disparity of
a control point after it has been selected by clicking with the mouse in its vicinity. Visual feedback is provided
by plotting the disparity vector.

2.4.2 Adding a scribble

A scribble connects regions together, such that they get similar disparities. If two neighboring regions ¢ and j
contain the same scribble, our diffusion approach sets elements £;; and £;; of £ to 1 (see Figure 2). Similarly, in
our a-expansion algorithm, the smoothness links between regions ¢ and j (which are applied through an auxiliary
node if they have different disparities) are increased with a factor 1000. Disparity values can thus diffuse easily
and surfaces may be produced with constant or gradually evolving disparities.

2.4.3 Adding a contour

Adding a contour changes both the region segmentation and the region neighbor relations. Figure 2 (c) shows
how the contour modifies the adjacency graph in our diffusion algorithm. Note that in practice, we do not set
the indicated weights to zero, but instead remove the relations from the graph, which has the same effect. Since
new regions are formed, the disparity vector D and the weighted Laplacian matrix £ grow in size. As a contour
indicates a separation between objects at different distances, the weights between regions separated by a contour
should be set to 0. Let R; be an element from the set of new regions that result from cutting regions in the
segmentation. Let R; be a neighbor region of R;. Note that region R; can be either a new or an existing region.
Further, let L") (i) denote for new region R;, the corresponding old region. The algorithm for updating the
region adjacency graph and propagation weights is given in Figure 3.



1: for all i do > Loop over all new regions
2 k « LD () > Get old region
3: for all j do > Loop over all neighbors
4: 1 < L) (5) > Get old region of neighbor
5: if k =1 then > New contour
6: cij < true
7: ﬁij +~0
8: else
9: if ¢y = true then > Inherit old contour

10: Cij < true

11: Eij +~—0

12: else > Color dependent weights

13: cij < false

14: Lij < 9(%,7)

15: end if

16: end if

17: end for

18: end for

Figure 3. Algorithm for adding a contour in the diffusion approach.

Similar operations are applied in our a-expansion algorithm, such that the segments are split into new
segments, just like for the diffusion approach. Neighbor relations across the contour are also removed, such that
they are not connected anymore in the graphs.

Adding a contour changes the segmentation geometry since regions are split. It is therefore necessary to
locally reprocess control points and scribbles each time a contour is added or removed.

2.5 Temporal propagation

Control points, scribbles and contours are the constraints on the basis of which the disparity map is produced. To
obtain temporally consistent disparity maps, the constraints need to follow the true motion of objects. For clarity
of the description, we will present here only propagation in the case of the diffusion-based disparity estimation
presented above. Temporal propagation for the a-expansion approach can be derived along the same lines.

Once the operator has entered enough annotations to obtain a disparity map with sufficient quality, disparity
for consecutive frames in a video shot can be obtained fully automatically if the annotations are propagated
without error. This is the ideal situation. In practice, operator interaction is still needed depending on the
success of the motion compensation step. To propagate the annotations we need a dense motion field (i.e. a
motion vector per region). To obtain this motion vector field we use exactly the same approach as for the
disparity estimation: The region-based motion field is also obtained via a diffusion process thereby re-using the
weighted Laplacian matrix £. So instead of diffusing disparities given at control points we diffuse motion vectors
that are given at control points. The process is detailed in the next subsections.

2.5.1 Propagation of control points

Motion compensation works best for control points. First, the automatically generated control points are not
likely to lie close to object occlusions due to the robust selection process used for the disparity estimator. Second,
if a point becomes occluded, we can easily remove the entire track and start a new control point track. For each
control point, block matching is used to find the motion vector v; = (u;,v;) that results in the smallest error
when matching with the next frame. We apply matching over a block of 15 x 15 pixels and search 81 pixels
horizontally and vertically.

2.5.2 Propagation of scribbles

With the motion compensation of scribbles we face two problems. First, matching pixels that touch scribble
points may be difficult since scribbles, unlike control points, can cover homogeneous color regions. Second, a



scribble can become partially occluded with the result that local foreground and background objects are wrongly
required to have the same disparity. To solve the second problem we need a motion compensated scribble and
a motion compensated dense disparity map. This will allow us to check whether some points on a scribble are
covered in the next frame. Such covered parts are removed from the scribble. To our rescue comes the fact that
the constraints that the operator has supplied to produce a high-quality disparity map for frame ¢ are directly
useful to obtain a high-quality motion field for the frame pair (¢,¢ + 1). In fact, the weighted Laplacian matrix
L is directly re-used to obtain estimates for the motion vector v; of region i:

o — 22 L%

==t 7
>, Lij

As for disparities, in F¢, the motion vector from control points is assumed fixed and known:

V; = Vep i€ FC. (8)

i€ F. (7)

These motion vectors v, are estimated using a block matching process, as described above.

Motion compensation of the scribble works as follows. We first create a warped disparity map Dyarp in frame
t+1 by warping the points (z, y) of the disparity map in frame ¢ onto points (2’,y’) in Dyarp using the coordinate
transformation: )

T =T+ U

Y =y+u, ©)
where ¢ = S(x,y) denotes the region number at position (z,y) in the segmentation map. In case of occlusion,
we need to determine whether a point (z,y) becomes covered or not in the next frame. We therefore take for
each pixel (z/,y’) the maximum disparity (minimum depth) to ensure that the disparity of the closest object is
present in the warped disparity map. Next to warping the dense disparity map to the next frame, we also warp
each scribble to the next frame. Each scribble point with location (z,y) is motion compensated using the region
based motion vector v; that follows from the segmentation map S (with i = S(z,y)). A warped scribble point
with coordinates (z,y’) is only added to the motion compensated scribble if it remains un-occluded in frame
t + 1. To check this we compare the disparity Dscribble(2’,y’) for each warped scribble point with the disparity
Dyarp(x’,y’) of the warped disparity map at the same location. A warped scribble point is thus only added if

Dscribblc(xlv y/) > Dwarp(xlv y/)- (10)

2.5.3 Propagation of contours

We introduced contours to achieve high-quality disparity especially at object boundaries. Over time, contours
need to track the local foreground object boundary. We use a similar approach as for the propagation of
scribbles. However, this time we cannot simply use motion vector v; to compensate the position of a contour
point positioned in region i to the next frame. We need to make sure that the correct motion vector is taken,
i.e. the motion vector of the local foreground object. To ensure that this is the case, we search in a 4-connected
neighborhood around each contour point (with coordinates (x,y)) the neighboring point that has maximum
disparity (minimum depth) in the disparity map:

(xminu ymzn) = arg max (D(:I;/Iv y”))v (11)

(@",y")EN (z,y)

where N (x,y) denotes the 4-connected neighborhood of the contour point at pixel location (z,y). Finally, each
point of the contour is motion compensated using the motion vector v; (with i = S(Zmin, Ymin)) to make sure
that the contour moves with the foreground object. We do not add the occlusion handling for contours, as the
contours themselves remain typically visible.

3. EXPERIMENTAL RESULTS

To evaluate the use of our tool we experimented with different realistic stereo videos and with different amounts
of interaction. First, we show its behavior on a standard image pair taken from the Middlebury dataset.?6 We
used the ‘Teddy’ image at quarter resolution, which is available onlinef. The results using as disparity estimator

Thttp://vision.middlebury.edu/stereo/data/scenes2003/



the presented diffusion approach (second row) and the a-expansion approach (third row) are shown in Figure 4.
From the initial results (without manual annotations) in Figure 4(c)-(f), we can see that each algorithm has
different problem areas. The diffusion approach performs bad if regions with distinct color have no control
points (e.g. the roof of the house), while the a-expansion approach has difficulties around disoccluded areas (e.g.
the area to the left of the house). Therefore, they also require different annotations. From Figure 4(e)-(h), we
can see though that with the right annotations, both algorithms provide accurate results.

Both algorithms have been implemented in C+4. Note in this respect that we have implemented the a-
expansion algorithm as described in Section 2.3.2 and by Boykov et al.,*2® but without the optimizations
described in those articles. In their current implementation without optimizations, both algorithms perform
disparity estimation in the order of at most a few seconds on the 450 x 375 pixel Teddy image. In our experience,
running times of the disparity estimation should be at most in the order of 1s for easy interactive operation. This
provides a user a rapid feedback showing the results of his interactions, avoiding long waiting times. We consider
that this can be achieved with both proposed algorithms by performing some further optimization steps.

Next, we illustrate temporal behavior (using diffusion-based disparity estimation) in Figure 5. A first frame
with its annotations, motion field and resulting disparity map using diffusion-based estimation is shown in Fig-
ure 5(a)-(c)-(e)-(g). These annotations are then propagated over the next frames with some minimal additional
annotations, and the result eight frames later is shown in Figure 5(b)-(d)-(f)-(h). From these figures, it is clear
that with minimal effort, a coherent sequence of disparity maps can be obtained.

Now, we demonstrate that arbitrary quality levels of the disparity map can be obtained by increasing the
amount of user input. Figure 6(a)-(b) shows the disparity map obtained after automated diffusion-based esti-
mation using only automatically detected control points in our disparity estimator. Note the errors around the
back of the horse, which are due to the color similarity with the background. Because the colors are similar, the
super-pixel segmentation is incorrect. The disparity estimation creates a gradual transition through this region,
again because of the similar colors. A similar problem causes errors in the disparity values of the fence behind the
horse, where some parts get the same disparity as the horse itself. After removing 2 control points and adding 3
contours, the errors around the back of the horse are corrected (as well as some other errors, see Figure 6(c)-(d)).
The horse and background now get separate disparities and are well aligned with the object edges. Adding more
annotations results in a disparity map where also the fence and some other issues are corrected (Figure 6(e)-(f)
and a detail in Figure 7).

For illustration, we also add the initial and annotated version using the a-expansion approach (see Figure 8).
Figure 8(a)-(d) shows the initial result using the automated a-expansion approach. The results using the a-
expansion algorithm on the annotations made above for the diffusion algorithm are not good (see Figure 8(b)-
(e)). This illustrates the fact that different types of annotations are needed, due to the differences between the
algorithms. For the a-expansion method, more annotations are needed around disocclusion areas, while less are
needed around color discontinuities. Results with tailored annotations for the a-expansion approach are shown
in Figure 8(c)-(f).

Finally, we tested our approach using the diffusion algorithm on a more complex (indoor) scene, containing
a large number of objects (see Figure 9). The initial disparity map obtained using only automatically selected
control points is very inaccurate. Although the complexity of the scene leads to a large amount of manual
annotations, a high quality disparity map can be obtained. Note that mainly fine details that are imprecisely
segmented in the initial segmentation (like the plants in the background) require a lot of manual annotation.
Sharp depth transitions are achieved in the final result.

As can be seen from the figures, the super-pixel segmentation is also drawn in the user interface. From our
own experience, this helps a user when placing annotations.

4. CONCLUSION

We have presented a supervised method to create disparity maps from stereo video material. We use a disparity
estimation algorithm that starts from a set of feature points for which disparity can be precisely estimated, and
uses these values to estimate a disparity map using either a diffusion process or a Markov Random Field energy
minimization with a-expansions. User input is given in the form of (additional) feature points, scribbles that
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(a) Left input image with automatic control points. (b) Ground truth disparity map.
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(c) Initial disparity map using diffu- (d) Left input image with manual an- (e) Disparity map using manual an-
sion approach. notations for diffusion approach. notations and diffusion approach.
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(f) Initial disparity map using a- (g) Left input image with manual an- (h) Disparity map using manual an-

expansion. notations for a-expansion approach. notations and a-expansion approach.
Figure 4. Results using diffusion approach (second row) and a-expansion approach (third row) for ‘Teddy’ image from
Middlebury dataset.® Similar results can be obtained with both approaches, but each approach requires different annota-
tions due to algorithmic differences. Note that large disparities (nearby objects) are encoded with bright gray levels, and
correspondingly, small disparities (remote objects) have dark gray levels. Disparity values in the range -40 to 40 pixels
of horizontal displacement have been mapped from black to white. A different scaling was used compared to the ground

truth map.



(c¢) Frame 1 with annotations. (d) Frame 9 with annotations.

|
) Frame 1 with motion field. (f) Frame 9 with motion field.
g) Disparity map for frame 1. h) Disparity map for frame 9.

Figure 5. Temporal behav1or. A disparity map (g) is estimated from a first frame (a) using user annotations (c). These
annotations are then propagated through the next frames. The user can remove (and correct) in each frames the incorrectly
propagated annotations, resulting in a temporally very stable sequence of disparity maps. The result after 8 frames is
illustrated in (h). The magnitude of the motion is displayed in (e)-(f). This magnitude was clipped on a maximum of 15
pixels and mapped from black to white.



(a) Left input image with automatic control b) Disparity map.
points.

(c) Left input image with first set of manual d) Disparity map.
annotations.

(e) Left input image with a second set of (f) Disparity map.

manual annotations.
Figure 6. Disparity maps for increasing number of annotations. (a)-(b) Automated result without manual input. (c)-
(d) Manual annotations and result after removing 2 control points and adding 3 contours. (e)-(f) Additional manual
annotations compared to (c) and their result on the disparity map.

] 1 4

) Detail of left input im- ) Detail of disparity map. ) Detail of left input im- ) Detail of disparity map.
age with automatic control age with second set of man-
points. ual annotations.

Figure 7. Detail of Figure 6 to illustrate the effect of placing contours. Using a contour, the disparity transition at the
back of the horse is placed at the right position. The fence is now (correctly) placed at an intermediate depth using
another contour and two scribbles.



(a) Left input image with automatic (b) Left input image with second set of (c) Left input image with a set of man-
control points. manual annotations used in diffusion. ual annotations made specifically for
a-expansion.

(d) Inmitial disparity map using «- (e) Disparity map using a-expansion (f) Disparity map using a-expansion
expansion. on diffusion annotations. on specific annotations.
Figure 8. Disparity maps using a-expansion approach. (a)-(b) Automated result using a-expansion without manual input.
(c)-(d) Manual annotations used for diffusion approach and result of a-expansion approach on these annotations. (e)-(f)
Manual annotations made for a-expansion approach and result of a-expansion approach on these annotations.

indicate regions with the same disparity, and contours indicating discontinuities in disparity. Disparities are
propagated through a sequence by propagating the user annotations. We have illustrated the performance of
our algorithm on stereo sequences with varying content.

While temporal propagation generally works well, it fails for regions with large motion and around unsharp
edges.

Overall, we conclude that the presented interactive disparity estimation algorithm using control points, scrib-
bles and contours is a powerful combination of annotation types, allowing a user to steer the disparity estimation
process for a stereo video sequence. Higher quality can be achieved by adding more interaction. We have shown
that such annotations are very flexible, and can be incorporated into different disparity estimation algorithms.
We have applied it to a diffusion-based method and an a-expansion energy minimization method with good
results.
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