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Abstract

Introduction: In an ageing population, increasing chronic disease prevalence puts a high economic burden on society. Physical

activity plays an important role in disease prevention and should therefore be promoted in the elderly.

Methods: In this study, a mobile health (mHealth) system was implemented in a care home setting to monitor and promote

elderly peoples’ daily activity. The physical activity of 20 elderly people (8 female and 12 male, aged 81� 9 years old) was

monitored over 10 weeks using the mHealth system, consisting of a smartphone and heart rate belt. Feedback on physical

activity was provided weekly. A reference performance test battery derived from the Senior Fitness Test determined the

participants’ physical fitness.

Results: Activity levels increased from week 1 onwards, peaking at week 5, and decreasing slightly until week 10. This illustrates

that the use of mHealth and feedback on physical activity can motivate the elderly to become more active, but that the effect is

transient without other incentives. Bio-data from the mHealth system were translated into a fitness score explaining 65% of the

test battery’s variance. After separating the elderly into three groups depending on physical fitness determined from the test

battery, classification based on the fitness score resulted in a correct classification rate of 67.3%.

Discussion: This study demonstrates that an mHealth system can be implemented in a care home setting to motivate activity

of the elderly, and that the bio-data can be translated in a fitness score predicting the outcome of labour-intensive tests.
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Introduction

The ageing society is one of the major societal challenges
of the 21st century. The worldwide proportion of people
aged over 60 years will nearly double from 12 to 22%
between 2015 and 2050.1 This puts a high burden on soci-
ety in terms of medical care needs because the prevalence
of chronic diseases such as cancer, dementia and cardio-
vascular diseases is high at old age.2 Daily physical
activity (PA) is put forward as a non-pharmacological
intervention and lifestyle habit that can play an important
role in disease prevention, and that supports good mental
and functional health.3 In addition, an increased level of
PA is related to improved bone mineral densities and
reduced fall risks, both resulting in a lower risk of frac-
tures.4 It is important to know PA levels to develop pro-
grammes that can help the elderly to maintain sufficiently
high PA levels that can contribute to their health.

PA levels can be estimated using different techniques.
Self-reported questionnaires on PA levels are used very
frequently, but consensus about format and content is
lacking.5 Additionally, self-reported questionnaires are

subject to recall bias.6 Quantitative measurements such
as indirect calorimetry, the double-labelled water
method or direct observations are very accurate, but not
feasible for continuous use in a practical setting.7

Mobile health (mHealth) has been suggested to address
the issue of continuous PA monitoring. mHealth is an
area of telehealth that uses mobile devices (smartphones,
tablets or wireless patient-monitoring sensors) for data
collection, data processing and communication of the
results back to the individual.8 mHealth applications for
use in chronic conditions have been developed.9 Related
to applications for the elderly, mHealth has been applied
for fall detection,10 wandering detection,11 medication
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management12 and PA monitoring.13 Furthermore,
mHealth has also been said to have a short-term, motivat-
ing effect on PA levels.14

Pedometers are probably the most used devices for PA
monitoring.14 However, pedometers tend to underesti-
mate step counts during low walking intensities, which
are common in elderly.15 Accelerometers are considered
more reliable for PA measurements at low intensities.16

Furthermore, by using smartphone-embedded accelerom-
eters, no additional accelerometers must be worn.
However, implementation of smartphone measurements
in daily life is limited because of the short battery life of
the smartphones.17 Other common issues of smartphones
are varying localization17 and the difficulties that the eld-
erly may experience with new technologies.18

The field of wearable devices and mHealth applications
is booming. However, very few scientific studies have been
performed in a semi-controlled environment to investigate
the quality and reliability of the data, especially with
the elderly. In addition, the translation of the data into
features that are relevant for estimating physical fitness
and changes in physical fitness has not been performed in
a systematic way. In this study, a smartphone-based
mHealth system was implemented in the daily life setting
of a care home centre to investigate to what extent daily
PA levels of the elderly can be monitored during a 10-week
period. The first goal was to evaluate if the use of mHealth
changed the PA behaviour of the elderly during this
period. The second objective consisted of investigating
whether the mHealth data correlated with validated fitness
tests from a well-established senior fitness test.

Methods

Participants and study design

The study was conducted at the care home
‘t Gravenkasteel (Lippelo, Belgium) from 29 March 2013
until 19 June 2013. The ethics board of University
Hospital Antwerp (Antwerp, Belgium) approved the
study. The care home management received detailed infor-
mation about the study’s objectives and practical implica-
tions. The physiotherapists at the care home pre-selected
elderly participants that could be enrolled in the study,
taking into account their physical fitness, independence
and cognitive capacities. This was done using the Katz
Index of Independence in Activities of Daily Living
(Katz ADL), a widely used instrument to assess the indi-
vidual’s ability to perform activities of daily living inde-
pendently.19,20 The Katz ADL is used in Belgium to assess
the functional capabilities of older people in care homes,
and to detect problems in performing activities of daily
living and plan care accordingly.21 Test results are rec-
orded by a healthcare professional through direct obser-
vation or indirectly by asking the patient subjective
questions. The index ranks adequacy of performance in
the six functions of bathing, dressing, toileting, transfer-
ring, continence and feeding. For each domain, there are

four scores from independent to full support needed.
This study enrolled only individuals that were completely
independent and individuals that needed some support for
bathing and/or dressing. Additionally, only elderly people
that were in good health were pre-selected to participate in
the study. All pre-selected elderly people received detailed
information about the study and 20 of them agreed to
participate. Written informed consent was obtained
before the start of the measurements.

During a 10-week intervention period, the study partici-
pants were equipped with smartphones and heart rate
monitors to collect data. Daily participation was super-
vised and guided by the physiotherapists. Measurements
were obtained during weekdays. Weekends and public
holidays were excluded a priori because of logistical
reasons and limited staff availability on those days. The
physiotherapists supported the elderly to mount the sen-
sors every morning before breakfast (8–9 a.m.) and to
remove them every evening around 5 p.m. The smartphone
was used every day of the experimental period and was
carried in a pouch, positioned on the middle of the waist
in a horizontal position. A chest strap was used to collect
heart rate data that were sent wirelessly to the smartphone.
Heart rate data were collected in alternate weeks (due to
the limited availability of chest straps) over five consecu-
tive days. Wear time of the sensors was recorded at the end
of every day. Every evening, raw data were uploaded to a
secure server for data processing. Bi-weekly printed sum-
mary reports for each participant were presented to the
physiotherapists who handed out the individual reports.
The reports were provided in Dutch. An objective explan-
ation about the report was given, but the physiotherapist
gave no feedback or advice regarding the individual
results. It was then up to the participants to decide whether
or not to perform more PA and participate in more enter-
tainment activities in the care home. No specific or add-
itional programmes were set up to stimulate this.

In addition, all participants performed a subset of tests
from the senior fitness test to characterize their physical
performance. The test battery consisted of the 10-minute
walk test (10MWT), the 8-foot up-and-go test (UGT) and
the two-minute walk test (2MWT). The 10MWT has been
shown to be a valid and reliable assessment of walking
speed, whereas the UGT can be used for fall risk screening
in the elderly.22 The 2MWT is suggested to be a quicker,
but valid, alternative of the six-minute walk test.23,24

These tests were performed at the start (pre-test), after
1, 3, 5, 7 and 9 weeks, and immediately after (post-test)
the 10-week intervention. During these tests, the partici-
pants used both the smartphone and chest strap. The
results for the fitness tests were interpolated linearly to
obtain weekly values.

mHealth equipment

The equipment consisted of a smartphone (Sony Xperia
tipo, ST21i Sony, Sweden) and a wireless heart rate moni-
tor (HxM BT, Zephyr Technology, USA). Heart rate data
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were measured at 1Hz (range 30–240 BPM) and stored on
the smartphone after transmission over Bluetooth 2.0.
Accelerometery data was collected at 50Hz using the
three-dimensional (3D) accelerometer imbedded in the
smartphone (range� 2 g).

An online end-user mobile monitoring application
developed by BioRICS NV (Heverlee, Belgium) allowed
the collection, transmission and processing of the acceler-
ometer and heart rate data that were stored in separate
.csv files. The files were uploaded from the smartphones to
the BioRICS server (hypertext preprocessor (PHP)-code
for representational state transfer application program
interface (REST API)) by means of an hyper text transfer
protocol (HTTP) Post request by using the Wi-Fi connec-
tion of the care home. Subject identifiers (IDs) and smart-
phone ID linked every file to the corresponding
individual. BioRICS algorithms designed in MATLAB
(Mathworks Inc., Natick, Massachusetts) transferred
data into relevant activity and heart rate parameters (fur-
ther referred to as bio-data features). These parameters
were compiled into the bi-weekly report and were used
to obtain the fitness scores.

Bio-data features

Four types of bio-data features were obtained from the
heart rate and acceleration data: activity features, stride fea-
tures, heart rate features and features describing the influ-
ence of activity on heart rate. The calculation of these
features is explained in more detail in this paragraph.

Activity features. Activity features include the steps per
hour, the percentage of time walking, daily walking dis-
tance and the percentage of time active. A step detection
algorithm calculates the hourly and daily number of steps
from the raw acceleration signal. As illustrated in
Figure 1, steps lead to distinctive peaks in the accelerom-
eter data, which means that the starting points of steps can
be identified using a simple peak detection algorithm.
Steps per day are obtained by summing the number of
steps that are taken in one day. Steps per hour are then
calculated by dividing the total number of steps by the
total duration of the measurement in hours.

Where steps are detected in the signal, the participants
are considered to be walking. The percentage of time
walking is then calculated by dividing the cumulative dur-
ation of walking periods by the total duration of the meas-
urement. Daily walking distance is calculated as the
number of steps multiplied by step length. Step length
was calculated prior to the measurements for each partici-
pant individually by performing a 200m walk reference
test. Total steps during the test were visually counted
and step length was calculated as 200m divided by the
number of steps taken.

To calculate the percentage of time active, first the
activity counts per second had to be calculated from the
raw 3D acceleration data. This is done by (a) detrending
the acceleration in each axis in windows of 1 second, (b)
taking the absolute value of this detrended signal, (c) sum-
ming the values in the 1-second window and (d) averaging
this sum over the three axes. Second, an individual

Figure 1. Raw acceleration signal and step detection (vertical lines).
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threshold is defined as 10% of the maximal daily activity
count. If this calculated threshold is lower than 0.5m/s2,
the threshold is set to equal this value instead. The per-
centage of time active is then defined as the cumulative
time the activity counts exceed the threshold (active peri-
ods), divided by the total duration of the measurement.
Figure 2 provides an overview of the computation of the
activity features.

Stride features. Stride features include the stride duration,
stride acceleration, stride speed and stride displacement.
Given that strides are defined as one step of both feet
combined, the step detection algorithm can also be used
to detect strides. More specifically, every other detected
step in the acceleration data indicates the starting point of
a stride. Stride duration is then determined by the time
between the start of two consecutive strides. The average
acceleration magnitude during a stride represents the
stride acceleration. By integrating the acceleration magni-
tude of the three axes and taking the mean value, mean
stride speed is calculated. Stride displacement can be
obtained by integrating and averaging the stride speed
of the three axes (Figure 3).

Heart rate features. The heart rate features comprise the
median, maximal and minimal daily heartrate. These fea-
tures are calculated from the bi-weekly measured heart
rate and are linearly interpolated to obtain weekly values.

Influence of activity on heart rate features. The features
describing the influence of activity on heart rate consist
of the model gain and the model time constant. Their
calculation is illustrated in Figure 4.

Firstly, a first-order transfer model is computed using
measured heart rate (1Hz) as output and calculated

activity counts (1Hz) as input, using eqn (1):

y kð Þ ¼
b0

1þ a1z�1
u k� 1ð Þ, ð1Þ

where y is the output (heart rate), u is the input (activity
counts), b0 and a1 are the model parameters, z�1 is the
backward shift operator, and k is the sample number
(equal to seconds in this case). Secondly, the model gain
can be calculated by eqn (2):

b0=ð1þ a1Þ ð2Þ

The model gain represents the increase in heart rate for
a unit increase in activity counts. Thirdly, the model time
constant is obtained using eqn (3):

�1=log �a1ð Þ ð3Þ

The model time constant represents the time needed for
the heart rate to increase to 63% of the total heart rate
change as a response to a unit increase in activity counts.

Weekly report

The weekly report contained the total daily active time,
the daily number of steps, the daily walking distance and
the daily minimal, median and maximal heart rates.

Fitness score

Canonical correlation analysis (CCA) is used to investi-
gate whether bio-data can be translated to a fitness
score.25,26 For this study, the test scores from the
10MWT, UGT and 2MWT (dependent variables), and

Figure 2. Computation of the activity features. Top: raw acceleration data in the three axes. Bottom: activity counts and active periods.
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the following bio-data features obtained from the smart-
phone and heart rate sensors (independent variables), are
used: percentage of time active, steps per hour, percentage
of time walking, stride duration, stride acceleration, stride

speed, stride displacement, model gain and model time
constant. Before performing the CCA, missing data are
linearly interpolated to obtain weekly samples for all vari-
ables. Next, multiple linear combinations or canonical

Figure 4. Illustration of model gain and model time constant calculation. Top: measured heart rate and first order model. Bottom: activity

counts.

Figure 3. Calculation of stride features. Top: stride acceleration, middle: stride speed and bottom: stride displacement.

Joosen et al. 5



variates are computed for both the dependent and inde-
pendent variables.

Performance measures from CCA that are important
for the interpretation of the results are the correlation
coefficient, the canonical loadings and the canonical
cross-loadings. The correlation coefficient is a measure
of the linear relationship between two canonical variates.
The canonical loading of a variable is the linear correl-
ation between this variable and its own canonical variate.
The canonical cross-loading of a variable is calculated as
the linear relationship between this variable and the
canonical variate of the other set of variables. Before the
CCA can be interpreted, its significance must be tested by
calculating the level of significance, the magnitude of the
canonical relationships (R2) and the redundancy index.

The first purpose of applying CCA in this study is to
find a linear combination of the bio-data features that can
be used as a fitness score to evaluate the physical condi-
tion of an individual. The second goal is to obtain a linear
combination of the performance test scores that can be
used as a gold standard for assessing an individual’s phys-
ical condition. Subsequently, the fitness score (based on
smartphone and heart rate sensor data) and gold standard
(based on 10MWT, UGT and 2MWT) are used to per-
form classification of physical condition. Before compar-
ing both scores using linear regression, both parameters
are rescaled between 0 and 100. The linear relationship
can then be used to estimate the gold standard based on
the fitness score that is determined with mHealth sensors.
Finally, these results are compared with each other for
validation of the classification and the confusion matrix
is composed.

Statistics

The study followed a pre–post-randomized group design.
Repeated measures analysis of variance (ANOVA) was
applied to the data sets to compare the physical performance
and bio-data features pre-testing, in weeks 1, 3, 5, 7 and 9,
and post-testing. In case the repeated measures ANOVA
revealed significant differences, Tukey’s least significant dif-
ference procedure was performed. The analyses were done in
Matlab (Mathworks Inc., Natick, Massachusetts).

Enquiry

To assess participants’ perceptions of the activity monitor-
ing system, participants were asked to complete a question-
naire containing questions corresponding to a four-point
Likert scale with categories ‘not at all’, ‘slightly’, ‘some-
what’ and ‘a lot’.

Results

Participants and study design

The study included 12 male and 8 female participants with
an average age (�SD) of 81� 9 years (range 59–94).

A total of 943 smartphone data sets were collected over
the 10-week intervention period, of which 141 were
rejected for data analysis due to missing data as a
result of technical failure or cancelled measurement due
to illness of the subject. The remaining data sets had a
mean duration (�SD) of 6.4� 1.8 hours. The majority
(�70%) of activity monitoring sessions were longer than
6 hours long.

Physical performance tests

Bi-weekly performance in the 10MWT, UGT and 2MWT
was compared to pre-test performance. First, subjects
with an incomplete data set (one or more missing weeks)
were rejected for further analysis. This resulted in a data
set of 20, 17 and 20 subjects for the 10MWT, UGT and
2MWT, respectively. Second, repeated measures ANOVA
was applied to these data sets to compare physical per-
formance between the pre-test, weeks 1, 3, 5, 7 and 9, and
the post-test results. In case the repeated measures
ANOVA revealed significant differences, Tukey’s least sig-
nificant difference procedure was applied as a post hoc
test. The results at group level for the three performance
tests are shown in Figures 5 to 7.

Figure 5 shows the box plots and bi-weekly changes
with SD at group level for the 10MWT. From the box
plot, a slight but gradual decrease in time needed to
walk 10m can be noted from the pre-test to week 5, fol-
lowed by a small increase from week 5 to the post-test.
A significant difference in time needed for the 10MWT
compared to the pre-test is observed in weeks 3–9.

In Figure 6, the results of the UGT at group level are
shown. Although there is no apparent trend in the box
plots, a significant difference in time to complete the
UGT compared to the pre-test is found in weeks 1–7.
The results for the 2MWT are given in Figure 7. No
clear pattern can be observed in the box plots, and no
significant differences can be observed when comparing
weeks 1–9 and the post-test to the pre-test.

Bio-data features

The weekly percentage active time for the entire monitor-
ing period is shown in Figure 8. The percentage of active
time from week 2 to week 10 was compared to week 1 in
order to evaluate change over time. Analogously to the
comparison of the physical performance tests, a repeated
measures ANOVA and post hoc Tukey’s least significant
difference procedure were applied. A modest, but statis-
tically significant, increase in activity was observed for
weeks 3 to 9 when comparing activity to week 1. The
absolute increase peaked at week 5 and gradually
decreased towards week 9.

Fitness score

CCA between the set of performance tests (dependent set)
and set of bio-data features (independent set) has a
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Figure 5. Top: box plots of 10-minute walk test. Bottom: bi-weekly changes (�SD) of the 10-minute walk test.

*p< 0.1 significantly different to pre-test.

Figure 6. Top: box plots of the 8-foot up-and-go test . Bottom: bi-weekly changes (�SD) of the 8-foot up-and-go test.

*p< 0.1 significantly different to pre-test.
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Figure 8. Top: box plots of percentage time active. Bottom: weekly changes (�SD) of the percentage time active.

*p< 0.05 significantly different to week 1.

Figure 7. Top: box plots of 2-minute walk test. Bottom: bi-weekly changes (�SD) of the 2-minute walk test.

*p< 0.1 significantly different to pre-test.
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significant first canonical function (correlation¼ 81.02%,
F> 3.68, R2

¼ 65.64%, redundancy index¼ 58.57%). The
canonical loadings and cross-loadings, shown in Table 1,
indicate the weights of the different performance tests and
bio-data features. The independent variables that show
the highest correlation with the dependent canonical vari-
ate are marked in bold in the table.

After calculating the gold standard for physical condi-
tion and the fitness score from the canonical variates, the
gold standard and fitness score were normalized between 0
and 100, further referred to as GS_norm and FS_norm,
respectively. Next, linear regression between GS_norm
and FS_norm was performed to obtain the estimated
gold standard or GS_est, using eqn (4):

GS est ¼ BþA � FS norm ð4Þ

This linear regression resulted in an R2 of 65%, mean-
ing that 65% of the variability in GS_norm can be
explained by FS_norm. For classification, the data were
first divided in three classes according to GS_norm
(Table 2). Secondly, the same division in three classes
was performed according to GS_est (Table 2).

Thirdly, the classification according to GS_est was com-
pared against the classification according to GS_norm. The
resulting confusion matrix is given in Table 3. Condition
classification using the fitness score results in 67.32 %
of correctly classified data. Only 0.97% of all data is

classified completely wrong (good as bad and vice versa)
by the fitness score.

Enquiry

At the end of the 10-week measurement period, the
participants were asked to fill in a questionnaire to evalu-
ate their perception of the activity monitoring system. Of
the subjects, 58% were motivated to be more active
because they were wearing the activity monitor and 68%
found the activity reports useful. Another interesting
observation is that 74% of the subjects said that they
would be more active in the future if they were encouraged
to do so. Comparing this to the 58% mentioned earlier
that were motivated to be more active because they were
monitored, this indicates that motivation must also come
from elsewhere, as was previously stated.

Discussion

In this study, a smartphone-based mHealth system
was implemented in the daily life setting of a care
home centre to investigate to what extent daily PA levels
of elderly people can be monitored over a 10-week
period. During the testing period, 20 care home residents
(81� 9 years old) were equipped with the system, consist-
ing of a smartphone and heart rate belt, which describes
PA levels and physical fitness. Although 15% of the data
sets were compromised because of technical failures or
cancelled measurements, there was no drop-out of partici-
pants over the 10-week program and more than 70% of
the data sets contained more than 6 hours of usable data.
According to previous studies, an mHealth system
should be comfortable, easy to use, non-intrusive and
data should be available for caretakers to ensure success-
ful implementation.27,28 The mHealth system imple-
mented in this study fulfilled these requirements and was
therefore well perceived. This indicates that once technical
failures are solved, the mHealth system can easily be
implemented in a care home centre for PA monitoring
of the elderly. An improvement towards ease of use and
comfort of wear that can be made in the future is to
use watches instead of belts to monitor heart rates of
the subjects. These watches will be more practical for
the physiotherapists to apply and will be more comfort-
able to wear all day long.

Table 1. Canonical loadings and cross-loadings.

Dependent

variable

Canonical

loading

Independent

variable

Canonical

cross-loading

10-m walk –96.01 % % time active 17.42 %

% time walking 40.64 %

Steps per hour 42.28%

2-minute walk 94.80 % Stride duration –21.08%

Stride acceleration 55.95%

Stride speed –2.52%

8-foot

up-and-go

–92.56 % Stride displacement –14.07%

Model gain –63.33%

Model time

constant

3.87%

Note: The independent variables that show the highest correlation with the

dependent canonical variates are marked in bold.

Table 3. Confusion matrix.

GS_norm

Bad Neutral Good

GS_est

Bad 18.36 % 6.76 % 0.97 %

Neutral 5.80 % 26.09 % 7.25 %

Good 0 % 11.60 % 23.19 %

GS_est: estimated gold standard; GS_norm: gold standard.

Table 2. Division in three classes: bad,

neutral and good.

Class GS_norm/GS_est

Bad >60

Neutral 40–60

Good <40

GS_est: estimated gold standard; GS_norm:

gold standard.

Joosen et al. 9



The first goal of this study was to investigate whether the
use of mHealth could induce a change in the PA behaviour
of the elderly. For this purpose, the participants received a
weekly report of their measurements. This report contained
information on daily active time, daily number of steps,
daily walking distance and the daily minimal, maximal
and median heart rates. The weekly feedback contained
only activity and heart rate features, because the stride
and modelling features would be less straightforward for
the participants to interpret. These reports were handed out
to the participants by the physiotherapists without add-
itional feedback or advice regarding their results. It was
up to them to decide how much they would participate in
the standard available physical and entertainment activities
at the care home.

Feedback has been shown to be a positive stimulus
for mHealth system compliance,29 as well as being able
to increase PA levels.30 This is confirmed in this study,
as the median active time rose from a little over 20% to
just under 30% between weeks 1 and 5 (Figure 8).
However, the motivating effect wore off after five weeks
and median active time gradually decreased again to
24% in week 10. Still, the increase in active time compared
to week 1 remained significant until week 9. Results from
the 10MWT are similar to the active time of the partici-
pants: an improvement was present from weeks 1 to 5,
after which the improvement diminished. This resulted
in a significant improvement of the 10MWT from week
3 until week 9 compared to the pre-test score, similar
to the increase in active time. The UGT also showed a
significant improvement from weeks 1 to 7 compared with
the pre-test score. For 2MWT, however, no significant
change was shown over the weeks. Note that the results
from all tests were subject to large SDs due to the large
individual differences between participants. Nevertheless,
this study shows that the presented technology has a posi-
tive influence on the physical condition of participants,
but that this technology is not sufficient to motivate the
elderly in the long-term. These findings were confirmed by
the questionnaire that was filled in by the participants
after the measurement period. In this questionnaire,
58% of the participants indicated that just wearing
the mHealth system made them more motivated to be
physically active. On the other hand, 74% of the subjects
said that they would be more active in the future if
they were encouraged to do so. This confirms that the
motivation must also come from elsewhere. Previous stu-
dies suggest that using apps,31 setting activity goals14 or
providing actionable feedback29 might lead to a main-
tained higher level of PA over a longer period of time,
which could easily be implemented in the currently used
mHealth system.

The second objective of this study was to evaluate
whether bio-data features obtained from the mHealth
system can be correlated with validated reference perform-
ance tests from the senior fitness test (i.e. 10MWT, UGT
and 2MWT). To that end, bio-data features were

translated into a meaningful fitness score based on CCA
between the bio-data features (independent variables) and
the performance tests (dependent variables). The bio-data
features consisted of steps per hour, percentage of time
walking, stride duration, stride acceleration, stride speed
and stride displacement, which were obtained using a
simple peak detection algorithm. Some additional calcu-
lations provided the percentage of time active. Finally,
transfer function model features (model gain and model
time constant) were calculated to take into account the
dynamic response of HR to changes in PA. CCA between
the bio-data features and the performance tests showed a
significant first canonical function. Additionally, every
performance test was strongly correlated with the depend-
ent canonical variate. The 10MWT and UGT showed a
negative correlation, meaning that a shorter duration of
these tests corresponds to a better physical condition.
Similarly, the 2MWT was positively correlated with the
dependent canonical variate (a longer distance in this test
corresponds to a better condition). This indicates that the
dependent canonical variate, consisting of the three per-
formance tests, is meaningful and reliable as a gold stand-
ard for physical condition.

The canonical cross-loadings also show logical relation-
ships. The steps per hour and the percentages of time
active and walking are positively correlated with the
dependent canonical variate, meaning that they are related
to a better physical condition. Regarding stride-based
features, a better physical condition is associated with a
shorter stride duration, speed and displacement. However,
when considering the stride-based features, stride acceler-
ation has the highest (positive) correlation with physical
condition. Hence, an improved physical condition leads to
swifter strides. The model gain, referring to a heart rate
increase in response to PA increase, is negatively corre-
lated with physical condition. This indicates that a better
physical condition leads to smaller heart rate increases in
response to PA increases. Lastly, the model time constant
showed a very small positive correlation with physical
condition.

Four bio-data features have been identified as the most
valuable for physical condition monitoring: percentage of
time walking, steps per hour, stride acceleration and the
model gain of a first-order transfer function model.
The former three can easily be computed, which indicates
that a fitness score could already be calculated solely
based on simple features. The latter is more complex,
but also has the highest canonical cross-loading. This indi-
cates that more complex features should be considered, as
they are able to improve fitness score performance.

The canonical variates were then used to calculate
the gold standard for physical condition from the refer-
ence performance tests, as well as the fitness score from
the bio-data features. After normalising the gold standard
and fitness score between 0 and 100 to obtain GS_norm
and FS_norm, linear regression was performed between
them. This resulted in the calculation of the estimated
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gold standard GS_est, with an R2 of 65%. The data were
then divided into three groups and the classification
according to GS_est was compared against the classifica-
tion according to GS_norm. It was found that 67.32% of
the data could be correctly classified using GS_est and
that only 0.97% of all data were classified completely
wrongly (good as bad and vice versa). These results
show that the measured bio-data features can be trans-
lated into one meaningful fitness score, and that this fit-
ness score can be used to relatively accurately monitor the
PA of elderly automatically in a care home setting.

A possible limitation of the current study is that a rela-
tively small sample size was considered and that all sub-
jects were recruited at the same care home. For this
reason, the results of this study should be interpreted
with care and generalizations of the results to the entire
elderly population should be made with caution. Another
limitation of the study is that heart rate data were only
collected every two weeks due to the limited availability of
chest straps. Weekly heart rate data might have provided
an even more complete and accurate understanding of the
participant’s daily PA and motivation to be active.
Finally, the applicability of the proposed mHealth
system for widespread use in care home settings could
be disputed. The current system requires staff to apply,
remove and charge the mHealth system on a daily basis
for all participants. The authors suggest that the possibil-
ity of monitoring the elderly using the proposed mHealth
system should be investigated on an interval basis, while
still capturing their PA in an accurate way, as well as
keeping the elderly motivated to be more active.

In conclusion, a smartphone-based mHealth system
was implemented in a care home setting to monitor the
PA levels of elderly participants. The system was well
perceived by caretakers and participants. This demon-
strates the feasibility of implement mHealth technology
in a care home setting to monitor the daily PA of partici-
pants. Feedback about PA levels was given on a weekly
basis, with participants consistently increasing their
PA levels from weeks 1 to 5, after which the motivating
effects of feedback wore off. This indicates that additional
incentives are necessary to permanently increase PA levels.
Finally, this study has shown that the measured bio-data
features retrieved by the mHealth system can be translated
into one meaningful fitness score that correlates with ref-
erence performance tests for physical fitness.
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