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Abstract. In this paper we consider a bootstrap class C of countable
discrete groups, which is closed under countable unions and extensions
by the integers, and we study actions of such groups on C∗-algebras.
This class includes all torsion-free abelian groups, poly-Z-groups, as
well as other examples. Using the interplay between relative Rokhlin
dimension and semi-strongly self-absorbing actions established in prior
work, we obtain the following two main results for any group Γ ∈ C and
any strongly self-absorbing C∗-algebra D:
(1) There is a unique strongly outer Γ-action on D up to (very strong)

cocycle conjugacy.
(2) If α : Γ y A is a strongly outer action on a separable, unital,

nuclear, simple, D-stable C∗-algebra with at most one trace, then it
absorbs every Γ-action on D up to (very strong) cocycle conjugacy.

In fact we establish more general relative versions of these two results
for actions of amenable groups that have a predetermined quotient in
the class C. For the monotracial case, the proof comprises an application
of Matui–Sato’s equivariant property (SI) as a key method.
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Introduction

The present work is a continuation of the work initiated in [44]. As such,
our aim is to study C∗-dynamical systems and to classify them up to cocycle
conjugacy. We refer to the introduction of [44], [43], or in particular [12] and
the references therein for a proper motivation and historical overview of the
classification theory of (discrete) group actions on von Neumann algebras
and C∗-algebras.
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In short, the present technology in the realm of C∗-algebras has not yet
arrived at the point where one can reasonably attempt to classify actions
of general amenable groups on all simple C∗-algebras covered by the El-
liott program; see [50] for an overview of recent developments on the latter.
This situation is in contrast to the well-understood situation of amenable
group actions on injective factors; see for example [36, 28, 29].1 In order to
gain some understanding about how to go about handling actions of general
amenable groups on C∗-algebras in the first place, it is beneficial (as a first
step) to restrict one’s attention to one of the most rigid types of C∗-algebras,
namely the strongly self-absorbing ones [48]. This special setup comes with
a priori more angles of attack than the general case, such as the approach
propagated in [46, 45, 42] to exploit strong self-absorption at the dynamical
level, which already beared fruits in the context of outer actions of amenable
groups on Kirchberg algebras [43]. The insight from [43] given by behavior
of equivariant KK-theory for group actions on strongly self-absorbing C∗-
algebras gives rise to the following conjecture from the introduction of [42]2,
which may be interpreted as an Ocneanu-type rigidity phenomenon; cf. [36].
We note that a similar conjecture was formulated by Izumi earlier in [12].

Conjecture A. Let D be a strongly self-absorbing C∗-algebra. Then for
every countable torsion-free amenable group Γ, there is a unique strongly
outer Γ-action on D up to cocycle conjugacy, and such an action is semi-
strongly self-absorbing.

On the one hand, we note that torsion a priori gives a K-theoretical
obstruction to such a rigid behavior, which does not appear in the von Neu-
mann algebraic context. For example, it is not hard to construct non-cocycle
conjugate outer actions on the Cuntz algebra O2 for any finite abelian group;
cf. [10, 11, 1]. On the other hand, we note that an application of [17] gives
the failure of uniqueness for actions of non-amenable groups in the monotra-
cial case, and a stronger converse for non-amenable groups has been recently
considered in [6, 5] by Gardella–Lupini.

In the case of abelian groups and D satisfying the UCT, Conjecture A
has been positively solved in [42], building in a crucial way on both the
structure theory of semi-strongly self-absorbing actions and prior work by
Matui [30, 31] and Izumi–Matui [14] handling the case Γ = Zd when D � Z.
Some special cases for D = Z have been solved before by Sato [39] and
Matui–Sato [32, 34], and one should note that one of Kishimoto’s early
pioneering works [21] handled the case Γ = Z and D being a UHF algebra.

In this paper, we shall furthermore confirm Conjecture A for the following
class of groups.

Definition B. We define C to be the smallest class of groups that contains
the trivial group, is closed under isomorphism, countable directed unions,
and extensions by Z.

1There are of course many other possible references in this context, but listing them is
beyond the scope of the present work.
2The statement given here is a slightly refined version, in that we postulate not only the
uniqueness for sufficiently outer actions, but also that they should all be automatically
semi-strongly self-absorbing.
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It is easy to see that the class C contains all torsion-free abelian groups, all
poly-Z groups, but also other examples such as the reduced wreath product
Z o Z. Evidently C is contained in the class of all torsion-free elementary
amenable groups, and it is perhaps less trivial that this inclusion is strict.
For example, it is known that there are torsion-free poly-cyclic groups which
are not poly-Z; see [25, page 16]. For groups in the class C, our main results
are as follows; see Corollary 3.4 and Corollary 3.5, respectively.

Theorem C. Let Γ ∈ C. Let D be a strongly self-absorbing C∗-algebra.
Then any two strongly outer Γ-actions on D are (very strongly) cocycle
conjugate. Moreover, any such action is semi-strongly self-absorbing.

Theorem D. Let Γ ∈ C. Let D be a strongly self-absorbing C∗-algebra and
A a separable, unital, nuclear, simple, D-stable C∗-algebra with at most one
trace. Let α : Γ y A be a strongly outer action. Then for every action
γ : Γ y D, the actions α and α⊗ γ are (very strongly) cocycle conjugate.

The proof of Theorem C presented in this paper is self-contained and does
not rely on any special cases treated elsewhere. Moreover, as one might have
hoped, we can dispense with the UCT assumption in our approach, because
the proof relies just on strong self-absorption rather than the precise fine
structure of the underlying C∗-algebra D.3 We note that the purely infinite
case within our main result has overlap with part of Izumi–Matui’s treatment
of poly-Z group actions on Kirchberg algebras [15], which they have proved
long before the present work was initiated; see also [13].

The most important tool in the proof of our main results is given by the
interplay between Rokhlin dimension relative to subgroups and the absorp-
tion of semi-strongly self-absorbing actions, as established in [44]. In essence,
our proof goes by showing that, if viewed as a property of amenable groups
Γ, the statements in the two theorems above are closed under extensions by
Z. Since the permanence properties from [42] also show that these state-
ments are closed under countable direct unions of groups, the main results
then simply follow from the definition of C as a bootstrap class. In fact it
follows by this approach more generally that the statement of Conjecture A
is closed under extensions by groups in C; this is recorded in Theorem 3.2.

In order to handle extensions by Z, one needs to show that all strongly
outer actions as in Theorem D satisfy certain Rokhlin-type conditions rel-
ative to any normal subgroup H such that Γ/H ∼= Z, which allows one to
apply the main result from [44]. This Rokhlin-type theorem is the only
ingredient where the proof has to handle the case of finite and infinite C∗-
algebras separately. The desired property follows without too much effort
from [43] and [35] in the purely infinite case, but more work is required for
the monotracial case. Among other methods, we arrange a relative version
of finite Rokhlin dimension with commuting towers by embedding certain
equivariant copies of prime dimension drop algebras into central sequence
algebras, which exploits Matui–Sato’s notion of equivariant property (SI) in

3One may of course note that the UCT could possibly be redundant in this context; cf.
[47, Corollary 6.7]. Due to the presently mysterious status of the UCT problem, however,
it is fair to say that a proof not needing it can be regarded as more satisfactory.
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a crucial way [32, 34, 41]. We note that in a similar but slightly different con-
text, the type of approximately central embedding technique utilized here
has also been independently discovered by Gardella–Hirshberg [4] and in
ongoing work of Gardella–Phillips–Wang [7]. Compared to similar Rokhlin-
type theorems such as [26, 27], the key difference is that we can arrange
the resulting Rokhlin towers to commute with each other, which is both
necessary for the methods of [44] to be applicable and is in a sense a special
feature of Z as a (relative) acting group.

It may be relevant to note that the assumption about having “at most
one trace” in Theorem D can be dispensed with at the cost of assuming
that the group action in question has Matui–Sato’s weak Rokhlin property,
which is a priori more than strong outerness. However, it is well-known by
Matui–Sato’s work that the weak Rokhlin property is equivalent to strong
outerness in the monotracial case and in fact the proofs of our main results
can be performed in this setup without having to refer to the weak Rokhlin
property directly. It is therefore a conscious decision not to go beyond
the monotracial case in this paper, in favor of a more in-depth study of
the connections between strong outerness and the weak Rokhlin property
warranted by this remark, which shall be the subject of subsequent work.

The paper is organized as follows: In Section 1, we remind the reader
about the underlying concepts of this paper such as cocycle conjugacy, (cen-
tral) sequence algebras constructed from free ultrafilters, semi-strongly self-
absorbing actions, strong outerness, and property (SI). Most of Section 2 is
dedicated to the monotracial case of our main results, in particular showing
the required relative Rokhlin-type theorem for strongly outer actions. Once
the Rokhlin-type theorem is in place, we obtain a proof of our main results
in Section 3 as an application of various results and modified ideas from
[42, 44], part of which has origins in work of Kishimoto [23].

1. Preliminaries

Throughout the paper, we will freely use basic techniques from the Elliott
classification program for simple nuclear C∗-algebras [37], as well as their
general structure theory. In particular we assume familiarity with nuclearity
[2], strongly self-absorbing C∗-algebras [48], the Jiang–Su algebra [16], and
order zero maps [51]. Moreover we refer to [46, 45, 42] for the detailed
treatment of the theory of (semi-)strongly self-absorbing actions.

In some places throughout the paper, we may write a =ε b as short-hand
for ‖a− b‖ ≤ ε for elements a, b in a C∗-algebra and some parameter ε > 0.

Definition 1.1. Let Γ be a countable discrete group. Let α : Γ y A
and β : Γ y B be two actions on unital C∗-algebras. We say that α and
β are cocycle conjugate, written α 'cc β, if there exists an isomorphism
ϕ : A→ B and an α-cocycle {wg}g∈Γ ⊂ U(A) with

Ad(wg) ◦ αg = ϕ−1 ◦ βg ◦ ϕ for all g ∈ Γ.

If it is possible to choose ϕ and w such that there exists a sequence
xn ∈ U(A) with wg = limn→∞ xnαg(x∗n) for all g ∈ Γ, then α and β are said
to be strongly cocycle conjugate, written α 'scc β.
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If it is moreover possible to choose ϕ and w such that there exists a
continuous path x : [0,∞) → U(A) such that wg = limt→∞ xtαg(x∗t ) for all
g ∈ Γ, then α and β are said to be very strongly cocycle conjugate, written
α 'vscc β.

Definition 1.2. Fix a free ultrafilter ω on N. Let A be a C∗-algebra. One
defines the ultrapower of A as

Aω = `∞(N, A)/
{

(xn)n | lim
n→ω
‖xn‖ = 0

}
.

The constant sequences yield a canonical copy of A in the ultrapower. The
central sequence algebra is the relative commutant

Aω ∩A′ = {x ∈ Aω | [x, a] = 0 for all a ∈ A} .

Notation 1.3. If α : Γ y A is an action of a discrete group, then we
obtain the ultrapower action αω : Γ y Aω via componentwise application,
and in fact this restrict to an action on Aω ∩ A′ as well. If H ⊆ Γ is a
fixed subgroup, then we write AHω or (Aω ∩A′)H for the fixed point algebra
with respect to αω|H . If H is additionally normal, then we have an induced
action Γ/H y AHω via (gH).a = αω,g(a) for all g ∈ Γ and a ∈ AHω .

The following definition is not identical to the original definition of semi-
strongly self-absorbing actions, but an equivalent one by virtue of [46, The-
orem 4.6].

Definition 1.4. Let D be a separable, unital C∗-algebra and Γ a countable
discrete group. Let ω be a free ultrafilter on N. We say that an action
γ : Γ y D is semi-strongly self-absorbing, if the following two conditions are
satisfied:

(i) There exists a unital equivariant ∗-homomorphism from (D, γ) to
(Dω ∩ D′, γω).

(ii) γ has approximately Γ-inner half-flip, i.e., there exists a sequence of
unitaries vn ∈ U(D ⊗D) satisfying

lim
n→∞

vn(x⊗ 1D)v∗n = 1D ⊗ x, x ∈ D,

and moreover
lim
n→∞

‖vn − (γg ⊗ γg)(vn)‖ = 0, g ∈ Γ.

Remark. In the proof of our main results we may use without mention
that having approximately Γ-inner half-flip in the above sense is implied by
having approximately Γ-inner flip. This means that a sequence vn as above
can be found which satisfies the stronger condition

lim
n→∞

vn(x⊗ y)v∗n = y ⊗ x, x, y ∈ D.

The following is a special case of [46, Theorem 4.7]:

Theorem 1.5. Let D and A be separable unital C∗-algebras. Let Γ be a
countable discrete group and ω a free ultrafilter on N. Suppose that α : Γ y
A is any action and γ : Γ y D is a semi-strongly self-absorbing action. Then
α 'cc α⊗ γ if and only if there exists a unital equivariant ∗-homomorphism
from (D, γ) to (Aω ∩A′, αω).
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Remark. In the above situation, we will say that α is γ-absorbing if one has
α 'cc α ⊗ γ. In the special case where γ is the trivial action on a strongly
self-absorbing C∗-algebra, we say instead that α is equivariantly D-stable.

Definition 1.6 (see [45, Definition 2.17]). Let Γ be a countable discrete
group. We say that an action α : Γ y A on a unital C∗-algebra is unitarily
regular, if for every ε > 0 and finite set F ⊆ Γ, there exists δ > 0 such that
for every pair of unitaries

u, v ∈ U(A) with max
g∈F

max {‖αg(u)− u‖, ‖αg(v)− v‖} ≤ δ,

there exists a continuous path of unitaries w : [0, 1]→ U(A) satisfying

w(0) = 1, w(1) = uvu∗v∗, max
0≤t≤1

max
g∈F

‖αg(w(t))− w(t)‖ ≤ ε.

Remark 1.7. To obtain certain uniqueness theorems up to very strong co-
cycle conjugacy, we may later appeal to the stronger version of Theorem 1.5,
namely [42, Theorem 3.2], which implies that α 'cc α ⊗ γ is equivalent to
α 'vscc α ⊗ γ as long as γ is unitarily regular. On the other hand, it fol-
lows from [45, Proposition 2.19] that equivariant Z-stability implies unitary
regularity.

The following concept has its origins in the work of Kirchberg [19] and
Kirchberg–Rordam [20] on central sequences of C∗-algebras; see also [26,
Definition 5.5].

Definition 1.8 (see [45, Definition 4.1]). Let α : Γ y A be an action of a
discrete group on a C∗-algebra. An α-invariant ideal J ⊆ A is called a Γ-σ-
ideal, if for every separable α-invariant C∗-subalgebra C ⊂ A, there exists a
positive contraction e ∈ (J ∩ C ′)α such that ec = c = ce for all c ∈ J ∩ C.

Proposition 1.9 (see [45, Proposition 4.5]). Let α : Γ y A be an action
and J ⊆ A a Γ-σ-ideal. Let B = A/J , π : A → B the quotient map, and
β : Γ y B the action induced on the quotient. Then

(i) For every separable α-invariant C∗-subalgebra C ⊂ A, the restriction
π : A ∩ C ′ → B ∩ π(C)′ is surjective.

(ii) For every separable β-invariant C∗-subalgebra D ⊂ B, there is an
equivariant c.p.c. order zero map ψ : (D,β)→ (A,α) such that π◦ψ =
idD.

Definition 1.10 (cf. [20, Section 4]). Let A be a unital C∗-algebra with a
unique tracial state τ . We define the limit trace τω on Aω via

τω
(
[(xn)n]

)
= lim

n→ω
τ(xn).

We define ‖x‖p,ω = τω(|x|p)1/p for all p ∈ [1,∞). The trace-kernel ideal in
Aω is given by

JA = {x ∈ Aω | ‖x‖p,ω = 0 for all (or some) p} .

The tracial ultrapower is the quotient Aω = Aω/JA. By Kaplansky’s density
theorem, it is easy to see (cf. [20, Theorem 3.3]) that for the weak closure
M = πτ (A)′′, the canonical inclusion Aω ⊆ Mω into the von Neumann



ACTIONS ON STRONGLY SELF-ABSORBING C∗-ALGEBRAS 7

algebraic tracial ultrapower is in fact an isomorphism, which restrict to an
isomorphism Aω ∩A′ ∼= Mω ∩M ′.4

Notation 1.11. In the above situation, if α : Γ y A is any action of
a countable discrete group, then the trace-kernel ideal JA ⊂ Aω is αω-
invariant. Thus the componentwise application of α gives rise to an action
αω : Γ y Aω on the tracial ultrapower.

The following is always true regardless of the structure of the tracial
simplex of A, but we will stick to the monotracial case as it is enough for
our present purpose.
Proposition 1.12. Let α : Γ y A be an action of a countable discrete group
on a unital monotracial C∗-algebra. Then the trace-kernel ideal JA ⊂ Aω is
a Γ-σ-ideal with respect to the ultrapower action αω.
Proof. The proof follows almost verbatim as in [20, Proposition 4.6] by ap-
plying the so-called ε-test. For this one only needs to know that JA admits
an approximate unit consisting of approximately αω-invariant elements qua-
sicentral relative to Aω, which is a general fact [18, Proposition 1.4] due to
Kasparov. We omit the details. �

Definition 1.13. Let A be a unital C∗-algebra with T (A) 6= ∅. An auto-
morphism α on A is called strongly outer, if it is outer, and moreover for
every α-invariant trace τ ∈ T (A), the induced automorphism of α on the
weak closure πτ (A)′′ is outer.5

If α : Γ y A is an action of a discrete group, then we say that it is
(pointwise) strongly outer, if αg is strongly outer whenever g 6= 1.
Remark 1.14. In the above definition, if A has a unique trace τ , then an
action α is strongly outer precisely when the action induced on the weak
closure πτ (A)′′ is an outer action in the sense of von Neumann algebras.
When A is nuclear and infinite-dimensional, then it is known that πτ (A)′′
yields the hyperfinite II1-factor R (cf. [3]), which we will use frequently.
Definition 1.15 (cf. [34, Proposition 4.5] and [41, Proposition 5.1]). Let
Γ be a countable discrete group. Let α : Γ y A be an action on a separa-
ble, simple, unital, monotracial C∗-algebra. We say that A has equivariant
property (SI) relative to α, if the following holds:

Given two positive contractions e, f ∈ (Aω ∩A′)Γ satisfying
‖e‖1,ω = 0, sup

k∈N
‖1− fk‖1,ω < 1,

there exists a contraction s ∈ (Aω ∩A′)Γ such that
e = s∗s and fs = s

In particular, in case Γ = {1} we say that A has property (SI).
Theorem 1.16. Let A be a separable, simple, nuclear, unital, monotracial
C∗-algebra. Suppose that A has strict comparison. Then for every action
α : Γ y A of a discrete amenable group, A has property (SI) relative to α.
Moreover, α is equivariantly Z-absorbing.
4See also [40, Lemma 2.1] where this was first observed.
5In particular, “strongly outer” is defined as “outer” when A is traceless.
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Proof. For Γ = {1}, this is a special case of a well-known insight given by
Matui–Sato’s work [33, Section 4].

For the general case, combine Propositions 4.4 and 5.1 from [41]. The
last part of the claim is a special case of [41, Theorem 5.2] together with
Theorem 1.5; see also [34, Theorem 4.9] for a previous similar theorem. �

2. Relative Rokhlin-type conditions

Definition 2.1 (cf. [44, Definition 4.1]). Let Γ be a countable discrete group.
Let H ⊂ Γ be a normal subgroup such that Γ/H ∼= Z, and let g0 ∈ Γ be an
element generating the quotient. Let α : Γ y A be an action on a separable
unital C∗-algebra.

(i) The Rokhlin dimension of α with commuting towers relative to H,
denoted dimc

Rok(α,H), is the smallest natural number d ≥ 0 such that
the following holds. For every n ≥ 1, there exist equivariant c.p.c.
order zero maps

ϕ(0), . . . , ϕ(d) :
(
C(Z/nZ),Z-shift

)
→
(
(Aω ∩A′)H , αω,g0

)
with pairwise commuting ranges such that

ϕ(0)(1) + · · ·+ ϕ(d)(1) = 1.

(ii) We say that α has the Rokhlin property relative to H, if for every
n ≥ 1, there exist projections p, q ∈ (Aω ∩A′)H such that

1 =
n−1∑
i=0

αiω,g0(p) +
n∑
j=0

αjω,g0(q).

Proposition 2.2. Suppose that α : Γ y A is an action of a countable
discrete group on a separable unital C∗-algebra. Let H ⊂ Γ be a normal
subgroup such that Γ/H ∼= Z. If α has the Rokhlin property relative to H,
then dimc

Rok(α,H) ≤ 1.

Proof. This is completely analogous to [9, Proposition 2.8]. �

The key feature of Rokhlin dimension with commuting towers comes from
the following theorem, which is a special case of [44, Theorem 4.4].

Theorem 2.3. Let Γ be a countable discrete group and let H ⊂ Γ be a
normal subgroup such that Γ/H ∼= Z. Let α : Γ y A be an action on
a separable unital C∗-algebra, and let γ : Γ y D be a semi-strongly self-
absorbing, unitarily regular action. If dimc

Rok(α,H) < ∞ and α|H 'cc
(α⊗ γ)|H , then α 'cc α⊗ γ.

Definition 2.4. For given numbers p, q ∈ N, recall the dimension drop
algebra

Zp,q =
{
f ∈ C

(
[0, 1],Mp ⊗Mq

)
| f(0) ∈Mp ⊗ 1, f(1) ∈ 1⊗Mq

}
.

If p and q are relatively prime, this is called a prime dimension drop algebra.

Definition 2.5 (cf. [38]). Let k ≥ 2 be a natural number. One defines
ZUk,k+1 to be the universal (unital) C∗-algebra generated by the range of a
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c.p.c. order zero map ψU : Mk → ZUk,k+1 and a contraction sU ∈ ZUk,k+1
subject to the relations

s∗UsU = 1− ψ(1), ψ(e1,1)sU = sU .

Recall the following description of a class of concrete isomorphisms ZUk,k+1
∼=

Zk,k+1:

Theorem 2.6 (cf. [38, Proposition 5.1] and [39, Section 2]). Let k ≥ 2 be a
natural number. Suppose that u : [0, 1] → U(Mk ⊗Mk) is any unitary path
satisfying

u0 = 1, u1 =
k∑

i,j=1
e

(k)
i,j ⊗ e

(k)
j,i .

Consider the element in Mk ⊗Mk+1 given by

v =
k∑
j=1

e
(k)
1,j ⊗ e

(k+1)
j,k+1 .

Consider the functions
w, s ∈ Zk,k+1

and the map
ψ : Mk → C

(
[0, 1],Mk ⊗Mk+1

)
given by the formulas

w(t) = ut ⊕ cos(πt/2) · 1(k) ⊗ e(k+1)
k+1,k+1 ∈ (Mk ⊗Mk)⊕ (Mk ⊗ e

(k+1)
k+1,k+1);

ψ(x) = w(t)(x⊗ 1(k+1))w(t)∗;
s(t) = sin(πt/2)w(t)v.

Then ψ is a well-defined c.p.c. order zero map ψ : Mk → Zk,k+1 so that
ψ and the element s satisfy the relations in Definition 2.5. Moreover, the
resulting ∗-homomorphism Φ : ZUk,k+1 → Zk,k+1 is an isomorphism.

Remark 2.7. In the above construction, the specific isomorphism ZUk,k+1
∼=

Zk,k+1 depends on the choice of the unitary path u. Denote by Dk ⊂
Mk⊗Mk the C∗-subalgebra generated by all elementary tensors of the form
z ⊗ z for z ∈Mk. In particular, we may find a unitary path u taking values
in the relative commutant (Mk ⊗Mk) ∩D′k.

Suppose that G is some group and ν : G → Mk−1 is a unitary represen-
tation. Then we consider 1 ⊕ ν : G → Mk as a unitary representation so
that each group element acts as a unit on e1,1. For notational convenience,
set µg = (1 ⊕ νg) ⊗ (1 ⊕ νg ⊕ 1) ∈ Mk ⊗Mk+1, which defines yet another
unitary representation.

We may consider the unique action δU,ν : Gy ZUk,k+1 given by δU,νg (sU ) =
sU and δU,νg ◦ψU = ψU ◦Ad(1⊕νg) for all g ∈ G. On the other hand, we may
consider the action δν : G y Zk,k+1 given by δνg (f) = Ad(µg)(f).6 Then
δU,ν and δν are conjugate.

6Note that µg is not a unitary in Zk,k+1, yet conjugation with this unitary still induces a
well-defined automorphism on Zk,k+1.
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Proof of “(ZUk,k+1, δ
U,ν) ∼= (Zk,k+1, δ

ν)”. As stated above, we consider a con-
tinuous path u : [0, 1] → Mk ⊗ Mk that pointwise commutes with Dk

and satisfies u0 = 1 and u1 =
∑k
i,j=1 ei,j ⊗ ej,i. Construct the elements

w, cj , s ∈ Zk,k+1 and let Φ : ZUk,k+1 → Zk,k+1 be the isomorphism induced
by them as stated in Theorem 2.6. We will show that Φ is automatically
equivariant with respect to the G-actions δU,ν and δν .

Since any unitary of the form ut commutes with (1⊕ νg)⊗ (1⊕ νg) for all
g ∈ G, it follows from the definition of w ∈ Zk,k+1 ⊂ C

(
[0, 1],Mk ⊗Mk+1

)
that it must commute with µg for all g ∈ G. In particular, w is in the fixed
point algebra of δν .

Using (1(k) ⊗ e(k+1)
k+1,k+1) · v = 0, we compute

(w(1) + 1(k) ⊗ e(k+1)
k+1,k+1) = w(1)v

=
( k∑
i,l=1

e
(k)
i,l ⊗ e

(k+1)
l,i

)( k∑
j=1

e
(k)
1,j ⊗ e

(k+1)
j,k+1

)
=

k∑
j=1

e
(k)
j,j ⊗ e

(k+1)
1,k+1 = 1(k) ⊗ e(k+1)

1,k+1.

By definition of the unitaries µg, we see that this element commutes with
them. We have observed earlier that w(t) commutes with µg for all t ∈
[0, 1], and the same is true for the projection 1(k) ⊕ e(k+1)

k+1,k+1. As the sum
(w(1)+1(k)⊗e(k+1)

k+1,k+1) is a unitary inMk⊗Mk+1, it follows that also v and
s commute with µg for g ∈ G. In other words, s is also in the fixed point
algebra of δν .

Lastly, we compute for every x ∈Mk that[
δνg ◦ ψ(x)

]
(t) = µgw(t)(x⊗ 1(k+1))w(t)∗µ∗g

= w(t)µg(x⊗ 1(k+1))µ∗gw(t)∗
= w(t)(Ad(1⊕ νg)(x)⊗ 1(k+1))w(t)∗
=

[
ψ ◦Ad(1⊕ νg)(x)

]
(t).

By the definition of the isomorphism Φ and the action δU,ν , this means
δνg ◦ Φ ◦ ψU = Φ ◦ δU,νg ◦ ψU . Since s is in the fixed point algebra of δν
and sU ∈ ZUk,k+1 is in the fixed point algebra of δU,ν , it follows that Φ is
equivariant. This finishes the proof. �

Remark 2.8. Let k ≥ 2 be a natural number and G a discrete group. If
λ : G → Mk is a unitary representation that arises from a permutation
σ : Gy {1, . . . , k} via λg(ei) = eσ(i)

7, then there is a unitary representation
ν : G→Mk−1 such that λ is unitarily conjugate to a 1⊕ ν.

Proof. Since λ arises from a permutation as given in the statement, it follows
that the vector

x = k−1/2(1, . . . , 1) ∈ Ck

is a unit vector fixed by λ. Then λ restricts to a unitary representation on
the space x⊥ ∼= Ck−1. Thus the claim follows easily from here. �

7Here ej ∈ Ck denote the vectors of the standard basis.
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Lemma 2.9. Let A be a separable, unital, simple, nuclear, monotracial Z-
stable C∗-algebra. Let α : Γ y A be a strongly outer action of a countable
discrete amenable group. Let k ≥ 2 and let ν : Γ → Mk−1 be a unitary
represenation. Then there exists a unital equivariant ∗-homomorphism from
(ZUk,k+1, δ

U,ν) to (Aω ∩A′, αω).

Proof. We consider (B, β) = (Mk,Ad(1⊕ν)) as a monotracial C∗-dynamical
system. Denote by τ the unique trace on A. As α is strongly outer, the
induced action on the weak closure πτ (A)′′ is outer. As πτ (A)′′ ∼= R, it
follows from Ocneanu’s theorem [36] that this action is cocycle conjugate to

α⊗Ad(1⊕ ν)⊗∞ : Γ y R⊗̄M ⊗̄∞k .8

Thus one can find a unital equivariant ∗-homomorphism

κ : (B, β)→ (Aω ∩A′, αω).

By Proposition 1.12 and Proposition 1.9, we find an equivariant c.p.c. order
zero lift

ψ : (B, β)→ (Aω ∩A′, αω)
such that ‖1 − ψ(1)‖1,ω = 0. We notice that ψ(e1,1) ∈ (Aω ∩ A′)Γ and
τω(ψ(e1,1)m) = 1

k for all m ≥ 1.
Since A has equivariant property (SI) relative to α by Theorem 1.16,

we can find a contraction s ∈ (Aω ∩ A′)Γ such that s∗s = 1 − ψ(1) and
ψ(e1,1)s = s. We see that the pair (ψ, s) satisfies the universal property
used to define ZUk,k+1, and thus we obtain a unique unital ∗-homomorphism
ϕ : ZUk,k+1 → Aω ∩ A′ with ϕ ◦ ψU = ψ and ϕ(sU ) = s. As s is fixed by αω
and ψ was equivariant by choice, we see that ϕ becomes equivariant with
respect to δU,ν and αω. �

Notation 2.10. Henceforth, we will denote by λ(N) ∈MN the unitary that
is induced by the left-regular representation of ZN on CN ∼= L2(ZN ). More
specifically, one has

λ(N) = e1,N +
N−1∑
k=1

ek+1,k =



0 . . . . . . 1
1 0 . . . 0

1
...

... . . .
0 . . . 1


.

We will also denote by δN the automorphism on ZN,N+1 induced by Ad
(
λ(N)⊗

(λ(N) ⊕ 1)
)
.

Lemma 2.11 (see [22, Lemma 2.2]). Let n ∈ N and ε > 0 be given. Then
there exists K ∈ N such that for every N ≥ K there exist projections
p0, . . . , pn−1, q0, . . . , qn ∈MN+1 such that

1 =
n−1∑
j=0

pj +
n∑
l=0

ql

8Here the symbol ⊗̄ denotes the spatial tensor product of von Neumann algebras.
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and
pj+1 =ε σ

N (pj) (mod n), ql+1 =ε σ
N (ql) (mod n+ 1),

where σN = Ad(λ(N) ⊕ 1).

The observations below can be seen as a variation Liao’s argument from
[26, Lemma 6.3, Theorem 6.4] and [27, Section 5].

Lemma 2.12. Let n ∈ N and ε > 0 be given. Then there exists K ∈ N such
that for every N ≥ K with n|N , there exist pairwise commuting positive
elements

a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn ∈ ZN,N+1
such that

• 1 =
∑n−1
j=0 aj + bj +

∑n
k=0 ck;

• each of the collections {aj}n−1
j=0 , {bj}

n−1
j=0 and {cl}nl=0 consists of pair-

wise orthogonal elements;
• δN (aj) =ε aj+1 mod n;
• δN (bj) =ε bj+1 mod n;
• δN (cl) =ε cl+1 mod n+ 1;
• bj ⊥ cl for all j = 0, . . . , n− 1 and l = 0, . . . , n.

Proof. The number K is the same as the one in Lemma 2.11. Let N ≥ K
be such that N = n0n for some n0 ∈ N.

Applying Lemma 2.11, we find projections p0, . . . , pn−1 and q0, . . . , qn with
the stated properties. For j = 0, . . . , n − 1 and l = 0, . . . , n, we define
functions via

bj(t) = t · 1(N) ⊗ pj , cl(t) = t · 1(N) ⊗ ql, t ∈ [0, 1].
This yields pairwise orthogonal elements in ZN,N+1, and by our choice of
pj , ql they are pairwise orthogonal and satisfy δN (bj) =ε bj+1 (mod n) and
δN (cl) =ε cl+1 (mod n + 1). The sum over all bj and cl equals the element
given by the function [t 7→ t · 1].

Lastly, for j = 0, . . . , n− 1 we set

aj(t) = (1− t) ·
n0−1∑
l=0

e1+j+ln,1+j+ln ⊗ 1(N+1) ∈MN ⊗MN+1, t ∈ [0, 1].

This defines pairwise orthogonal functions in ZN,N+1 satisfying δN (aj) =
aj+1 (mod n), and moreover their sum is equal to the function [t 7→ (1−t)1].

Evidently, all of these functions constructed so far commute with each
other. Moreover their sum is equal to the unit, which shows our claim. �

Lemma 2.13. Let n ∈ N and ε > 0 be given. Then there exists K ∈ N such
that for every N ≥ K with n|N , there exist pairwise commuting positive
elements

a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1 ∈ ZN,N+1
such that

• 1 =
∑n−1
j=0 aj + bj + cj;

• each of the collections {aj}n−1
j=0 , {bj}

n−1
j=0 and {cj}n−1

j=0 consists of pair-
wise orthogonal elements;
• δN (aj) =ε aj+1 mod n;



ACTIONS ON STRONGLY SELF-ABSORBING C∗-ALGEBRAS 13

• δN (bj) =ε bj+1 mod n;
• δN (cj) =ε cj+1 mod n.

Proof. Using Lemma 2.12, we can obtain such elements in exactly the same
fashion as in the proof of [9, Proposition 2.8]. �

Theorem 2.14. Let A be a separable, unital, simple, nuclear, monotracial
Z-stable C∗-algebra. Suppose that α : Γ y A is a strongly outer action of a
countable amenable group. Let H ⊂ Γ be a normal subgroup with Γ/H ∼= Z.
Then dimc

Rok(α,H) ≤ 2.

Proof. Let g0 ∈ Γ be an element generating the quotient. Due to the ε-test
[20, Lemma 3.1], it is enough to show for a fixed ε > 0 and n ≥ 1 that there
exist pairwise commuting positive contractions aj , bj , cj ∈ (Aω ∩ A′)H such
that:

• 1 =
∑n−1
j=0 aj + bj + cj ;

• each of the collections {aj}n−1
j=0 , {bj}

n−1
j=0 and {cj}n−1

j=0 consists of pair-
wise orthogonal elements;
• αω,g0(aj) =ε aj+1 mod n;
• αω,g0(bj) =ε bj+1 mod n;
• αω,g0(cj) =ε cj+1 mod n.

For the pair (ε, n), choose N ≥ 1 big enough to satisfy the conclusion of
Lemma 2.13. By our assumptions on g0,Γ, H, we get a well-defined action
γ : Γ y ZN,N+1 via γ|H = id and γg0 = δN in the sense of Notation 2.10.
By Remark 2.8 and Remark 2.7, γ is conjugate to δU,ν : Γ y ZUN,N+1 for
some unitary representation ν : Γ → MN−1. Thus Lemma 2.9 allows us to
find a unital equivariant ∗-homomorphism

ϕ : (ZN,N+1, γ)→ (Aω ∩A′, αω).

By our definition of γ, this can also be viewed as a unital equivariant ∗-
homomorphism

ϕ : (ZN,N+1, δ
N )→ ((Aω ∩A′)H , αω,g0).

Hence the desired elements exist by Lemma 2.13. �

Example 2.15 (cf. [21]). Every UHF algebra U of infinite type admits a
strongly self-absorbing automorphism with the Rokhlin property.

Proof. For a fixed n ∈ N, we consider the direct sumMn⊕Mn+1, and observe
that the unitary sn = λ(n)⊕λ(n+1) defines an inner automorphism for which
the (standard) minimal projections (e1,1 ⊕ 0) ∈ Mn ⊕ 0 and (0 ⊕ e1,1) ∈
0⊕Mn+1 generate a Rokhlin multitower of length n on the nose.

Now let U be a UHF algebra of infinite type. Clearly there exists a unital
∗-homomorphism ι(n) : Mn ⊕Mn+1 → U. We define

α =
⊗
n∈N

(
Ad(ι(n)(sn))⊗∞

)
: Z y (U⊗∞)⊗∞ ∼= U,

which will satisfy the Rokhlin property by construction. It is also strongly
self-absorbing by [45, Proposition 5.2]. �
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Theorem 2.16. Let A be a separable, unital, simple, nuclear, monotracial
C∗-algebra. Suppose that α : Γ y A is a strongly outer action of a countable
amenable group. Let H ⊂ Γ be a normal subgroup with Γ/H ∼= Z. Then
for any UHF algebra U of infinite type, the action α ⊗ idU has the Rokhlin
property relative to H.

Proof. Certainly we may assume α 'cc α⊗idU without loss of generality. Let
g0 ∈ Γ be an element generating the quotient. Let ψ ∈ Aut(U) be a strongly
self-absorbing automorphism with the Rokhlin property, as in Example 2.15.
By the assumption on g0,Γ, H, we obtain a well-defined action γ : Γ y U
via γ|H = id and γg0 = ψ. By replacing γ if necessary9, we may assume
γ 'cc γ ⊗ idU. Hence γ is unitarily regular by Remark 1.7. Evidently γ is
strongly self-absorbing and has the Rokhlin property relative to H.

Then we have (α ⊗ γ)|H = (α ⊗ idU)|H ∼= α|H . Since we know that
dimc

Rok(α,H) ≤ 2 from Theorem 2.14, we may apply Theorem 2.3 to deduce
α 'cc α⊗ γ. Hence α also has the Rokhlin property relative to H. �

Remark 2.17. With a further reduction argument, it is possible to improve
the conclusion of Theorem 2.16 to include arbitrary infinite-dimensional
UHF algebras in place of U. Since we do not need this level of general-
ity to obtain our main results, this shall not be pursued here.

Lastly, let us also consider the purely infinite case to have a unified proof
of the main result within the next section:

Theorem 2.18. Let A be a Kirchberg algebra. Let α : Γ y A be a pointwise
outer action of a countable amenable group. Let H ⊂ Γ be a normal subgroup
with Γ/H ∼= Z. Then α has the Rokhlin property relative to H.

Proof. Let g0 ∈ Γ be an element generating the quotient. Let u ∈ U(O∞)
be a unitary with full spectrum T. Then by the properties of g0,Γ, H, we
may associate a unique unitary representation w : Γ→ U(O∞) via w|H = 1
and wg0 = u. Moreover we get a well-defined action

γ = Ad(w)⊗∞ : Γ y O⊗∞∞ ∼= O∞.
Evidently γ|H = id and γg0 is an aperiodic automorphism. Since γg0 has
the Rokhlin property by [35, Theorem 1], it follows by definition that γ has
the Rokhlin property relative to H. Moreover, it follows from [43, Theorem
3.5] that α 'cc α⊗ γ. This shows our claim. �

3. Actions on strongly self-absorbing C∗-algebras

For what follows recall Definition B of the bootstrap class of groups C
from the introduction.

Theorem 3.1. Let D be a strongly self-absorbing C∗-algebra and let A be
a separable, unital, simple, nuclear, D-stable C∗-algebra with at most one
trace. Let α : Γ y A be a strongly outer action of a countable amenable
group. Suppose that H ⊂ Γ is a normal subgroup such that Γ/H ∈ C. Let
γ : Γ y D be a semi-strongly self-absorbing action. If α|H 'cc (α ⊗ γ)|H ,
then α 'cc α⊗ γ.
9This is actually not necessary by Theorem 2.3.
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Proof. Let F be the class of all countable amenable groups Λ such that
the conclusion of this theorem holds whenever one has Γ/H ∼= Λ instead
of Γ/H ∈ C. Evidently the trivial group is in F, and F is closed under
extensions. Moreover it follows directly from [42, Theorem 5.6(ii)] that F is
closed under countable directed unions. By the definition of the class C, it
suffices to show Z ∈ F in order to obtain C ⊆ F, which will prove the claim.

So let us assume Γ/H ∼= Z. If A is finite, then it follows from The-
orem 2.14 that dimc

Rok(α,H) ≤ 2. If A is infinite, then it follows from
Theorem 2.18 and Proposition 2.2 that dimc

Rok(α,H) ≤ 1. So in all cases
we have dimc

Rok(α,H) ≤ 2. Note that γ is equivariantly Z-stable by ei-
ther Theorem 1.16 or [43, Theorem 3.4] (depending on whether D is finite
or infinite), so in particular it is unitarily regular by Remark 1.7. Thus if
α|H 'cc (α⊗ γ)|H , then α 'cc α⊗ γ follows by Theorem 2.3 and the proof
is complete. �

Theorem 3.2. Let D be a strongly self-absorbing C∗-algebra. Let γ, γ(1), γ(2) :
Γ y D be strongly outer actions of a countable amenable group. Suppose
that H ⊂ Γ is a normal subgroup such that Γ/H ∈ C.

(i) If γ|H is semi-strongly self-absorbing, then so is γ.
(ii) If γ(i)|H is semi-strongly self-absorbing for i = 1, 2 and γ(1)|H 'cc

γ(2)|H , then γ(1) 'cc γ
(2).

In particular, the statement of Conjecture A is closed under extensions by
groups in the class C.

Proof. First let us observe that (i) implies (ii). If the actions γ(i)|H for
i = 1, 2 are semi-strongly self-absorbing, then so are γ(i) for i = 1, 2. Fur-
thermore, γ(1)|H 'cc γ

(2)|H means that these H-actions absorb each other
tensorially. So due to Theorem 3.1, the Γ-actions γ(1) and γ(2) also absorb
each other tensorially, and hence they are cocycle conjugate.

So let us show (i). Similarly as in the proof of Theorem 3.1, let us consider
the class F of all countable amenable groups Λ such that (i) holds whenever
Γ/H ∼= Λ instead of Γ/H ∈ C. Evidently the trivial group is in F and F
is closed under extensions. Moreover it follows directly from [42, Theorem
5.6(i)] that F is closed under countable directed unions. By the definition
of the class C, it suffices to show Z ∈ F in order to obtain C ⊆ F, which will
prove the claim.

So let us assume Γ/H ∼= Z. Let g0 ∈ Γ be an element generating the
quotient.
Step 1: It follows from either Theorem 1.16 or [43, Theorem 3.4] (de-

pending on whether D is finite or infinite) that γ 'cc γ⊗ idZ .10 By virtue of
[42, Theorem 6.6], the claim reduces to the special case where γ 'cc γ⊗ idU
for some UHF algebra U of infinite type. So let us make this assumption
from now on.
Step 2: We assume γ|H is semi-strongly self-absorbing. We claim that γ

has approximately Γ-inner flip.11

10Note that D ∼= D ⊗Z is known due to [49].
11This part of the proof will be similar to [44, Theorem 6.7]. The argument is a variation
of Kishimoto’s technique [23, Proposition 3.2].
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Set B = D⊗D and β = γ⊗γ : Γ y B. Denote by Σ the flip automorphism
on B, which is β-equivariant. Since γ|H is semi-strongly self-absorbing by
assumption, we can apply [45, Proposition 3.6] and find unitaries x, y ∈ BH

ω

such that Ad(xyx∗y∗)(b) = Σ(b) for all b ∈ B. We set u = xyx∗y∗ and
observe that u is homotopic to the unit inside U

(
BH
ω ) by [45, Proposition

2.19].
On the other hand, we also have

βnω,g0(u)bβnω,g0(u)∗ = βnω,g0

(
uβ−ng0 (b)u∗

)
= βng0 ◦ Σ ◦ β−ng0 (b) = Σ(b)

for all b ∈ B and n ∈ Z. Hence we have wn := uβnω,g0(u)∗ ∈ (Bω ∩ B′)H for
all n. Clearly {wn}n∈Z is the βω,g0-cocycle over Z associated to the unitary
w1 = uβω,g0(u)∗.

Since u is homotopic to the unit in U
(
BH
ω

)
, this is possible with some

L-Lipschitz unitary path for some L > 0. Since β|H is semi-strongly self-
absorbing, it follows from [45, Lemma 3.12] that all of the unitaries wn
are homotopic to the unit inside U

(
(Bω ∩B′)H

)
via a 2L-Lipschitz unitary

path. Let C be some separable, βω,g0-invariant C∗-subalgebra of (Bω ∩B′)H
containing the cocycle {wn}n∈Z along with all such unitary paths for each
n ∈ Z.

Since we have assumed γ 'cc γ ⊗ idU, we also have β 'cc β ⊗ idU, and
therefore by Theorem 2.16 (ifD is finite) or Theorem 2.18 (ifD is infinite) the
action β has the Rokhlin property relative to H. So for any n ∈ N we have
projections p, q ∈ (Bω ∩ B′)H such that 1 =

∑n−1
j=0 β

j
ω,g0(p) +

∑n
l=0 β

l
ω,g0(q).

By a standard reindexation trick, we may additionally assume [p, c] = 0 =
[q, c] for all c ∈ C.

This allows us to employ the same argument as in the proof of [24, Propo-
sition 4.3] to deduce that there exists a unitary v ∈ (Bω ∩ B′)H with
uβω,g0(u)∗ = vβω,g0(v)∗; see also [8]. Set z = v∗u. Then z is evidently
a unitary in BH

ω , but it also satisfies z = βω,g0(z), hence in fact z ∈ BΓ
ω .

Moreover we have

zbz = v∗ubu∗v = v∗Σ(b)v = Σ(b) for all b ∈ B.

This shows that the flip automorphism Σ is indeed approximately Γ-inner.
Step 3: From “Step 2” above it follows that γ⊗∞ : Γ y D⊗∞ is a (semi-

)strongly self-absorbing action; cf. [46, Proposition 3.3]. By our assumption
that γ|H is semi-strongly self-absorbing, we have γ|H 'cc (γ ⊗ γ⊗∞)|H . By
applying Theorem 3.1 we see that γ 'cc γ ⊗ γ⊗∞ 'cc γ

⊗∞, which shows
that γ is indeed semi-strongly self-absorbing. This completes the proof. �

Example 3.3. Let D be a strongly self-absorbing C∗-algebra. Given a
countable discrete group Γ, the noncommutative Bernoulli shift

γ0 : Γ y
⊗

Γ
D ∼= D

defines a strongly outer action.

Corollary 3.4. Let Γ ∈ C. Let D be a strongly self-absorbing C∗-algebra.
Then up to (very strong) cocycle conjugacy, there exists a unique strongly
outer Γ-action on D.



ACTIONS ON STRONGLY SELF-ABSORBING C∗-ALGEBRAS 17

Proof. First note that the existence follows via Example 3.3. Uniqueness
up to cocycle conjugacy follows from Theorem 3.2(ii) for H = {1}. The
uniqueness up to very strong cocycle conjugacy is due to the fact that these
actions are all semi-strongly self-absorbing by Theorem 3.2(i), and hence
one may apply the strengthened McDuff-type result [42, Theorem 3.2] as
explained in Remark 1.7. �

Corollary 3.5. Let Γ ∈ C. Let D be a strongly self-absorbing C∗-algebra
and A a separable, unital, simple, nuclear, D-stable C∗-algebra with at most
one trace. Let α : Γ y A be an action. Then α is strongly outer if and only
if α 'cc α⊗ γ for every action γ : Γ y D.

Proof. Let γ0 : Γ y D be a strongly outer action as in Example 3.3. By
Theorem 3.2(i) applied to H = {1}, γ0 is a semi-strongly self-absorbing
action. Clearly any γ0-absorbing action is also strongly outer, so this shows
the “if” part.

For the “only if” part, assume that α is strongly outer. By Theorem 3.1
applied to H = {1}, it follows that α 'cc α ⊗ γ0 as γ0 is semi-strongly
self-absorbing. In fact one has α 'vscc α⊗ γ0 by Remark 1.7. Moreover, it
follows from Corollary 3.4 that γ0 'vscc γ

0 ⊗ γ for every action γ : Γ y D,
so indeed one always has α 'vscc α⊗ γ. This finishes the proof. �
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