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Abstract— Study of white matter (WM) fiber-bundles is a
crucial challenge in the investigation of neurological diseases
like multiple sclerosis (MS). In this activity, the amount of data
to process is huge, and an automated approach to carry out
this task is in order.

In this paper we show how tensor-based blind source sep-
aration (BSS) techniques can be successfully applied to model
complex anatomical brain structures. More in detail, we show
how through vector hankelization it is possible to formalize
data extracted from WM fiber-bundles using a tensor model.
Two main tensor factorization techniques, namely (Lr, Lr, 1)
block term decomposition (BTD) and canonical polyadic de-
composition (CPD), were applied to the generated tensor. The
information extracted from the factorization was then used to
differentiate between sets of fibers, within the bundle, affected
by the pathology and normal appearing fibers.

Performances of the proposed tensor-based model was evalu-
ated on simulated data representing pathological effects of MS.
Results show the capability of our tensor-based model to detect
small pathological phenomena appearing along WM fibers.

I. INTRODUCTION

Application of Blind Source Separation (BSS) techniques
in magnetic resonance imaging (MRI) for brain analysis con-
stitutes an important field in biomedical image processing.
Different BSS techniques were applied on MRI data like
non-negative matrix factorization (NMF) [12]. Recently, BSS
algorithms based on tensor models showed successful results
in diverse applications like brain studies. For instance, they
were successfully applied to event related potential (ERP)
analysis [23] and tumor tissue type differentiation based on
magnetic resonance spectroscopic imaging [4].

In this work we describe a first application of tensor fac-
torization in the study of white matter (WM) fiber-bundles.
More in detail, we show how tensor factorization could be a
powerful tool to detect “pathological” regions in WM fiber-
bundles affected by multiple sclerosis (MS).

In the last decade, the interest in new methods to analyze
WM fiber-bundles increased. More in detail, different find-
ings [21], [3] show how the combination of diffusion tensor
imaging (DTI) data with anatomical information obtained
from tractography [11] constitutes an important tool to study
the brain. Unfortunately, the current methods available in
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literature do not allow to perform complex analysis of those
data structures. More in detail, they simply analyze the
mean signal profile changes along the fiber-bundles. If these
approaches offer a good visual tool to analyze pathological
effects along the fiber-bundles, they are not sensitive enough
to detect the presence of small “abnormal” regions [15],
especially when those changes are relatively small like in
relapsing remitting (RR) form of MS. Moreover, these meth-
ods are not able to combine longitudinal DTI information.
Furthermore, since these approaches perform just a global
general mean profile analysis of the fiber-bundle, they do not
allow to distinguish which sets of fibers within the bundle
are affected by the pathology and which are not.

In order to improve the quality of the fiber-bundle analysis
we introduce a new tensor-based model to perform such
a task. The idea behind our method, is to stack the large
amount of data extracted from a given fiber-bundle using a
3rd order tensor. In this process we will use a well known
technique called hankelization [1], to stack the signal in
a tensor. The obtained tensor is then factorized to extract
meaningful information to separate respectively fibers, within
a bundle, affected by the pathological process and healthy
fibers.

Canonical polyadic decomposition (CPD) and block term
decomposition (BTD) are used and compared to analyze the
effects that different types of tensor decomposition have on
fiber-bundle differentiation.

The performance of the proposed tensor-based model was
evaluated on simulated data representing pathological effects
of MS. Results show the capability of our tensor-based
model to distinguish between fibers affected by a longitudinal
pathological process and fibers belonging to normal tissue.

This paper is structured as follows. In Section II, we
provide a detailed description of our approach. In Section
III, we present our experimental campaign. In Section IV,
we show the performance of our method. In Section V,
we discuss our results. Finally, in Section VI, we draw our
conclusions.

II. MATERIALS AND METHODS

A. Data acquisition protocol

One healthy control (HC) subject (age: 24y) was included
in this study. The subject underwent a weekly examination
for a period of two months (8 time-points). The DTI image
set consisted of the acquisition of 60 contiguous 2mm-thick
slices parallel to the bi-commissural plane (AC-PC), and
were acquired using a 2D Echo-Planar Imaging (EPI) se-
quence (TE/TR = 60/8210 ms, FOV = 224×224×120mm3)



with 32 gradient directions (b = 1000 s
mm2 ). The nominal

voxel size at acquisition (2×2×2mm3) was interpolated to
0.875× 0.875× 2mm3 after reconstruction.

B. Data processing and fiber-bundle extraction

Diffusion data obtained at each time-point (1, . . . , 8) are
processed in order to compute the diffusion model using the
FDT module of FSL [8]. The obtained images are then used
to generate a subject-specific atlas. The atlas is used to time
points to the Illinois Institute of Technology (IIT) atlas [19]
using DTI ToolKit (DTI-TK) [22]. When each time-point
is co-registered to the Atlas, the fractional anisotropy (FA)
map is computed in each time-point. Probabilistic streamline
tractography is performed using MRTrix [17] based on the
fiber orientation density (FOD) information of IIT Atlas. The
fiber-bundle extraction is performed using a semi-automatic
algorithm [14] coupled with the prior knowledge extracted
from the JHU WM fiber-bundle atlas [6].

Formally, an extracted fiber-bundle could be represented
as a set Z = {z1, z2, . . . , zN} composed of N fibers zi =
{p1p1p1, . . . , pcpcpc} where pqpqpq = (xq, yq, zq) | 1 ≤ q ≤ c. As final
post-processing step each fiber is resampled with the same
number of points c = 100 (also called nodes). The coordinate
pqpqpq is used to extract the voxel’s value of the FA maps in the
corresponding location of the fiber zi in a specific time-point.
With this formalization it is possible to analyze the changes
of each diffusion map along each fiber belonging to a bundle.

C. Blind source separation formalization

In this work we start from the assumption that the FA
signal along each fiber, within a bundle, can be modelled
according to the following equation:

f(t) =

C∑
i=1

αi sin(tβi) (1)

We use FA instead of other DTI features since its values
are in the range [0; 1]. For our method, we selected C =
10 to model our data. According to this formalization it is
possible to reformulate the longitudinal data along a fiber-
bundle as follows. Let F 1, . . . , F p be the longitudinal FA
values along all the fibers within a bundle F from time-
point 1 to time point P . F p = {fp1 (t), . . . , f

p
V (t)} where

each fpi (t) represents the signal at time-point p along the
i− th fiber within the bundle F .

Since we are interested in the extraction of the sources
containing “pathological” longitudinal changes, we can for-
malize the problem as a blind source separation (BSS)
problem. Give a set of signals XXX = RK×N a BSS problem
consists in the extraction of the mixing matrix MMM ∈ RK×R

and/or the original sources in SSS ∈ RR×N according to the
following linear model:

XXX =MMMSSS (2)

where K is the number of observed signals, R is the
number of source signals and N is the number of samples
per signal.

In our case, the FA signal along each fiber within the
bundle is collected in the signal matrix XXX with N = P ∗ V .
Each row of the matrix represents the FA signal along a
particular fiber in a specific time-point.

D. Tensorization

Generally speaking, a N th−order tensor is an element of
the tensor product of N vector spaces, each of which has its
own coordinate system; for instance, a third-order tensor has
three indices. A first-order tensor is a vector, a second-order
tensor is a matrix, and tensors of order three or higher are
called higher-order tensors.

In order to describe the tensor-based formalism herein
employed, we introduce next the notation used; in partic-
ular, if not clearly stated, we use the notation described
in [9]. We denote scalar values with small letters (e.g.,
a), 1-dimensional vectors with bold small letters (e.g., aaa),
matrices with boldface capital letters (e.g., AAA) and tensors
with boldface Euler script letters (e.g., AAA).

Consider the signal along the i − th fiber, belonging to
a bundle, described by equation 1, it can be mapped in an
Hankel matrix HHH ∈ RI×J with I, J > 2 × C defined as
follows:

HHH =


f(0) f(1) f(2) . . .
f(1) f(2) f(3) . . .
f(2) f(3) f(4) . . .

...
...

...


Such representation is in a very compact way a low-rank

approximation and it is useful for tensor representation [1].
Given a set of longitudinal signals F 1, . . . , F p of a fiber-

bundle each composed by a set of functions fi(t) 1 ≤ i ≤ V
it is possible to build a tensor defined as follows. Let TTT ∈
RI×J×N , with N = P ∗ V , be the tensorized version of the
fiber bundle we have:

TTT[:,:,k] =Hg
lH
g
lH
g
l ∀ 1 ≤ k ≤ P ∗ V

where Hg
lH
g
lH
g
l ∈ RI×J represents the hankel matrix generated

from the function fgl (t).
Roughly speaking, the Hankel matrices generated from the

longitudinal acquisition along each bundle are stacked in the
3rd mode of the tensor TTT. A graphical representation of our
tensorization process is described in Figure 1.

Using this procedure, the matrix XXX of the BSS problem
described in equation 2 can be solved in its tensorized
version.

E. Canonical polyadic and block term decomposition

Tensor factorization (decomposition) is a widely used
method to identify correlations and relations among different
modes of high dimensional data, which finds its application
in many research fields such as psychometrics, chemomet-
rics, signal processing, numerical linear algebra, computer
vision, numerical analysis, data mining, neuroscience, graph
analysis, and elsewhere. The tensor decomposition methods



Fig. 1. Tensorization of our problem and factorization using Canonical
Polyadic Decomposition (CPD) and (Lr, Lr, 1) Block Term Decomposition
(BTD).

are mainly generalizations of the Singular Value Decompo-
sition (SVD). In particular, there are numerous factorization
methods proposed by researchers such as Higher Order
SVD (HOSVD) [10], Tucker decomposition [18], Parallel
Factor (a.k.a PARAFAC or CANDECOMP or CP) [5]. The
canonical polyadic decomposition (CPD) of the tensor XXX ∈
Rc×m×n is defined as follows:

XXX =

R∑
r=1

ararar ◦ brbrbr ◦ crcrcr +EEE (3)

where R is a positive integer, ararar ∈ Rc, brbrbr ∈ Rm, crcrcr ∈
Rn ∀ 1 ≤ r ≤ R are the component vectors and EEE ∈
Rc×m×n is the error tensor. The symbol “◦” represents the
vector outer product.

The rank of a tensor XXX, denoted rank(XXX), is defined as
the smallest number of rank-one tensors that generate XXX as
their sum. In other words, this is the smallest number of
components in an exact CP decomposition, where “exact”
means that there is equality in equation 3 with the residual
tensor EEE as a zero-element tensor. According to the BSS
formalization we gave, aiaiai and bibibi represent the vectors
containing information about the sources while each vector
cicici contains information about the mixtures.

Factorization with rank-1 components performed by CPD
could be too restrictive for some applications as it does
not model all variability in the data [7]. Using block tensor
decomposition (BTD) it is possible to model the variability
on the data using a so called rank (Lr, Lr, 1) BTD. This
decomposition allows to approximates a third-order tensor
by a sum of R terms, each of which is an outer product of a
Lr−rank matrix and a nonzero vector [13]. A XXX ∈ Rc×m×n

can be decomposed by a (Lr, Lr, 1) BTD as follows:

XXX =

R∑
r=1

(ArArAr ·BT
rB
T
rB
T
r ) ◦ crcrcr +EEE

The tensor XXX could be expressed like the sum of the outer
products of Lr−rank matrices,ArArAr ∈ Rc×Lr , BT

rB
T
rB
T
r ∈ RLr×m

and the component vector crcrcr ∈ Rn, with R representing the
number of components and EEE the model error. According
to the BSS formalization we gave, AiAiAi and BiBiBi represent the
matrices containing information about the sources while each
vector cicici contains information about the mixture. Like for
the CPD, the value for the rank R and Lr should be set

a priori. In this study, both CPD and BTD were computed
with the unconstrained nonlinear least squares algorithm in
the publicly available Tensorlab toolbox [20].

Both CPD and BTD are graphically described in Figure
1.

F. Fibers differentiation

Since our goal is to differentiate fibers affected by longi-
tudinal changes and fibers that are not affected, information
contained in the factorisation is used. More in detail, we
used the information about the mixtures contained in the
cicici vectors to perform such discrimination. Since the cicici
vectors have equal size and meaning in both CPD and BTD,
the proposed approach is the same for both decomposition
algorithms. More in detail, for each fiber fi we build a matrix
LiLiLi ∈ RR×P 1 ≤ i ≤ v defined as

LiLiLi[r,:] = cccr[a:b] ∀1 ≤ r ≤ R

where a = (i− 1) ∗ P + 1 and b = i ∗ P .
The obtained matrix LiLiLi is then used to detect if the i− th

fiber contains (or not) “pathological” longitudinal changes. In
order to perform this discrimination, identification of outliers
contained in each LiLiLi matrix was performed using a density-
based local outliers algorithm (LOF) [2]. This clustering
algorithm allows to detect outliers by computing the LOF
value for each element. The LOF value of each object
represents the degree of the object to be an outlier compared
to the other elements. According to this algorithm, we say
that a fiber fi is affected by longitudinal changes if there
exists a row in its LiLiLi matrix labeled as “outlier”.

III. EXPERIMENTS

Using the data available from the control subject, 60
different “pathological” variations are simulated. All the
variations are generated along 3 different fiber-bundles,
namely, cortico-spinal tract (CST), superior longitudinal fas-
ciculi (SLF), and inferior longitudinal fasciculi (IFO). Small
spherical regions are randomly selected along the WM fiber-
bundles. Voxels’ value inside each of those regions were
changed according to the longitudinal simulation paradigm
based on generalized Gaussian probability density function
proposed in [16]. To quantify the quality of the detection
of the fibers containing the simulated variations, the True
Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN) are used to assess the performance.
More in detail we focus our attention on the precision
(Pr = TP

TP+FP ), recall (Re = TP
TP+FN ) and F-Measure

(Ms = 2∗TP
2∗TP+FP+FN ). Since multiple tests are performed,

for each of the three diffusion metrics, mean (Pr, Re, Ms)
and standard deviation (σPr, σRe, σMs) are computed.

In order to compare the different factorization techniques,
tests with CPD and BTD were performed. Moreover, as we
discussed in section II-E, values for rank R and Lr need to
be a-priori known. An important issue in tensor factorization
is the estimation of the rank for the CPD factorization of a
tensor. The literature on estimating the decomposition rank



from the tensor is limited. In order to set the value for the
rank R, we used R = 30. The best value for the (Lr, Lr, 1)
rank was selected by performing several tests where different
values for Lr in the range {2, 3, 4, 5} were used.

TABLE I
CHANGES IN MEAN (Pr , Re , Ms) AND STANDARD DEVIATION (σPr ,
σRe , σMs) IN PARENTHESIS OF PRECISION, RECALL AND F-MEASURE

FOR CPD AND BTD. FOR BTD, PERFORMANCES ARE SHOWN

ACCORDING TO VARIATION OF THE (Lr, Lr, 1) RANK.

BTD
LrLrLr Pr (σPr) Re (σRe) Ms (σMs)
2 0.55 (0.33) 0.33 (0.26) 0.35 (0.26)
3 0.73 (0.06) 0.70 (0.06) 0.71 (0.04)
4 0.75 (0.08) 0.67 (0.12) 0.70 (0.06)
5 0.80 (0.07) 0.56 (0.19) 0.63 (0.16)
6 0.83 (0.11) 0.43 (0.20) 0.52 (0.16)

CPD
0.39 (0.27) 0.07 (0.4) 0.11 (0.09)

Fig. 2. Mean and standard deviation of the original (∗ ± ) and the tensor
reconstructed signal (4 ± ) along the cortico-spinal fiber-bundle. Top,
graph containing mean and standard deviation of original and CPD fitted
signal. Bottom, graph containing mean and standard deviation of original
and fitted signal using BTD with Lr = 3.

IV. RESULTS

We report the results obtained with CPD and BTD for
different values of Lr in table I (best results are reported
in bold). From the tests we performed, clear difference
are visible between CPD and BTD. In particular, BTD
showed higher performances compared to CPD in terms of
Precision, Recall and F-Measure. We also showed how the
performances, obtained using the BTD, change according to
the Lr parameter.

Globally, the best performances were obtained using Lr =
3 with a F-Measure of 0.71. Best Precision (0.83) was
achieved with Lr = 6 while best Recall (0.71) was achieved
with Lr = 3.

By increasing the value of Lr it is possible to see an
increase of Precision despite Recall. Indeed, with Lr ≥ 4
Precision increases from 0.75 (Lr = 4) to 0.83 (Lr = 6)
while Recall decreases from 0.67 (Lr = 4) to 0.43 (Lr = 6).

V. DISCUSSION

As expected, BTD gives better results compared to CPD.
This is due to the capability of BTD to model, thanks to the
Lr − rank terms, more variability in the data compared to
CPD. This is also confirmed by the performance of the two
methods to fit the signal. As shown in figure 2 the overlap
between the original signal and the reconstructed signal
after factorization, is better when BTD is used compared to
CPD. More in detail, in the region containing “pathological
changes” (x = [38; 42]) the BTD outperforms CPD in the
reconstruction of the signal, indeed the overlap between the
original and reconstructed signal using BTD is perfect. This
better fitting in abnormal regions demonstrates why “patho-
logical changes” are better detected using BTD compared to
CPD.

The capability of BTD to better detect those changes could
be explained by partial volume effects which affect diffusion
images. Partial volume effect originates from the fact that
the value of a given voxel is affected by the voxels in its
neighbourhood. In case of small pathological changes, partial
volume effects can be distinguished to detect such variations.
With BTD, thanks to its less restrictive model, it is possible
to model such kind of biases present in the data.

VI. CONCLUSIONS

In this work we described a first application of tensor
factorization techniques to longitudinal WM fiber-bundle
analysis. At first we describe an easy pipeline to process
the data. In the second part we showed how the problem to
analyze longitudinal changes along WM fiber-bundles can
be formalized as a BSS problem. Finally we described how
to tensorize the BSS problem using hankelization and use
tensor factorization techniques, namely CPD and BTD, to
perform WM analysis.

As major results we show how tensor-based formalization
for BSS is a powerful tool for brain investigation. More
in detail, we applied tensor factorization to isolate, from
the whole fiber-bundle, just the subset of fibers affected by
longitudinal changes.

Furthermore, we enriched our findings showing how dif-
ferent decomposition techniques, namely CPD and BTD,
could be applied to the fiber-bundle analysis. Results in
term of Precision, Recall and F-Measure were computed
on simulated MS data in order to compare how the two
factorization techniques are capable to extract “pathological”
WM fibers.

In this work, the ability of tensor factorization to study
WM was only partially tested. Indeed, we focus our interest
just to one single diffusion feature (FA) and to a single
modality (DTI). Analysis of multi-parametric information is
an interesting application in which tensor based techniques
can be further exploited.

As future work we plan to exploit all the information that
could be extrapolated for tensor factorization. More in detail,
we will study how the other components (aiaiai, bibibi for CPD
and AiAiAi,BiBiBi for BTD) can be used in order to extract useful
information about the status of the WM fibers. Moreover, we



plan to investigate how the use of regularization, like l1 or
l2 -norm, on the factorization can improve the performance.
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[1] M. Boussé, O. Debals, L. De Lathauwer, “A Tensor-Based Method
for Large-Scale Blind Source Separation using Segmentation,” IEEE
Transactions on Signal Processing, vol. 65(2), pp. 346-358, 2017.

[2] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, “LOF: Identifying
density-based local outliers,” ACM SIGMOD, vol. 29, pp. 93-104,
2000.

[3] J. B. Colby, L. Soderberg, C. Lebel, I. D. Dinov, P. M. Thompson,
E. R. Sowell, “Along-tract statistics allow for enhanced tractography
analysis,” Neuroimage, vol. 59(4), pp. 3227-3242, 2012.

[4] B. Halandur Nagaraja, D. Sima, N. Sauwen, U. Himmelreich, L.
De Lathauwer, S. Van Huffel, “Tensor Based Tumor Tissue Type
Differentiation Using Magnetic Resonance Spectroscopic Imaging,”
Annual International Conference of the IEEE, EMBC, pp. 7003-7006,
2015.

[5] R. A. Harshman, “PARAFAC: Methods of three-way factor analysis
and multidimensional scaling according to the principle of proportional
profiles,” PhD thesis, University of California, Los Angeles, CA, 1976.

[6] K. Hua, J. Zhang, S. Wakana, H. Jiang, X. Li, D. S. Reich, P. A.
Calabresi, J. J. Pekar, P. C. M. van Zijl, and S. Mori, “Tract probability
maps in stereotaxic spaces: analyses of white matter anatomy and tract-
specific quantification,” Neuroimage, vol. 39(1), pp. 336-347, 2008.

[7] B. Hunyadi, D. Camps, L. Sorber, W. Paesschen, M. De Vos, S. Van
Huffel, L. De Lathauwer, “Block term decomposition for modelling
epileptic seizures,” EURASIP J. Adv. Signal Process., vol. 139, 2014.

[8] M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich,
S.M. Smith, “FSL,” NeuroImage, vol. 62 pp. 782-790, 2012.

[9] T. G. Kolda, B. W. Bader, “Tensor Decompositions and Applications,”
SIAM Review, vol. 51(3), pp. 455-500, 2009.

[10] L. De Lathauwer, B. D. Moor, J. Vandewalle. “A multilinear singular
value decomposition,” SIAM J. Matrix Anal. Appl, vol. 21(4), 1253-
1278, 2000.

[11] S. Mori, B. J. Crain, V. P. Chacko, P. C. van Zijl, “Three-dimensional
tracking of axonal projections in the brain by magnetic resonance
imaging,” Ann Neurol, vol. 45, pp. 265-269, 1999.

[12] N. Sauwen, D. M. Sima, S. Van Cauter, J. Veraart, A. Leemans,
F. Maes, U. Himmelreich, S. Van Huffel, “Hierarchical non-negative
matrix factorization to characterize brain tumor heterogeneity using
multi-parametric MRI,” NMR in Biomedicine, vol. 28(12), pp. 1599-
1624, 2015.

[13] L. Sorber, M. Van Barel, L. De Lathauwer, “Optimization-based algo-
rithms for tensor decompositions: canonical polyadic decomposition,
decomposition in rank-() terms, and a new generalization,” SIAM J.
Optim., vol. 23, pp. 695-720, 2013.

[14] C. Stamile, F. Cauteruccio, G. Terracina, D. Ursino, G. Kocevar,
D. Sappey-Marinier, “A Model-Guided String-Based Approach to
White Matter Fiber-Bundles Extraction,” BIH, LNCS, vol. 9250,
pp. 135-144, 2015.

[15] C. Stamile, G. Kocevar, F. Cotton, F. Durand-Dubief, S. Hannoun,
C. Frindel, D. Rousseau, D. Sappey-Marinier, “A Sensitive and Au-
tomatic White Matter Fiber Tracts Model for Longitudinal Analysis
of Diffusion Tensor Images in Multiple Sclerosis,” PLoS ONE 11(5):
e0156405. doi:10.1371/journal.pone.0156405, 2016.

[16] C. Stamile, G. Kocevar, F. Cotton, F. Maes, D. Sappey-Marinier, S.
Van Huffel, “Multiparametric Nonnegative Matrix Factorization for
Longitudinal Variations Detection in White-Matter Fiber Bundles,”
IEEE Journal of Biomedical and Health Informatics, vol. 21(5),
pp. 1393-1402, 2017.

[17] J. D. Tournier, F. Calamante, A. Connelly, “MRtrix: Diffusion trac-
tography in crossing fiber regions,” International Journal of Imaging
Systems and Technology, vol. 22, pp. 53-66, 2012.

[18] L. R. Tucker, “Some mathematical notes on three-mode factor analy-
sis,” Psychometrika, vol. 31, pp. 279-311, 1966.

[19] A. Varentsova, S. Zhang, K. Arfanakis, “Development of a high angu-
lar resolution diffusion imaging human brain template,” Neuroimage,
vol. 91, pp. 177-186, 2014.

[20] N. Vervliet, O. Debals, L. Sorber, L. De Lathauwer, “Tensorlab 3.0,”
Available online, Mar. 2016. URL: http://www.tensorlab.net/.

[21] J. D. Yeatman, R. F. Dougherty, N. J. Myall, B. A. Wandell, and
H. M. Feldman, “Tract profiles of white matter properties: automating
fiber-tract quantification,” PLoS One, vol. 7(11), p. e49790, 2012.

[22] H. Zhang, P. A. Yushkevich, D.C. Alexander, J.C. Gee, “Deformable
registration of diffusion tensor MR images with explicit orientation
optimization,” Medical Image Analysis, vol. 10(5), pp. 764-785, 2006.

[23] R. Zink, B. Hunyadi, S. Van Huffel, M. De Vos, “Tensor-Based Classi-
fication of Auditory Mobile BCI without Subject-Specific Calibration
Phase,” Journal of Neural Engineering, vol. 13(2), 2016.


