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Abstract—Attractive Internet-of-Things (IoT) ecosystems need
to cope with fast edge hardware evolutions. Offering flexibility
to IoT infrastructure owners when disrupted or broken sensors
and actuators need to be replaced is of major importance. It
must be possible to plug in commercial-of-the-shelf alternatives
that are probably more reliable and/or cheaper at a given time.
Decoupling the application from the underlying infrastructure
during software design increases flexibility and reconfigurability.
Application developers no longer create applications tailored
to one specific sensor or actuator. However, quality concerns
imposed by the application may restrict feasible paths that can
be taken by infrastructure providers. Hasty decisions can result
in improperly functioning IoT ecosystems. This paper proposes
a structured approach to embed Quality-of-Service (QoS) chal-
lenges in the development and operations cycle of advanced
IoT environments, thereby incorporating clear separation-of-
concerns between app developers and infrastructure providers.
Its practicality is demonstrated by means of a smart office case.

I. INTRODUCTION

The digital transformation is omnipresent in many sectors.
In this decade, an emergent number of companies are ex-
ploring the opportunities of equipping industrial and logistic
environments with Internet-of-Things (IoT) technologies, or
extending existing work-related as well as leisure software
applications with edge technologies. For instance, in the
transport sector, smart IoT applications support GPS driven
vehicle tracking-and-tracing, as well as cargo monitoring by
sensing temperature, humidity and vibration values.

The advantages of connecting sensors and actuators to
computer systems are well known. However, many system
integrators are currently struggling to build sustainable IoT
ecosystems cost-efficiently. During the first IoT wave, IoT
applications were built and tailored to one specific sensor
or actuator manufacturer. Sensor-specific code was often in-
tertwined with the business logic in IoT apps. The latter
negatively impacts the software maintainability, and results in
unexpected and costly vendor lock-ins. Today, the software
lifetime exceeds the lifetime of hardware devices in many
IoT ecosystems. Front-end devices break due to harsh environ-
mental conditions or become obsolete after a relatively short
period. However, in many IoT systems, broken sensors can
only be replaced by new ones of the same type, model and
vendor although more qualitative or cheaper alternatives are
already on the market at that time.

Embracing flexibility and reconfigurability as key concerns
during the design process of IoT ecosystems is essential

to develop sustainable IoT applications. Application-centric
development aims at combatting the vendor lock-in trap. This
design paradigm postulates that IoT technology selection –
and in particular the edge devices – should no longer be
done as the first step in the IoT design and development
process. On the contrary, during the design of IoT apps, sensor
and actuator technology should be abstracted. Infrastructure
providers are responsible for selecting and installing the edge
devices required by the applications at deployment time.

A layered software architecture can separate business logic
from the underlying IoT infrastructure. Uniform technology-
agnostic interfaces can be called from the business logic layer.
The underlying layers can subsequently bind the calls to
concrete IoT devices, given the appropriate plugins are loaded.
Although these design tactics facilitate reconfigurability, the
options are not unlimited. For instance, a broken sensor
monitoring the temperature of boxes during organ transport
cannot be replaced by whatever other temperature sensor
on the market. Quality-of-Service (QoS) properties restrict
the feasible options. For instance, hard constraints can be
imposed on acceptable polling frequency and accuracy. Soft
constraints can be imposed on battery life. Similarly, fall
detection systems need to be reliable, and guarantee data
transmission within a small time interval.

Contribution. This paper proposes an approach to tackle
QoS challenges during the development and operations cy-
cle in advanced Internet-of-Things environments. A layered
architecture consisting of an IoT device virtualization layer
that manages the set of devices in a particular IoT ecosystem
facilitates reconfigurability. Each device is annotated with
required and desirable QoS properties during the design phase
and an IoT device catalogue keeps relevant QoS properties for
existing IoT products. A software engine aids the infrastructure
provider during the selection of concrete IoT technologies.
The methodology is applied to a smart office case study.
Note that this contribution focuses on tackling QoS concerns
by integrating commercial-off-the-shelf (COTS) sensors and
actuators, not by designing novel edge devices tailored to meet
advanced reliability needs.

The remainder of this paper is structured as follows.
Section 2 points to related work. Section 3 introduces the
case study. Section 4 describes the IoT device virtualization
approach. The approach is presented in Section 5 followed by
a discussion in Section 6. This paper ends with conclusions.978-1-5386-4980-0/19/$31.00 © 2018 IEEE



II. RELATED WORK

QoS has been a subject to many research in IoT. Gubbi et
al. [1] point to it as one of the major open challenges. White et.
al. [2] show that most existing research focuses on improving
sensor and actuator technologies based on a SLA of more than
150 papers.

Network layer contributions evaluate the overall perfor-
mance of networks [3], [4], and present strategies to improve
the QoS provided by one specific network standard or pro-
tocol [5]–[7]. Parameters of interest are network reliability,
delays, throughput. . .

Other work assesses the QoS provided by specific sensors
and actuators. Accuracy and reliability are important QoS
parameters. For example, Christiansen et. al. [8] evaluate
the accuracy of a glucose sensor by comparing the readings
against reference values. Zhang et. al. [9] develop and test an
ultrasensitive humidity sensor that demonstrates rapid response
times. Wang et. al. [10] compare the accuracy of several
commercial wrist-worn heart rate sensors.

Many cloud solutions [11], [12] were proposed over the
last years. In this space, QoS research aims at increasing the
reliability and decreasing delays of edge devices by revising
the registration, orchestration and composition of sensors.

Last, QoS concerns are also tackled in wireless sensors
networks (WSNs) and fog computing [13]–[15]. Important
QoS concerns in these settings are related to networking (e.g.
managing the delay and throughput between different nodes,
automatic network configuration), resource management (e.g.
computing power and battery life), availability and load bal-
ancing between individual nodes. Often, a specific application
domain is tackled. Examples are industrial IoT [16], [17] and
health care [18], [19].

In nearly all aforementioned work, QoS properties are
improved by novel hardware or software features on the
edge devices. On the contrary, our approach considers edge
devices as a black box, and rather focuses the proper selection
and integration of COTS products in IoT ecosystems. The
choice can be constraint by both functional and non-functional
concerns imposed by the application.

III. CASE STUDY

To demonstrate the practical feasibility, our approach is
applied to lighting experience in smart office environments.
However, the methodology can easily be applied to other
application domains.

A proposed tablet application aims at controlling light bulbs
in a meeting room, and logging information about their status.
The offices are equipped with sensors that monitor room
brightness. Once brightness falls behind a predefined thresh-
old, the lamps need to be turned on. It must be possible to
dim the lamps in meeting rooms when presentations are given.
The employee needs to interact with the tablet application to
steer the light intensity. Besides the functional behaviour, a set
of quality requirements are defined. First, minimal brightness
thresholds can be imposed for each meeting room or office.
Second, it must be possible to dim the lights. Finally, the

response delays must be acceptable. In case room brightness
falls behind a certain threshold as well as in case of user input,
the light bulb intensity should be modified within a certain
time interval.

IV. DEVICE VIRTUALIZATION

Our work builds upon SMIoT [20], an architecture for devel-
oping maintainable IoT applications. The architecture proposes
multiple abstraction layers to build versatile IoT applications,
and its practicality is already demonstrated through the de-
velopment of various IoT applications in health care, fleet
management, access control. . . A high degree of flexibility and
reconfigurability is achieved by the virtual IoT device layer. In
this layer, a uniform interface is defined for each IoT device
type that is relevant for the IoT ecosystem under design. The
uniform interface defines operations that can be performed
on that type of IoT device. For instance, uniform interfaces
can be defined to monitor and/or control a fall detector and
camera in an ambient assisted living ecosystem. Similarly, in
a smart living environment, uniform interfaces can be defined
to steer smart lamps and to control environmental parameters
such as humidity, air quality. . . The uniform interfaces are
technology-agnostic. Note that our demo app consists of two
IoT device types, namely Lamp and LightSensor. To support a
particular IoT technology (f.i. a 112FallDetection bracelet, an
Axis IP camera, a Philips Hue light bulb. . . ), a plugin must
be developed. The plugin implements the uniform interface
and handles communication between the app and the IoT
device. For instance, a Lamp contains methods for turning the
lamp on and off, and changing its color and brightness. For
each supported technology, a model/vendor specific software
plugin implements the uniform interface and handles the
communication with the device.

The plugin is bound to the application at configuration
time (or even at runtime). The approach facilitates the job of
application developers. They are no longer confronted with the
technical details of particular sensor or actuator technologies.
Moreover, this approach is proven to be effective to avoid
the vendor lock-in trap. The architectural approach can easily
cope with new IoT hardware that is coming at a fast pace to
the market. Supporting the most feasible hardware technology
only requires that a new plugin is added to the application.

Although supporting cost-efficient integration of alternative
IoT technologies is a step forward towards sustainable IoT
applications, the alternatives are constraint. The freedom of
choice can be limited by QoS requirements. For instance, in
some applications, delays must be kept under control. In oth-
ers, accuracy may not fall behind an unacceptable threshold.
This work exactly copes with these QoS requirements, and
complements the current SMIoT work.

V. APPROACH

The proposed approach consists of four steps, namely
(a) eliciting relevant QoS) properties, (b) creating a device
catalog, (c) building the application and (d) selecting/coupling
feasible IoT devices.



A. Elicitation of relevant QoS properties
For each device type in the IoT ecosystem, a list of

relevant QoS properties is compiled along with one or more
expected value types and their semantics, together with a list
of supported units. For instance, the lamp brightness can be
expressed in lumen and an integer value can be assigned as
maximum value. Other properties do not have a value type.
They just reflect about the presence or absence of a property
in a particular technology. For instance, the brightness and/or
color of certain lamps can be changed. For others, this is
impossible. The units allow for automated translations between
different units in tooling support. Table I lists the relevant QoS
properties of the two device types (i.e. Lamp and LightSensor)
in our demo app. Note that the amount of quality properties
that can be assigned to a device type can be huge. For instance,
besides the quality properties currently kept in the table (i.e.
brightness, color and response delay), others could be added.
For instance, expected lifetime (in terms of lighting hours)
and humidity resistance might be relevant properties in other
settings. At least the quality properties that are crucial for the
application under design should be included.

Device type: Lamp

property value type supported units
change brightness - -
change color - -
brightness maxValue(int) lm
response delay maxValue(int) msec, sec

Device type: LightSensor

property value type supported units
response delay maxValue(int) msec, sec
polling frequency minValue(int), maxValue(int) /sec, /min,

/hr, /day
precision value(double) lx
data range minValue(int), maxValue(int) lx

TABLE I
RELEVANT QOS PARAMETERS FOR A LAMP AND A LIGHTSENSOR

IN THE SMART OFFICE APP.

B. Device catalog creation
During device catalog creation, a set of products are as-

signed to each device type. For each product, the list of
QoS properties is instantiated together with a pointer to a
plugin that can be used to add the product to the app without
any substantial development effort. Absence of such a plugin
means that the app developer still has to bind the product
to the application. Table II shows a device catalog for the
smart office app. Analogue tables can be constructed for
the other device types and products. They can be reused
across multiple application domains. Note that some quality
properties (like brightness of Lamps) can be extracted from
the product specification. Others – namely the starred ones –
are defined by experimental set-ups.

C. Application design
As described before, the application developer relies on

virtual IoT device calls to interact with sensors and the actu-

Lamps Philips Hue Philips Hue IKEA
White White and Color TRÅDFRI

change brightness X X X
change color X X X
brightness 800 lm 800 lm 960 lm
response delay 1 sec* 1 sec* 1 sec*
plugin X X X

LightSensors Arduino Arduino
Bluetooth LoRa Versasense

response delay – 1 sec* 1 sec*
polling frequency 1/sec - ...* 12/hr - ... 6/min - 1/day
precision 1 lx 1 lx 0,01 lx
data range 0-2000 lx 0-2000 lx 0-16496 lx
plugin X X X

TABLE II
EXAMPLE OF PRODUCT DEFINITIONS FOR BRIGHTNESS SENSORS.

BOTH ARDUINO SETUPS ARE EQUIPPED WITH A Grove brightness sensor1 .

ators. Those calls are technology-agnostic. During application
design, it is still undefined which products will be coupled
to the application. This will occur at deployment time and
depends on the preference of the IoT ecosystem owner. Some
users or companies are willing to integrate very durable but
expensive technologies. Others prefer cheaper solutions.

The application developer creates an XML file that contains
all devices used in the application. Device properties on which
the developer relies for a proper functioning of the applica-
tion are included in this file as QoSRequirements. Each
QoSRequirement tag contains the name of the property
together with one or more values and units when applicable.
Furthermore, the developer defines the criticality of each qual-
ity property. This can either be required or desired. required
means that the application will not function properly if the
QoS property is not met. Failing to meet desired requirements
can result in service level degradation. Lastly, the developer
can assign a purpose to each QoS requirement, and annotate
the specific service level degradation for desired requirements.
Including this information can result in meaningful feedback
towards infrastructure managers. The listing below shows QoS
constraints that can be expressed by app developers in the
smart office application.

<DeviceSet>
<Lamp name=”meetingRoomLamp”>

<QoSRequirement>
<importance> required </importance>
<property> max response delay </property>
<value> 2 </value>
<unit>sec</unit>
<purpose>bigger delays can cause
nightly safety hazards</purpose>

</QoSRequirement>
<QoSRequirement>

<importance> desired </importance>
<property> change brightness </property>
<purpose>changing room brightness</purpose>
<degradation>no brightness modifications
</degradation>

</QoSRequirement>
</Lamp>



<LightSensor name=”meetingRoomLightSensor”>
<QoSRequirement>

<importance> required </importance>
<property> minimal polling frequency </property>
<value> 2 </value>
<unit> /hour </unit>
<purpose> historical data </purpose>

</QoSRequirement>
<QoSRequirement>

<importance> desired </importance>
<property> minimal polling frequency </property>
<value> 1 </value>
<unit> /minute </unit>
<purpose> automatic brightness control</purpose>
<degradation> no automatic brightness control
</degradation>

</QoSRequirement>
</LightSensor>

</DeviceSet>

D. Device selection and coupling

The final step is executed during deployment by the infras-
tructure provider. The infrastructure provider is responsible for
buying, installing and maintaining sensors and actuators. Both
are kept in an inventory. The infrastructure provider relies on
the XML-file delivered by the application developer for select-
ing the devices. An engine supports the application developer
when selecting feasible devices. The following functionality
is supported:

• Suggestions. The software tool returns a list of feasi-
ble products based on the QoS requirements defined in
the XML file provided by the application developer in
combination with product properties in the catalogue.

• Device Comparison. It is possible to compare the
properties of multiple products that meet the imposed
requirements.

• Conflict and degradation feedback. The infrastructure
provider receives feedback about the scope and impact
of the application degradation for products that do not
meet desirable requirements. Clear warnings are shown
in case the infrastructure provider selects devices that do
not meet required properties.

VI. DISCUSSION

In the previous section, the approach was applied to a
straightforward case study in which QoS properties are im-
mutable and, hence, can be determined at design time. How-
ever, IoT devices can have configurable properties. Moreover,
increasing the quality level of a given property may negatively
impact other quality properties. For example, the monitoring
frequency of a sensor can be modified at configuration time.
However, this may negatively impact the device’s battery life.
Similarly, increasing frequency and accuracy parameters may
negatively impact bandwidth. During device catalog creation,
instead of assigning a static value to a QoS parameter, a
relation between the values of multiple parameters or sup-
ported intervals for each quality parameter can be expressed.
In the device selection step, the engine can return acceptable

technologies together with feasible configurations given the
QoS requirements that were raised by the application devel-
opers. Also, if various technologies and/or configurations are
possible, the most optimal configuration of each technology
with relation to other quality properties (such as battery life)
can be returned.

The case study focused on functional (e.g.
change_brightness and change_color) and
reliability (e.g. delays and accuracy) QoS properties.
Many application domains – such as health care and smart
home – raise security and privacy related constraints. Security
and privacy properties can be handled similarly to other QoS
properties. Security requirements can by expressed in terms
of appropriate authentication (e.g. password versus PKI
based) and communication (integrity, confidentiality, non-
repudiation. . . ) properties, and/or (un)acceptable underlying
security technologies (such as (un)acceptable VPN or TLS
versions). Privacy requirements constrain acceptable trust in
entities and platforms that are responsible for storing and
processing (sensitive) data. The privacy properties assigned to
a particular technology then define the set of (sensitive) data
that is processed and stored, and the entities that can access
raw and aggregated data when that technology is integrated in
the IoT app. For instance, some edge technologies can only
be monitored and/or controlled by apps in the local network.
Others rely on a cloud platform. Each strategy has advantages
and constraints. Cloud sensors and actuators are remotely
controllable but probably expose more information to third
parties. Others may offer improved privacy properties and
response times at the cost of decreased accessibility. In home
environments, end users may require that no information
about light actuation is leaked to third parties for sake of
privacy2. Some lighting solutions such as Philips Hue support
both local and cloud configuration. The specific configuration
selected by the infrastructure provider should be compliant
with the expressed privacy requirements.

Until now, we assumed that QoS constraints are expressed
at development time and enforced at deployment time. Only
devices that comply with the requirements are loaded and used
in the application. However, at runtime binding and, hence, at
runtime QoS enforcement can be necessary in certain appli-
cation scenarios. Assume the increasing amount of intelligent
sensors (air quality sensors, info beacons. . . ) that are currently
rolled out by many organizations and even individuals in
emerging smart cities. An end-user app typically wants to bind
only with smart sensors in his direct surroundings. Security,
privacy and accuracy requirements may constrain at runtime
coupling. QoS enforcement consists of two phases, namely (1)
checking the QoS requirements and (2) tackling conflicts. In
the first phase, the IoT device passes its QoS properties to
the application. In untrusted environments, the QoS properties
can be included in a QoS seal signed by a third party to
convince the app. The app inspects the trustworthiness of

2Research has already shown that religious background can be derived from
the time smart actuators are controlled by residents during certain periods [21].



the properties, and subsequently compares them to the QoS
requirements imposed by the app developer. Alternatively,
some QoS parameters can be inspected continuously at run
time. For instance, an application can monitor the polling
frequency of each connected sensor. In the second phase,
conflicts are detected and resolved. The conflict resolution
strategy depends on the conflict type and application. If a
required property cannot be met, some app functionality is
(temporarely) disabled. When a desirable property is not met,
it is often possible to perform a graceful degradation of the
application’s behaviour.

Note finally that we assume that app developers man-
ually define all relevant QoS properties. However, many
functional properties can often be extracted automatically
from the app code. Some method invocations called by
app developers on virtual devices can directly be mapped
to required QoS properties. For instance, if an applica-
tion developer calls the adjust_brightness() method,
change_brightness automatically becomes a quality
property that is required when a particular product or tech-
nology is selected. To ease the elicitation of required QoS
properties, rules can be defined that map method invocations
to QoS properties.

VII. CONCLUSION

Device virtualization facilitates technology-agnostic devel-
opment of IoT applications. This means that app developers
can fully focus on implementing business logic. However,
IoT applications often impose QoS to underlying sensor and
actuator technology either to ensure an acceptable user ex-
perience or proper functional behaviour. This paper presents
a practical approach to incorporate QoS during the design of
IoT applications. Application developers need to take QoS into
consideration from the early design stage. Annotating virtual
IoT devices with QoS constraints during application develop-
ment allows infrastructure providers to select the right sensors
and actuators during deployment. An IoT device catalogue
and compliance engine can support infrastructure providers
during the QoS conflict resolution and device selection. We
demonstrated the applicability of our approach by means of a
smart office scenario.
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