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Abstract— We present SuperSCS: a fast and accurate method
for solving large-scale convex conic problems. SuperSCS com-
bines the SuperMann algorithmic framework with the Douglas-
Rachford splitting which is applied on the homogeneous self-
dual embedding of conic optimization problems: a model for
conic optimization problems which simultaneously encodes the
optimality conditions and infeasibility/unboundedness certifi-
cates for the original problem. SuperMann allows the use of
fast quasi-Newtonian directions such as a modified restarted
Broyden-type direction and Anderson’s acceleration.

I. INTRODUCTION

Conic optimization problems are of central importance in
convex optimization as several solvers and parsers such as
CVX [11], CVXPy [6], YALMIP [14] and MOSEK [17]
transform given problems into a conic representation. Indeed,
all convex optimization problems can be cast in the standard
form of a conic optimization problem.

Various interior point methods have been proposed for
solving conic optimization problems [23], [25], [8]. Interior
point methods can achieve high accuracy, yet, do not scale
well with the problem size. On the other hand, first-order
methods have low per-iteration cost and minimum memory
requirements, therefore, are better suited for large-scale prob-
lems [18]. Recent research has turned to first-order methods
for large-scale conic problems such as SDPs [28]. However,
their convergence rate is at most Q-linear with a Q-factor
often close to one, especially for ill-conditioned problems.

The KKT conditions of a conic optimization problem
together with conditions for the detection of infeasibility
or unboundedness can be combined in a convex feasibility
problem known as the homogeneous self-dual embedding
(HSDE) [27]. The HSDE has been used in both interior point
[23] and first-order methods [18].

In this paper we present a numerical optimization method
for solving the HSDE. The HSDE is first cast as a variational
inequality which can be equivalently seen as a monotone
inclusion. We observe that the splitting cone solver (SCS)
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presented in [18] can be interpreted as the application of the
Douglas-Rachford splitting (DRS) to that monotone inclu-
sion. We then apply the reverse splitting to that monotone
inclusion — which is a firmly nonexpansive operator —
and employ the SuperMann scheme [24] which allows the
use of quasi-Newtonian directions such as restarted Broyden
directions and Anderson’s acceleration [26], [9]. We call the
resulting method SuperSCS. This way, SuperSCS can achieve
a fast convergence rate while retaining a low per-iteration
cost. In fact, SuperSCS uses exactly the same oracle as SCS.

II. MATHEMATICAL PRELIMINARIES

We denote by IR, IR+, IRn and IRm×n the sets of real
numbers, non-negative reals, n-dimensional real vectors and
m-by-n real matrices respectively. We denote the transpose
of a matrix A by A>. For two vectors x, y ∈ IRn, we denote
by 〈x, y〉 = x>y their standard inner product. Let E be a
vector space in IRn. We define the orthogonal complement
of E in IRn to be the vector space E⊥ = {y ∈ IRn | 〈y, x〉 =
0,∀x ∈ E}.

A set K ⊆ IRn is called a convex cone if it is convex and
λx ∈ K for every x ∈ K and λ > 0. The binary relation
x <K y is interpreted as x− y ∈ K. The dual cone of K is
defined as K∗ = {x∗ | 〈x∗, x〉 ≥ 0,∀x ∈ K}.

A few examples of convex cones of interest are: (i) the
zero cone Kf

n = {0}n, (ii) the cone of symmetric positive
semidefinite matrices Ks

n = {x ∈ IRn(n+1)/2 | mat(x) :
pos. definite}, where mat : IRn(n+1)/2 → IRn×n is defined
by

mat(x) = 1√
2


√

2x1 x2 ··· xn
x2

√
2xn+1 ··· x2n−1

...
...

. . .
...

xn x2n−1 ···
√

2xn(n+1)/2

 ,
(iii) the second-order cone Kq

n = {z = (x, t) : x ∈
IRn−1, t ∈ IR | ‖x‖2 ≤ t}, (iv) the positive orthant Kl

n =
{x ∈ IRn | x ≥ 0} and (v) the three-dimensional exponential
cone, Ke = cl{(x1, x2, x3) | x1 ≥ x2e

x3/x2 , x2 > 0}.
The normal cone of a nonempty closed convex set C is the

set-valued mapping NC(x) = {g | 〈g, y − x〉 ≤ 0,∀y ∈ C}
for x ∈ C and NC(x) = ∅ for x /∈ C. The Euclidean
projection of x on C is denoted by ΠC .

III. CONIC PROGRAMS

A cone program is an optimization problem of the form

minimize
x∈IRn

〈c, x〉
subject to b−Ax = s, s ∈ K,

(P)

where A ∈ IRm×n is a possibly sparse matrix and K is a
nonempty closed convex cone.
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The vast majority of convex optimization problems of
practical interest can be represented in the above form [18],
[3]. Indeed, cone programs can be thought of as a universal
representation for all convex problems of practical interest
and many convex optimization solvers first transform the
given problem into this form.

The dual of (P) is given by [3, Sec. 1.4.3]

minimize
y∈IRm

〈b, y〉

subject to y ∈ K∗, A>y + c = 0
(D)

Let p? be the optimal value of (P) and d? be the optimal
value of (D). Strong duality holds (p? = −d?) if the primal
or the dual problem are strictly feasible [3, Thm. 1.4.2].

Whenever strong duality holds, the following KKT
conditions are necessary and sufficient for optimality of
(x?, s?, y?) ∈ IRn × IRm × IRm:

Ax? + s? = b, s? ∈ K, y? ∈ K∗,
A>y? + c = 0, 〈y?, s?〉 = 0.

(1)

Infeasibility and unboundedness conditions are provided
by the so-called theorems of the alternative. The weak theo-
rems of the alternative state that 1) Either primal feasibility
holds, or there is a y with A>y = 0, y �K∗ 0 and 〈b, y〉 < 0,
and, similarly, 2) Either dual feasibility holds or there is a x
so that Ax �K 0 and 〈c, x〉 ≤ 0 [3, Sec. 1.4.7].

A. Homogeneous self-dual embedding

In this section we present a key result which is due to Ye
et al. [27]: the HSDE, which is a feasibility problem which
simultaneously describes the optimality, (in)feasibility and
(un)boundedness conditions of a conic optimization problem.
Solving the HSDE yields a solution of the original conic
optimization problem, when one exists, or a certificate of
infeasibility or unboundedness. We start by considering the
following feasibility problem in (χ, ς, ψ, τ, κ)[

0
ς
κ

]
= Q

[ χ
ψ
τ

]
, ς ∈ K, ψ ∈ K∗, τ ≥ 0, κ ≥ 0, (2a)

where
Q :=

[
0 A∗ c
−A 0 b
−c∗ −b∗ 0

]
(2b)

Note that for τ? = 1 and κ? = 0, the above equations reduce
to the primal-dual optimality conditions. As shown in [27],
the solutions of (2a) satisfy κ?τ? = 0, i.e., at least one of
κ? and τ? must be zero. In particular, if κ = 0 and τ > 0,
then the triplet (x?, y?, s?) with

x? = χ?/τ?, y? = ψ?/τ?, s? = ς?/τ?,

is a primal-dual solution of (P) and (D). If instead τ? =
0 and κ > 0, then the problem is either primal- or dual-
infeasible. If τ = κ = 0, no conclusion can be drawn.

We define u = (χ, ψ, τ) and v = (0, ς, κ). The self-dual
embedding reduces to the problem of determining u and v
such that Qu = v with (u, v) ∈ C × C∗ where C := IRn ×
K∗ × IR+. This is equivalent to the variational inequality

0 ∈ Qu+NC(u), (3)

Indeed, for all u ∈ C,

NC(u) = {y | 〈v − u, y〉 ≤ 0,∀v ∈ C}
= {u}⊥ ∩ {y | 〈v, y〉 ≤ 0,∀v ∈ C} = {u}⊥ ∩ (−C∗),

where the second equality follows by considering v = 1/2u
and v = 3/2u, which both belong to the cone C (see also [12,
Ex. 5.2.6(a)]). From that and the fact that Qu ∈ {u}⊥ since
Q is skew-symmetric, the equivalence of the HSDE in (2a)
and the variational inequality in (3) follows. Equation (3) is
a monotone inclusion which can be solved using operator
theory machinery as we discuss in the following section.

IV. SUPERSCS

A. SCS and DRS

Since Q is a skew-symmetric linear operator, it is maxi-
mally monotone. Being the normal cone of a convex set, NC
is maximally monotone as well. Additionally, because of [2,
Cor. 24.4(i)], Q+NC is maximally monotone. Therefore, we
may apply the Douglas-Rachford splitting on the monotone
inclusion (3). The SCS algorithm [18] is precisely the
application of the DRS to NC + Q leading to the iterations
discussed in [21, Sec. 7.3]. This observation furnishes a short
and elegant interpretation of SCS. Here, on the other hand,
we consider the reverse splitting, Q+NC , which leads to the
following DRS iterations

ũν = (I +Q)−1(uν) (4a)
ūν = ΠC(2ũ

ν − uν) (4b)

uν+1 = uν + ūν − ũν . (4c)

For any initial guess u0, the iterates uν converge to a point u?

which satisfies the monotone inclusion (3) [2, Thm. 25.6(i),
(iv)]. The linear system in (4a) can be either solved “directly”
using a sparse LDL factorization or “indirectly” by means
of the conjugate gradient method [18]. The projection on C
in (4b) essentially requires that we be able to project on K∗.

The iterative method (4) can be concisely written as

uν+1 = Tuν , (5)

where T : IRN → IRN is given by Tu = u + ΠC(2(I +
Q)−1u − u) − (I + Q)−1u and is firmly nonexpansive [2,
Chap. 26]. As such it fits the Krasnosel’skii-Mann frame-
work [2, Sec. 5.2] leading to the relaxed iterations

uν+1 = (1− λ)uν + λTuν , (6)

with λ ∈ (0, 2) and, as a result, it fits the SuperMann
framework [24].

B. SuperSCS: SuperMann meets SCS

SuperMann considers the problem of finding a fixed-point
x? ∈ fixT from the viewpoint of finding a zero of the
residual operator

R = I − T. (7)



SuperMann, instead of applying Krasnosel’skii-Mann-type
updates of the form (6), takes extragradient-type updates of
the general form

wν = uν + ανd
ν , (8a)

uν+1 = uν − ζνRwν , (8b)

where dν are fast, e.g., quasi-Newtonian, directions and
scalar parameters αν and ζν are appropriately chosen so as
to guarantee global convergence.

At each step we perform backtracking line search on αν
until we either trigger fast convergence (K1 steps) or ensure
global convergence (K2 steps) as shown in Algorithm 1. The
K2 step, cf. (8b), can be interpreted as a projection of the
current iterate on a hyperplane generated by wν , separating
the set of fixed points from uν , and thus guarantees that every
iterate comes closer to fixed point set. Alongside, a sufficient
decrease of the norm of the residual, ‖Ruν‖, may trigger a
“blind update” (K0 steps) of the form uν+1 = uν+dν , where
no line search iterations need to be executed.

Algorithm 1 SuperSCS algorithm
Input: c0, c1, q ∈ [0, 1), σ ∈ (0, 1), u0, λ ∈ (0, 2) and ε > 0
η0 ← ‖Ru0‖, rsafe ← η0
for ν = 0, 1, . . . do

Check termination with tolerance ε (Sec. IV-C)
Choose direction dν (Sec. IV-D), let αν ← 1
if ‖Ruν‖ ≤ c0ην then

(K0) uν+1 ← wν , ην+1 ← ‖Ruν‖
else
ην+1 ← ην
loop
wν ← uν + ανdν and ρν ← 〈Rwν , uν−Twν〉
if ‖Ruν‖ ≤ rsafe and ‖Rwν‖ ≤ c1‖Ruν‖ then

(K1) uν+1←wν , rsafe ← ‖Rwν‖+ qνη0, exit loop
else if ρν ≥ σ‖Ruν‖‖Rwν‖ then

(K2) uν+1 ← uν − λ ρν
‖Rwν‖2Rw

ν and exit loop
else
αν ← αν/2

By exploiting the structure of T and, in particular, linearity
of (I +Q)−1, we may avoid evaluating linear system solves
at every backtracking step. Instead, we only need to evaluate
ΠC once in every backtracking iteration. In particular, for
wν = uν + αdν , we have

w̃ν = (I +Q)−1wν

= (I +Q)−1uν + α(I +Q)−1dν = ũν + αd̃ν

where ũν has already been computed, since it is needed in
the evaluation of Ruν , while d̃ν solves (I + Q)d̃ν = dν .
The computation of d̃ν , which is the most costly operation,
is performed only once, before the backtracking procedure
takes place. The computation of the fixed-point residual of
w is also easily computed by Rwν = w̃ν −ΠC(2w̃ν −wν).

Overall, save the computation of the residuals, at every
iteration of SuperSCS we need to solve the linear system
(4a) twice and invoke ΠC exactly 1 + lν times, where lν is
the number of backtracks.

C. Termination

The algorithm is terminated when an approximate optimal
solution is found based on its relative primal and dual resid-
uals and relative duality gap, provided such a solution exists.
At iteration ν let uν = (χν , ψν , τν), ūν = (χ̄ν , ψ̄ν , τ̄ν) and
ũν = (χ̃ν , ψ̃ν , τ̃ν). We compute ς̄ν = ψ̄ν−2ψ̃ν+ψν . Let us
also define the triplet (x̄ν , ȳν , s̄ν) := (χ̄ν/τ̄ν , ψ̄ν/τ̄ν , ς̄ν/τ̄ν),
which serves as the candidate primal-dual solution at itera-
tion ν. The relative primal residual is

prν =
‖Ax̄ν + s̄ν − b‖

1 + ‖b‖
(9a)

The relative dual residual is

drν =
‖A>ȳν + c‖

1 + ‖c‖
(9b)

The relative duality gap is defined as

gapν =
|〈c, x̄ν〉+ 〈b, ȳν〉|

1 + |〈c, x̄ν〉|+ |〈b, ȳν〉|
(9c)

If prν , drν and gapν are all below a specified tolerance
ε > 0, then we conclude that (P) is feasible, the algorithm
is terminated and the triplet (xν , yν , sν) is an approximate
solution.

The relative infeasibility certificate is defined as (note that
ȳν ∈ K∗ as a result of the projection step)

icν =

{
‖b‖ ‖A>ȳν‖/〈b, ȳν〉, if 〈b, ȳν〉 < 0

+∞, else
(9d)

Likewise, the relative unboundedness certificate is defined as

ucν =

{
‖c‖ ‖Ax̄ν + s̄ν‖/〈c, x̄ν〉, if 〈c, x̄ν〉 < 0

+∞, else
(9e)

Provided that ūν is not a feasible ε-optimal point, it is a
certificate of unboundedness if ucν < ε and it is a certificate
of infeasibility if icν < ε.

D. Quasi-Newtonian directions

Quasi-Newtonian directions dν can be computed accord-
ing to the general rule

dν = −B−1
ν Ruν = −HνRu

ν , (10)

where invertible linear operators Hν are updated according
to certain low-rank updates so as to satisfy certain secant
conditions starting from an initial operator H0.

1) Restarted Broyden directions: Here we make use of
Powell’s trick to update linear operators Bν in such a way so
as to enforce nonsignularity using the recursive formula [20],
[24]:

Bν+1 = Bν + 1
‖zν‖2 (ξ̃ν −Bνzν)zν> (11)

where zν = wν − uν , ξν = Rwν − Ruν and for a fixed
parameter ϑ̄ ∈ (0, 1) and γν = 〈Hνξ

ν , zν〉/‖zν‖2 we have
ξ̃ν = (1− θν)Bνz

ν + θνξ
ν with

θν =

{
1 if |γν | ≥ ϑ̄
1−sgn(γν)ϑ̄

1−γν otherwise
(12)



and the convention sgn(0) = 1. Using the Sherman-
Morisson formula, operators Hν are updated as follows:

Hν+1 = Hν + 1
〈Hν ξ̃ν ,zν〉

(zν −Hν ξ̃
ν)(zν>Hν), (13)

thus lifting the need to compute and store matrices Bν .
The Broyden method requires that we store matrices of di-

mension (m+n+1)×(m+n+1). Here we employ a limited-
memory restarted Broyden (RB) method which affords us
a computationally favorable implementation using buffers
of length mem, that is Zν = [zν zν−1 · · · zν−mem+1],
and Z̃ν = [z̃ν z̃ν−1 · · · z̃ν−mem+1], where z̃i are the
auxiliary variables z̃i := zi−Hiξ̃i/〈si,Hiξ̃i〉. We have observed

Algorithm 2 Modified restarted Broyden method
Input: Old buffers Z = Zν and Z̃ = Z̃ν , ξ = ξν , r = Ruν , z = zν , ϑ̄,

mem
Output: Direction d, New buffers
d← − r, z̃ ← ξ, m′ ← current cursor position
for i = 1, . . . ,m′ do
z̃ ← z̃ + 〈zi, z̃〉z̃i, and d← d+ 〈zi, d〉z̃i

Compute θ as in (12) with γ = 〈z̃,z〉/‖z‖2

z̃ ← (1− θ)z + θz̃, z̃ ← z−z̃/〈z,z̃〉, and d← d+ 〈z, d〉z̃
if m′ = mem then

Empty buffers Z and Z̃, m′ ← 1
else

Append z to Z and z̃ to Z̃, m′ ← m′ + 1

that SuperSCS performs better when deactivating K0 steps
or using a small value for c0 (e.g., c0 = 0.1) when using
restarted Broyden directions.

2) Anderson’s acceleration: Anderson’s acceleration
(AA) imposes a multi-secant condition [26], [9]. In partic-
ular, at every iteration ν we update a buffer of mem past
values of z and ξ, that is we construct a buffer Zν as above
and a buffer Ξν =

[
ξν ξν−1 · · · ξν−mem+1

]
. Directions

are computed as

dν = −Ruν − (Zν − Ξν)tν , (14)

where tν is a least-squares solution of the linear system
Ξνt

ν = Ruν , that is tν solves

minimize
tν

‖Ξνtν −Ruν‖2, (15)

and can be solved using the singular value decomposition
of Ξν , or a QR factorization which may be updated at every
iteration [26]. In practice Anderson’s acceleration works well
for short memory lengths, typically between 3 and 10, and,
more often than not, outperforms the above restarted Broyden
directions.

E. Convergence

The convergence properties of SuperSCS are inherited by
those of the general SuperMann scheme [24]. In particu-
lar, under a weak boundedness assumption for the quasi-
Newtonian directions dν , Ruν converges to zero and uν con-
verges to a u? which satisfies the HSDE (3). If, additionally,
R is metrically subregular at u? — a weak assumption —
then, the convergence is R-linear. Under additional assump-
tions, SuperSCS with the full-memory counterpart of the
above restarted Broyden scheme can be shown to converge

superlinearly. The restarted Broyden directions of Algorithm
2 and Anderson’s acceleration, though not proven superlinear
directions, exhibit steep linear convergence as shown in the
next section (see Fig. 2) and have low memory requirements.

V. BENCHMARKS AND RESULTS

A. Benchmarking methodology

In order to compare different solvers in a statistically
meaningful way, we use the Dolan-Moré (DM) plot [7] and
the shifted geometric mean [16]. The DM plot allows us to
compare solvers in terms of their relative performance (e.g.,
computation time, flops, etc) and robustness, i.e., their ability
to successful solve a given problem up to a certain tolerance.

Let P be a finite set of test problems and S a finite set of
solvers we want to compare to one another. Let tp,s denote
the computation time that solver s needs to solve problem
p. We define the ratio between tp,s and the lowest observed
cost to solve this problem using a solver from S as

rp,s =
tp,s

mins′∈S tp,s′
. (16)

If s cannot solve p at all, we define tp,s = +∞ and rp,s =
+∞. The cumulative distribution of the performance ratio is
the DM performance profile plot. In particular, define

ρs(τ) = 1/|P | · |{p ∈ P : rp,s ≤ τ}|, (17)

for τ ≥ 1. The DM performance profile plot is the plot of
ρs(τ) versus τ on a logarithmic x-axis. For every s ∈ S, the
value ρs(1) is the probability of solver s to solve a given
problem faster than all other solvers, while limτ→∞ ρs(τ)
is the probability that solver s solves a given problem at all.

As demonstrated in [10], DM plots aim at comparing
multiple solvers to the best one (cf. (16)), than to one another.
Therefore, alongside we shall report the shifted geometric
mean of computation times for each solver following [16].
For solver s ∈ S, define the vector ts ∈ IR|P | with

tsp =

{
tp,s if tp,s <∞
100 max{tp,s | p ∈ P, tp,s <∞} otherwise

The shifted geometric mean of ts with shifting parameter
σ ≥ 0 is defined as

sgmσ = exp
[∑

p∈P ln
(
max{1, σ + tsp}

) ]
− σ. (18)

Hereafter we use σ = 10 s.
In what follows we compare SuperSCS with the quasi-

Newtonian direction methods presented in Section IV-D
against SCS [19], [18]. All tolerances are fixed to 10−4.
In order to allow for a fair comparison among algorithms
with different per-iteration cost, we do not impose a max-
imum number of iterations; instead, we consider that an
algorithm has failed to produce a solution — or a certificate
of unboundedness/infeasibility — if it has not terminated
after a certain (large) maximum time. All benchmarks were
executed on a system with a quad-core i5-6200U CPU at
2.30 GHz and 12 GB RAM running Ubuntu 14.04.



B. Semidefinite programming problems

Let us consider the problem of sparse principal component
analysis with an `1-regularizer which has the form [5].

maximize trace(SZ)− λ‖Z‖1 (19a)

subject to trace(Z) = 1, Z = Z>, Z � 0 (19b)

A total of 288 randomly generated problems was used

TABLE I: Regularized PCA SDP: Solver
Statistics

Method sgm10(ts) Success
SCS 96.82 74.31%
RB (mem:50) 3.17 100%
RB (mem:100) 3.31 100%
AA (mem:5) 2.13 100%
AA (mem:10) 2.66 100%

for benchmarking
with d ∈ {50, 120,
140, 180} and λ ∈
{0.1, 2, 5}, where d is
the dimension of Z.
The DP plot in Fig. 1
shows that SuperSCS
is consistently faster

and more robust compared to SCS. In Table I we see that
SuperSCS is faster than SCS by more than an order of
magnitude; in particular, SuperSCS with AA directions and
memory 5 was found to perform best.

1 2 5 10 20 50
0

25

50

75

100

Performance ratio

Pr
ob

le
m

s
so

lv
ed

(%
)

SCS
SuperSCS, RB, mem = 50
SuperSCS, RB, mem = 100
SuperSCS, AA, mem = 5
SuperSCS, AA, mem = 10

FIG. 1: DM performance plot on 288 `1-regularized PCA problems of the
form (19).
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FIG. 2: Progress of SuperSCS (with RB and AA directions) and SCS versus
time for a large-scale SDP of the form (19) with d = 500 (with m =
625751 and n = 250501). [— SCS; — SuperSCS RB with memory 50;
— SuperSCS AA with memory 5].

Additionally, for this benchmark we tried the interior-point
solvers of SDPT3 [25] and Sedumi [23]. Both exhibited
similar performance; in particular, for problems of dimension
Z ∈ IR140×140, SDPT3 and Sedumi required 6500 s to 7500 s
and for problems of dimension Z ∈ IR180×180 they required
19000 s to 21500 s. Note that SuperSCS (with RB and
memory 50) solves all problems in no more than 11.7 s. Ad-
ditionally, interior-point methods have an immense memory

footprint of several GB, in this example whereas SuperSCS
with RB and memory 100 needs as little as 211.1 MB and
with AA and memory 5 consumes just 46.2 MB.

C. LASSO problems

Regularized least-squares problems with the ‖ · ‖1-
regularizer, also known as LASSO problems, are optimiza-
tion problems of the form

minimize
x∈IRn

1/2‖Ax− b‖2 + µ‖x‖1, (20)

where A ∈ IRm×n is a (sparse) matrix, and µ > 0 is the
regularization weight. LASSO problems find applications in
statistics and compressed sensing [22]. LASSO problems are
cast as second-order cone programs [13].

TABLE II: LASSO: Solver Statistics

Method sgm10(ts) Success
SCS 5.97 100%
RB (mem:50) 2.88 100%
RB (mem:100) 2.61 100%
AA (mem:5) 3.38 100%
AA (mem:10) 3.87 100%

LASSO problems
aim at finding a
sparse vector x which
minimizes ‖Ax − b‖2.
The sparseness of
the minimizer x?

can be controlled by
µ ∈ {0.01, 0.1, 1}. We tested 1152 randomly generated
LASSO problems with n ∈ {631, 1000, 1585, 2512},
m = dn/5e, and matrices A with condition numbers
κA ∈ {10, 215, 4600, 105}. The DM plot in Fig. 3 and the
statistics presented in Table II demonstrate that SuperSCS,
both with RB and AA directions, outperforms SCS.
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FIG. 3: DM performance plot on 1152 LASSO problems.

D. Sparse `1-regularized logistic regression

Logistic regression is a regression model where dependent
variables are binary [4]. The `1 regularized variant of logistic
regression aims at performing simultaneous regression and
feature selection and amounts to solving an optimization
problem of the following form [1]:

minimize
w∈IRp

λ‖w‖1 −
q∑
i=1

log(1 + exp(a>wi + b)). (21)

Similar to LASSO (Sec. V-C), parameter λ > 0 con-
trols the sparseness of the solution w?. Such prob-
lems can be cast as conic programs with the exponen-
tial cone, which is not self-dual. A total of 288 ran-
domly generated problems was used for benchmarking



TABLE III: Sparse `1-regularized logis-
tic regression: Solver Statistics

Method sgm10(ts) Success
SCS 4.85 100%
RB (mem:50) 7.23 100%
RB (mem:100) 7.28 100%
AA (mem:5) 3.00 100%
AA (mem:10) 3.09 100%

with p ∈ {80, 100},
q ∈ {50, 100, 120} and
λ ∈ {10, 20, 50}. In
Fig. 4 we observe that
SuperSCS with RB di-
rections is slower com-
pared to SCS, however

SuperSCS with AA is noticeably faster.
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FIG. 4: DM performance plot on 288 logistic regression problems of the
form (21).

E. Maros-Mészáros QP problems

TABLE IV: Maros-Mészáros QP prob-
lems: Solver Statistics

Method sgm10(ts) Success
SCS 56.61 83.02%
RB (mem:50) 9.66 90.57%
RB (mem:100) 6.57 90.57%
AA (mem:5) 5.79 90.57%
AA (mem:10) 8.62 91.51%

Here we present per-
formance of SCS and
SuperSCS (with RB
and AA directions) on
this collection of prob-
lems on the Maros-
Mészáros collection of

problems [15]. As shown in Fig. 5 SuperSCS, both with
RB directions and Anderson’s acceleration, is faster and
more robust compared to SCS. The two quasi-Newtonian
directions appear to be on a par.
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FIG. 5: DM performance plot on the problems of the Maros-Mészáros
repository.

VI. CONCLUSIONS

In this work we introduced SuperSCS: a first-order method
for large-scale conic optimization problems which combines
the low iteration cost of SCS and the fast convergence of
SuperMann. We have compared SuperSCS with SCS on a
broad collection of conic optimization problems of practical
interest. Using Dolan-Moré plots and runtime statistics, we
demonstrated that SuperSCS with Anderson’s acceleration is
faster and more robust than SCS.

The C implementation of SuperSCS builds up on SCS and
is a free open-source software. SuperSCS can be interfaced
from MATLAB, Python, can be invoked via CVX, CVXPy
and YALMIP and is also available as a Docker image (see
https://kul-forbes.github.io/scs/).
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