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Large-scale in-silico statistical 
mutagenesis analysis sheds light on 
the deleteriousness landscape  
of the human proteome
Daniele Raimondi1,2,3, Gabriele Orlando1,3, Francesco Tabaro7, Tom Lenaerts1,4, 
Marianne Rooman1,6, Yves Moreau2,5 & Wim F. Vranken1,3

Next generation sequencing technologies are providing increasing amounts of sequencing data, 
paving the way for improvements in clinical genetics and precision medicine. The interpretation of the 
observed genomic variants in the light of their phenotypic effects is thus emerging as a crucial task 
to solve in order to advance our understanding of how exomic variants affect proteins and how the 
proteins’ functional changes affect human health. Since the experimental evaluation of the effects 
of every observed variant is unfeasible, Bioinformatics methods are being developed to address this 
challenge in-silico, by predicting the impact of millions of variants, thus providing insight into the 
deleteriousness landscape of entire proteomes. Here we show the feasibility of this approach by using 
the recently developed DEOGEN2 variant-effect predictor to perform the largest in-silico mutagenesis 
scan to date. We computed the deleteriousness score of 170 million variants over 15000 human proteins 
and we analysed the results, investigating how the predicted deleteriousness landscape of the proteins 
relates to known functionally and structurally relevant protein regions and biophysical properties. 
Moreover, we qualitatively validated our results by comparing them with two mutagenesis studies 
targeting two specific proteins, showing the consistency of DEOGEN2 predictions with respect to 
experimental data.

The next-generation sequencing revolution is providing an unprecedented amount of human sequence varia-
tion data1, allowing bioinformatics to address the challenging task of the in-silico interpretation of the pheno-
typic effects of genetic variants2,3. This presents many technical and scientific difficulties that are being constantly 
addressed by advances in the field2. The most common form of variation in our genome comprises changes of 
single nucleotides. When such variants occur in the exome, the protein-coding regions of our genome, they 
may alter the amino-acid encoded by the codon, thus causing Single Amino-acid Variants (SAVs) in the corre-
sponding protein sequence. The exome indeed contains the vast majority of the variants identified in Mendelian 
disorders4 and many bioinformatics approaches are therefore devoted to the prediction of the effects of SAVs in 
these regions5–12.

To improve our understanding of how variants affect the function of specific proteins, the effects of SAVs can 
sometimes be experimentally evaluated. A common strategy is mutagenesis scanning by a selected amino acid, 
usually alanine but also glycine, proline or cysteine13 followed by biophysical measurements14. By identifying 
mutations that affect protein function, functionally relevant regions are then located15,16. Although very useful, 
the major limitation of this method is that it does not give a complete picture of which mutations to which amino 
acids affect protein function the most (or least): ideally, the experimental mutagenesis would involve the sub-
stitution of each residue with all other 19 amino-acids. Unfortunately, such an analysis remains experimentally 
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unfeasible13,17,18, even on limited sets of proteins. On the other hand, an accurate and fast computational tool 
can predict the likely impact of millions of variants at an extremely low cost. Such in-silico mutagenesis studies 
have already been performed for specific proteins13,14,17,19, suggesting that the interpretation of these results may 
help i) targeting further in-vitro experimental verification and ii) providing actual insight into the deleteriousness 
landscape of the protein under investigation, for example by highlighting putative functionally or structurally 
relevant sites17.

Recently we developed DEOGEN220, an accurate Machine Learning-based variant-effect predictor able to 
predict the deleterious or neutral impact of SAVs on human proteins. DEOGEN2 contextualizes SAVs from 
different points of view, ranging from molecular and evolutionary aspects to the involvement of the affected 
genes in pathways and diseases and uses a Random Forest predictor to aggregate these heterogeneous sources of 
information into a single deleteriousness score. In this paper, we apply this predictor to assess the impact of every 
possible SAV on 15000 human proteins, so investigating a total of 170 million variants. To the best of our knowl-
edge, this is the broadest in-silico mutagenesis performed so far, and we analyse the resulting extensive corpus 
of data to investigate how the predicted deleteriousness trends relate with known functionally relevant regions 
in proteins, such as active sites, modified residues, interaction patches as well as structurally relevant regions 
such as secondary structures and domains. We show that DEOGEN2 is able to pick up these important regions 
as hot-spots for deleteriousness, despite not explicitly including any specific functional or structural annotations 
in its prediction. The machine learning method on which DEOGEN2 is based is therefore able to extrapolate 
functional information from features related to the deleteriousness of variants, such as evolutionary conservation 
and gene-level information. Each one of these features is related to protein function21, but their integration in 
DEOGEN2 provides a combined view on how the single evidences for the deleteriousness of a SAV impact the 
function of the protein, the genes and the pathways involved. For example, in10 we showed how, regardless of 
the evolutionary conservation scores, SAVs occurring on the Olfactory Signaling Pathway (REACT_15488) are 
extremely likely to be neutral.

In addition, we qualitatively validated these predictions in two case-studies: the Human Glucokinase protein 
and the Melanocortin Receptor 4 protein. In the first case, we analyzed the predicted deleteriousness landscape and 
we blind-tested DEOGEN2 on 24 Glucokinase variants that were not present in its training set, showing that our 
method correctly identifies them as deleterious. For the Melanocortin receptor, we blind-tested the DEOGEN2 
predictions on 159 experimentally annotated variants extracted from17, showing that our predictor is able to dis-
tinguish between neutral SAVs and ones with functional consequences.

Methods
Datasets.  From the July 2017 version of Swiss-prot22 we retrieved all the human proteins for which the exist-
ence is supported by experimental evidence at the protein level. The resulting SP17 dataset contains 15009 pro-
teins totalling 8939795 residues. The protein sequence-level annotations for the analysis, were collected from 
UniprotKB23. In particular, we downloaded from Uniprot all the available functional annotations, post-transla-
tional modification, secondary structure, transmembrane and domain annotations (see Suppl. Material for more 
details). Interaction patches annotations were retrieved from Instruct18, which contains 11470 experimentally 
determined binary interactions between 3627 proteins.

DEOGEN2 predictor.  In recent work, we developed DEOGEN10 and DEOGEN220, which predict the del-
eterious or neutral outcome of Single Aminoacid Variants (SAVs). In particular, DEOGEN2 has been designed 
with the proteome-scale screening of the effects of SAVs in mind. Its predictions are obtained with a Random 
Forest24,25 model that contextualizes each SAV with 11 features related to evolutionary, molecular, domain-level, 
gene-level, interaction and pathway-levels aspects of cell life20. DEOGEN2 is publicly available at https://deogen2.
mutaframe.com. It has been extensively validated and its performance compares positively with state of the art 
predictors, both in cross-validation and blind test settings20. In this study we used DEOGEN2 to predict, for every 
residue p in every protein P in SP17, the outcome of all the possible 19 Single Aminoacid Substitutions (SAVs) 
that can occur, thus performing a full in-silico mutagenesis, involving a total of 169856105 mutations.

Analysis.  The p-values computed in this study are, if not otherwise specified, two-tailed Wilcoxon ranksums 
tests performed with the scipy26 library. The correlations are Pearson’s correlation coefficients computed with the 
same library.

Results
Uncovering statistical trends of deleteriousness in Human proteins.  The SP17 dataset contains 
15009 human proteins that were experimentally validated (see Methods). We selected only proteins for which 
high-quality annotations are available, as our goal is to investigate the relationship between deleteriousness pre-
dictions and biological and molecular aspects of the cell as annotated in UniprotKB327. We used our DEOGEN2 
variant-effect prediction method (see Methods) to perform a comprehensive in-silico mutagenesis over these pro-
teins by predicting the outcome of every possible Single Aminoacid Variant (SAV) occurring on every sequence 
position. Figure 1 shows the distribution of the deleteriousness score predicted by DEOGEN2 scores for the 
nearly 170 million of SAVs considered in this analysis. The majority (57.6%) of these variants have a neutral or 
nearly-neutral predicted outcome (values < 0.3) while fewer (17.8%) SAVs yield likely deleterious predictions 
(values > 0.6) and even fewer (2%) have extremely high deleteriousness scores (values > 0.9). This behavior is 
consistent with the established hypothesis that the vast majority of the observed genetic exomic variation is neu-
tral or nearly neutral28,29, even when considering all possible variants and not only typical nucleotide transitions 
or transversions.

https://deogen2.mutaframe.com
https://deogen2.mutaframe.com
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We first investigated general trends that can be observed in the DEOGEN2 predictions. Figure 2 shows the 
average deleteriousness scores for SAVs leading to the 20 possible amino-acids, sorting them in function of the 
number of codons encoding them (on the x axis). The DEOGEN2 mean predicted deleteriousness on the entire 
SP17 is negatively correlated (r = −0.39, p value = 0.08622) with the number of codons encoding a particular 
residue. Mutations into amino acids encoded by fewer codons therefore tend to be more deleterious, which is 
consistent with the observed optimality of the genetic code30. This suggests that when we average the effect of 
every possible variant v over all the possible regions and local sequence environments in which v can occur, thus 
levelling out the unique structural and biophysical conditions of each occurrence of v, the remaining signal that 
we can detect relates to the evolutionary signal that shaped the genetic code toward this particular configuration.

Met is an exception to this behavior, since it has low deleteriousness scores despite being encoded by only 
one codon. A likely cause is that Met corresponds to the most common start codon (AUG), leading to an 
over-representation of Met residues in the N-terminal of proteins, which are associated with lower deleterious-
ness scores (see Suppl. Figs S1–2). The observation that especially aromatic (Trp,Tyr, Phe, His) amino acids tend 
to lie above the regression line, while typical hydrophilic ones (Ser, Glu, Asp, Asp, Gln) lie below it, may be related 
to the fact that the hydrophobic core of the protein is under heavier selective pressure, while exposed regions 
have more room for variation. We also investigated whether there is a relation between the deleteriousness of a 
SAV and where in the sequence it occurs. Suppl. Fig. S1 shows the distribution of the average DEOGEN2 scores  
(y axis) in relation with the position in the protein on which they occur, shown as percentage of the sequence 
length on the x axes. There is no noticeable patterns in the central part of the proteins, which is not surprising 
given the averaging of the scores over a large number of proteins of different sequence length. The N and C 

Figure 1.  Figure showing the distribution of the 170 million DEOGEN2 predicted scores on the SP17 dataset, 
indicating also the cumulative distribution in red.

Figure 2.  Figure showing the average DEOGEN2 scores (computed on SP17) plotted against the number 
of codons encoding the mutated aminoacid. Aminoacids encoded by few codons are more likely to host 
deleterious variants, with the exception of Met.
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termini of the proteins, however, are enriched for neutral variants, as shown also from the analysis on the exper-
imentally labeled variants on the Humsavar 2016 dataset (See Suppl. Fig. S2).

Variants occurring on functional sites are detected to be more deleterious.  The mechanisms of deleteriousness are 
complex and strongly influenced by the local sequence context in which the mutation occurs, effectively making 
each mutation unique, in the sense that its deleteriousness prediction needs to account for its specific position 
in the protein sequence, which is linked to the structure and function of the affected region31,32. It is well known 
that some regions in proteins carry out roles that can be fulfilled whilst tolerating more amino acid variation (e.g. 
linker regions, surface residues not involved in interaction patches)33, while other parts of the proteins respect 
stricter sequence constraints and preserve their function through purifying selection. To illustrate this connec-
tion, we annotated the proteins in SP17 with UniprotKB23 residue-level functional annotations and investigated 
how the distribution of the DEOGEN2 predictions to all amino acids varies between residues involved in different 
functional classes. Figure 3 shows these results for the 9 different classes of annotation we retrieved (see Suppl. 
Material for the full list), with the “Functional annotation” class grouping together all the residues comprised 
by these classes. “Active site” indicates that the residues are directly involved in the activity of an enzyme (e.g. 
proton exchange), “binding site” indicates that the residues have a role in binding a ligand (e.g a substrate or a 
carbohydrate). Residues or regions of the proteins able to bind with ligands such as DNA, Calcium, Metal ions 
and Nucleotide phosphates are annotated in the respective specific binding categories. Residues annotated as 
“Site” are residues that do not fall in the previous categories, for example cleavage or inhibitory sites. Finally, “No 
annotation” contains the vast majority of the residues without a functional annotation. The violin plots in Fig. 3 
show that the DEOGEN2 predictions for residues in the “Functional annotation” class are much more deleterious 
than for the residues without annotation (p-value < 10−300). Especially DNA binding sites are highly enriched for 
deleterious variants, also with respect to the “Functional annotation” class (p-value < 10−300); Active sites, metal 
binding and the generic binding sites contain mostly deleterious variants, but mildly-deleterious ones, with scores 
between 0.4 and 0.6, are also present. Residues annotated as generic “Site” and “Calcium binding” are among the 
most tolerant to variation, and host both deleterious and neutral SAVs; overall, these classes are nevertheless more 
prone to contain deleterious variants than the unannotated residues (p-value = 10−177 and p-value < 10−300). The 
set of 8.86 million residues without functional annotation will contain false negatives. We indeed have to rely 
on the current state of knowledge while mining for Uniprot annotations, but the statistical trends are likely to 
be already encompassed by these data. Future studies may unveil the functional relevance of previously poorly 
studied residues. Suppl. Figs S3–S9 show the average deleteriousness of mutations at the residue level for each 
type of functional site, showing only variants occurring more than 100 times in SP17. For binding sites, all the 
variants in the class are generally predicted as deleterious (scores > 0.5), with some mutations between residues 
with similar physicochemical characteristics slightly less so (e.g. the positively charged Arg and Lys, and aromatic 
Trp, Phe and Tyr). In the case of calcium binding sites, Asp, Glu, Phe, Gly, Ile and Asn residues do not often toler-
ate mutations to other amino acids, which corresponds well to the typical residues found in for example EF-hand 
calcium binding sites34. Other residues like Ala, Lys, Gln, Arg, Ser, and Thr are predicted to be more tolerant to 
variants, except for substitutions to Trp and to a lesser extent Cys, Phe and Ile. Suppl. Fig. S5 indicates that among 
the residues involved in metal binding sites, almost every variant is poorly tolerated (average deleteriousness 
scores > 0.55) with the exception of Gly, which can be replaced with any amino acid with scores between 0.35 
and 0.5. Amino acid variation in nucleotide and especially DNA binding sites is in general predicted to be highly 
deleterious (Suppl. Figs S6 and S7), with the exception of some conservative mutations, notably between Val and 
Ile. The variants with the generic “Site” annotation have the most heterogeneous substitution matrix, where muta-
tions from Glu are generally badly tolerated, mutations from Ser are likely neutral and substitutions of residues to 
more unusual amino acids such as Cys and Trp are associated with deleterious predictions. Although no specific 

Figure 3.  Violin plots showing the distribution of the DEOGEN2 predicted scores for regions of the protein 
performing different functional roles in the SP17 dataset.
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functional annotation is provided as input to DEOGEN2, from evolutionary and biophysical features our predic-
tor can distinguish residues with enhanced functional relevance in an amino acid specific way, with often interest-
ing asymmetric patterns appearing in the deleteriousness matrices. The relation between functional residues and 
evolutionary conservation is undoubtedly part of the reason for this, and this evolutionary information is indeed 
provided by 3 of the 11 inputs to the prediction model, with the other 8 providing protein and gene-oriented 
information. The distributions of the individual feature contribution to the overall DEOGEN2 prediction scores 
on SP17 are shown in Suppl. Fig. S10; higher scores mean that this feature has contributed more to the final pre-
diction. For a complete description of the features see20 or Suppl. Material. Among the evolutionary-related fea-
tures PROV is the most prominent, with also the PFAM log-odd score, the REC and ESS gene-level annotations 
and the pathway log-odd score relevant20.

Post-translational modified residues are hotspots for deleteriousness.  Post Translational Modifications (PTMs) are 
another important molecular mechanism to regulate protein function, where the local sequence context is highly 
relevant and expected to play a role in the deleteriousness of SAVs. We retrieved all the PTM annotations available 
for the proteins in SP17 from UniprotKB23, and divided them in 4 classes: disulfide bonds, glycosylations, lipida-
tions and “other”, which contains different types of PTMs (e.g. phosphorylation, methylation, acetylation; the full 
list is available in Suppl. Material.).

Disulfide bonds are strong covalent bonds occurring between the side-chains of two cysteines belonging to 
the same or different proteins. They are especially found in proteins in oxidative environments (typically outside 
the cell) and are generally structurally and functionally relevant35. Lipidations involve the covalent binding of a 
lipid to the side-chain of a residue. They can occur in many forms (e.g. palmitoylation, myristoylation or preny-
lation) and influence the protein function or localization36. Glycosylation is the process in which glycans bind 
the side-chain of a residue (typically oxygen linked, for example to Ser, or nitrogen linked, for example to Asn), 
which can influence protein folding, structure and function. Figure 4 shows the distribution of the DEOGEN2 
predictions for these classes of modified residues. As previously observed, cysteines involved in disulfide bonds 
are highly enriched for deleterious variants, although not as strikingly as annotated in common mutation data-
bases such as Humsavar35. The mutations of residues known to undergo glycosylation or lipidation are generally 
more likely to be deleterious than the unannotated residues in SP17 (resp. p-value = 10−124 and p-value = 10−32), 
also with respect to the “other” class (resp. p-value = 10−202 and p-value = 10−60), but they yield less drastically 
deleterious scores than oxidised cysteines (resp. p-value < 10−300 and p-value = 10−103). The mutation of residues 
belonging to the “other” class are significantly more deleterious than SAVs occurring on unannotated residues 
(p-value = 10−89). Suppl. Figs S11 and S12 show the average deleteriousness of variants on residues involved in 
glycosylations and lipidations. In the first plot, we represented N-linked and O-linked glycosylations, respectively 
occurring on Asn, and Thr, Ser residues. The mutation of glycosylated Asn residues is general predicted to be 
more deleterious than the mutations of Ser, with Thr being the most tolerant. In the lipidation case, we show the 
predicted outcome of the mutation of N-myristoylated glycines and of S-palmitoylated or prenylated Cys. The 
mutation of such Cys is scored 0.45, which is below the standard deleteriousness threshold of 0.5, indicating that 
the mutation of such cysteines is in general less deleterious than oxidised ones involved in disulfide bonds. The 
average deleteriousness score for lipidated Gly is neutral (between 0.3 and 0.4).

Secondary structure elements influence variants’ deleteriousness.  The function of a protein is often intimately 
related with its structure, and the local sequence context has a fundamental role in determining especially the 
initiation of folding of particular protein regions37, as well as secondary structure stability38. To investigate the 
connection between the deleteriousness predictions and Secondary Structure (SS) elements, we annotated the 
proteins in SP17 with SS annotations extracted from UniprotKB23 related to the presence of Helix, Beta-sheets 
and hydrogen bonded Turn structures. Suppl. Fig. S13 shows the distributions of the DEOGEN2 scores mapped 

Figure 4.  Violin plots showing the distribution of the DEOGEN2 predicted scores for residues undergoing 
different Post Translational Modifications in the SP17 dataset.
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on these regions. SAVs in regions encompassed by these three SSs classes are more likely to be deleterious than in 
SS-unassigned regions (p-values < 10−300). This highlights that the local amino-acidic context, here as interpreted 
by DEOGEN2, is crucial for maintaining the interactions necessary to the form and maintain well-defined sec-
ondary structure elements. To go in more detail, we show in Fig. 5 for the mutations towards the 20 amino-acids 
the difference of the average DEOGEN2 predicted scores between residues in a particular SS element (helices 
red, beta-sheets blue and turns yellow) and SS-unassigned regions (green). In addition, Suppl. Figs S14–S16 show 
the average deleteriousness scores for variants occurring on residues involved in these three secondary struc-
ture elements. Even though the pattern of the residue-specific matrices is quite similar, there are clear trends in 
the difference between the average DEOGEN2 scores. For example, a mutation into a Gly or a Pro in helices or 
beta-sheets shows a marked increase in predicted deleteriousness, whereas the effect of these residues is much 
less pronounced in turns (yellow), which are known to often contain Gly and Pro. Mutations to charged residues 
such as Asp or Glu are more likely to be deleterious in beta-sheets than helices or turns1; mutations to rare res-
idues with particular characteristics such as Cys and Trp always have an high chance to be deleterious. Overall 
beta-strands (blue) are the most sensitive to mutations, highlighting the importance of favourable amino acid 
interactions to stabilise these secondary structure elements. This is also in line with the observation that hel-
ices (red) are more robust to mutations than beta-strands39. The average deleteriousness of SAVs mapped on 
helical and beta-sheet regions have correlations of r = 0.5289 and r = 0.3568 with the amino-acid free energy in 
alpha-helix and beta-sheet conformations (Muñoz and Serrano, 1994). This may indicate that DEOGEN2 is to 
a certain extent able to pick up how well a residue fits within a particular Secondary Structure, without direct 
knowledge of secondary structure information from the input features.

Figure 5.  Plot showing the average DEOGEN2 predicted scores for the mutations towards the 20 aminoacids. 
The colored lines represent the different Secondary Structure elements, where yellow corresponds to Helix, blue 
to Beta-sheets, red to hydrogen bonded turns and green to unannotated structure.

Figure 6.  Violin plot showing the distribution of the DEOGEN2 predictions for regions of the sequences in 
SP17 that are mapped to a PFAM domain with respect to regions outside the known domains.
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A logical further extension of this analysis are full domains, the sub-regions of proteins that are able to main-
tain their own independent fold. From UniprotKB we extracted domain annotations for the proteins in SP17 and 
in Fig. 6 we show that the DEOGEN2 predictions mapped on structured domains are more likely to host dele-
terious SAVs with respect to variants occurring on residues outside domains (p-value < 10−300). The increased 
deleteriousness of SAVs occurring on domains is striking but the coarse granularity of such annotations (domains 
can span hundreds of residues) ensures that the vast majority of the variants are still predicted as neutral, nearly 
neutral or mildly deleterious (scores between 0 and 0.6). One of the 11 features used in DEOGEN2 is indeed a 
log-odd score indicating the sensitivity of specific PFAM40 domains to deleterious variants, because this behavior 
has already been observed on dataset of clinically annotated variants12,20. We thus expect that variants occurring 
on domains that were observed in the training set are more reliably predicted, but the results in Fig. 6 show con-
sistent results even if the domain annotations retrieved from UniprotKB comprise a combination of predicted 
domain boundaries from InterPro, PROSITE, Pfam and SMART23.

Interacting regions are enriched for deleterious variants.  Proteins are social entities in the sense that for their 
functionality they need to interact with other proteins and ligands41,42, both by forming stable complexes or by 
participating in transient interactions33. Such interactions are in globular, folded proteins typically mediated by 
residues located on solvent-accessible regions of the protein. Such surface residues are generally more tolerant 
to deleterious variants than residues essential for the fold, which are buried in the hydrophobic core of the pro-
tein43,44. Residues in solvent-exposed protein-protein interaction (PPI) regions are clear exceptions to this behav-
ior33,45, because they ensure favorable interactions between the binding partners. To investigate this behavior 
in relation to DEOGEN2 predictions, we extracted data from the Instruct18 database for 11470 experimentally 
determined binary interactions between 3627 proteins. Figure 7 shows that the DEOGEN2 predictions for SAVs 
located at solvent exposed PPI interaction regions tend to be more deleterious (>0.6) compared to residues in 
other regions of the protein (p-value < 10−300). A considerable amount of variants of interacting residues are still 
predicted as neutral, which is not unexpected as not all residues in the interacting region are equally critical for 
binding. Suppl. Figs S17 and S18 show, respectively, the DEOGEN2 average scores for the mutations of the resi-
dues involved in interaction patches and in any other region of the Instruct proteins. The blue colors in the second 
matrix correspond to the general neutrality of such variants, with respect to the ones located on the surface. For 
surface residues, Val to Ile and vice-versa variants are the most likely to be tolerated. Also Leu to Ile, Gln to Glu 
and Ser to Thr (and vice-versa) seem generally well tolerated.

Intra- and trans-membrane regions are more prone to host deleterious variants.  SP17 contains 3426 proteins 
annotated to have at least 1 transmembrane or intra-membrane region. Membrane proteins are crucial for cell 
and tissue life by providing, for example, signalling functionality and response to stimuli, but they are difficult to 
investigate experimentally because they depend on the presence of a lipid membrane. In our in-silico mutagen-
esis, we plotted the distributions of the DEOGEN2 predicted scores for SAVs mapped on Transmembrane, 
Cytoplasmic, Extracellular and Intracellular regions of membrane-spanning proteins (Fig. 8). The “Topological 
domain” annotation indicates every subcellular localization (except the membrane itself) in which the pro-
tein chain of a membrane protein is located, and may comprise many locations (see Suppl. Material for the full 
list). To simplify the visualization of the results, we plotted only the two most frequent localizations, namely 
“Cytoplasmic” and “Extracellular”, as separate distributions. The difference between the “Transmembrane” and 
the “Intramembrane” annotations is that the latter applies to portions of the protein that are buried inside a 
membrane without fully crossing it. From Fig. 8 we see that Cytoplasmic and extracellular regions tend to contain 
slightly less predicted deleterious variants than transmembrane regions (p-values < 10−300) and definitely more 

Figure 7.  Violin plot showing the distribution of the DEOGEN2 predictions for regions of the sequences in 
SP17 that are mapped on Protein-Protein interaction (PPI) patches (as evinced from Instruct database19) with 
respect to regions not involved in interaction.
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tolerant to variants than intramembrane regions (p-values < 10−300), which is the most enriched for deleterious 
variants. Interestingly, in the non-membrane regions, variants of cysteine residues are predicted to be particularly 
deleterious in the oxidative environment of the extracellular region (see Suppl. Fig. S19) where disulfide bonds are 
formed, whereas in the cytoplasmic regions (see S20) the hydrophobic aromatic residues are the most sensitive. In 
the transmembrane regions (see Suppl. Fig. S21), mutations between typical hydrophobic amino acids (Ile, Leu, 
Met, Val) are completely neutral, and surprisingly only mildly sensitive to mutations to more hydrophilic amino 
acids. Variants of charged amino acids such as Asp and Arg, though rare in transmembrane regions, are the most 
sensitive in terms of deleteriousness. This might be because the definition of the limits of the transmembrane 
region is not always accurate: such charged residues are especially important on the cytoplasmic flank of trans-
membrane regions46. Almost any variant in the intramembrane regions (see Suppl. Fig. S22) is predicted to be 
deleterious, which illustrates that these regions have highly specific sequences.

Case studies: comparison with past in-silico mutational screening.  The mutational landscape of the 
Human Glucokinase protein.  The Human Glucokinase protein (P35557) is an enzyme expressed in pancreas and 
liver that is involved in the phosphorylation of glucose as part of the glycogen synthesis and in the modulation of 
insulin secretion47,48. Variants on P35557 are known to cause Maturity-onset diabetes of the young 2 (MODY2)49 
and Familial hyperinsulinemic hypoglycemia 3 (HHF3)50.

By performing a full in-silico mutagenesis of P35557 with DEOGEN2 we obtain its complete deleteriousness 
landscape, as shown in Suppl. Fig. S23, where red indicates deleterious predictions and blue indicates neutral 
predictions: most of the SAVs in this protein are predicted to be deleterious. An interactive landscape can also be 
obtained from the DEOGEN2 web server20 (http://deogen2.mutaframe.com). From Uniprot we then retrieved 67 
experimentally determined variants and analyzed the DEOGEN2 predictions for the subset of 24 variants that are 
not present in its training dataset (the list is available in Suppl. Material). All of the variants in this blind set are 
associated with either HHF3 or MODY2 and correspond to DEOGEN2 scores greater than 0.59, suggesting their 
deleteriousness. Many of these variants (e.g. Ile225Met, Glu256Ala, Glu248Lys, Ser441Trp) affect the enzymatic 
activity, either by decreasing or increasing P35557 affinity for glucose, which may cause altered thresholds for 
insulin release51,52.

Functionally important residues on the Human Melanocortin receptor.  The Melanocortin receptor 4 (P32245) 
belongs to the GPCR family of transmembrane proteins and is important for energy homeostatis and somatic 
growth53. Variants of this protein have been associated with obesity54 (OMIM:601665), and functional effects 
have been studied with in-silico methods17, where the predictions of SNAP (REFsnap) were compared with 159 
SAVs for which experimental annotations are available17. Here we used DEOGEN2 to compute the full in-silico 
mutagenesis of P32245 (see Fig. 9) and we compared the predicted deleteriousness landscape with SNAP 
mutagenesis results and the experimentally validated variants.

From Fig. 9 we can see that the extracellular N-terminal residues of the protein (1–43) are generally predicted 
as tolerant to SAVs by DEOGEN2, with the exception of the glycosylated Asn26. The residues that are predicted 
to be tolerated at this position are Ser and Thr, which can also be glycosylated, and Pro, which is often found 
around glycosylation sites55. The first two transmembrane helical regions (res. 44–69 and 82–106) and the first 
cytoplasmic region (res. 70–81) are predicted to be generally intolerant to variation, and the first tolerant region 
encountered is located near the second extracellular region (res. 107–121). The fourth transmembrane helix could 
host some neutral variants (Val, Leu, Met, Ala), and surprisingly also towards polar residues such as Ser and Thr. 
This behavior is maintained until the cytoplasmic region after the fifth transmembrane helix. The C-terminal is 
predicted to host mostly neutral variants.

We blind-tested DEOGEN2 predictions with the 159 experimentally validated SAVs extracted from17, which 
are annotated on whether they impact the function of P32245 (change) or not (no change). These SAVs are not 

Figure 8.  Violin plots showing the distribution of the DEOGEN2 scores for different subcellular locations 
spanned by transmembrane proteins in SP17.

http://deogen2.mutaframe.com
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present in DEOGEN2 training set, and in Fig. 10 we show the distributions of the DEOGEN2 scores (left panel) 
and the SNAP scores (right panel) for these two classes. Both predictors discriminate between the SAVs affecting 
the function (DEOGEN2 p-value = 1.7 × 10−4, SNAP p-value = 4.15 × 10−5), even though DEOGEN2 is trained 
to identify variants that have deleterious effects on the individual phenotype and these annotations relate with 
functional changes in the protein17. We also investigated the level of agreement between these full mutagenesis 
performed by SNAP and DEOGEN2 (see Suppl. Fig. S24), obtaining a correlation of r = 0.77594, indicating even 
if DEOGEN2 is not specifically trained for the task of predicting the functional effect of variants, it can, to a cer-
tain extent, perform this duty.

Discussion
In this study we performed the largest in-silico mutagenesis analysis to date that we are aware of, analysing 
nearly 170 million SAV predictions computed with our DEOGEN2 method. We chose to focus on our in-house 
DEOGEN2 predictor because it provides state of the art performances and is one of the most reliable tools avail-
able at the moment, which we demonstrated by different validations20. Another important reason is that it uses 
limited number of features that have been chosen because of their biological relevance for the deleteriousness 
prediction problem. These characteristics, coupled with the interpretable nature of Random Forest56, enables 
interpretation of the predictions, unlike, for example, meta-predictors that use the predictions of many other 
deleteriousness prediction methods as input.

We show that these predictions have a statistical relation with biophysical and structural aspects of proteins, 
for example functional sites, post-translationally modified residues and secondary structure elements, which are 
generally enriched with deleterious variants. The machine learning method was not provided directly with this 
kind of information, but is still able to infer such important sites in proteins from the generic features that were 
provided as input, such as evolutionary conservation and gene-level features. Moreover, we show that in func-
tionally relevant positions the predicted deleteriousness is modulated by the type of the mutant residue, meaning 
that not only the average evolutionary conservation of the particular position has a relevant role in the decision, 
but also the types of the amino acids involved. From an analysis of the feature contributions in this mutagenesis 
study (see Suppl. Fig. S10), it appears that, as expected, evolutionary variant-level features are important for the 
final predictions, but domain-level, gene-level and pathway-level information are also crucial to provide a full 
characterization of the target variants and their possible biological effects on the human organism.

Figure 9.  Heatmap showing the complete deleteriousness landscape of the Human Melanocortin receptor 4 
protein. Blue-ish scores indicate neutral variants, red-ish scores indicate deleterious predictions. The blue cells 
correspond to the wild-type aminoacid.

Figure 10.  Violin plots showing the DEOGEN2 and SNAP predicted scores for the 159 experimentally 
annotated variants on the Melanocortin receptor 4 used as blind-test set. These variants are annotated to cause 
or not a functional change in the protein.
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Whether a particular variant is deleterious or neutral is, ultimately, due to the underlying molecular changes 
instigated by the difference in amino acid at a specific position in the protein. It is therefore maybe not sur-
prising that deleteriousness predictions detect positions that are known to be important for protein function 
and behavior. However, the reasons at the molecular level, causing a change in molecular phenotype, remain 
very difficult to determine, despite commendable efforts like MutPred257 that try to articulate those reasons by 
pinpointing possible causes. Still, proteins function in complex manners, and many of the aspects we examine 
here are likely interconnected, for example it is well known that membrane-spanning regions form secondary 
structure elements with hydrogen bonds between polar atoms, but on the other hand phosphorylation sites tend 
to occur in loop regions of proteins58. Also, a particular amino acid variant that disrupts, for example, a helix 
and is deleterious in one protein could have a similar molecular effect in another protein but be fully neutral due 
to gene and pathway-level redundancies or other effects. There is therefore a substantial amount of work ahead 
to determine the real reasons of deleteriousness, which originate at the molecular level but propagate (or not) 
because of the role the protein has within the complex network of the cell. Large-scale analyses like ours that start 
to interconnect all these levels of complexity are likely the only way in which we can start to comprehend the real 
causes behind deleterious variants. They will become increasingly relevant as current shortcomings in predictions 
and annotations are resolved. Although the performance of DEOGEN2 is very good, and means that predicted 
differences between deleterious and neutral SAVs are relevant at the statistical level, this might not be the case for 
individual SAVs, where experimental validation remains essential. Furthermore, the quality of annotations at the 
residues, and especially the absence thereof, means that our observations could in reality be more pronounced, or 
alternatively could turn out to be invalid because of bias in the current data. Given the scale of this study, its focus 
on statistical differences, and the connection to known rationale about SAVs and their effect on molecular phe-
notype, we do think that most of our observations are likely to remain valid, and that they indicate evolutionary 
tendencies that are difficult to extract from individual protein families.

DEOGEN2 predictions can be obtained from the webserver http://deogen2.mutaframe.com, which provides 
both an interactive visualization of different aspects of the variants and the text-format predictions.

Data Availability
All the data presented in the manuscript are available upon request or at http://deogen2.mutaframe.com/.
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