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H I G H L I G H T S

• Jacobi-proximal ADMM is applied to design peer-to-peer grid voltage support function.

• Push-sum gossip protocol is proposed as the underlying communication protocol.

• Linear voltage model is used to predict the voltage.

• The proposed algorithm is much faster than the Jacobi ADMM and the Dual Decomposition.

• The proposed algorithm succeeds in regulating the voltages within a reasonable time.
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A B S T R A C T

The increasing penetration of renewable energy sources is impacting the operation of the distribution grid.
Whilst they are currently placing a burden on the distribution grid, it is generally agreed that these sources could
also be used for active grid control, thereby contributing to a stable and secure grid. Smart photovoltaic inverters
can contribute to active grid control, by expanding their features with added functions. In this paper, we develop
a novel grid voltage support algorithm for smart photovoltaic inverters, based on distributed optimization and
peer-to-peer communication. The Jacobi-Proximal Alternating Direction Method of Multipliers is applied in this
paper to locally optimize reactive power compensation and active power curtailment of each inverter partici-
pating in the voltage control. We propose the use of a push-sum gossip protocol to enable peer-to-peer data
interchange between inverters. We also use strategies to improve the robustness of the proposed algorithm: an
acceleration strategy, a feedback strategy and an anti-windup strategy. A case study is presented, demonstrating
the fast convergence of the algorithm and its ability to solve the voltage problems.

1. Introduction

Photovoltaic (PV) inverters were initially designed for low PV pene-
tration levels. They were intentionally configured to inject as much active
power as available from PV modules. PV inverters have been programmed
to monitor the Point of Common Coupling (PCC) voltage and disconnect
immediately after sensing the PCC voltage exceeding certain limits, to
comply with the interconnection standards, such as IEEE 1547 and UL
1741 [1,2]. The earlier versions of the standards IEEE 1547 and UL 1741
prevent PV inverters from providing any type of grid support, and thus
prohibit these inverters from actively participating in distribution system
operation. This was not a problem when PV penetration levels were low.

High penetration of PV systems may create problems to maintain
the voltage quality. Up till now, voltage quality in the distribution grid

is achieved based on the layout of grid infrastructure that is capable of
operating within limits even in worst case scenarios, with the as-
sumption of unidirectional power flows. The planning of the infra-
structure is quite straightforward: minimum and maximum load con-
ditions are considered and minimum and maximum voltages in the grid
are examined. The network is dimensioned in such a way that the
minimum voltage is near the lower limit of the allowed voltage range
and the maximum voltage is near the upper limit of the allowed voltage
range. When connecting significant amounts of PV systems to the net-
work, the assumption of unidirectional power flows is not always valid
anymore and voltage profile of the network can be quite different than
in the case without any generation. With maximum load conditions, PV
generation increases the voltage level in the network and, hence, en-
hance the voltage quality in the grid. However, when the load on the
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network is at a minimum, the PV generation can reverse the power
flows in the grid, what could lead to a rise of the voltage profile beyond
its allowed limits [3].

The traditional solution to this problem is to reinforce the local
distribution grid by installing more cables. However, generally this is
quite expensive, as new infrastructure has to be installed. Another ap-
proach is by using the already installed infrastructure in a more optimal
way, by coordination of the local generation, on load tap changers or
other equipment used to control voltage in distribution networks.
Voltage control techniques for distribution networks are reviewed in
[4].

Smart PV inverters can contribute to active voltage control, by ex-
panding their features with added grid voltage support functions
(GVSFs) and without major hardware modifications. IEEE updated the
connection Standard 1547 in 2014 [5], and UL 1741 was also updated
to UL 1741 SA (Supplement A) [6]. The new standards identify inverter
functions required for grid stability. These standards allow PV inverters
to regulate the voltage through active power curtailment and reactive
power compensation.

The control algorithm of the grid voltage support function (GVSF)
can be designed mainly based on three strategies: communication-
based centralized control, communication-less decentralized control,
and communication-based distributed control [7]. A centralized control
system uses a central optimizer to coordinate the GVSFs of the different
inverters participating in the voltage control. It provides optimal co-
ordination, taking into account the complete system behaviour. The
central optimizer has access to all information about the inverters in its
control area. Consequently, this centrally organized structure can co-
ordinate the GVSFs based on exact information about local and global
objectives [8]. However, centralized control of a large-scale distribution
networks will reach the limits of scalability, computational complexity
and communication overhead. Moreover, centralized control is a single
point of failure. In [9], a centralized optimization-based voltage control
system is implemented. The system controls voltage profiles of dis-
tribution grids, utilizing on-load tap changing (OLTC) transformers, PV
inverters, and batteries. In [10], a coordinated voltage control of PVs
and battery energy storage systems is discussed to address the voltage
violation. Demand response is used in [11] to implement a real time
centralized voltage control.

A decentralized communication-less voltage control system, on the
other hand, mitigates the computational and communicational burden
by using GVSFs with more advanced local processing capabilities. This
system does not rely on any form of communication. Each GVSF is
designed by ignoring the interactions from other GVSFs, the control
decisions are based only on the available local information. In this case,
optimal operation cannot be reached, as it is impossible to know the
complete state of the distribution network and all operational boundary
conditions of other inverters [12]. Different communication-less de-
centralized voltage control techniques are discussed in [13]. A hybrid
voltage control system is implemented in [14], where both

decentralized and centralized voltage control techniques are im-
plemented to design a smart strategy for voltage ancillary service. To
improve the performance of decentralized voltage control strategies, a
centralized parameter tuning model is proposed in [15]. In the pro-
posed model, voltage droop functions are formulated based on piece-
wise linearization.

In order to overcome the drawbacks of centralized and decen-
tralized control, distributed control has been proposed in the literature.
A comprehensive survey of distributed control algorithms for smart
grids can be found in [16,17]. The distributed voltage control system is
characterized by the complete absence of a central coordinator. In [18],
a distributed coordinated voltage control algorithm is proposed. The
algorithm uses a simplification method to deal with the lack of im-
pedance and power information in distribution networks. Measure-
ments of distribution phasor measurement units are used to transform
networks with unknown impedance and power information to simpli-
fied networks with known equivalent parameters. A fully distributed
voltage control based on multi-agent system is proposed in [19]. Peer
agents coordinate to calculate voltage sensitivities by local and neigh-
borhood measurements only.

Distributed voltage control can be formulated as a distributed op-
timization problem. Distributed optimization-based control algorithms
have the potential to reach a (near) globally optimal solution under
certain assumptions, thus achieving nearly the same control quality of
centralized schemes. Distributed optimization-based voltage control
algorithms appearing in the literature are mostly based on the Dual
Decomposition method (DD) and the Alternating Direction Method of
Multipliers (ADMM) [20]. DD and ADMM decompose a coupled opti-
mization problem into sub-problems, suitable for distributed control.
DD and ADMM apply the theory of Lagrangian multipliers and duality.
ADMM also uses penalty function methods. Compared to DD, ADMM is
numerically more stable and achieves faster convergence. As will be
discussed later, the robustness and superior convergence properties of
ADMM come from the use of additional penalty functions. Distributed
voltage control algorithm based on DD is presented in [21]. The slow
convergence of DD is analyzed experimentally in [22]. To overcome the
drawbacks of DD, consensus ADMM is used in [23,24] to build a dis-
tributed voltage control system. Consensus ADMM is based on the
distributed consensus protocol, where agents talk to each other to agree
on the optimal change in their generation to maintain the voltages
within limits. In consensus ADMM, each agent has local copies of the
decision variables of its neighbours (auxiliary variables). The agent
minimizes its sub-objective function over its own decision variables as
well as over the decision variables of its neighbours.

It has been mentioned that centralized control systems often suffer
from serious computation, robustness and communication issues for
power systems with many controllable devices, distributed control is
perhaps the only viable strategy for such systems. Nevertheless, these
centralized control systems can achieve high performance. To achieve
performance close to the performance of a centralized control system,

Nomenclature

[.] k( ) value at control iteration k
[.] t( ) value at time step t
[.]c constant value

P change in active power P
Q change in reactive power Q
P curtailment acceleration factor
Q reactive acceleration factor

Lagrangian multiplier
µ power limit indicator

augmented penalty factor
proximal penalization factor

cP penalty factor of active power
cQ penalty factor of reactive power
cr active power curtailment factor
kG gossiping iteration
Sd inverter’s kVA capacity
V phase-to-neutral voltage
V k( ) predicted voltage at iteration k
V meas actual-measured voltage
vP voltage sensitivity to the change in active power [V/kW]
vQ voltage sensitivity to the change in reactive power [V/

kVAR]
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distributed voltage control systems rely on iterative algorithms. Hence,
one of the main challenges in distributed voltage control is to reduce
the number of iterations (as could as possible) to solve the voltage
problem within a reasonable time, making the voltage profiles comply
with the European standard EN 50160. To tackle this issue, our paper
develops a novel fast distributed optimization-based voltage control
algorithm. The algorithm uses a change in reactive power and active
power curtailment of some participating PV inverters installed in the
grid to regulate the voltage profiles within allowed limits. Our main
contributions can be summarized as follows:

• We propose the use of the Jacobi-Proximal ADMM (JP-ADMM) for
distributing a centralized voltage control problem. In JP-ADMM, the
GVSFs are updated in parallel. Proximal penalization functions are
used to preserve the convergence of the algorithm. Unlike in con-
sensus ADMM, the agent in JP-ADMM does not need to agree on the
decision variables of other agents, each agent treats the decision
variables of other agents as constants and updates them in every
control iteration.

• Secondly, we propose two factors for accelerating the convergence:
one related to the reactive power compensation, and one related to
the curtailment.

• Thirdly, we suggest the use of strategies to increase the performance
of the proposed algorithm: feedback strategy, anti-windup strategy,
and active/standby modes.

• Finally, we propose the use of a push-sum gossip protocol with JP-
ADMM to enable peer-to-peer data interchange between the in-
verters.

The gossip-based JP-ADMM (G-JP-ADMM) algorithm can be in-
tegrated with the inner control loops of the PV inverter as shown in
Fig. 1. To the best of our knowledge, this work is the first work pro-
posing the use of G-JP-ADMM for designing a P2P-based GVSF.

The rest of this paper is organized as follows. To help the readers
understand the linkage of the studied topic to the “big picture” of the
P2P concept in energy systems, Section 2 discusses P2P-based in-
tegrated energy systems. The centralized optimization-based voltage
control problem treated in this paper is formulated in Section 3. The
proposed distributed algorithm for the GVSF (G-JP-ADMM) is presented
in Section 4. The distributed network used in the case study and the
parameters of the proposed algorithm are described in Section 5. Sec-
tion 6 presents the simulation results. Finally, the paper is concluded in
Section 7.

2. Towards a new energy paradigm for the distribution grid: P2P-
based integrated energy systems

As photovoltaic systems and other renewable energy sources are
typically highly distributed in the grid, operated by different owners
and with different objectives, it is desirable that the management and
control system of those energy systems operate in a fully distributed
way as well. In this perspective, a P2P architecture seems to be a good
method for controlling distributed energy resources (DERs) and en-
abling distributed energy trading [25].

This type of energy architecture, inspired by P2P computer net-
working, is characterized by the complete absence of a central man-
agement system. All local DERs (or agents), are equally important and
can communicate to other agents, in a P2P fashion. In this architecture,
there is a clear absence of a single point of failure. In the case a single
agent fails, the other agents can still operate the grid in a stable way.
Also when a single communication channel fails, the required in-
formation can still reach all necessary participants, via other agents.
These properties make this architecture robust. Besides, information is
kept local, reducing possible privacy concerns. On the other hand, all
agents need a considerable amount of local intelligence, as they need to
be able to execute the necessary optimizations.

It is impossible to impose this architecture on the whole distribution
grid, as it incorporates thousands of DERs that are geographically very
dispersed. To deal with this, breaking the complete grid down into
smaller microgrids, containing only a limited amount of DERs, can be a
solution. These microgrids operate then according to the P2P energy
architecture.

The proposed scheme is shown in Fig. 2. The distribution grid is
divided into several microgrids, hierarchically organized on different
voltage levels. A microgrid can consist of a couple of low voltage fee-
ders, physically connected to the same transformer, or a part of the
medium voltage network on the same voltage level, for example. Each
microgrid consists of several autonomous energy agents. On the con-
nection points of two microgrids there is a coupling agent which serves
as a gateway of one microgrid to the other microgrid. As the microgrids
represented in this figure are separated by transformers or substations,
these would be good candidates for such a coupling agent. Such a
coupling agent represents the characteristics of the whole lower level
microgrid (e.g. a low voltage feeder) on the higher level microgrid (e.g.
a medium voltage network).

The proposed P2P-based energy architecture can be used to enable
P2P energy trading. P2P energy trading concept provides local and
regional energy producers with options to trade energy fairly within the
neighborhood, within the community and within the vicinity of the
distribution system. This will fundamentally change the current peer-
to-grid paradigm where any surplus of local production can only be sold
to transmission grids, and transform consumers position from energy/
price takers to energy/price makers. P2P energy trading is discussed in
details in [26–28]. Distributed management of energy flexibility and
P2P balancing at the distribution level can be also designed based on
the P2P-based energy architecture. In [29], a game theoretic approach
for distributed energy management is developed, and blockchain
method is applied to enable smart payment mechanisms.

This paper contributes to the P2P energy paradigm by developing a
novel P2P-based grid voltage support function that can be integrated
with the local control system of a PV inverter. The proposed approach
allows to integrate P2P-based photovoltaic systems to carry out a dis-
tributed voltage control in each control zone of the proposed P2P en-
ergy architecture.

3. Problem formulation

A centralized optimization-based voltage control problem can be
formulated as follows:

+c P c Qminimize ( ) ( )
P Q d

d d
t

d d
t

,
P ( ) 2 Q ( ) 2

(1a)

Fig. 1. General block diagram of smart PV inverter with P2P-based grid voltage
support function.
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c P P( )( ) 0r d
t

d
tPV ( ) ( ) (1d)
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t
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t

d
tmax ( ) ( ) max ( ) (1e)
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t

d d
t

d
tmax ( ) 2 PV ( ) ( ) 2 (1f)

where is the set of inverters participating in the voltage control.
+d t, are the number of inverters and of the time steps respectively.

The objective function (1a) minimizes the total cost of all changes in
active power Pd and reactive power Qd needed to maintain the voltage
within the limits V max (maximum voltage limit) and V min (minimum
voltage limit). The total cost is the sum of the quadratic cost functions
of the individual inverters: c P( )d d

tP ( ) 2 represents the cost function of a
change in active power of inverter d with an amount Pd

t( ), while
c Q( )d d

tQ ( ) 2 represents the cost function of a change in reactive power of
inverter d with an amount Qd

t( ). Pd
t( ) and Qd

t( ) have to be within
specified limits (1d)–(1f) to respect the maximum apparent power Sd
and the maximum allowed curtailment. cr is the curtailment factor that
determines the curtailment percentage. P( )d

tPV ( ) is the generation of the
PV module connected to inverter d. Vd

t( ) in (1c) is the expected mag-
nitude of the PCC voltage after applying Pd

t( ) and Qd
t( ). The constraint

(1c) represents the non-linear relation between Vd
t( ) and the active/re-

active power injections of the inverters. The non-linear relation can be
obtained from the AC power flow equations [30].

cd
P and cd

Q are constant factors used to prioritize the use of reactive
power, while active power curtailment is performed only as a last re-
sort. Therefore, cd

P is set to be greater than cd
Q in order to use most

reactive power before starting to use active power curtailment [31].
A centralized controller solves the voltage control problem in three

steps. First, at time step t, all input variables are gathered; these include
PCC voltages and PV generation measured by the GVSFs. Secondly, the
central optimizer solves the optimization problem (1a)–(1f) to optimally
coordinate the inverters by minimizing the total change in reactive power
compensation and active power curtailment. Finally, the controller sends
the new set-points to the GVSFs. The major drawback of this approach is
that a failure in the central coordinator completely disables the voltage
control. Therefore, the next section presents a methodology that converts
the centralized voltage control system into a distributed one.

It is worth to mention that network losses are not considered in the
optimization problem. The proposed voltage control system can help in

reducing the network losses, thanks to the curtailment of active power
and local generation of reactive power. But indeed the voltage control
system can increase the network losses. A constraint can be added to the
optimization problem to limit network losses incurred by reactive
power provision. Minimizing the network losses is out of scope of this
paper.

4. Methodology

The objective function (1a) is basically a sum of separate cost
functions, one for each inverter. The constraints (1d)–(1f) are local,
meaning that they only constrain the local control variables Pd and

Qd, and therefore these constraints can be distributed easily. However,
the cost functions cannot be distributed as they are coupled by the
coupling constraint (1c). In this paper, multi-block ADMM is used to
relax the coupling between the cost functions, to decompose the opti-
mization problem (1a)–(1f) into sub-problems that can be solved in
parallel.

The classic ADMM algorithm [32,33] is a 2-block system, it cannot
be used to decompose the centralized optimization problem (1a)–(1f)
into sub-problems that can be solved in parallel. The 2-block ADMM
can be extended to: 1) multi-block Gauss-Seidel ADMM (GS-ADMM)
and 2) multi-block Jacobi ADMM (J-ADMM). GS-ADMM is not amen-
able for parallelization as the blocks are updated one after another
(sequentially). Additionally, the convergence is not guaranteed [34].
On the other hand, J-ADMM updates all the blocks in parallel. The
convergence of J-ADMM can be guaranteed under certain assumptions
[35], but it has a slow rate of convergence. Our simulation results show
that the convergence of the J-ADMM algorithm is even slower than the
convergence of the DD algorithm. In [36], a mathematical method
called JP-ADMM is developed. The work of [36] shows that the 2-block
ADMM can be extended to multi-block ADMM and preserve a con-
vergence (at a rate of o k(1/ )) by adding proximal terms to the aug-
mented Lagrangian function. JP-ADMM is applied in this paper to solve
the coupled centralized optimization problem by splitting it up into
different sub-problems. These sub-problems are then solved separately
by the GVSFs in parallel, imposing only the local constraints (1d)–(1f).

JP-ADMM applies an iterative optimization in a Jacobi-fashion of
the Proximal Augmented Lagrangian Function (PALF), followed by a
steep ascent update of the Lagrangian multipliers. In this paper, JP-
ADMM is integrated with a push-sum gossip protocol to enable the
GVSFs communicate with each other, and exchange their control
variables and Lagrangian multipliers in a P2P fashion. With P2P com-
munication, the GVSFs coordinate themselves and make the correct
control decision in every particular situation to maintain the voltage
within the required limits.

Since JP-ADMM is an iterative method, we define a control
iteration k 0 that moves the controlled voltage and the
inverter control variables from (V P Q, ,k

d
k

d
k( 1) ( 1) ( 1)) to

( + + +V V P P Q Q, ,k k
d

k
d

k
d

k
d

k( 1) ( ) ( 1) ( ) ( 1) ( )).

4.1. A constant linear voltage model

The use of the AC power flow model in (1c) results in a non-convex
optimization problem that is difficult to handle in distributed optimi-
zation. To avoid the non-convexity, many works use linearised power
flow equations [37,38]. Voltage sensitivities can be used to formulate a
linear relation between controlled voltages and control variables Pd
and Qd. In Fig. 3, a simple distribution system is shown. The system
consists of an inverter d connected to a bus d via a power line having a
resistance Rdi and a reactance Xdi. Based on the distributed power flow
equations of Baran and Wu [39], it can be shown that the voltage
magnitude Vi

k( ) can be described by the following equation.

Fig. 2. P2P-based integrated energy systems.
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d
k

d
k
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For a small change Pd
k( ) and Qd

k( ), a first order approximation can
be used to simplify Vi

k( ) as follows:

+ +V V V
P

P V
Q

Q( )i
k

i
k i

d
d

k i

d
d

k( ) meas ( 1) ( ) ( )
(3)

where V( )i
kmeas ( 1) is the controlled voltage of bus i measured at the

k( 1)-th iteration. As the partial derivatives are not constant and de-
pendent on the system state, these are often approximated by [38]:

V
P

R
V

V
Q

X
V

andi

d

di i

d

di

nom nom (4)

where Vnom is the nominal voltage. Eq. (4) is a good approximation
when the angle between the voltages at different nodes is small [8],
which is the case in the distribution networks. For a set of inverters ,
Eq. (3) can be written as:

+ +V V v P v Q( )i
k

i
k

d
i d d

k
i d d

k( ) meas ( 1)
,
P ( )

,
Q ( )

(5)

where the coefficients vi d,
P and vi d,

Q are the approximated partial deri-
vatives. These coefficients are considered as voltage sensitivity coeffi-
cients. vi d,

P and vi d,
Q represent the influence of active power and reactive

power (respectively) of inverter d on the controlled voltage Vi . Eq. (5)
represents a constant linear voltage model, since the voltage sensitiv-
ities are considered as constant coefficients. The voltage sensitivity
coefficients can be calculated from the topology of the grid and the
knowledge of the impedances of the lines. In [8,40], a direct load flow
approach is presented. The approach is based on the calculation of two
matrices named bus injection to branch current (BIBC) and branch
current to bus voltage (BCBV). These matrices allow for easy calcula-
tion of the voltage sensitivity coefficients.

It is worth to mention that there are other methods that can be used
to calculate (or estimate) the voltage sensitivities in distribution net-
works. If historical data of voltages, active power and reactive power
are available, then linear regression can be used to estimate the voltage
sensitivities, as detailed in [37]. The voltage sensitivities can be also
estimated by applying small perturbations (small change in active and
reactive power) into a given network, the voltage sensitivities are then
determined by measuring the change in voltage.

The voltage sensitivity coefficients can be calculated before acti-
vating the voltage control system. The coefficients can be stored in the
memory of each GVSF, and used by the proposed G-JP-ADMM algo-
rithm to coordinate the inverters participated in the voltage control.

4.2. Equations of JP-ADMM algorithm

The main difference between the Augmented Lagrangian Function
(considered in 2-block ADMM and multi-block J-ADMM) and the PALF
(considered in JP-ADMM) is the addition of proximal penalty terms and
acceleration factors for each sub-problem. As will be demonstrated
later, these additions help to speed up the convergence of the algo-
rithm. This subsection presents the derivation of the PALF, and how the
PALF can be used to decompose the optimization problem (1a)–(1f) into
sub-problems that can be solved in parallel. To derive the PALF, let’s
first define:

= = +U V V U V V( ) , ( )d
k

d
k

d
k

d
kmax ( ) ( ) max min ( ) ( ) min (6)

= +f c P c Q( ) ( )d
k

d d
k

d d
k( ) P ( ) 2 Q ( ) 2 (7)

The PALF of the objective function (1a) and the coupled constraints
(1b) and (1c) can be formulated as:
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min ( 1) min ( )
2

max ( ) 2
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2
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where ( )d
kmax ( 1) and ( )d

kmin ( 1) are the Lagrangian multipliers asso-
ciated with the d-th inequality constraint of (1b) and (1c). As will be
shown later, these Lagrangian multipliers are calculated at the
k( 1)-th iteration and considered in the minimization of the k-th
iteration. Because of the Karush-Kuhn-Tucker (KKT) conditions, these
multipliers cannot be negative. > 0d is the augmented penalty factor.

Umax(0, ( ) )d
kmax ( ) 2 and Umax(0, ( ) )d

kmin ( ) 2 are one-sided quadratic
penalty functions used to penalize the objective function only when Vd

k( )

is higher than V max or less than V min. > 0d is the proximal penalization
factor. P P( ( ) )d

k
d

k( ) c ( 1) 2 and Q Q( ( ) )d
k

d
k( ) c ( 1) 2 are the proximal

terms. These terms penalize the deviation of the control variables at the
k-th iteration ( Pd

k( ) and Qd
k( )) from the control variables P( )d

kc ( 1) and
Q( )d

kc ( 1) that have been already calculated at the previous iteration
(subscript c: constant). The proximal terms are used to preserve the
convergence of the extended multi-block JP-ADMM algorithm. To de-
rive the sub-problems, let’s first define the following:

= +Y v P v Qi d
k

i d d
k

i d d
k

,
( )

,
P ( )

,
Q ( ) (9)

= +C
j
j d

v P v Q( ( ) ( ) )i d
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i j j
k

i j j
k

,
( )

,
P c ( 1)

,
Q c ( 1)

(10)

To decompose the PALF into local Proximal Augmented Lagrangian
Functions (PALFs), each GVSF fixes the control variables and
Lagrangian multipliers of the other GVSFs by considering their control
variables and Lagrangian multipliers that have been calculated at the
previous k( 1)-th iteration. Based on this and based on Eq. (5), it can
be shown that the local PALF of the GVSF d can be given by Eq. (11).
The constants that do not affect the minimization of the local PALF are
not included in (11).
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( ) c ( 1) 2 ( ) c ( 1) 2
(11)

To reach the same solution as solving the optimization problem
(1a)–(1f) with a constant linear voltage model, the JP-ADMM algorithm
iterates as shown in Algorithm 1. The factor > 0d in the algorithm is
the acceleration factor. V( )d

kmeas ( ) is the PCC voltage of inverter d mea-
sured after applying Pd

k( ) and Qd
k( ). At each iteration k of the JP-

ADMM algorithm, the PALF is minimized by the GVSFs over
…P Q P Q P Q{( , ), ( , ), , ( , )}k k k k k k

1
( )

1
( )

2
( )

2
( )

| |
( )

| |
( ) separately, in parallel,

followed by an update of the Lagrangian multipliers. To guarantee the
convergence, as demonstrated in [36], the proximal penalization factor
should be as in (12), where | | is the number of inverters with in-
tegrated GVSF.

Fig. 3. A simple 2-bus distribution system.

H. Almasalma et al. Applied Energy 239 (2019) 1037–1048

1041



> | |
2

1d d
d (12)

Algorithm 1. JP-ADMM iterations

for = …k 0, 1, do

Update Pd
k( ) and Qd

k( ) for = …d 1, , | | in parallel by:

argmin Pd
k Qd

k d{ ( ), ( ) }
PALF

(13a)

c P P
Subject to the local constraints:
( )( ) 0r d

k
d

kPV ( 1) ( ) (13b)

Q Q Q( ) ( )d
k

d
k

d
kmax ( ) ( ) max ( ) (13c)

Update ( )d
kmax ( ) and ( )d

kmin ( ) for = …d 1, , | | in parallel by:

= + V V( ) max(0, ( ) (( ) ))d
k

d
k

d d d
kmax ( ) max ( 1) meas ( ) max (14a)

= V V( ) max(0, ( ) (( ) ))d
k

d
k

d d d
kmin ( ) min ( 1) meas ( ) min (14b)

end for

4.3. Acceleration factor

The acceleration factor d is used to have a steep ascent update of
the Lagrangian multipliers, which helps in increasing the speed of
convergence. In this paper, two acceleration factors are proposed: 1)
the reactive acceleration factor d

Q and 2) the curtailment acceleration
factor d

P. The acceleration factor d
Q is used to accelerate the con-

vergence of the controlled voltages to V max (or V min) when reactive
power compensation is used, whereas d

P is used to accelerate the
convergence when active power curtailment is used. As active power
curtailment is penalized more than reactive power compensation,
convergence of the controlled voltages to the accepted limits using
curtailment is slower than the convergence when using reactive power
compensation. Hence, d

P should be greater than d
Q.

4.4. Feedback strategy

There are two approaches regarding applying the control variables
Pd and Qd: 1) applying the control variables only after the control

algorithm converges or 2) applying the control variables at each
iteration. The latter is called Iterative Feedback Strategy (IFS). IFS has
been used in [41] and is applied in this paper to improve the perfor-
mance of the JP-ADMM algorithm. In IFS, at each iteration, the GVSF
dynamically adjusts the inverter outputs, measures the PCC voltage
V( )d

kmeas ( ) and substitutes it in (14a) and (14b), to update the Lagrangian
multipliers. IFS helps in increasing the voltage quality. Without IFS, the
voltage during the convergence would stay beyond the accepted limits,
without getting closer to these limits until the end of the iterations.
Moreover, IFS helps in correcting the error of estimating the controlled
voltage in (5). Additionally, if the generation and/or consumption
changes during the computation, the GVSFs would implement outdated
control variables.

4.5. Anti-windup strategy

The proposed control method continuously repeats two steps. First,
the GVSFs optimize their compensation in parallel; exceeding the vol-
tage limit has a fixed price, set by the Lagrangian multipliers. Secondly,
the prices are updated; if one of the controlled voltages exceeds the
voltage limit, then the corresponding price will be increased. This
makes the over-voltage (or under-voltage) more expensive, and in the
next iteration the GVSFs should decide to use more compensation to

reduce the over-voltage. However, the optimization might be infeasible;
there might not be enough compensation available to resolve the
overvoltage issues. In such a case, the price will keep on increasing until
the inverters saturate. Past this point, increasing the price further has
no use and will slow down the response when the problem becomes
feasible again. This effect is similar to ‘windup’ in classical control
theory. The price updates are disabled when all inverters are saturated,
which is referred to hereafter as the anti-windup strategy.

4.6. Active and standby modes

Active and standby modes are proposed in this paper to decide when
to activate/deactivate the GVSFs. There is no need to operate the GVSFs
continuously. When the controlled voltages are within the accepted
limits, then there is no need to activate the GVSFs, whereas all the
GVSFs should be activated when one (or more) of the controlled vol-
tages is beyond the accepted limits. After activating the GVSFs, the
Lagrangian multipliers can be used to know when to go to standby
mode. The GVSFs can be deactivated when the Lagrangian multipliers
of all the GVSFs return back to zero.

4.7. Push-sum gossip protocol

A communication layer is needed to disseminate the control vari-
ables and the Lagrangian multipliers among the GVSFs. Each GVSF
needs these data to substitute them in Eqs. (13a)–(14b). This paper
proposes the use of a P2P gossip-based push-sum algorithm presented in
[42]. It is a fully distributed asynchronous communication protocol. It
is scalable, fault-tolerant, resistant to packet losses and delays, and
simple to implement. The algorithm is modified in this paper so that it
can be used for dynamic disseminations. The modified algorithm is
presented in Algorithm 2. It is an iterative algorithm with gossiping
iteration kG. Each GVSF tries to fill the matrix Sd

k( )G before reaching the
deadline. The deadline is used so that the GVSF does not need to wait
forever when one of the GVSFs (or more) fails to communicate with the
others. As shown in step 2 of the algorithm, the GVSF starts filling Sd

k( )G

by initializing the matrix with its own control variables, Lagrangian
multipliers and power limit indicator µd

k( ). The power limit indicator
µd

k( ) indicates whether the inverter reaches its power limits or not. The
weight vector Wd

k( )G is initialized to the unit vector ed, with 1 on the
d-th position and 0 everywhere else.

Algorithm 2. Gossiping Push-Sum for JP-ADMM

1: Reset gossiping clock TG and start it
2: initialize:

= = =k S0, 0, zeros(| |, 6)G d
kG

d
kG( ) ( ) ,

= =( )W e S,d
kG d d

kG d
( ) ( )

( ,:)

P Q µ[ ( ) ( ) ]d
k

d
k

d
k

d
k

d
k

d
( ) ( ) max ( ) min ( ) ( )

3: while d
kG( ) has zero entry (or entries) and TG deadline, do

4: +k k 1G G

5: Let S W{( , )}r r( ) ( ) be all pairs sent to the GVSF d at the iteration k 1G

6: S S W W,d
kG

r
r

d
kG

r
r( ) ( ) ( ) ( )

7: if all the entries of the vector Wd
kG( ) are non-zero, then

8: = 1d
kG( )

9: end if

10: Send Sd
kG1

2
( ) and Wd

kG1
2

( ) to a random other GVSF and to yourself

11: end while

12: = ( )µP Q S W[ ( ) ( ) ] /d
k

d
k

d
k

d
k

d
k

d
kG

d
kG( ) ( ) max ( ) min ( ) ( ) ( )

(:,1:5)
( )

Sd
k( )G consists of six vectors: P ,d

k( )G µQ , ( ) , ( ) ,d
k

d
k

d
k

d
k( ) max ( ) min ( ) ( )G G G G

and d
k( )G . Each vector has | | entries, each entry belongs to one of the

GVSFs, e.g. the 5-th entry of d
max represents 5

max of the GVSF No. 5. As
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will be discussed later, the vector µd
k( )G is used to detect the Lagrangian

windup. In step 3 of the algorithm, the vector d
k( )G is used to make sure

that the other GVSFs have filled their matrices before the GVSF stops
the gossiping iterations of the control iteration k. In step 7, the GVSF
detects a complete filling of its own Sd

k( )G by observing the entries of the
vector Wd

k( )G .
Each entry of Sd

k( )G represents a sum and Wd
k( )G is the weight of this

sum (entries of the same row have the same weight). After stopping the
gossiping iterations, the correct control variables and Lagrangian mul-
tipliers as well as the power limit indicators can be obtained by dividing
each entry of the first five vectors by its own weight, as shown in step
12 (e g. . = ( ) ( )P P W/k

d
k

d
k

5
( ) ( )

(5)
( )

(5)G G represents the active power cur-
tailment of the GVSF No. 5 at iteration k). The matrix Sd

k( )G and the
vector Wd

k( )G are always transmitted in pairs, so if a packet gets lost, all
the other pairs continue to have the correct values.

4.8. The proposed G-JP-ADMM for P2P-based coordinated voltage control

In this subsection, we combine all the ideas and equations (pre-
sented in the previous subsections) in one algorithm. Algorithm 3
presents the proposed G-JP-ADMM algorithm. Algorithm 3 is proposed
in this paper to bring smart functionalities to PV inverters by expanding
their features with P2P-based GVSF to maintain the grid voltage within
the accepted limits.

Algorithm 1 is extended here to include: acceleration for reactive
power compensation, acceleration for active power curtailment, feed-
back strategy, anti-windup strategy, active mode and standby mode.
These additional features improve the performance and the robustness
of the algorithm. The Gossiping push-sum algorithm is used in
Algorithm 3 to enable P2P data interchange between the GVSFs. In step
6, P Q, , ( ) , ( )d

k
d
k

d
k

d
k( ) ( ) max ( ) min ( ) and µd

k( ) are vectors with | | entries,
each entry represents a control variable, Lagrangian multiplier or
power limit indicator for one of the GVSFs.

In step 13, the switching to the curtailment acceleration factor d
P

occurs when most of the available reactive power capacity are used
(90%) and the active power curtailment has begun to be used (10%).

In step 18, the GVSF sets =µ 1d
k( ) when the inverter reaches its

power limits. In case of voltage rise, µd
k( ) is set to 1 when maximum

reactive power absorption and maximum active power curtailment are
used. In case of voltage drop, on the other hand, µd

k( ) is set to 1 when
maximum reactive power injection is used. Hence, a second comparison
is used in step 17, to compare the injected reactive power with the
upper limit. In step 20, when all inverters reach their power limits, each
GVSF freezes its Lagrangian multipliers to avoid windup.

Algorithm 3. P2P-based GVSF

1: Each GVSF d carries out the following procedure:
2: Vd

meas measure the PCC voltage

3: if Vd
meas >V max (or <V min), or an active signal(s) is received, then

4: Send the received active signal(s) and your active signal using the standard
push-sum gossip presented in [42]

5: Go to active mode
6: initialize:

= = = =P Q ( ) ( )d d d d
(0) (0) max (0) min (0)

zeros(| |, 1)
= = =µ V V k0, ( ) , 1d d d

(0) meas (0) meas

7: begin the control iterations:
8: P( )d

kPV ( 1) measure the PV generation

9: Update Pd
k( ) and Qd

k( ) based on (13a)–(13c)

10: Send Pd
k( ) and Qd

k( ) to the AC control loop of the inverter

11: V( )d
kmeas ( ) measure the PCC voltage (feedback strategy)

12: if > ×Q Q[ | | 0.9 ( ) ]d
k

d
k( ) max ( ) and < ×P[ 0.1d

k( ) c P( ) ]r d
kPV ( 1) , then

13: d d
P (acceleration of the curtailment)

14: else
15: d d

Q (acceleration of the reactive power)
16: end if

17: if =Qd
k( ) Q( )d

kmax ( ) and =Pd
k( ) c P( )r d

kPV ( 1), or =Q Q( )d
k

d
k( ) max ( ) ,

18: µ 1d
k( ) (power limit indicator)

19: end if

20: if all the entries of the vector µd
k( ) are 1, then

21: ( ) ( ) , ( ) ( )d
k

d
k

d
k

d
kmax ( ) max ( 1) min ( ) min ( 1) (anti-windup)

22: else
23: Update ( )d

kmax ( ) and ( )d
kmin ( ) based on (14a) and (14b)

24: end if

25: Execute Algorithm 2 to update the vectors P Q, , ( ) , ( )d
k

d
k

d
k

d
k( ) ( ) max ( ) min ( )

and µd
k( )

26: if all the entries of the vectors ( )d
kmax ( ) and ( )d

kmin ( ) are zero, then
27: Go to step 2 (standby mode)
28: else
29: +k k 1, repeat steps 8–29
30: end if
31: end if

5. Case study

The investigated case study network represents a typical Flemish
(Belgium) semi-urban distribution network. This three-phase network
operates with a nominal voltage of 230/400 V. It connects 62 house-
holds, as shown in Fig. 4. All main feeder cables are of type EAXVB 1 kV

×4 150 mm2 (impedance: 0.206 + j0.0778 /km) except for the cable
between node A and node B, which is of type EAXVB 1 kV ×4 95 mm2

(impedance: 0.320 + j0.0778 /km). The cables connecting each
household with the feeder are of type EXVB-Cu 1 kV ×4 16 mm2, with a
fixed length of 30 m (impedance: 1.15 + j0.0828 /km).

The active power consumption of the households is given by load
profiles presented in [43]. The reactive power consumption is

Fig. 4. Schematic diagram of the network used in the case study, all lengths are drawn to scale.
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calculated by assuming a constant power factor of 0.85. Every house-
hold is equipped with a PV installation. The available generation of the
PV installation is based on measured PV generation data from the
rooftop PV installation at the department of electrical engineering
(ESAT) of the KU Leuven. The inverters have different capacities ran-
ging from 5 to 13 kVA. 20 of the PV inverters include the proposed P2P-
based GVSF, which can curtail the active power output and regulate the
reactive power generated by the smart inverters. The inverters at the
end of the cables are selected in the case study to control the voltage,
because they have higher impact on voltage variation than the inverters
at the beginning of the feeder.

5.1. Simulation environment

The proposed algorithm is implemented in MATLAB R2018a and
applied to the network of the case study to evaluate its performance. The
MATPOWER package 6.0 for power flow analysis is used to calculate the
measured voltages [44]. The CVX for solving convex optimization pro-
blems is used to solve the sub-optimization problem of each GVSF [45].
All of the numerical experiments are run on a workstation with an Intel
Core i7-7700HQ CPUs (2.80 GHz) and 32 GB of RAM. In normal opera-
tion, each control iteration k is updated every 5 s. The push-sum gossip
algorithm is executed with 100 ms communication latency, each GVSF
sends the pair S W( , )d

k
d
k1

2
( ) 1

2
( )G G to another random GVSF every 100 ms.

5.2. Case study parameters

To comply with the European standard EN 50160 on power quality
[46], the voltage limits V max and V min are enforced to be ± 10% of the
nominal phase voltage 230 V, resulting in =V 253max V and =V 207min V.

The curtailment factor cr is set to 1, meaning that each inverter
would curtail its whole active power, if needed.

To prioritize the use of reactive power, while active power curtail-
ment is performed only as a last resort, the reactive power penalization
factor cd

Q is set to 1 and the curtailment penalization factor cd
P is set to

200 (the tuning is based on trail and error). Active power curtailment
can be penalized more to minimize its use, but having higher cd

P would
decrease the speed of convergence when the curtailment is used to
return the voltages back to the limits. The penalty factors do not re-
present the actual unit cost of reactive power and active power cur-
tailment (in euro). This is because minimizing the actual cost of oper-
ating the voltage control system is not the direct goal of the
optimization problem (1a)–(1f). The goal of the optimization problem is
to minimize the amount of reactive power and active power curtailment
needed to maintain the voltages within the limits. If the minimum
amount of reactive power and active power curtailment is used, then
this will indirectly minimize the actual cost of operating the voltage
control system. The objective function (1a) can be adapted to directly
minimize the cost of operating the voltage control system. To this end,
cd

P can be set in such a way to represent loss of revenue from forgone
energy due to active power curtailment, and cd

Q can be set in such a way
to represent reactive power unit cost considering inverter lifetime re-
duction and additional inverter losses, due to the reactive power pro-
vision [47,9].

To tune d
Q and d

P, we did two experiments. The first experiment
was to tune d

Q, whereas the second experiment was to tune d
P. In the

first experiment, we disabled the active power curtailment, to regulate
the voltage profiles using only the reactive power. d

Q was initialized to
1. After that, we increased d

Q gradually till undesirable oscillation was
noticed in the voltage profiles. In the second experiment, we disabled
the reactive power compensation, to regulate the voltage profiles using
only the active power curtailment. After that, we increased d

P gradually
till undesirable oscillation was noticed in the voltage profiles. For the
case study of this paper, d

Q is set to 500, whereas d
P is set to 104.

The proximal penalization factor d in (12) depends on the number of
inverters | | participating in the voltage control, the factor d and the
augmented penalization factor d. It is desirable to have small d, to increase
the speed of convergence by being less conservative in moving from one
control variable to another, e.g. to have a bigger step from Qd

k( 1) to Qd
k( ).

In our work, we set = +( )1 1d d
| |

2 d
and d is set to be 0.001.

The sensitivity of the controlled voltages to the change in the ac-
tive/reactive power were calculated based on the constant linear vol-
tage model presented in Section 4.1.

The deadline for each GVSF to fill Sd
k( )G is set to 1 min. For the 20

GVSFs, each GVSF needs around 10 gossiping iterations (see the con-
vergence rate in [42]) to fill the matrices. With 100 ms latency, the
GVSFs need around 1 s to fill the matrices. Hence, the time needed to
fill the matrices is expected to be much less than 1 min.

6. Simulation results

The case study is executed for a low consumption summer day in
July to be able to incorporate the effect of high PV generation. The
simulation is performed for the entire day. Fig. 5 shows the total PV
generation and the total active consumption of the 62 households.

6.1. Voltage rise mitigation

The low load and high PV generation result in reversed power flows.
The reversed power flows cause a voltage rise beyond the EN 50160 limits.
Fig. 6a shows the voltage profiles of the 62 households (phase to neutral
voltages). One can see that most of the voltage profiles exceed the voltage
limit =V 253max V. To solve the voltage rise problem, the P2P-based
GVSFs are activated. The regulated voltage profiles are shown in Fig. 6b.
The existing violations of the over-voltage limit are mitigated. The voltage
peaks, resulting from steep change in PV generation, fall beyond the limits,
because the inverters need some time to react to the change.

To quantify the performance of the algorithm, a voltage quality metric
E is proposed in this paper. The metric E, as illustrated in (15), integrates
the over-voltages over time. This means that both the duration of the
voltage rise problem and its severity will increase the metric E. A value of
zero is the best possible value and indicates that there are no over-voltage
issues. The higher the value of E, the worse the voltage problem. Fig. 7
shows the voltage quality metric E of the 62 households with and without
voltage control. The voltage problem starts at household No. 19 and gets
worse as we move towards the end of the feeder. One can notice that the
voltage quality metric of the different households is reduced by a factor of
100 (approximately) after activating the GVSFs, which means that the
voltage quality of the voltage profiles has been improved significantly.

=
=

=
E V V dt(max( , 0))d t

t
d00:00

24:00 meas max
start

end

(15)

Fig. 8a shows the Lagrangian multipliers 62
max1 of smart inverter No.

62. The GVSF of inverter 62 is in standby mode between 00:00 and
08:40, when the voltages are within the limits. The GVSF starts to
regulate the voltages at 08:40 (active mode), when the voltages start to
violate the maximum limit. The GVSF returns back to standby mode

Fig. 5. Aggregated PV generation and active load profiles of the 62 households.

1
62
min is zero for the entire day, since there are no voltage drop issues.
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and the Lagrangian multiplier returns back to zero at 16:35, when the
voltages return back to normal values due to solar irradiance reduction.
Fig. 8b shows the control variables of smart inverter No. 62. The
average reactive power inverter 62 absorbs during the day is around
−4 kVAR, whereas the average active power the inverter curtails is
around −0.5 kW. P62 and Q62 return to zero when the Lagrangian
multipliers return back to zero.

6.2. The convergence of JP-ADMM, J-ADMM and DD

Fig. 9 shows a comparison of the speed of convergence of the pro-
posed G-JP-ADMM algorithm (Algorithm 3), the J-ADMM algorithm
and the dual decomposition-based voltage control algorithm presented
in [21]. The J-ADMM algorithm can be implemented as presented in
Algorithm 3, but without including the proximal terms and the accel-
eration factor d [36]. As discussed earlier, the best results for the G-JP-
ADMM algorithm (in terms of convergence speed) occur when

= =500, 10Q P 4, and = 0.001 (for all the GVSFs). For the case study
of this paper, the best results for the J-ADMM algorithm occur when is
set to 0.1 for all the GVSFs. The J-ADMM algorithm does not converge
when is higher than 0.1. The fastest convergence of the DD algorithm
presented in [21] is achieved when the step size is set to 0.3 for all the
GVSFs. The DD algorithm diverges when is higher than 0.3.

The three algorithms are implemented at each smart inverter and are
executed at 14:00, the time when the voltage profiles have the highest
voltage rise. Fig. 9 presents the convergence of the PCC voltage of smart
inverter No. 62 (worst voltage). We can see that the G-JP-ADMM algorithm
is clearly the fastest one among the compared algorithms. The G-JP-ADMM
algorithm returns the PCC voltage back to the limit in less than 10 itera-
tions, whereas the J-ADMM algorithm needs around 500 iterations and the
DD algorithm needs around 370 iterations to bring the PCC voltage back to
the limit. From this study, we can also conclude that the J-ADMM algo-
rithm is even slower than the DD algorithm. It is worth to mention again
that G-JP-ADMM enjoys a fast preserved convergence thanks to the pro-
posed acceleration factors and the applied proximal penalization functions.

6.3. Accuracy of the linear voltage model

The linear voltage model presented in Section 4.1 is used to predict
the voltage of iteration k before applying the control decisions Pd

k( ) and
Qd

k( ). The optimization of the control decisions depends highly on how
accurate the prediction is. The prediction made by Eq. (3) is quite ac-
curate. Fig. 10 shows a comparison between the predicted voltage and
the actual one of smart inverter No. 62 (62-bus network). The algorithm
is executed for two hours, from 14:00 till 16:00 (period of worst voltage
problem). The predicted voltage is calculated by Eq. (3), whereas the
measured voltage is calculated by exact power flow equations (using
MATPOWER). One can notice the high accuracy of the linear voltage
model. The maximum error is around 0.3%.

The high accuracy of the prediction is due to two reasons; first, the
algorithm of the proposed method is an iterative one. The system takes
small steps towards the final solution. At each iteration, the change in
reactive power and active power curtailment is small. For a small change,
the first order approximation of Eq. (2) is quite accurate, and second,
thanks to the feedback strategy of the proposed G-JP-ADMM method, the
system corrects the error in its decision at each control iteration. This
means that the error does not accumulate. Fig. 11 presents a comparison
between the predicted voltage and actual voltage for two cases, with and
without feedback strategy. With feedback strategy the error is around
0.3%, whereas without feedback the error is around 1.2%. One can notice
that without feedback strategy the algorithm brings the actual voltage to

Fig. 6. (a) Voltage profiles without grid voltage support, (b) voltage profiles
with grid voltage support.

Fig. 7. Voltage quality metric E of the 62 households with and without grid
voltage support.

Fig. 8. (a) Lagrangian multiplier 62
max of smart inverter No. 62, (b) active power

curtailment and reactive power compensation of smart inverter No. 62.

Fig. 9. Comparison of the convergence speed between JP-ADMM, J-ADMM and
DD.
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a value lower than the maximum limit. This means that the voltage is
over-regulated, and the amount of absorbed reactive power and curtailed
active power is more than needed.

6.4. 124-bus case study

To test the performance of the proposed algorithm on a large
system, we have extended the network of the case study from 62-bus
(with 20 smart inverters and 42 regular inverters) to 124-bus (with 50
smart inverters and 74 regular inverters). We extended the following
feeders to host more households: feeder DE to host 25 households,
feeder DG to host 32 households, and feeder DH to host 40 households.
Additionally, we set the size of the 124 inverters to 5 kVA. Fig. 12a
shows the voltage profiles of the 124 households without voltage con-
trol, whereas Fig. 12b shows the voltage profiles with voltage control.
Again we notice that our proposed method succeeds in improving the
quality of the voltage profiles significantly.

Fig. 13a demonstrates the scalability of the proposed method. It
shows a comparison between voltage convergence of smart inverter No.
62 (62-bus network) and voltage convergence of smart inverter No. 124
(124-bus network), at 14:00. In case of 20 agents (62-bus network), the
algorithm takes 8 iterations to bring the voltage back to the limit,
whereas the algorithm takes 15 iterations to bring the voltage back to
the limit in case of 50 agents (124-bus network). Hence, increasing the
number of agents does not lead to exponential increase in the number of
iterations. This is because in G-JP-ADMM, each agent treats the decision
variables of other agents as constant.

Fig. 13b shows a comparison between JP-ADMM, DD and J-ADMM,
at 14:00 (124-bus network). The figure presents the convergence of PCC
voltage of smart inverter No. 124. Again we notice that our proposed
method is much faster than DD and J-ADMM.

6.5. Scalability of the push-sum gossip protocol

Fig. 14 shows the number of GVSFs each GVSF needs to commu-
nicate with to know the control decisions and the Lagrangian multi-
pliers of each GVSF in the system. In case of 20 smart inverters, each
GVSF needs to communicate with 8–13 GVSFs. In case of 50 smart in-
verters, each GVSF needs to communicate with 10–14 GVSFs. The
number (of GVSFs to be communicated with) is not fixed since each
agent contacts random agents at each control iteration. The results of
Fig. 14 demonstrate the fact that each GVSF needs to communicate with
some GVSFs (not all) to know the status of all other GVSFs. The results
also demonstrate the scalability of the proposed push-sum gossip pro-
tocol. The gossip-based protocol enjoys exponential rapid spread of
information. Increasing the number of smart inverters does not sig-
nificantly increase the burden of communication.

6.6. Discussion

The time needed to finish one control iteration of G-JP-ADMM, J-
ADMM and DD is around 5 s.2 Based on the results presented in the 62-
bus case study, the proposed G-JP-ADMM needs around 0.67 min

Fig. 10. Predicted voltage vs. actual voltage of smart inverter No. 62.

Fig. 11. (a) Voltage regulation with feedback strategy, (b) voltage regulation
without feedback strategy.

Fig. 12. (a) Voltage profiles of 124-bus network without voltage control, (b)
voltage profiles of 124-bus network with voltage control.

Fig. 13. (a) Voltage convergence of smart inverter No. 62 (62-bus network) and
smart inverter No. 124 (124-bus network), (b) 124-bus network: comparison of
the convergence speed between JP-ADMM, J-ADMM and DD.

2 Based on the performance of the workstation, and assuming the following:
(a) 1 s as the time needed to measure the PV generation and the voltage, (b)
50 ms as the response time of the AC control loop, (c) 100 ms communication
latency.
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( ×5 s 8 iterations) to bring the voltage of bus No. 62 to the accepted
limit (124-bus case study: 1.25 min), whereas J-ADMM needs around
41.7 min ( ×5 s 500 iterations) and DD needs around 30.8 min
( ×5 s 370 iterations). We can conclude from this analysis that the pro-
posed algorithm succeeds in regulating the voltage profiles to comply
with the European standard EN 50160, whereas DD and J-ADMM fails
to comply with the standard EN 50160, since they fail to maintain all
10 min rms voltages within the range [V 10%nom = 207 V,

+V 10%nom = 253 V].

7. Conclusion

This paper presents a novel voltage control algorithm for photo-
voltaic inverters to expand their features with added grid voltage sup-
port function. To eliminate the problems that a centralized control
method possesses, having a single point of failure, the grid voltage
support function is designed based on a distributed control method. The
Jacobi-Proximal Alternating Direction Method of Multipliers is used to
convert a centralized optimization-based voltage control system into a
distributed one. All local grid voltage support functions communicate
with the other grid voltage support functions in a peer-to-peer fashion.
A push-sum gossip algorithm is used for the dissemination of the vari-
ables of each grid voltage support function to all grid voltage support
functions. The grid voltage support functions can then act according to
the received information, in cooperation with each other. Each grid
voltage support function locally computes the reactive power com-
pensation and active power curtailment of its inverter by considering
the variables of the other grid voltage support functions as constants.

To speed up the convergence of the proposed algorithm, reactive/
curtailment acceleration factors are proposed. An anti-windup strategy
is also proposed to have faster convergence in case of Lagrangian
windup. A feedback strategy is used to improve the quality of the vol-
tage profiles. To prevent operating the grid voltage support functions all
the time, active and standby modes are proposed. We have shown that
our algorithm can achieve fast convergence and is able to mitigate the
voltage rise problem of distribution networks with high penetration of
photovoltaic systems.
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