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Abstract

Assume a and b = na + r with n ≥ 1 and 0 < r < a are relatively
prime integers. In case C is a smooth curve and P is a point on C with
Weierstrass semigroup equal to < a; b > then C is called a Ca;b-curve.
In case r 6= a − 1 and b 6= a + 1 we prove C has no other point Q 6= P
having Weierstrass semigroup equal to < a; b >, in which case we say
that the Weierstrass semigroup < a; b > occurs at most once. The curve
Ca;b has genus (a − 1)(b − 1)/2 and the result is generalized to genus
g < (a−1)(b−1)/2. We obtain a lower bound on g (sharp in many cases)
such that all Weierstrass semigroups of genus g containing < a; b > occur
at most once.
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1 Introduction

We write N to denote the semigroup of non-negative integers (in particular
including 0). A subsemigroup H of N is called a Weierstrass semigroup of genus
g if the complement N\H is a finite set of exactly g integers. Let C be a smooth
curve of genus g and let OC be the sheaf of regular functions on C. Let P be
a point on C and consider {deg(f)0 : f ∈ OC(C \ {P})}. This is a Weierstrass
semigroup of genus g called the Weierstrass semigroup of P and denoted by
WS(P ). In case f ∈ OC(C \ {P}) is not a constant then it defines a morphism
f : C → P1 with f−1(∞) = {P} and introducing multiplicities for points on
fibers of the morphism one obtains a base point free linear system g1deg(f) on C

containing the divisor deg(f)P . Therefore the Weierstrass semigroup of P can
also be described as follows

WS(P ) = {a ∈ N : |aP | is a base point free linear system } ∪ {0} .

The elements of N\WS(P ) are called the gaps of P (and the elements of WS(P )
are called the non-gaps of P ). For all but finitely many points of C the set of
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gaps of P is equal to {1; 2; · · · ; g}. A point P is called a Weierstrass point of C
in case the set of gaps of P is different from {1; 2; · · · ; g}. (For a more detailed
introduction see e.g. [7] Section III-5.)

For a general curve C the set of gaps of each Weierstrass point is equal to
{1; 2; · · · ; g − 1; g + 1}. The most special curves are the hyperelliptic curves,
i.e. curves having a morphism f : C → P1 of degree 2. In case g ≥ 2 such
morphism is unique (if it exists) and the Weierstrass points are exactly the
2g + 2 ramification points of f . In this case the set of gaps of each Weierstrass
point is equal to {1; 3; 5; · · · ; 2g − 1}. Hence the Weierstrass semigroup is the
subsemigroup of N generated by 2 and 2g + 1 (denoted by < 2; 2g + 1 >). It is
the only Weierstrass semigroup of genus g having first non-gap equal to 2.

From this point of view the next case is to consider Weierstrass points P
with first non-gap equal to three. In this case the curve C needs to have a base
point free linear system g13 containing 3P , i.e. there exists a covering f : C → P1

of degree 3 having P as a total ramification point. Curves having a morphism
to P1 of degree 3 are called trigonal curves. In case g ≥ 5 then the linear
system g13 is unique. However in general a g13 does not need to have a total
ramification point and if it has a total ramification point then in general it is
unique. Therefore the situation is different from the situation of hyperelliptic
curves and the linear system g13 does not determine all Weierstrass points on
the curve. Moreover in case there is a total ramification point P then WS(P ) is
not completely determined by g and in general not even by f . Therefore in case
f has at least two total ramification points then their Weierstrass semigroups
can be different.

In [3] all possibilities of combinations of Weierstrass semigroups with first
non-gap equal to 3 that can occur on some fixed curve of genus g ≥ 5 are
determined. In particular in case P has Weierstrass semigroup < 3; 3n + 1 >
(in this case the genus of C is equal to 3n) then there is no other point Q on
C with WS(Q) =< 3; 3n + 1 > (and this situation occurs). It is mentioned at
the introduction of [18] that this fact is proved in [10]. It seems to me that this
is not explicitly mentioned in that paper. The computations in [10] to obtain
Theorem 6 of that paper imply that in case C has genus 3n and there is a
covering f : C → P1 of degree 3 having g + 2 total ramification points then
exactly one of them has Weierstrass semigroup equal to < 3; 3n+ 1 >. From [3]
(and also from [10]) it follows that for all other Weierstrass semigroups H with
first non-gap equal to 3 there exist curves C having at least two points with
Weierstrass semigroup equal to H.

We make the following definition

Definition 1. Let H be a Weierstrass semigroup of genus g. We say that
H occurs at most once in case there exists no curve C of genus g having two
different Weierstrass points P and Q with WS(P ) = WS(Q) = H.

There is no Weierstrass semigroup with first non-gap equal to 2 that occurs
at most once (this corresponds to the hyperelliptic curves mentioned before).
The Weierstrass semigroups with first non-gap equal to 3 that occur at most
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once are exactly the semigroups < 3; 3n + 1 > with n ≥ 2 an integer (this
corresponds to the trigonal curves mentioned before). Its genus is equal to 3n.

In [18] the author gives a lot of Weierstrass semigroups H of some genus
g with first non-gap some prime number a that occur at most once. As an
example this result holds for semigroups < a; ka − 2 > for any integer k ≥ 2.
More generally from the arguments in [18] it follows that for a prime number
a and b = ka − r with k ≥ 2 and 2 ≤ r ≤ a − 1 and r 6= a − 1 in case k = 2
there are at most r − 1 Weierstrass points having Weierstrass semigroup equal
to < a; b > on a curve C of genus g = (a−1)(b−1)/2 (this is indeed the number
of gaps in case the Weierstrass semigroup is equal to < a; b >). In case r 6= 2
this upper bound is not sharp. In particular in [5] , Theorem 1, it is proved that
in case a ≥ 5 is any odd integer then < a; a+ 2 > occurs at most once. This is
smaller than the bound obtained in [18] in case a ≥ 5 is a prime number.

One of the main results of this paper is the following theorem.

Theorem A. Let a; b be relatively prime integers (we denote it by (a; b) = 1)
such that b ≥ a + 2. Assume b = ka + r with 1 ≤ r ≤ a − 2. The Weierstrass
semigroup < a; b > (having genus (a− 1)(b− 1)/2) occurs at most once.

In case b = a + 1 or r = a − 1 then there exist smooth curves of genus
(a− 1)(b− 1)/2 having more than one Weierstrass point with Weierstrass semi-
group equal to < a; b >. The proofs in [18] consist of two steps. Under the
assumptions of [18] (amongst others a is a prime number) the linear system g1a
is unique on the curve. Then given some fixed linear system g1a on the curve,
the author proves the upper bound on the number of total ramification points
of g1a having Weierstrass semigroup < a; b >. In case (a; b) = 1 and b 6= a + 2,
the uniqueness of g1a in case a curve C of genus (a−1)(b−1)/2 has a Weierstrass
point P with WS(P ) =< a; b > follows from results from [2] (see Theorem 10.1
for the relation). However we give an independent proof inspired by [18] but us-
ing seemingly easier arguments and not using the assumption that a is a prime
number. So to prove Theorem A, we only need to consider total ramification
points on a fixed g1a. Using more complicated computations than ours, Theo-
rem 1 is proved in [15] for the case of Galois Weierstrass points (meaning the
morphism C → P1 defined by |aP | defines a Galois extension C(P1) ⊂ C(C)).

Smooth curves C having a Weierstrass point P with WS(P ) =< a, b > in
case (a, b) = 1 are also called Ca,b curves. They are studied from different points
of view (see e.g. [16], [6], [8], [19], [17]). In [11] and [12] the similar nodal curves
are used to develop a general method to study Weierstrass points.

For lower genus cases g < (a−1)(b−1)/2 with (a; b) = 1 and b = na+r with
n ≥ 1 and 1 ≤ r ≤ a−1 we consider the following situation. Let C be a smooth
curve of genus g and let P ∈ C such that a is the first non-gap of P , b is the
first non-gap of P that is not a multiple of a and there are no other non-gaps
between na and (n + 1)a. We obtain sufficient conditions in terms of WS(P )
implying the uniqueness of the linear system g1a (this cannot be obtained using
the results from [2]). In particular in case b is much larger than a then g1a is
unique (independent from the value of g).

3



We concentrate on points Q on C with Q 6= P such that aQ ∈ |aP | and we
obtain the following theorem in this described situation.

Theorem B. Let (a, b) = 1 with b = na + r for some integers n ≥ 1 and
1 ≤ r ≤ a − 1. Let C be a smooth curve of genus g > (a − 1(b − a + r)/2
containing some point P such that its first non-gap is equal to a, its first non-
gap different from a multiple of a is equal to b and P has no other non-gaps
between na and (n + 1)a. Assume Q ∈ C with Q 6= P such that aQ ∈ |aP |,
then b /∈WS(Q).

From this theorem for large values of b with respect to a we obtain a lot
of Weierstrass semigroups that can occur at most once. Moreover we prove
that in many cases this bound on the genus in Theorem B is sharp. In those
cases this implies that there exists a Weierstrass semigroup H0 of genus g =
(a − 1)(b − a + r)/2 containing < a; b > and a curve C of genus g having two
Weierstrass points with semigroup H0. Moreover fixing a and b the semigroup
H0 satisfying this property is unique.

In Section 2 we mention some general results. In particular Lemma 3 will
be the basic lemma for obtaining the uniqueness of the pencil g1a.

In Section 3 we prove the main results of this paper. It starts with a very easy
Lemma 4 which is the basic observation of all our main results. Assume C; P ;
a and b as before. Using a particular plane model Γ of the curve then it follows
that equality WS(P ) = WS(Q) in case aQ ∈ |aP | implies Q corresponds to a
particular type of singular point on Γ. In particular it follows WS(P ) 6= WS(Q)
in case (a; b) = 1, g = (a− 1)(b− 1)/2 and r 6= a− 1 (see Corollary 3). In case
b 6= a+ 1 we also obtain uniqueness of g1a in that case (Proposition 1) implying
Theorem A. More general we also obtain Theorem B (Corollary 4). We also give
some general statements on the uniqueness of g1a in case g < (a − 1)(b − 1)/2
(see Proposition 2 and Corollaries 5 and 6).

Using Lemma 4 in a more detailed manner we obtain a description for WS(Q)
for all Q 6= P satisfying aQ ∈ |aP | in case g = (a − 1)(b − 1)/2 (Theorem 1).
Continuing to use such arguments we obtain a list of non-gaps WS(P ) needs to
contain in order that there exists Q satisfying aQ ∈ |aP | with WS(P ) = WS(Q)
in case g < (a − 1)(b − 1)/2 (Lemma 6). From this fact we obtain further
conditions on WS(P ) going below the genus bound of Theorem B and implying
WS(P ) occurs at most once (Corollary 8). Moreover it also implies the genus
bound in Theorem B is sharp in general (Corollary 11 and Lemma 8) and it gives
a complete description of the Weierstrass semigroup implying this sharpness
(Corollary 10 as a corollary of Lemma 7).

In Section 4 we consider some examples. In case a = 4 we show that for each
integer N there exists a genus bound g(N) such that for g > g(N) there are at
least N different Weierstrass semigroups with first non-gap equal to 4 and genus
g that occur at most once (remember in case a = 3 this is not true). Those
Weierstrass semigroups are very similar to each other. Case a = 5 illustrates
that for growing values of a we obtain more types of Weierstrass gap sequences
that occur at most once. Case a = 6 illustrates that the use of Lemma 3
causes that making a formulation of Theorem B similar to Theorem A without

4



assuming aQ ∈ |aP | is not possible using the arguments of this paper. Finally
in case n = 1 (this is in case a < b < 2a) the genus bound in Theorem B is too
small to obtain uniqueness of g1a. Using a very rough but different argument
we show how to obtain a result on Weierstrass semigroups that occur at most
once in this case n = 1 (see Lemma 9). The genus bound in the statement of
Lemma 9 is sharp although is is larger than the genus bound in Theorem B (in
particular for the corresponding Weierstrass points P and Q the divisors aP
and aQ are not linearly equivalent). This argument used in Lemma 9 cannot
be applied in case n ≥ 2.

For two positive integers a and b we write (a, b) to denote their largest
common divisor. In particular (a, b) = 1 means a and b are mutually prime.
Remember we write < a; b > to denote the subsemigroup of N generated by a
and b. For a smooth projective variety X we write ωX to denote the canonical
sheaf of X.

2 Generalities

We are going to use some models of the smooth curve C on some surfaces. We
use the following terminology and facts.

Let X be a smooth surface and let D, E be two curves on X without common
components. For Q ∈ D ∩ E we write i(D.E;Q) to denote the intersection
multiplicity of D and E at Q. We also write (D.E) to denote the intersection
number of D and E on X.

Let X be a smooth surface and let Γ be an irreducible curve on X. This
curve Γ has some arithmetic genus pa(Γ) and it can be computed by the formula
2pa(Γ)−2 = Γ. (Γ +KX) with KX a canonical divisor on X. In case Γ is smooth
then this arithmetic genus is equal to the genus of the smooth curve Γ.

Let Q be a point on Γ of multiplicity ν and let p : X ′ → X be the blowing-up
of X at Q. Let E be the associated exceptional divisor on X ′ and let Γ′ be the
proper transform of Γ on X ′. It is well-known that pa(Γ′) = pa(Γ)−ν(ν−1)/2.
In case Γ′ has some singular points on E one continues this process blowing-up
X ′ at the singular points of Γ′ on E (such points are called infinitesimally near
points on X and infinitesimally near singular points of Γ) and so on untill one
obtains a smooth surface X1 such that for the proper transform Γ1 of Γ on X1

all points mapping to Q are smooth. The difference pa(Γ) − pa(Γ′) is denoted
by δ(Q).

Definition 2. We say Q is a cusp on an irreducible curve Γ ⊂ P2 in case for
the normalisation C → Γ there is only one point of C mapping to Q (i.e. Γ is
locally analytically irreducible at Q). Let ν be the multiplicity of Γ at Q. There
is a unique line T on P2 containing Q such that i(T.Γ;Q) = µ > ν. We say Q
is a cusp of type (ν;µ) on Γ.

The following lemma should be well-known.

Lemma 1. Let Γ ⊂ P2 be an irreducible plane curve and assume Q is a cusp

of type (ν;µ) on Γ. In case (ν, µ) = 1 then δQ = (ν−1)(µ−1)
2 .
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Proof. Using blowings-up starting at Q we obtain a sequence of singular points
of Γ infinitesimally near to Q of known multiplicity as follows. We make the
sequence (c1; c2; · · · ; ck+1 = 1) taking c1 = µ and c2 = ν. Then c1 = n2c2 + c3
with 1 ≤ c3 ≤ c2 − 1. In case i ≥ 3 and ci 6= 1 then ci−1 = nici + ci+1 with
1 ≤ ci+1 ≤ ci − 1. This is the Euclidean algorithm to compute (ν, µ). Since
(ν, µ) = 1 one has (ci, ci+1) = 1 for all 1 ≤ i ≤ k and ck+1 = 1.

Then for 2 ≤ i ≤ k there are ni singular points of multiplicity ci on the
curve Γ infinitesimally near to Q. This implies

δQ =

k∑
i=2

ni
ci(ci − 1)

2
.

For 2 ≤ j ≤ k let δj =
∑k
i=j

ci(ci−1)
2 . By means of induction we show δj =

(cj−1−1)(cj−1)
2 . Since δQ = δ2 this implies the lemma.

For j = k we have δk = nk
ck(ck−1)

2 . Also ck−1 = nkck + 1. This implies

δk = (ck−1−1)(ck−1)
2 .

Assume 3 ≤ j ≤ k and δj =
(cj−1−1)(cj−1)

2 . We have δj−1 = nj−1
cj−1(cj−1−1)

2 +

δj . We use cj−2 = nj−1cj−1+cj hence δj−1 =
(cj−2−cj)(cj−1−1)

2 +
(cj−1−1)(cj−1)

2 =
(cj−1−1)(cj−2−1)

2 .

Let X be the surface P1×P1. For each divisor D on X there exist unique in-
tegers α and β such that D is linearly equivalent to α

(
P1 × {S}

)
+β

(
{S} × P1

)
for some S ∈ P1 (see e.g. [9], Chapter II, Example 6.6.1). Such curve is said to
be of type (α;β) and we write |(α;β)| to denote the complete linear system of
curves of type (α;β). We write OX(α;β) to denote the corresponding invertible
sheaf. For an irreducible curve Γ on X there exist so-called canonically adjoint
curves to Γ describing all elements of the canonical linear system on the nor-
malisation of Γ. Although this should be well-known we include an argument
for this fact.

Lemma 2. Let Γ be an irreducible curve of type (α;β) on X = P1 × P1 and
let C be the normalisation of Γ. Let |KC | be the canonical linear system on C.
There exists a linear subsystem of |(α − 2;β − 2)| called the linear system of
canonically adjoint curves of Γ that has a natural bijective correspondence with
|KC | using intersections.

Proof. Let π : Y → X be a sequence of blowings-up at some points (some of
them might be infinitesimally near points) such that the proper transform of
Γ on Y is smooth (so we identify it with C). It is well-known that Hi(X;OX) ∼=
Hi(Y ;OY ) for all i ≥ 0 (see [9], Chapter V, Proposition 3.4). SinceH1(X;OX) =
0 (see [9], Chapter III, Exercise 5.6) one has H1(Y ;OY ) = 0. Canonical divi-
sors on X are of type (−2;−2) (see [9], Chapter II, Exercise 8.20.3). From
Serre duality (we use [9], Chapter III, Corollary 7.7) it follows H2(X;OX) ∼=
H0(X;OX(−2;−2)) = 0 and therefore H2(Y ;OY ) = 0 and also H0(Y ;ωY ) = 0
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and H1(Y ;ωY ) = 0. From [9], Chapter II, Proposition 8.20 we know ωC ∼=
ωY ⊗OY (C)⊗OC . Tensoring the exact sequence

0→ OY (−C)→ OY → OC → 0

with OY (C)⊗ ωY gives rise to the exact sequence

0→ ωY → ωY ⊗OY (C)→ ωC → 0

Using the exact cohomology sequence we obtain an isomorphism H0(Y ;ωY ⊗
OY (C)) → H0(C;ωC). The images on X of elements of the complete linear
system associated to ωY ⊗OY (C) are the canonically adjoint curves of Γ. From
the construction it follows they are contained in |(α−2;β−2)| (this follows from
an explicit description of ωY using the blowings-up (see [9], Chapter V, propo-
sition 3.3)) and from the proof it follows they are in bijective correspondence to
effective canonical divisors on C.

Uniqueness of a linear system g1a as mentioned in the introduction will be a
consequence of the following lemma.

Lemma 3. Let C be a smooth curve of genus g and let P be a point of C
with first non-gap equal to a. Assume C has a base point free linear system g1a
different from |aP |. There there exists a divisor e < a of a (it might be 1) such
that each integer

(
a
e − 1

)
a+ ie with i ∈ Z≥1 is a non-gap of P .

Proof. Let f1 : C → P1 be a morphism corresponding to |aP | and let f2 : C →
P1 be a morphism corresponding to g1a. Consider the morphism f = (f1; f2) :
C → P1 × P1 and let Γ be the image of f . Let C ′ be the normalisation of Γ,
then f factorizes through a finite morphism h : C → C ′ of some degree e < a
dividing a (e might be equal to 1). The rulings of P1 × P1 imply base point
free linear systems g1 and g2 on C ′ such that h−1(g1) = |aP |; h−1(g2) = g1a.
In particular for P ′ = h(P ) ∈ C ′ one has a

eP
′ ∈ g1. The canonically adjoint

curves of Γ give rise to a linear subsystem of |(ae −2; ae −2)| and they correspond
bijectively with effective canonical divisors on C ′

Let E be a general element of |aeP
′|. An effective canonical divisor on C ′

containing E corresponds to some curve γ in |(ae −2; ae −2)| containing E. This
divisor E consists of ae different points on some line l belonging to |(1; 0)|. Since
the intersection number

(
(ae − 2; ae − 2).(1; 0)

)
= a

e − 2 < a
e it follows l ⊂ γ.

This implies there is no canonically adjoint curve of Γ containing a
e − 1 general

elements of |aeP
′|. Therefore no effective canonical divisor of C ′ contains a

e − 1
general elements of |aeP

′|. It follows (ae − 1)aeP
′ is a non-special divisor on C ′.

This implies for each i ∈ Z≥1 the integer (ae − 1)ae + i is a non-gap of P ′. Using
the inverse image under the morphism f1 one obtains (ae − 1)a+ ie is a non-gap
of P .

3 Proofs

This easy lemma having a trivial proof is the basic lemma for all main results
in this paper.
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Lemma 4. Let C be a smooth curve, P ∈ C and a, b ∈ Z≥1 with b = na + r
with r, n ∈ Z satisfying 0 < r < a and n ≥ 1. Assume a, b ∈ WS(P ). Assume
Q ∈ C with Q 6= P and aQ ∈ |aP |. Let µ ∈ Z≥1 with 0 < µ < a and assume
|bP − µQ| does not have Q as a base point. Then an+ (a− µ) ∈WS(Q).

Proof. Since aQ ∈ |aP | it follows that

D0 := (n− 1)aQ+ rP + (a− µ)Q ∈ |bP − µQ| .

Since Q is not a base point of |bP − µQ| it follows Q is not a base point of
|bP − µQ + (a − r)P |. However D0 + (a − r)P = (n − 1)aQ + aP + (a − µ)Q
and again using aQ ∈ |aP | we obtain

D1 := naQ+ (a− µ)Q ∈ |bP − µQ+ (a− r)P | .

This implies Q is not a base point of |(na+ (a− µ))Q| hence |(na+ (a− µ))Q|
is base point free. This implies na+ (a− µ) is a non-gap of Q.

From now on in this paper we make the following assumptions. C is a smooth
curve of genus g and P is a smooth point of C. We assume |aP | is a base point
free g1a (i.e. a is the first non-gap of P ). Let n ∈ Z≥1 such that dim |naP | = n
while dim |(n + 1)aP | > n + 1. Such n exists and it is unique. This means
the first non-gap b of P that is not a multiple of a is of type b = an + r with
0 < r < a.

Lemma 5. Let Q ∈ C with Q 6= P and aQ ∈ |aP |. There is a unique integer
µ satisfying 0 < µ < a such that |bP − µQ| does not have Q as a base point.

Proof. Since aQ ∈ |aP | one has (b−a)P ∈ |bP−aQ|, hence Q is not a fixed point
of |bP − aQ|. From the definition of a and b it follows dim |bP − aQ| = n− 1 =
dim |bP | − 2. Assume |bP − Q| contains Q as a base point with multiplicity ν
(ν can be equal to 0). Then |bP − (ν + 1)Q| does not contain Q as a base point
and dim |bP − (ν + 1)Q| = dim |bP | − 1 = n = dim |bP − aQ|+ 1. In particular
ν + 1 < a. This implies the existence of an integer µ satisfying 0 < µ < a such
that |bP − µQ| does not contain Q as a base point (taking µ = ν + 1).

In case there exists an integer µ′ 6= µ with 0 < µ′ < a such that |bP − µ′Q|
does not contain Q as a base point, then µ′ > µ and we find dim |bP − µ′Q| =
n− 1 and dim |bP − aQ| < n− 1, a contradiction.

Under the assumptions of Lemma 5 it follows from Lemma 4 that an+(a−µ)
is a non-gap of Q. In case dim |(n+1)aP | = n+2 then there is a unique non-gap
of Q between an and a(n+ 1). So we obtain the following conclusion.

Corollary 1. Assume dim |(n + 1)aP | = n + 2 and Q ∈ C with Q 6= P and
aQ ∈ |aP |. If WS(P ) = WS(Q) then µ = a− r is the unique integer 0 < µ < a
such that |bP − µQ| does not have Q as a base point.

In case the linear system |bP | is simple then we can give a geometric meaning
to the number µ occuring in Lemma 5 and Corollary 1 using some specific plane
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model Γ ⊂ P2 of C. As in [4] we construct a simple base point free linear
system g2b on C as follows. Choose D ∈ |bP | general, in particular P /∈ D.
Inside the projective space |bP | take the linear span of the line |aP |+ (b− a)P
and D (denoted by < |aP | + (b − a)P ;D >). This linear systems g2b defines
a morphism from C to P2 and the image Γ ⊂ P2 is a plane curve of degree b
birationally equivalent to C. (We write φ : C → Γ to denote the normalization.)
The image φ(P ) is a cusp of Γ of type (b−a; b). This singularity causes that the
genus of the curve C is at most ((b−1)(a−1)+1−(a, b))/2 (see the computation
in Section 1 of [4]). It should be mentioned that it is proved in [4], Section 3
that there exist such curves C for all g ≤ ((a − 1)(b − 1)/2 + 1 − (a, b))/2 (see
also [11], Section 3 in case (a, b) = 1). From now on we assume |bP | is simple
and Γ ⊂ P2 is such a plane model of C.

Assume Q ∈ C with Q 6= P and aQ ∈ |aP |. Clearly φ(Q) 6= φ(P ) (since
bP ∈ g2b ). Let LQ be the line in P2 connecting φ(P ) and φ(Q). Since the pencil
of lines on P2 through φ(P ) induces |aP | on C (because (b− a)P + |aP | ⊂ g2b )
it follows i(LQ.Γ;φ(Q)) = a.

Let µ be the multiplicity of Γ at φ(Q). We already know µ ≤ a. In case µ = a
then it would imply |bP−aQ| is base point free. Since |bP−aQ| = |(b−a)P | this
would contradict the meaning of the integers a and b. It follows 1 ≤ µ ≤ a− 1
and φ(Q) is a cusp of type (µ; a) of Γ. The pencil of lines in P2 containing φ(Q)
induces a base point free linear system on C contained in |bP − µQ|. Therefore
the multiplicity of φ(Q) on Γ is the integer 0 < µ < a mentioned in Lemma 5 and
Corollary 1. Using this plane model Γ of C we obtain the following conclusion.

Corollary 2. Assume |bP | is simple, dim |(n+ 1)aP | = n+ 2 and Q ∈ C with
Q 6= P and aQ ∈ |aP |. If WS(P ) = WS(Q) then φ(Q) is a cusp of Γ of type
(a− r; a).

Corollary 3. Assume |bP | is simple and Q ∈ C with Q 6= P and aQ ∈ |aP |.
In case g = ((a− 1)(b− 1) + 1− (a; b))/2 and r 6= a− 1 then WS(P ) 6= WS(Q).

Proof. From the condition g = ((a− 1)(b− 1) + 1− (a, b))/2 it follows dim |(n+
1)aP | = n+2. Let Γ be a plane model of C as described before. Then all points
on Γ different from φ(P ) are smooth. This implies φ(Q) is a cusp of Γ of type
(1; a) and na+ (a− 1) is the non-gap of Q between an and a(n+ 1). Therefore
the Weierstrass semigroups of Q and P can be equal only in case r = a− 1.

From now on we assume (a, b) = 1 with a < b. In this case |bP | is simple.
Write b = na + r with n ≥ 1 and 0 < r < a. The equation of the plane model
Γ can be reduced to some canonical form (see e.g. [11] Lemma 6.2). In case
g = (a− 1)(b− 1)/2 then φ(P ) is the only singular point on Γ and such curves
are the so-called Ca,b curves. In this case one has WS(P ) =< a, b >.

In case g = (a−1)(b−1)/2 and b = a+1 then C = Γ is a smooth plane curve
of degree a + 1 defined by the linear system |bP | (hence P is a total inflection
point of this smooth plane curve Γ). For each point Q on C the linear system
|bP − Q| is a base point free linear system g1a on C. In case Q is also a total
inflection point of Γ (i.e. bQ ∈ |bP |) then also WS(Q) =< a, b >. In that
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way C can have many Weierstrass points having Weierstrass semigroup equal
to < a, a+ 1 >.

Now we are going to prove that in case g = (a − 1)(b − 1)/2 and b 6= a + 1
then the linear system |aP | is the unique linear system g1a on C without base
points. This implies that any point Q on C having WS(Q) =< a, b > satisfies
aQ ∈ |aP |.

Proposition 1. Let C be a curve of genus g = (a− 1)(b− 1)/2 with (a, b) = 1
and assume C has a Weierstrass point with Weierstrass semigroup < a; b >. In
case b 6= a+ 1 then C has a unique linear system g1a.

Proof. Assume C has more than one linear system g1a. From Lemma 3 it follows
that there exists a divisor e of a different from a such that for all integers i ≥ 1
the integer (ae − 1)a + ie is a non-gap of P . By assumption those integers
belong to < a; b > hence each one of them can be written as xa + yb for some
non-negative integers x and y. Since (a, b) = 1 and e divides a it follows e
divides y. Therefore for each integer 1 ≤ i ≤ a

e − 1 there is a pair of integers
(xi; yi) with xi ≥ 0 and 0 < yi <

a
e such that (ae − 1)a+ ie = xia+ yieb. This

implies there is an integer ki such that yib = i+ ki
a
e . In case yi = yi′ then this

implies (i− i′) = (ki− ki′)ae and therefore i = i′. This implies there exists some
1 ≤ i ≤ a

e − 1 such that yi = a
e − 1 and therefore

xia+ (
a

e
− 1)eb = (

a

e
− 1)a+ ie <

a

e
a .

In case e ≥ 2 one has a − e = e(ae − 1) ≥ 2(ae − 1) ≥ a
e (since e 6= a one has

a
e ≥ 2). Since b > a this implies (a − e)b > a

ea, a contradiction. In case e = 1
one obtains (a− 1)b < a2. This is a contradiction in case b ≥ a+ 2.

From Proposition 1 and Corollary 3 we obtain Theorem A from the intro-
duction.

Proof of Theorem A. Let C be a smooth curve and P ∈ C such that WS(P ) =<
a; b >. Since the number of non-gaps of P is equal to (a− 1)(b− 1)/2 it implies
g(C) = (a− 1)(b− 1)/2. Since b 6= a+ 1 it follow from Proposition 1 that C has
a unique g1a (namely |aP |). So in case Q ∈ C with Q 6= P and WS(Q) =< a; b >
then aQ ∈ |aP |. Since r 6= a − 1 Corollary 3 implies that WS(Q) 6= WS(P ),
so we obtain a contradiction. This implies the Weierstrass semigroup < a; b >
occurs at most once.

Proof of Theorem B. Since (a; b) = 1 the linear system |bP | is simple. Let
Γ ⊂ P2 be the plane model of C constructed before and let φ : C → Γ be the
normalisation. We know φ(P ) is a cusp of type (b− a; a).

Assume Q ∈ C with Q 6= P such that aQ ∈ |aP | and b ∈WS(Q). It follows
from Corollary 2 that Q is a cusp of type (a− r; a) on the plane model Γ. Since
(a; b) = 1 also (a−r; a) = 1 and from Lemma 1 it follows δφ(Q) = (a−1)(a−r−
1)/2. It follows g(C) ≤ (a−1)(b−1)/2−(a−1(a−r−1)/2 = (a−1)(b−a+r)/2.
Since g > (a− 1)(b− a+ r)/2 we obtain a contradiction.
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Corollary 4. Assume dim |(n+ 1)aP | = n+ 2 and let Q ∈ C with Q 6= P and
aQ ∈ |aP |. In case g > (a− 1)(b− a+ r)/2 then WS(Q) 6= WS(P ).

In case C has an linear system g1a different from |aP | it follows from Lemma
3 there exists a divisor e of a different from a such that

(
a
e − 1

)
a
e + e is a non-

gap of P . As a rough estimate this implies there is a non-gap of P not being

a multiple of a having value at most
(
a
2

)2
. Because of the meaning of b this

is impossible in case b >
(
a
2

)2
. Therefore in this case Corollary 4 implies the

following statement on uniqueness of Weierstrass semigroups.

Corollary 5. Assume dim |(n+ 1)aP | = n+ 2 , b >
(
a
2

)2
and g > (a− 1)(b−

a+ r)/2. Then WS(P ) occurs at most once.

The estimate used in Corollary 5 is very rough. Using some (still rough)
estimates on the number of non-gaps we obtain the following condition implying
uniqueness of the g1a in case g < (a− 1)(b− 1)/2.

Proposition 2. Assume for each divisor e of a different from a (but including
1) one has

g >
(a− 1)(b− 1)

2
−

(an− ne− a
e + 2)(an− ne− a

e + 1)

2ne

then C has a unique base point free g1a.

Proof. Let x be some integer at least 1. From divisibility arguments as used in
the proof of Proposition 1, in case (a; b) = 1 the number of elements of the type
xa + ie for some integer 1 ≤ i ≤ a

e − 1 inside < a; b > is at most [ xne ] (here
b = na+ r with 0 < r < a).

Assume C has a base point free g1a different from |aP |. In case x ≥ a
e − 1 it

follows from Lemma 3 that xa+ie is a non-gap of P for each integer 1 ≤ i ≤ a
e−1.

Therefore there are at least (ae −1)− [ xne ] ≥ (ae −1)− x
ne non-gaps of P between

xa and (x + 1)a outside < a; b >. Summing up over different values of x we

obtain at least
(an−ne− a

e+2)(an−ne− a
e+1)

2ne non-gaps of P outside < a; b >.

In case a is a prime number we only have to consider the case e = 1 in
the statement of Proposition 2. In particular we obtain the following statement
concerning uniqueness of Weierstrass semigroups.

Corollary 6. Let a be a prime number and assume b > 3a is an integer not
divisible by a. Write b = na + r with 1 ≤ r ≤ a − 1. Let H be a Weierstrass
semigroup containing < a; b > having no non-gap outside of < a; b > smaller

than (n+ 1)a and having genus g > (a−1)(b−a+r)
2 . Then H occurs at most once.

Proof. From Corollary 4 it follows that in case there exists a smooth curve
of genus g having two different Weierstrass points P and Q with Weierstrass
semigroup equal to H then aP and aQ are not linearly equivalent. In particular
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C has a base point free linear system g1a different from |aP |. From Proposition
2 we know this implies

g ≤ (a− 1)(b− 1)

2
− (an− n− a+ 2)(an− n− a+ 1)

2n
.

Since n ≥ 3 this implies g ≤ (a−1)(b−1)
2 − (2a−1)(2a−2)

6 . Since (a−1)(a−2)
2 <

(2a−1)(a−1)
3 we obtain a contradiction.

In Section 4 we illustrate that using Lemma 3 gives rise to better uniqueness
statements for the linear system g1a in case of explicit examples than using
Proposition 2. It should be noted that the results of [11] imply that many of
those Weierstrass semigroups really occur as Weierstrass semigroups of points
on certain curves.

Lemma 4 can also be used to determine the Weierstrass semigroups of the
points Q 6= P satisfying aQ ∈ |aP | in some situations.

Theorem 1. Let P be a point on a smooth curve of genus g = (a− 1)(b− 1)/2
(with (a; b) = 1) such that WS(P ) =< a; b >. Let Q ∈ C with Q 6= P and
aQ ∈ |aP |. For t ∈ Z≥1 let s be the number of non-gaps e of P satisfying
ta < e < (t + 1)a. Then (t + 1)a − i with 1 ≤ i ≤ s are the non-gaps of Q
satisfying ta < e < (t+ 1)a.

Proof. In case s = a− 1 the theorem is trivially true, so we assume s < a− 1.
The integer s associated to t is defined by the inequalities sb < (t + 1)a and
(s + 1)b > (t + 1)a. Define ε ∈ Z≥0 such that at < sb + εa < a(t + 1). Hence
sb+ εa is a non-gap e of P satisfying at < e < a(t+ 1). Because of the genus of
C it follows that Q corresponds to a smooth point on the plane model Γ of C,
hence |bP −Q| does not have Q as a base point.

For each integer 0 ≤ i ≤ s one has

i(bP −Q) + ((s− i)b+ εa)P ∈ |(sb+ εa)P − iQ| .

This implies |(sb+εa)P − iQ| does not contain Q as a fixed point. From Lemma
4 it follows at+ (a− i) is a non-gap of Q for 1 ≤ i ≤ s.

In [15], Lemma 2.7 the authors also obtain the statement of Theorem 1
assuming P is a Galois Weierstrass point. The statement is formulated in a
diiferent way and it needs some computations to show both descriptions of the
Weierstrass semigroup are the same.

Corollary 7. Assume g = (a− 1)(b− 1)/2 and r = a− 1. Then for all Q ∈ C
with aQ ∈ |aP | one has WS(Q) =< a; b >.

Now we consider the case g ≤ (a − 1)(b − a + r)/2 to obtain a refinement
of Corollary 4 and a generalisation of Theorem 1. In many cases it also implies
sharpness of Corollary 4. Assume P as before and Q 6= P such that aQ ∈ |aP |
and Q is a cusp of type (µ = a − r; a) on the plane model Γ. We assume
(a, b) = 1, hence (a, µ) = 1. For 1 ≤ m ≤ µ − 1 define the integer n(m) such
that (n(m)− 1)µ < ma < n(m)µ. Note that m ≤ µ− 1 implies n(m) < a.
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Lemma 6. For n(m) ≤ i ≤ a− 1 one has ib−ma is a non-gap of Q.

Proof. Since |bP − µQ| does not have Q as a base point it follows |n(m)bP −
n(m)µQ| = |(n(m)b−ma)P −(n(m)µ−ma)Q| does not have Q as a base point.
One has n(m)b ≡ −n(m)µ mod a. This implies (n(m)b− 2ma+ n(m)µ)P
is linearly equivalent to (n(m)b− 2ma+ n(m)µ)Q. Since | (n(m)b−ma)P −
(n(m)µ−ma)Q+ (n(m)µ−ma)P | does not have Q as a base point and con-
tains (n(m)b−ma)Q it follows |(n(m)b − ma)Q| has no base point, hence
n(m)b−ma ∈WS(Q).

Since b ∈WS(Q) (because of Lemma 4) it follows that for all integers n(m) ≤
i ≤ a− 1 the integer ib−ma ∈WS(Q).

For all integers 1 ≤ i < a one has ib is the smallest integer x in < a; b >
satisfying x ≡ ib mod a. Therefore the integers ib−ma with n(m) ≤ i ≤ a− 1

do not belong to < a; b >. Varying 1 ≤ m ≤ µ− 1 we obtain
∑µ−1
m=1(a− n(m))

non-gaps of Q not belonging to < a; b >. We call them the trivial new non-gaps
associated to a cusp of type (µ; a) on the plane model Γ.

Corollary 8. Assume dim |naP | = n + 2 and let Q ∈ C with Q 6= P and
aQ ∈ |aP |. In case WS(P ) does not contain the list of trivial new non-gaps
asssociated to a cusp of type (a − r, a) on the plane model Γ then WS(P ) 6=
WS(Q).

Combining Corollary 8 with Proposition2 we obtain the following statement.

Corollary 9. Assume dim |naP | = n+2 and assume the Weierstrass semigroup
of P does not contain the list of trivial non-gaps asssociated to a cusp of type
(a− r, a) on the plane model Γ. Assume for each divisor e of a different from a
one has

g >
(a− 1)(b− 1)

2
−

(an− ne− a
e + 2)(an− ne− a

e + 1)

2

then for each point Q ∈ C with Q 6= P one has WS(Q) 6= WS(P ).

In case g = (a − 1)(b − a + r)/2 and aQ ∈ |aP | then Lemma 6 completely
determines WS(Q) in case Q is an cusp of Γ of type (a−r; a). This follows from
the calculations made in the following lemma.

Lemma 7. The number of trivial new non-gaps associated to a cusp of type
(µ, a) on the plane model Γ is equal to (a− 1)(µ− 1)/2

Proof. By definition for each 1 ≤ m ≤ µ−1 one has n(m) ≤ a−1 and n(m) ≥ 2.
Also for 2 ≤ k ≤ a−1 there is at most one integer 1 ≤ m ≤ µ−1 with n(m) = k.
In case such m with n(m) = k exists we define x(k) = 1, otherwise x(k) = 0.
Each integer 1 ≤ k ≤ a − 1 gives rise to x(k)(a − k) trivial new non-gaps. So

the number of trivial new non-gaps can be written as
∑a−1
k=2 x(k)(a− k).

For 1 ≤ m ≤ µ − 1 write ma = (n(m) − 1)µ + ε with 0 < ε < µ. Then
(µ−m)a = (a− n(m))µ+ (µ− ε) implying n(µ−m) = a− n(m) + 1.

13



In case a is even and 2 ≤ k ≤ a−2
2 it implies x(k) = x(a − k + 1) while

a
2 ≤ a− k + 1 ≤ a− 1. So the number of trivial new non-gaps is equal to

(a−2)/2∑
k=2

x(k)(a− k + a− (a− k + 1)) = (a− 1)

(a−2)/2∑
k=2

x(k) .

On the other hand 2
∑(a−2)/2
k=2 x(k) = µ − 1 and we obtain that the number of

trivial new non-gaps is equal to (a − 1)(µ − 1)/2 (note that µ is odd in case a
is even since (a, µ) = 1).

In case a is odd and 2 ≤ k ≤ a+1
2 one has a+1

2 ≤ a− k + 1 ≤ a− 1. In case
x
(
a+1
2

)
= 0 we conclude as before. In case x

(
a+1
2

)
= 1 the number of trivial

new non-gaps is equal to

(a−1)/2∑
k=1

x(k)(a− 1) +

(
a− 1

2

)
.

On the other hand 2
∑(a−1)/2
k=1 x(k) + 1 = µ − 1 and again we obtain again the

number of trivial new non-gaps is equal to (a− 1)(µ− 1)/2.

Corollary 10. Assume dim |naP | = n+ 2 and assume g = (a−1)(b−a+ r)/2.
Let Q is a point on C with aQ ∈ |aP | and assume Q corresponds to a cusp of
type (a − r; a) on the plane model Γ. Then WS(Q) is equal to the union S of
< a; b > and the set of trivial new non-gaps.

Proof. From Lemma 6 it follows that WS(Q) contains S. From the equality of
the numbers obtained in Lemma 7 and Lemma 1 one finds that N \ S consists
of exactly g elements. Therefore S is the Weierstrass semigroup of Q.

We are now able to prove sharpness of Corollary 4 in a lot of cases.

Corollary 11. Same assumptions as in Corollary 10. Assume the curve C
has a Weierstrass point Q 6= P with non-gaps a and b with aQ ∈ |aP |. Then
WS(P ) = WS(Q) and they are both equal to the union of < a; b > and the set
of trivial new non-gaps.

Proof. One can make a plane model once using P and once using Q applying
Corollary 10 in both cases.

Lemma 8. There exists a plane curve of degree b having a cusp of type (b−a; a)
and a cusp of type (µ; a) and no other singularities.

Proof. On P1 choose two different points P0 and Q0. Take g1a =< aP0; aQ0 >
and choose a general effective divisor E of degree b − µ on P1. Take g2b =<
(b − a)P0+ < aP0; aQ0 >;µQ + E >. This gives rise to a plane curve Γ0 of
degree b such that P0 defines a cusp of type (b − a; a) and Q0 defines a cusp
of type (µ; a). As in [4] Section 3 one can prove that all other singularities
of Γ0 are ordinary nodes. Using Tannenbaum’s result as in loc. cit. those
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nodes can be smoothed in a family of plane curves obtaining a plane curve Γ of
degree b having a cusp of type (b− a; a) and a cusp of type (µ; a) and no other
singularities.

The normalisation C of the plane curve obtained in Lemma 8 is a smooth
curve of genus g = (a− 1)(b− µ)/2. The point P corresponding to the cusp of
type (b − a; a) has non-gaps a and b. The point Q corresponding to the cusp
of type (µ; a) also has non-gaps a and b. In case dim |naP | = n + 2 then from
Corollary 11 it follows both points have Weierstrass gap sequence equal to the
union of < a; b > and the set of trivial new non-gaps. In case dim |naP | > n+ 2
then there is a non-gap of P between an and a(n + 1) different from b. This
implies the existence of non-gaps not contained in < a, b >. In case the number
of those new non-gaps is larger than (a− 1)(µ− 1)/2 this gives a contradiction.
In such cases Corollary 4 is sharp. In case b is sufficiently large with respect to
a and some integer b′ with b < b′ < (n+ 1)a is also a non-gap then the number
of non-gaps not contained in < a; b > is indeed larger than (a− 1)(µ− 1)/2 and
we obtain sharpness in Corollary 4.

4 Examples

Example 1. Assume C is a smooth curve of genus g and P is a Weierstrass
point on C with first non-gap equal to 4. Note that all Weierstrass semigroups
with first non-gap equal to 4 occur as Weierstrass semigroup of some point on
some smooth curve (see [13]). Let 4n + 1 with n ≥ 2 be a non-gap of P (in
case a = 4 this is the only possibility for b implying the existence of Weierstrass
semigroups that occur at most once of the type considered in this paper).

Assume C has a base point free linear system g14 different from |4P |. In
Lemma 3 we have to consider the possibilities e = 1 and e = 2. In case e = 1
then all integers at least 12 are non-gaps of P . In particular g ≤ 8 in case n = 2
and g ≤ 9 in case n ≥ 3. In case e = 2 then for all integers m ≥ 2, 2m a non-gap
of P . This implies g ≤ 2n + 2. In case 4n − 3 would be a non-gap of P then
g ≤ 6n−6 and in case 4n+2 or 4n+3 also would be some non-gap of P then one
concludes g ≤ 4n. In particular in case g > 6n− 6 then dim |(n+ 1)4P | = n+ 2
and the same conclusion holds in case g > 4n and 4n− 3 is a gap of P . In case
g > 4n then also e = 1 cannot occur in Lemma 3, therefore |4P | is the unique
g14 in that case.

Assume g > 4n and 4n − 3 is a gap of P . Let Q ∈ C with Q 6= P and
4Q ∈ |4P |. Then WS(Q) contains the trivial new non-gaps 8n− 2, 12n− 5 and
12n−1. Therefore, if one of them is a gap of P , then WS(P ) 6= WS(Q). In case
g = 6n−m with 0 ≤ m ≤ 2n−1 it implies < 4; 4n+1 > ∪{4i+3 : 3n−m ≤ i ≤
3n−1} is a Weierstrass semigroup that occurs at most once. The only other type
of Weierstrass semigroup occuring at most once as a corollary of the results in
this paper has genus g = 6n−2 and is equal to < 4; 4n+1 > ∪{8n−2; 12n−1}.

In case g > 6n − 2 then all Weierstrass semigroups of genus g containing
< 4; 4n+1 > occur at most once. In case g = 6n−3 then we can use Lemma 8 to
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conclude there is a smooth curve C of genus g having two different points P and
Q with WS(P ) = WS(Q) both equal to < 4; 4n+1 > ∪{8n−2; 12n−1; 12n−5}.

In case g ≡ 1 mod 3 there is exactly one Weierstrass semigroup with first
non-gap equal to 3 that occurs at most once. For other values of g such Weier-
strass semigroup does not exist. In case g is a large integer then g can be written
as 6n−m with 0 ≤ m ≤ 2n− 1 in many ways. This implies for all integers N
there is a bound g(N) such that for g ≥ g(N) there are at least N Weierstrass
semigroups of genus g with first non-gap equal to 4 that occur at most once.

Example 2. Assume C is a smooth curve of genus g and P is a Weierstrass
point on C with first non-gap equal to 5. Note that all Weierstrass semigroups
with first non-gap equal to 5 occur as Weierstrass semigroup of some point on
some smooth curve (see [14]). Let b = 5n+ r with 1 ≤ r ≤ 3 and n ≥ 2 in case
r = 1 be another non-gap of P not divisible by 5. Assume C has a base point
free g15 different from |5P |. In Lemma 3 we only have to consider the possibility
e = 1. In that case all integers at least 20 need to be non-gaps of P . This
implies g ≤ 16. In case n = 3 it implies g ≤ 15 and in case n = 2 it implies
g ≤ 14. In case b = 8 it implies g ≤ 12 and in case b = 7 it implies g ≤ 11. In
all other cases |5P | is the only g15 on C. In case there are two non-gaps x of P
satisfying 5n < x < 5(n + 1) then g ≤ 6n + 3. In case 5(n − 1) + r is also a
non-gap of P then g ≤ 10n− 12 + 2r. This implies dim |(n+ 1)5P | = n+ 2 in
case g > 10n − 12 + 2r and also in case g > 6n + 3 provided 5(n − 1) + r is a
gap of P .

In case r = 1 and dim |(n + 1)5P | = n + 2 a Weierstrass semigroups of
genus g containing < 5; 5n + 1 > and not containing the set {10n − 3; 15n −
7; 15n − 2; 20n − 11; 20n − 6; 20n − 1} occurs at most once unless g ≤ 14 in
case n = 2. Consider the case g = 10n − 6. Then 5n − 4 is a gap of P . In
case n ≥ 3 we also have 6n + 3 < 10n − 6, hence dim |5(n + 1)P | = n + 2.
We can apply Lemma 8 to obtain that all Weierstrass semigroups of genus
10n − 6 containing < 5; 5n + 1 > occur at most once except for < 5; 5n + 1 >
∪{10n−3; 15n−7; 15n−2; 20n−11; 20n−6; 20n−1} (those are the trivial new
non-gaps in this case). There do exist smooth curves of genus 10n − 6 having
two different Weierstrass points having that particular Weierstrass semigroup.

More concretely, for n ≥ 4 and all non-negative integers m; m′ satisfying
m ≤ n+m′; 2m+1 ≥ m′; m+m′ > 2n the Weierstrass semigroups < 5; 5n+1 >
∪{5i+3 : m′ ≤ i ≤ 3n}∪{5i+4 : m ≤ i ≤ 4n} occur at most once. In particular
we obtain Weierstrass semigroups having g = 3n + m + m′ − 2 gaps. In case
m + m′ < 7n − 3 this is smaller than te genus bound 10n − 5 coming from
Theorem B. As an example, choosing m = n+ 1 and m′ = n all inequalities are
satisfied and the Weierstrass semigroup obtained using those values has genus
5n-1.

In case r = 2 and n = 1 then as soon as g < 12 it is possible that C has
some g15 different from |5P |. This is clear, if the plane model Γ used in Section
3 has one more singular point S 6= P then the pencil of lines through S induces
a base point free g1k for some k ≤ 5 on C. However using different methods it is
proved in [5] that a curve C of genus g = 11 has at most one Weierstrass point
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with Weierstrass semigroup containing < 5; 7 > (see also Lemma 9).
In case n ≥ 2 and dim |(n+1)5P | = n+2 a Weierstrass semigroups of genus

g containing < 5; 5n+ 2 > and not containing the set {10n− 1; 15n+ 1; 20n−
2; 20n+ 3} occurs at most once unless g ≤ 14 in case n = 2. Consider the case
g = 10n+ 1. Then 5n− 3 is a gap of P , otherwise < 5; 5n− 3 >⊂WS(P ) and
therefore g ≤ 10n − 8. In case n ≥ 2 we also have 6n + 3 < 10n + 1, hence
dim |5(n + 1)P | = n + 2. Again we can obtain Lemma 8 to obtain sharpness
of the uniqueness results. We leave it to the reader to obtain a more concrete
description of the Weierstrass semigroups occuring at most once obtained in the
paper.

In case r = 3 and dim |(n+ 1)5P | = n+ 2 we have uniqueness of Weierstrass
semigroups of genus g containing < 5; 5n + 3 > and not containing the set
{15n+ 4; 20n+ 7} unless g ≤ 12 in case n = 1. Consider the case g = 10n+ 4.
Then 5n− 2 is a gap of P and 6n+ 3 ≤ 10n+ 4, hence dim |5(n+ 1)P | = n+ 2
for n ≥ 1. Again we can apply Lemma 8 obtaining sharpness of the uniqueness
results. A more concrete description of the Weierstrass semigroups occuring at
most once is very similar to the description obtained in Example 1

Example 3. For the case a = 6 we only need to consider a non-gap 6n+1 with
n ≥ 2. In case there is a non-gap between 6n+1 and 6n+6 then g ≤ 9n + 1.
The bound in Corollary 4 is g > 15n− 10. We consider the case g = 15n− 10.

Since 9n+ 1 < 15n− 10 there are no non-gaps between 6n+ 1 and 6n+ 6 in
case g = 15n− 10. Also in case 6n− 5 would be a non-gap then g ≤ 15n− 15.
This implies dim |(n+ 1)6P | = n+ 2. Assume C has another g16 different from
|6P |. In Lemma 3 we need to consider the cases e = 1; 2 and 3. In case e = 1
then all integers at least 30 are non-gaps. This implies the existence of more
than 10 non-gaps outside < 6; 6n + 1 > in case n ≥ 3. In case e = 2 then all
even integers at least equal to 12 are non-gaps. This implies the existence of
6n − 4 non-gaps outside < 6; 6n + 1 >. In case n ≥ 3 we obtain more than 10
non-gaps outside < 6; 6n + 1 >. In case e = 3 then all integers divisible by 3
and at least equal to 6 are non-gaps. In case n ≥ 3 this implies 3n-1 non-gaps
outside < 6; 6n + 1 >. In case n ≥ 4 it implies the existence of more than 10
non-gaps outside < 6; 6n+ 1 >. Therefore only in case n ≥ 4 the linear system
g16 is unique.

This example gives an illustration of the fact that e > 1 in Lemma 3 can
impose conditions in applying the results of this paper. The following conclusion
can only be made in case n ≥ 4. For g > 15n− 10 all Weierstrass semigroups of
genus g containing < 6; 6n+ 1 > occur at most once. In case g = 15n− 10 the
only Weierstrass semigroup of genus g containing < 6; 6n + 1 > and occuring
more than once is equal to < 6; 6n + 1 > ∪{12n − 4; 18n − 9; 18n − 3; 24n −
12; 24n− 8; 24n− 4; 30n− 19; 30n− 13; 30n− 7; 30n− 1}.

In case n = 1 in general Lemma 3 does not imply uniqueness of g1a in

case g ≥ (a−1)(b−a+r)
2 . In this case we can use another argument to conclude

uniqueness of Weierstrass semigroups containing < a; a+r > with 1 ≤ r ≤ a−2
and (a, r) = 1.
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Lemma 9. Fix an integer r ≥ 2. There is a bound A(r) such that in case a ≥
A(r), (a, r) = 1 and g > (a+r−1)(a−r)

2 then a smooth curve C of genus g has at
most one Weierstrass point whose Weierstrass semigroup contains < a; a+ r >.

Proof. As a matter of fact, there is a genus bound g(a; r) obtained in [1] ,
Theorem 4.3, such that in case C is a smooth curve of genus g ≥ g(a; r) then
C has at most one simple g2a+r. This genus bound behaves like a polynomial

in a with highest order term a2

3 . Since (a−1)(b−1)
2 is polynomial with highest

order term a2

2 it implies that for small e ≥ 1 one has (a−1)(b−1)
2 − e ≥ g(a; r)

if a >> 0. In such case, if P and Q are two different Weierstrass points on
C such that WS(P ) and WS(Q) both contain < a; a + r > then we obtain
|(a + r)P | = |(a + r)Q|. In particular P and Q have to induce both a cusp of
type (r; a + r) on the same plane model Γ of C (as considered in Section 3).
This implies

g ≤ (a+ r − 1)(a− r)
2

.

This genus bound is polynomial with highest order term equal to a2

2 , hence
for a >> 0 this bound is larger than g(a; r). This implies that in case g >
(a+r−1)(a−r)

2 and a >> 0 then a curve C of genus g has at most one Weierstrass
point with Weierstrass semigroup containing < a; a+ r >.

In case r = 2 this is part of the arguments used in [5] and using more
detailled arguments one obtains clear and good genus bounds. It should be
noted that in case a >> 0 this bound on g is sharp. One can make use of plane
rational curves having two cusps of type (r; a + r) as follows. Choose P and
Q different points on P1. Let E be a general effective divisor of degree a − r
on P1 and consider the pencil rP+ < aP ; rQ + E >, a g1a+r on P1. Then take
g2b =< (a+r)Q; rP+ < aP ; rQ+E >>. Then using arguments as those used in
[4], Section 3, one can show that there exists a plane curve of degree a+r having
exactly two cusps of type (r; a+r) and no other singularities. The normalisation

C of this curve has genus (a+r−1)(a−1)
2 and has two different Weierstrass points

whose Weierstrass semigroups contain < a; a+ r >.
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