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Abstract: In this paper, periodic sequences with period N and nonlinear complexity

N − 2 are investigated. A necessary and sufficient condition for characterizing such

sequences is established, and a recursive method is proposed to generate all possible

binary sequences with period N and nonlinear complexity N −2. The exact number

of such sequences is also determined.
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1 Introduction

Pseudorandom sequences have been widely used in cryptography [13]. The complexity of a

sequence is one of the important measures to assess the security level of the sequence. Sequences

can be generated efficiently by employing feedback shift registers (FSRs). The most commonly

used approach to measure complexity is henceforth by the length of the shortest feedback shift

register that can generate a given sequence. When the feedback function of the FSR is restricted

to be linear (resp. of degree at most k), the complexity is known as linear complexity (resp.

k-th order complexity). When there is no restriction on the degree of the feedback function, it

is referred to as nonlinear complexity, also called maximum order complexity.

Linear complexity of pseudorandom sequences has been extensively investigated in [2, 3, 7, 8,

9, 10, 14, 16], whereas k-th order complexity and nonlinear complexity have not been studied to

the same extent due to its intractability. The problem of determining the nonlinear complexity

of sequences was highlighted by Jansen [5] and Jansen and Boekee [6]. Chan and Games in [1]
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proposed an algorithm for computing the second-order complexity of a binary sequence. This

algorithm has been further improved by Rizomiliotis et al in [19], and extended to the case

of nonlinear complexity [18]. By applying Boolean algebra arguments, Limniotis et al. in [11]

developed a recursive algorithm that computes the feedback function of the shortest nonlinear

feedback shift register. The theoretical bounds and behavior of nonlinear complexity of random

sequences have also received considerable attention. Erdmann and Murphy in [4] presented

a way to approximate the distribution of the nonlinear complexity and constructed statistical

tests for random sequences. Recently, Xing and Niederreiter in [15] improved lower bounds

on nonlinear complexities of some pseudorandom sequences and showed probabilistic result on

the behavior of nonlinear complexities of random sequences. Petrides and Mykkeltveit in [17]

investigated the classification of periodic binary sequences into nonlinear complexity classes.

They only determine the number of sequences with maximum nonlinear complexity and left the

other cases as open problems. This motives us to study the other sequences with given nonlinear

complexity.

The problem of designing sequences with large nonlinear complexity was first investigated

by Rizomiliotis [20], where two methods for constructing period binary sequences with given

linear complexity and maximum nonlinear complexity were proposed. The nonlinear complexity

of a sequence of periodic N is upper bounded by N − 1 [5]. Sun et al. in [21] proposed a

recursive approach that generates all periodic sequences with maximum nonlinear complexity

and analyzed the randomness properties of such sequences. Recently, Luo et al. presented

a construction of sequences with high nonlinear complexity from function fields [12]. It is of

interesting to construct new sequences with high nonlinear complexity.

The purpose of this paper is to study periodic sequences with period N and nonlinear com-

plexity N − 2, which will be called near maximum nonlinear complexity sequences accordingly.

We first establish a necessary and sufficient condition for a sequence to achieve near maximum

nonlinear complexity. This enables us to completely determine the structure of near maximum

nonlinear complexity binary sequences. Based on the structural properties, we propose a re-

cursive construction of all near maximum nonlinear complexity binary sequences with arbitrary

period. We also determine the exact number of near maximum nonlinear complexity binary

sequences of period N up to shift equivalence. Our results completely characterize a class of

sequences with given nonlinear complexity, which resolves a special case in the classification of

periodic binary sequences into nonlinear complexity classes [17]. Moreover, the near maximum

nonlinear complexity sequences can be served as a basis in constructing new sequences with high

nonlinear complexity. It is worth noting that the near maximum nonlinear complexity sequences

have more complicated structures than those with maximum nonlinear complexity, which might

be preferable in certain applications.
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The main technique used in this paper is to divide a period into several disjoint subsets and

then show that the items in each subset take identical values. Our methods are inspired by the

previous work [21] in which one only needs to discuss two complementary subsets of a period.

However, to analyze sequences in this paper we construct three disjoint subsets in three cases

respectively, which means much more cases need to be treated.

The remainder of this paper is organized as follows. Section 2 first introduces some neces-

sary notations and basic results. Then the aforementioned necessary and sufficient condition

is proved. The construction of all binary near maximum nonlinear complexity sequences is de-

scribed in Section 3. Moreover, the total number of the sequences is determined in Section 4.

Finally, Section 5 concludes the study.

2 Preliminaries

First we introduce some basic notations that are needed throughout this paper.

• We denote a sequence s∞ = s0s1 · · · si · · · with least period N by sN = s0s1 · · · sN−1 since

it is completely specified by the elements of a single period.

• Given a sequence s∞ = s0s1 · · · si · · · , we denote the ith subsequence of length n (or the ith

n-tuple) by si+n−1
i , that is, si+n−1

i = sisi+1 · · · si+n−1.

• We denote the concatenation of two finite sequences s = s0s1 · · · sk−1 and t = t0t1 · · · tn−1
by st = s0s1 · · · sk−1t0t1 · · · tn−1, and denote the concatenation of m copies of the sequence

s by sm = (s0s1 · · · sk−1)m.

• Zn = {0, 1, · · · , n− 1} denotes the residue class ring modulo n for a positive integer n.

• Define that A mod p = {x mod p |x ∈ A}, where A is a set of integers and p is a positive

integer.

Some definitions and useful properties of nonlinear complexity of a periodic sequence are

characterized below.

Definition 1. ([5]) The nonlinear complexity C(sN ) of a periodic sequence sN is defined as

the smallest positive integer m for which there exists a polynomial f ∈ Fq[x1, x2, . . . , xm] such

that si+m = f(si, si+1, . . . , si+m−1) for all 0 ≤ i ≤ N − 1, where Fq[x1, x2, . . . , xm] is the ring of

polynomials over the finite field Fq in the m variables x1, x2, . . . , xm.

3



Definition 2. Let L denote the cyclic left shift operation of a periodic sequence sN which is

defined by L(sN ) = s1s2 · · · sN−1s0. And for any integer e > 1, Le(sN ) = sese+1 · · · sN−1s0 · · ·
se−1. Let sN and s′N be two periodic sequences. If there exists an positive integer e < N such

that s′N = Le(sN ), then we say that sN and s′N are shift equivalent. Otherwise, we say that sN

and s′N are shift-distinct.

Lemma 1. ([5]) Let sN be a periodic sequence. Then

(i) the nonlinear complexity of sN is the smallest integer c such that all c-tuples (sisi+1 . . .

si+c−1) for 0 ≤ i ≤ N − 1 are different, where the subscripts i in si are taken modulo N .

(ii) the nonlinear complexity of sN is equal to l+ 1, where l is the length of the longest tuple

in sN that occurs at least twice with different successors.

(iii) the shift equivalent sequences of sN have the same nonlinear complexity.

(iv) the maximal nonlinear complexity of sN is N − 1.

Now we present a necessary and sufficient condition for a periodic sequence sN to have

nonlinear complexity N − 2.

Lemma 2. Let sN be a periodic sequence with N ≥ 4 and not shift equivalent to (α)N−1β, where

α and β are two distinct elements of an arbitrary finite field Fq. Then the nonlinear complexity

C(sN ) = N − 2 if and only if there exist two integers h and c with 0 ≤ h < h+ c ≤ N − 1 such

that

sN+h−4
h = sN+h+c−4

h+c , sN+h−3 6= sN+h+c−3 and sN+h−1 6= sN+h+c−1, (1)

Proof. If C(sN ) = N − 2, then by Lemma 1 (i) there exist two (N − 3)-tuples, say sN+h−4
h and

sN+h+c−4
h+c , such that sN+h−4

h = sN+h+c−4
h+c and sN+h−3 6= sN+h+c−3. Now suppose sN+h−1 =

sN+h+c−1, then we obtain two identical (N − 2)-tuples with different successors in sN due to

the periodicity, i.e., sN+h−4
h−1 = sN+h+c−4

h+c−1 and sN+h−3 6= sN+h+c−3 for h ≥ 1, sN+c−4
c−1 = s2N−4N−1

and sN+c−3 6= s2N−3 for h = 0. It follows from Lemma 1 (ii) that C(sN ) = N − 1, which is a

contradiction.

Conversely, since there exist two identical (N − 3)-tuples sN+h−4
h and sN+h+c−4

h+c in sN , it

follows from Lemma 1 (ii) that C(s) ≥ N − 2. Thus, it suffices to show that C(s) ≤ N − 2.

By Lemma 1 (i), this is equivalent to show N tuples of length (N − 2) in sN , i.e., si+N−3
i for

0 ≤ i ≤ N − 1 are all different.

Note that the nonlinear complexity of a periodic sequence remains unchanged up to a cyclic

shift operation by Lemma 1 (iii). Therefore, we may assume without loss of generality that

h = 0 and 1 ≤ c ≤ bN2 c. That is to say, we suppose there exists an integer c with 1 ≤ c ≤ bN2 c
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such that

sN−40 = sN+c−4
c , sN−3 6= sN+c−3 and sN−1 6= sN+c−1. (2)

Furthermore, we suppose, on the contrary, that there are two (N − 2)-tuples in sN that are

identical, say

sd+N−3
d = sd+e+N−3

d+e with 0 ≤ d < d+ e ≤ N − 1. (3)

Next we will show that it is impossible for a sequence of period N ≥ 4 to satisfy both (2) and

(3), other than those shift equivalent to (α)N−1β. According to the size of e, we divide the proof

into three cases.

Case 1: e = 1. It follows from (3) that sd = sd+1 = · · · = sd+N−2. That means the sequence

sN is shift equivalent to (α)N−1β. This contradicts the assumption that sN is not shift equivalent

to (α)N−1β.

Case 2: e = 2. In this case we distinguish the cases of even and odd N . If N is even, then

it follows from (3) that for any nonnegative integers i, j, si = sj if and only if i ≡ j (mod 2).

But we also have s0 = sc and sN−1 6= sN+c−1 by (2), which imply c ≡ 0 (mod 2) and N − 1 6≡
N + c− 1 (mod 2), an obvious contradiction.

Now we assume N is odd. Then from (3) we get that for i, j ∈ {d, d+ 1, . . . , N + d− 1},

si = sj if and only if i ≡ j (mod 2). (4)

When d = 0, we have s0 = sc by (2), and hence c is even by (4). Since N − 3 and N + c− 3 are

both even and sN−3 6= sN+c−3, we get c ≥ 4, and then N−c ≤ N−4. Therefore, sN−c = sN = s0

by (2), which is a contradiction since N − c 6≡ 0 (mod 2). It implies that d ≥ 1. Then for even

d, we have

sd = sd+2 = · · · = sN−1 = s1 = s3 = · · · = sd−1,

sd+1 = sd+3 = · · · = sN−2 = s0 = s2 = · · · = sd−2,

and for odd d, we have

sd = sd+2 = · · · = sN−2 = s0 = s2 = · · · = sd−1,

sd+1 = sd+3 = · · · = sN−1 = s1 = s3 = · · · = sd−2.

Note that sN−1 6= s0 whenever d ≥ 1. Furthermore, we have s0 = sc and sN−1 6= sc−1, and

thus s0 = sc−1 = sc. This happens only if d is odd and c = d. Since both N and d are odd and

d + e ≤ N − 1, we have 0 < d ≤ N − 4. It follows from (2) that sd = s2d, which is impossible

because d < 2d < d+N − 1 and d 6≡ 2d (mod 2).
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Case 3: e ≥ 3. Then we have d+ e ≤ N − 1 ≤ N + d+ e− 3, and since sN+d−3
d = sN+d+e−3

d+e ,

we get

sN−1 = sN−e−1.

We also have 0 ≤ N − e− 1 ≤ N − 4 in this case, and from sN−40 = sN+c−4
c we get then

sN−e−1 = sN+c−e−1.

When e+ d− c ≥ 2, we have d ≤ N + c− e− 1 ≤ N + d− 3. It follows from sN+d−3
d = sN+d+e−3

d+e

that

sN+c−e−1 = sN+c−1.

When e+ d− c < 0, we have d ≤ c− e− 1 < N + d− 3. Then with sN+d−3
d = sN+d+e−3

d+e and the

periodicity of the sequence we get

sN+c−e−1 = sc−e−1 = sc−1 = sN+c−1.

Altogether, we have sN−1 = sN+c−1 whenever e + d − c ≥ 2 or e + d − c < 0, which is a

contradiction.

In the remaining case we have e+ d− c = 0 or 1. We note first that c 6= N
2 for even N with

N ≥ 6, for otherwise c− 1 = N
2 − 1 ≤ N − 4 would imply that SN+c−1 = sc−1 = s2c−1 = sN−1,

a contradiction. Together with e ≥ 3 and 1 ≤ c ≤ bN2 c, we obtain e+ d ≤ N − 3 except for two

special cases where N = 5, e = 3, d = 0, c = 2 and N = 4, e = 3, d = 0, c = 2. One can verify

that it is impossible for (2) and (3) to be satisfied at the same time in these two cases. Now we

assume e+ d ≤ N − 3, then from sN+d−3
d = sN+d+e−3

d+e , we get

sN−3 = sN−e−3.

Moreover, we have 0 ≤ N − e− 3 < N − 4 and d ≤ N + c− e− 3 ≤ d+N − 3. It follows then

from sN−40 = sN+c−4
c and sN+d−3

d = sN+d+e−3
d+e that

sN−e−3 = sN+c−e−3 and sN+c−e−3 = sN+c−3.

Therefore, we obtain sN−3 = sN+c−3, a contradiction.

The proof is completed.

3 Binary near maximum nonlinear complexity sequences

In the present paper, we shall focus on the binary case. Specifically, we shall explore the

structure of binary sequences sN with period N ≥ 4 and nonlinear complexity N−2. By Lemma
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2, we can assume that there exists an integer c with 1 ≤ c ≤ N − 1 such that

sN−40 = sN+c−4
c , sN−3 6= sN+c−3 and sN−1 6= sN+c−1. (5)

For N = 4, it is easily to verify that there is, up to shift equivalence, only one binary sequence

with nonlinear complexity N − 2.

Proposition 1. Up to shift equivalence, the unique binary periodic sequence with period N = 4

and nonlinear complexity N − 2 is sN = 0011.

3.1 Necessary conditions

For N > 4, we first characterize the property of the positive integer c in (5).

Proposition 2. Let sN be a periodic binary sequence with N > 4 and C(sN ) = N − 2, and let

c be the positive integer such that sN satisfies the condition (5). Then:

(i) If N is even, then gcd (N, c) ≤ 2.

(ii) If N is odd, then gcd (N, c) = 1 and c 6= 2, N − 2.

Proof. Let d = gcd (N, c), e = N
d and f = c

d . We first show that d ≤ 2 for any N > 4. Suppose,

on the contrary, that d ≥ 3. Define d sets

Hk = {(c− k + tc) mod N | t = 0, 1, · · · , e− 1} for k = 1, 2, · · · , d.

Since gcd (e, f) = 1, we have

Hd = {(c− d+ tc) mod N | t = 0, 1, · · · , e− 1}

= {(fd− d+ tfd) mod ed | t = 0, 1, · · · , e− 1}

= {td mod N | t = 0, 1, · · · , e− 1} .

It is easily seen that Hd is an additive subgroup of ZN and Hk = Hd + d − k for all k ∈
{1, 2, · · · , d− 1}, so that

Hi ∩Hj = ∅ for i 6= j and
d⋃

i=1

Hi = ZN .

Furthermore, c− k + (e− 1)c = ec− k = c
dN − k ≡ N − k (modN), that is to say, N − k ∈ Hk

for all k ∈ {1, 2, · · · , d}. Then neither of N − 2 and N − 3 is in H1 since d ≥ 3. Together with

the condition si = s(i+c)modN for 0 ≤ i ≤ N − 4 in (5), we obtain si = sj for any i, j ∈ H1,

which implies sc−1 = sN−1, a contradiction to the condition sN−1 6= s(N+c−1) mod N in (5).
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Since for odd integer N , gcd (N, c) ≤ 2 implies gcd (N, c) = 1, it remains to show that c 6= 2

and c 6= N − 2 for odd N . If c = 2, then the condition si = s(i+c)modN for 0 ≤ i ≤ N − 4 in (5)

implies that s0 = s2 = · · · = sN−3 and s1 = s3 = · · · = sN−2. Together with sN−3 6= sN−1 and

sN−1 6= s1, one obtains that the items of the binary sequence sN must satisfy that s0 = s1 =

s2 = · · · = sN−2 6= sN−1. Without loss of generality, by taking sN−2 = α and sN−1 = β, where

α, β ∈ F2 and α 6= β, we obtain that sN = (α)N−1β. If c = N − 2, we can similarly obtain from

the condition (5) that si = s0 if and only if i ∈ ZN\{N − 3}, and hence the binary sequence sN

is of the form sN = (α)N−3βαα, which is shift equivalent to sN = (α)N−1β. But the nonlinear

complexity of the sequence sN = (α)N−1β is N − 1, which is a contradiction.

We consider first two special cases, c = 1 and c = 2 for even N .

Proposition 3. Let sN be a periodic binary sequence with N > 4 and nonlinear complexity

N − 2, and let c be the positive integer in (5). Then

(i) for c = 1, the sequence sN , up to shift equivalence, has the form (α)N−2ββ, where

α, β ∈ F2 and α 6= β;

(ii) for even N and c = 2, the sequence sN , up to shift equivalence, has the form (αβ)
N−2

2 αα,

where α, β ∈ F2 and α 6= β.

Proof. (i) For c = 1, the condition (5) is equivalent to s0 = s1 = s2 = · · · = sN−4 = sN−3

and sN−3 6= sN−2, sN−1 6= s0. Since the sequence is binary, it follows that s0 = s1 = s2 =

· · · = sN−4 = sN−3 6= sN−2 = sN−1. Without loss of generality, by taking sN−3 = α and

sN−2 = β, where α, β ∈ F2 and α 6= β, then the sequence sN , up to shift equivalence, has the

form (α)N−2ββ.

(ii) For even N and c = 2, the conditions in (5) are equivalent to s0 = s2 = · · · = sN−4 =

sN−2, s1 = s3 = · · · = sN−5 = sN−3, and sN−3 6= sN−1, sN−1 6= s1. For a binary sequence, that

is to say, s0 = s2 = · · · = sN−2 = sN−1 and s1 = s3 = · · · = sN−3, or s0 = s1 = · · · = sN−2 6=
sN−1. In the former case, take sN−1 = α and sN−3 = β, where α, β ∈ F2 and α 6= β. then we

get a binary sequence (αβ)
N−2

2 αα. In the latter case, take sN−2 = α and sN−1 = β, then we get

another binary sequence (α)N−1β, which can be verified to have nonlinear complexity N − 1, a

contradiction. Thus the desired result follows.

Next we shall investigate the general case, i.e., the case c = p, where p is an integer such that

3 ≤ p ≤ N − 1. By Proposition 2, p must satisfy gcd (N, p) ≤ 2. At this point it is convenient

to divide the discussion into two subcases gcd (N, p) = 1 and gcd (N, p) = 2. We first define the

following sets and discuss their properties.
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For any two positive integers n and q with 3 ≤ q ≤ n − 1 and gcd (n, q) = 1, according to

Bezout’s Lemma, there exist uniquely determined positive integers u ∈ Zn and v ∈ Zq satisfying

uq − vn = 1. When u < n
2 , define three sets

H1(n, q) = {(q − 1 + tq) mod n | t = 0, 1, · · · , n− 2u− 1},
H2(n, q) = {(q − 2 + tq) mod n | t = 0, 1, · · · , u− 1},
H3(n, q) = {(q − 3 + tq) mod n | t = 0, 1, · · · , u− 1}.

(6)

When u > n
2 , define three sets

I1(n, q) = {(q − 1 + tq) mod n | t = 0, 1, · · · , n− u− 1},
I2(n, q) = {(q − 2 + tq) mod n | t = 0, 1, · · · , n− u− 1},
I3(n, q) = {(q − 3 + tq) mod n | t = 0, 1, · · · , 2u− n− 1}.

(7)

For any two positive integers n and q with 3 ≤ q ≤ n − 1 and gcd (n, q) = 2, also by

Bezout’s Lemma, there exist uniquely determined positive integers u ∈ Zn
2

and v ∈ Z q
2

satisfying

u · q2 − v ·
n
2 = 1 since gcd (n2 ,

q
2) = 1. Define three sets

D1(n, q) = {(q − 1 + tq) mod n | t = 0, 1, · · · , n2 − u− 1},
D2(n, q) = {(q − 2 + tq) mod n | t = 0, 1, · · · , n2 − 1},
D3(n, q) = {(q − 3 + tq) mod n | t = 0, 1, · · · , u− 1}.

(8)

The following properties of the defined sets are of great importance. The proofs will be given

in Appendix A.

Lemma 3. Let q be an integer with 3 ≤ q ≤ n − 1 and gcd (n, q) = 1. Let u ∈ Zn and v ∈ Zq

be the integers satisfying uq − vn = 1. Then:

(i) when u < n
2 , {Hi(n, q) | i = 1, 2, 3} forms a partition of Zn, and n−1, n−2, n−3 belong

to H2(n, q), H3(n, q) and H1(n, q), respectively.

(ii) when u > n
2 , {Ii(n, q) | i = 1, 2, 3} forms a partition of Zn, and n− 1, n− 2 and n− 3

belong to I3(n, q), I1(n, q) and I2(n, q), respectively.

Lemma 4. Let q be an integer with 3 < q < n− 1 and gcd (n, q) = 2. Let u ∈ Zn
2

and v ∈ Z q
2

be the integers satisfying u · q2 − v ·
n
2 = 1. Then {Di(n, q) | i = 1, 2, 3} forms a partition of Zn,

and n− 1, n− 2, n− 3 belong to D3(n, q), D2(n, q), D1(n, q), respectively.

After the above preparations, we can now treat the case where c satisfies 3 ≤ c ≤ N − 1 and

the necessary conditions in Proposition 2. We first show an equivalent expression of a binary

periodic sequence sN satisfying the condition (5). This expression is related to the sets defined

in (6), (7) and (8).
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Proposition 4. Let sN be a periodic binary sequence with N > 4, c be the positive integer such

that sN satisfies the condition (5).

(i) For c = p with gcd (p,N) = 1, 3 ≤ p ≤ N − 1 and p 6= N − 2, let a ∈ ZN and b ∈ Zp be

the uniquely determined integers satisfying ap− bN = 1. If a < N
2 , then the condition (5) holds

if and only if for i ∈ ZN ,

si =

{
α, if i ∈ H1(N, p);

β, if i ∈ H2(N, p) ∪H3(N, p).

where α, β ∈ F2 and α 6= β. If a > N
2 , then the condition (5) holds if and only if for i ∈ ZN ,

si =

{
α, if i ∈ I3(N, p);
β, if i ∈ I1(N, p) ∪ I2(N, p),

where α, β ∈ F2 and α 6= β.

(ii) For c = p with gcd (p,N) = 2 and 3 < p < N − 2, let e ∈ ZN
2

and f ∈ Z p
2

be the integers

satisfying e · p2 − f ·
N
2 = 1. Then the condition (5) holds if and only if for i ∈ ZN ,

si =

{
α, if i ∈ D1(N, p);

β, if i ∈ D2(N, p) ∪D3(N, p).

or

si =

{
α, if i ∈ D3(N, p);

β, if i ∈ D1(N, p) ∪D2(N, p).

where α, β ∈ F2 and α 6= β.

Proof. (i) For c = p with gcd (p,N) = 1, 3 ≤ p ≤ N − 1 and p 6= N − 2, we only prove the case

a < N
2 , and the case a > N

2 can be proved similarly, so we skip it here. When a < N
2 , it follows

from Lemma 3 and its proof that {Hi(N, p) | i = 1, 2, 3} forms a partition of ZN and N − 1 ≡
p−2+(a−1)p (modN), N−2 ≡ p−3+(a−1)p (modN), N−3 ≡ p−1+(N−2a−1)p (modN).

Thus we get

H1(N, p) \ {N − 3} ⊂ ZN−3, H2(N, p) \ {N − 1} ⊂ ZN−3 and H3(N, p) \ {N − 2} ⊂ ZN−3.

Consequently, the condition si = s(i+p)modN for each i ∈ ZN−3 in (5) is equivalent to

si = sj for any two integers i, j ∈ Hk(N, p), k = 1, 2, 3.

Furthermore, the conditions sN−3 6= s(N+p−3) mod N and sN−1 6= s(N+p−1) mod N in (5) are

equivalent to sN−3 6= sp−3 and sN−1 6= sp−1 since 3 ≤ p ≤ N − 1. Hence, if we restrict to binary

sequences, then the condition (5) is equivalent to

si = sj if and only if either i, j ∈ H1(N, p) or i, j ∈ H2(N, p) ∪H3(N, p),
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because of the fact that N −1 ∈ H2(N, p) and N −3 ∈ H1(N, p). By taking sp−1 = α, sp−3 = β,

we get the desired result.

(ii) For c = p with gcd (p,N) = 2 and 3 < p < N − 2, it follows from Lemma 4 that

{Di(N, p) | i = 1, 2, 3} forms a partition of ZN and N − 1 ≡ p− 3 + (e− 1)p (modN), N − 2 ≡
p− 2 + (N2 − 1)p (modN), N − 3 ≡ p− 1 + (N2 − e− 1)p (modN). Thus we have

D1(N, p) \ {N − 3} ⊂ ZN−3, D2(N, p) \ {N − 2} ⊂ ZN−3 and D3(N, p) \ {N − 1} ⊂ ZN−3.

Therefore, the condition si = s(i+p)modN for each i ∈ ZN−3 in (5) is equivalent to

si = sj for any integers i and j belonging to the same set Dk(N,P ) with k = 1, 2, 3.

If we restrict to binary sequences, then by the same argument as in the proof of (i), the condition

(5) is equivalent to

si = sj if and only if either i, j ∈ D1(N, p) or i, j ∈ D2(N, p) ∪D3(N, p),

or si = sj if and only if either i, j ∈ D3(N, p) or i, j ∈ D1(N, p) ∪D2(N, p).

In the former case, take sp−1 = α, sp−3 = β, and in the latter case, take sp−3 = α, sp−2 = β,

the desired results are obtained.

3.2 Recursive characterizations

Throughout what follows, we let sN (c) denote the periodic binary sequence satisfying the

condition (5) for a given positive integer c, that is, the items of the sequence satisfy

si = si+c for i = 0, 1, · · · , N − 4, and sN−3 6= sN+c−3, sN−1 6= sN+c−1.

We observe that for c = p with 3 ≤ p ≤ N −1, the structure of sN (p) is related to the remainder

r of N divided by p. We first discuss the special cases r = 1 and r = 2.

Proposition 5. (i) Let N = mp+ 1 with 3 ≤ p ≤ N − 1. Then sN (p), up to shift equivalence,

has the form

sN (p) = ((α)p−2ββ)mα,

where α, β ∈ F2 and α 6= β;

(ii) Let N = mp+ 2 with p odd, 3 ≤ p ≤ N − 1, and p 6= N − 2. Then the sequence sN (p),

up to shift equivalence, has the form

sN (p) = ((β)p−1α)mββ,
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where α, β ∈ F2 and α 6= β;

(iii) Let N = mp+ 2 with p even and 3 < p < N − 1. Then for even p = N − 2 the sequence

sN (p), up to shift equivalence, has the form

sN (p) = (αβ)
N−2

2 αα,

and for p 6= N − 2 the sequence sN (p), up to shift equivalence, has the form

sN (p) = ((β)p−1α)mββ or ((βα)
p−2
2 ββ)mβα,

where α, β ∈ F2 and α 6= β.

Proof. (i) Note that N = mp+1 implies gcd (N, p) = gcd (p, 1) = 1 and (N−m)p−N(p−1) = 1.

It is easily seen N
2 < N −m < N , so that the items si for i ∈ ZN in the binary sequence sN (p)

satisfy

si =

{
α, if i ∈ I3(N, p);
β, if i ∈ I1(N, p) ∪ I2(N, p),

by Proposition 4 (i). Recall that Amod p denotes {xmod p |x ∈ A}, where A is a set of some

integers. Since p− 1 + (m− 1)p = mp− 1 = N − 2 and p− 1 + tp < N for t = 0, 1, · · · ,m− 1,

it follows that I1(N, p) mod p = {p − 1}. Similarly, we have I2(N, p) mod p = {p − 2}. Next

we shall show that I3(N, p) mod p = {0, 1, · · · , p − 3}. Let x = (p − 3 + txp) modN with

0 ≤ tx ≤ N − 2m− 1 be an arbitrary integer belonging to I3(N, p). Then there exists a unique

nonnegative integer jx = bp−3+txp
N c such that x = p− 3 + txp− jxN , so that

x = p− 3 + txp− jx(mp+ 1) ≡ −3− jx (mod p).

It is straightforward to verify that as tx runs through the numbers 0, 1, · · · , N − 2m − 1, jx

runs through the numbers 0, 1, · · · , p−3, and so does x (mod p). Thus we have I3(N, p) mod p =

{0, 1, · · · , p−3}. By what we have already shown, the items si for i ∈ ZN in the binary sequence

sN (p) satisfy

si =

{
α, if (i mod p) ∈ {0, 1, · · · , p− 3};
β, if (i mod p) ∈ {p− 1, p− 2}.

This indicates that the sequence has the form ((α)p−2ββ)mα.

(ii) Note that N = mp + 2 and p odd imply that gcd (N, p) = gcd (p, 2) = 1 and N−m
2 p −

p−1
2 N = 1. Since N−m

2 < N
2 , it follows from Proposition 4 (i) that the items of the binary

sequence sN (p) satisfy

si =

{
α, if i ∈ H1(N, p);

β, if i ∈ H2(N, p) ∪H3(N, p).

12



We can prove thatH1(N, p) mod p = {p−1}, H2(N, p) mod p = {1, 3, · · · , p−2} andH3(N, p) mod

p = {0, 2, · · · , p− 3} in a way similar to that in (i). Thus, the items si for i ∈ ZN in the binary

sequence sN (p) satisfy

si =

{
α, if (imod p) ∈ {p− 1};
β, if (imod p) ∈ {0, 1, · · · , p− 2}.

Therefore we obtain that the sequence sN (p) must be of the form ((β)p−1α)mββ.

(iii) Note that N = mp + 2 and p even imply that gcd (N, p) = gcd (p, 2) = 2 and (N2 −
m)p2 − (p2 − 1)N2 = 1. Then by Proposition 4 (ii), for p with 3 < p < N − 2, the items si with

i ∈ ZN in the sequence sN (p) satisfy either

si =

{
α, if i ∈ D1(N, p);

β, if i ∈ D2(N, p) ∪D3(N, p).

or

si =

{
α, if i ∈ D3(N, p);

β, if i ∈ D1(N, p) ∪D2(N, p).

By similar arguments we can show thatD1(N, p) mod p = {p−1}, D2(N, p) mod p = {0, 2, · · · , p−
2} and D3(N, p) mod p = {1, 3, · · · , p − 3}. Therefore, the items si for i ∈ ZN in the sequence

sN (p) satisfy either

si =

{
α, if (imod p) ∈ {p− 1};
β, if (imod p) ∈ {0, 1, 2, · · · , p− 2}.

or

si =

{
α, if (imod p) ∈ {1, 3, · · · , p− 3};
β, if (imod p) ∈ {0, 2, · · · , p− 2} ∪ {p− 1}.

Thus we obtain that the sequence sN (p) has the form

((β)p−1α)mββ or ((βα)
p−2
2 ββ)mβα.

For p = N − 2, one can deduce from the conditions in (5) that s0 = s2 = · · · = sN−4 =

sN−2, s1 = s3 = · · · = sN−5 = sN−1 6= sN−3. This implies that sN (p) has the form ((α)N−3β)αα

or ((αβ)
N−4

2 αα)αβ. However, the former is a cyclic shift of (α)N−1β. It then follows from

Proposition 3, the sequence sN (p) = sN (N−2), up to shift equivalence, has the form (αβ)
N−2

2 αα.

For the case r ≥ 3, we need the following two lemmas, which will be proved in Appendix A.
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Lemma 5. Let N = mp+ r with 3 ≤ r < p < N −2 and gcd (N, p) = 1. Let a ∈ ZN and b ∈ Zp

be the integers satisfying ap− bN = 1, u ∈ Zp and v ∈ Zr be the integer satisfying ur − vp = 1.

(i) If a < N
2 , then u > p

2 , and H1(N, p) mod p = I3(p, r), H2(N, p) mod p = I1(p, r),

H3(N, p) mod p = I2(p, r).

(ii) If a > N
2 , then u < p

2 , and I3(N, p) mod p = H1(p, r), I2(N, p) mod p = H3(p, r),

I1(N, p) mod p = H2(p, r).

Lemma 6. Let N = mp + r with 3 < r < p < N − 1 and gcd (N, p) = 2. Let e ∈ ZN
2

and f ∈ Z p
2

be the integers satisfying e · p2 − f ·
N
2 = 1, u ∈ Z p

2
and v ∈ Z r

2
be the integers

satisfying u · r2 − v ·
p
2 = 1. Then the sets defined in (8) satisfy D1(N, p) mod p = D3(p, r),

D2(N, p) mod p = D2(p, r), D3(N, p) mod p = D1(p, r).

In the sequel, we let F (sN , r) = (s0s1 · · · sr−1) with 1 ≤ r ≤ N − 1 denote the first r bits

taking from the sequence sN . For the general case, i.e., the case r ≥ 3, we arrive at the following

result.

Proposition 6. Let N = mp+ r with 3 ≤ r < p < N − 2 and gcd (N, p) ≤ 2. Then

sN (p) = F ((sp(r))m+1, N),

where sp(r) is exactly the binary sequence with period p and nonlinear complexity p − 2 corre-

sponding to a given integer r.

Proof. Recall that sN (p) denotes the binary sequences with period N and nonlinear complexity

N−2 obtained by conditions in (5) for the given positive integer p. From the condition si = si+p

for i ∈ ZN−4, we derive that si = si+p = · · · = si+(m−1)p for all i with 0 ≤ i ≤ p − 1, and

smp+j = sj for j = 0, 1, . . . , r − 1. That is to say the sequence sN (p) must be of the form

(s0s1 . . . sp−1)
ms0s1 . . . sr−1.

On the other hand, sN (p) has one of the forms in Proposition 4 depending on the values of

N and p. To determine further the concrete representation of the subsequence s0s1 . . . sp−1, it

is sufficient to determine the integers modulo p in various sets. We now distinguish the cases

gcd (N, p) = 1 and gcd (N, p) = 2.

Case 1: gcd (N, p) = 1. It is obvious that gcd (p, r) = 1. Let a ∈ ZN and b ∈ Zp be the

integers satisfying ap−bN ≡ 1 (modN), u ∈ Zp and v ∈ Zr be the integers satisfying ur−vp = 1.

If a < N
2 , then by Proposition 4 (i), for i ∈ ZN ,

si =

{
α, if i ∈ H1(N, p);

β, if i ∈ H2(N, p) ∪H3(N, p).
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Furthermore, by Lemma 5 (i) we have u > p
2 , and H1(N, p) mod p = I3(p, r), H2(N, p) mod p =

I1(p, r), H3(N, p) mod p = I2(p, r). That is to say, for i ∈ ZN ,

si =

{
α, if (imod p) ∈ I3(p, r);
β, if (imod p) ∈ I1(p, r) ∪ I2(p, r).

Then again by Proposition 4 (i), the subsequence s0s1 · · · sp−1 is the binary sequence with period

p and nonlinear complexity p− 2 corresponding to a given positive integer c = r, and so sN (p)

has the form (sp(r))mF (sp(r), r), that is, F ((sp(r))m+1, N).

The result for a > N
2 can be established by using the same arguments as for a < N

2 .

Case 2: gcd (N, p) = 2. It is obvious that gcd (p, r) = 2. Then by Proposition 4 (ii), for

i ∈ ZN , the items of the sequence sN (p) satisfy that

si =

{
α, if i ∈ D1(N, p);

β, if i ∈ D2(N, p) ∪D3(N, p),
or si =

{
α, if i ∈ D3(N, p);

β, if i ∈ D1(N, p) ∪D2(N, p).

Since D1(N, p) mod p = D3(p, r), D2(N, p) mod p = D2(p, r), D3(N, p) mod p = D1(p, r) by

Lemma 6, we get

si =

{
α, if (imod p) ∈ D3(p, r);

β, if (imod p) ∈ D1(p, r) ∪D2(p, r),

or

si =

{
α, if (imod p) ∈ D1(p, r);

β, if (imod p) ∈ D2(p, r) ∪D3(p, r).

This implies that the subsequence s0s1 · · · sp−1 is a binary sequence with period p and nonlinear

complexity p− 2 obtained by conditions in (5) for a given positive integer c = r.

Conversely, let sp(r) be the binary sequence with period p and nonlinear complexity p − 2

corresponding a given integer c = r. Then we claim that the sequence sN = F ((sp(r))m+1, N)

must have nonlinear complexity N − 2. For the sequence sN , we examine the following two

subsequences of length N − 3 :

sN−40 = (sp(r))mF (sp(r), r − 3) and sN+p−4
p = (sp(r))m−1F (sp(r), r)F (sp(r), p− 3).

The first (m− 1)p+ r = N − p bits of the two subsequences, i.e., sN−p−10 and sN−1p are identical

obviously. The next p − 3 bits in sN+p−4
p are, in order, s0, s1, s2, · · · , sp−4, and those in sN−40

are, in order, sr, sr+1, · · · , sp−1, s0, s1, · · · , sr−4 if r ≥ 4 and sr, sr+1, · · · , sp−1 if r = 3. We note

that the items of sp(r) satisfy the conditions in (5). The condition si = s(i+r)mod p for i ∈ Zp−3

in (5) implies

(s0, s1, s2, · · · , sp−4) = (sr, sr+1, · · · , sp−1, s0, s1, · · · , sr−4) for r ≥ 4,
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(s0, s1, s2, · · · , sp−4) = (sr, sr+1, · · · , sp−1) for r = 3.

Together with sN−p−10 = sN−1p , we obtain that sN−40 = sN+p−4
p . On the other hand, the condi-

tions sp−3 6= s(p+r−3)mod p and sp−1 6= s(p+r−1)mod p imply that the (N − 2)nd bit and the Nth

bit of the sequence sN satisfy

sN−3 6= s(p+N−3)modN and sN−1 6= s(p+N−1)modN

due to sN−3 = sr−3 = s(p+r−3)mod p and sN−1 = sr−1 = s(p+r−1)mod p, respectively. Altogether,

the sequence sN = F ((sp(r))m+1, N) has nonlinear complexity N−2 according to Lemma 2.

Remark 1. If we set sp(1) = (α)p−2ββ for p ≥ 3, sp(2) = (β)p−1α for odd number p ≥ 3 and

sp(2) = (β)p−1α or (βα)
p−2
2 ββ for even number p > 3, then the results in Propositions 5 can

be uniformly rewritten as sN (p) = F ((sp(r))m+1, N) for r = 1, 2. Together with Proposition

6, we get that for any period N > 4 and integer c = p with 3 ≤ p ≤ N − 1, p 6= N − 2 and

gcd (N, p) ≤ 2, if N = mp+ r, then

sN (p) = F ((sp(r))m+1, N).

It should be noted that sp(r) denotes all the binary sequences with period p and nonlinear com-

plexity p − 2 for a given integer c = r in general, but the cases r = 2 and (p, r) = (3, 1) are

exceptions.

With the preparations in Propositions 3, 5 and 6, we are now ready to present a recursive

method to characterize all binary sequences with near maximum nonlinear complexity. It is

convenient to distinguish the cases of odd and even period.

Theorem 1. Let sN be a periodic binary sequence with N odd and N > 4. Then sN has

nonlinear complexity N − 2 if and only if it can, up to shift equivalence, be represented as one

of the following forms:

(i) sN (c) = (α)N−2ββ for c = 1.

(ii) for c = p with 3 ≤ p ≤ N − 1, p 6= N − 2 and gcd (N, p) = 1, let N = r0, p = r1 and

ri−1 = miri + ri+1 for i = 1, 2, · · · , k, where r1 > r2 > · · · > rk+1 = 1. Then sN (p) = sr0(r1)

with

sri−1(ri) = F ((sri(ri+1))
mi+1, ri−1) for i = 1, 2, · · · , k − 1,

where

srk−1(rk) =

{
(β)rk−1−1α, if rk = 2;

((α)rk−2ββ)mkα, if rk 6= 2.
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Proof. The statement (i) is established by Proposition 3 (i). We thus only need to prove (ii).

For c = p with 3 ≤ p ≤ N − 1, p 6= N − 2 and gcd (N, p) = 1, by using the Euclidean algorithm

on N = r0 and p = r1, we obtain that ri−1 = miri + ri+1 for i = 1, 2, · · · , k, and the final

nonzero remainder rk+1 = 1. If rk 6= 2, then by Proposition 5 (i),

srk−1(rk) = ((α)rk−2ββ)mkα.

Since ri ≥ 3 for all i = k, k − 1, · · · , 2, 1, by Proposition 6, we have,

sri−1(ri) = F ((sri(ri+1))
mi+1, ri−1) for i = k − 1, · · · , 2, 1.

If rk = 2, then by Proposition 5 (ii),

srk−2(rk−1) = (srk−1(rk))mk−1F (srk−1(rk), rk) = F ((srk−1(rk))mk−1+1, rk−2),

where srk−1(rk) = srk−1(2) = (β)rk−1−1α. Again by Proposition 6, the desired result follows.

Theorem 2. Let sN be a periodic binary sequence with N even and N > 4. Then sN has

nonlinear complexity N − 2 if and only if it can, up to shift equivalence, be represented as one

of the following forms:

(i) sN (c) = (α)N−2ββ for c = 1;

(ii) sN (c) = (αβ)
N−2

2 αα for c = 2;

(iii) for c = p with 3 ≤ p ≤ N − 1 and gcd (N, p) = 1, let N = r0, p = r1 and ri−1 =

miri + ri+1 for i = 1, 2, · · · , k, where r1 > r2 > · · · > rk+1 = 1. Then sN (p) = sr0(r1) with

sri−1(ri) = F ((sri(ri+1))
mi+1, ri−1) for i = 1, 2, · · · , k − 1,

where

srk−1(rk) =

{
(β)rk−1−1α, if rk = 2;

((α)rk−2ββ)mkα, if rk 6= 2.

(iv) for c = p with 3 < p < N−1 and gcd (N, p) = 2, if p = N−2, then sN (p) = (αβ)
N−2

2 αα.

If p 6= N − 2, let N = r0, p = r1 and ri−1 = miri + ri+1 for i = 1, 2, · · · , k, where r1 > r2 >

· · · > rk+1 = 2. Then sN (p) = sr0(r1) with

sri−1(ri) = F ((sri(ri+1))
mi+1, ri−1) for i = 1, 2, · · · , k,

and srk(rk+1) = (β)rk−1α or (βα)
rk−2

2 ββ.

Proof. The statements (i) and (ii) are established by Proposition 3. One can obtain (iii) and

(iv) by applying the Euclidean algorithm on N = r0 and p = r1 and the results in Propositions

5 and 6.
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4 Analyzing near maximum nonlinear complexity sequences

In this section we shall exactly determine the number of binary near maximum nonlinear

complexity sequences of period N . By Theorems 1 and 2, we know that such sequences are

determined by the values of the integer c. So we need to consider whether the sequences corre-

sponding different values of the integer c are shift-distinct.

The following lemma shows a useful property of the periodic binary sequences sN with

nonlinear complexity N − 2 which will be helpful. The proof will be included in Appendix A.

Lemma 7. Let sN be a periodic binary sequence with N > 4 and C(sN ) = N − 2. Then there

is exactly one pair of (N − 3)-tuples among sN+i−4
i with 0 ≤ i ≤ N − 1 that are equal.

With Lemma 7, we can characterize the shift equivalent relation between binary near maxi-

mum nonlinear complexity sequences as shown below.

Lemma 8. For a given period N > 4, let c and c′ be two distinct positive integers satisfying the

condition (i) or (ii) in Proposition 2, and let sN (c) and sN (c′) be periodic binary sequences with

nonlinear complexity N − 2 satisfying the conditions in (5) for the given positive integers c and

c′, respectively. Then sN (c) and sN (c′) are shift equivalent if and only if c+ c′ = N .

Proof. We first show the necessity. Suppose that

sN (c) = s0s1 · · · sN−1, and sN (c′) = t0t1 · · · tN−1.

Since sN (c) and sN (c′) are shift equivalent, there exists an integer e with 1 ≤ e ≤ N − 1 such

that

ti = s(e+i) mod N , for i ≥ 0. (9)

By (5), we have sN−40 = sN+c−4
c . This together with (9) shows that tN−e+N−4

N−e = t
((c−e) mod N)+N−4
(c−e) mod N .

Again by (5), tN−40 = tN+c′−4
c′ . Then by Lemma 7,

(0, c′) = ((c− e) mod N,N − e).

Since 1 ≤ c, e ≤ N − 1, we have N = e+ c′ = c+ c′ as desired.

To prove the sufficiency, we assume, without loss of generality, that c < N/2 < c′. For the

case c = 1, the periodic binary sequence sN (c) with nonlinear complexity N − 2 has the form

sN (1) = (α)N−2ββ by Proposition 3 (i). For c′ = N − 1, it follows from Proposition 5 (i) that

sN (c′) = sN (N − 1) = (α)N−3ββα,
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which is easily seen to be shift equivalent to sN (1). For the case N is even, c = 2 and c′ = N−2,

it follows from Proposition 3 (ii) and Proposition 5 (iii) that sN (N − 2) and sN (2) are shift

equivalent. For the case c = p with 3 ≤ p < N/2 < c′ = N − p, let N = mp+ r with 0 < r < p,

then m ≥ 2. By Propositions 5 and 6,

sN (p) = F ((sp(r))m+1, N) = (sp(r))mF (sp(r), r).

For the integer c′ = N − p, we have N = c′ + p and c′ = N − p = (m− 1)p+ r, it follows from

Proposition 6 that sN (c′) = sc
′
(p)F (sc

′
(p), p) and sc

′
(p) = (sp(r))m−1F (sp(r), r). Therefore,

sN (c′) = sN (N − p) = (sp(r))m−1F (sp(r), r) sp(r),

which is easily seen to be shift equivalent to sN (p).

Let N denote the number of all binary near maximum nonlinear complexity sequences of

period N ≥ 4. From the preceding discussion we get the following result.

Theorem 3. Given a positive integer N ≥ 4, the total number of binary near maximum non-

linear complexity sequences of period N , up to shift equivalence, is given by

N =


1, N = 4,

ϕ(N)− 2, N is odd,

ϕ(N) + 2ϕ(N2 )− 2, N is even,

where ϕ(·) is the Euler’s totient function.

Proof. For the case N = 4, the result follows from Proposition 1.

For a given odd integer N > 4, by the recursive method in Theorem 1, the binary near

maximum nonlinear complexity sequences of period N are determined by the choice of the

integer c and the elements α, β in F2. Specifically, for a fixed integer c satisfying gcd (N, c) = 1

and c 6= 2, N − 2, there are two binary near maximum nonlinear complexity sequences of period

N corresponding two different values of α and β. It then follows from Lemma 8 that there are,

up to shift equivalence, in total ϕ(N)−2 binary near maximum nonlinear complexity sequences

of period N .

For a given even integer N > 4, by the recursive method in Theorem 2, there are two

binary near maximum nonlinear complexity sequences of period N corresponding two different

values of α and β for a fixed integer c satisfying either gcd (N, c) = 1 or c = 2, N − 2 and

four such sequences for those c satisfying gcd (N, c) = 2 and c 6= 2, N − 2. Since the number

of c with gcd (N, c) = 2 is ϕ(N2 ), it then follows from Lemma 7 that the total number of

binary near maximum nonlinear complexity sequences of period N , up to shift equivalence, is

ϕ(N) + 2 + 2[ϕ(N2 )− 2] = ϕ(N) + 2ϕ(N2 )− 2.
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Remark 2. We denote by nlin(N,C) the number of binary sequences of period N and non-

linear complexity C. In [17], only the value nlin(N,N − 1) is obtained. Theorem 3 completely

determines nlin(N,N − 2). It remains open to give nlin(N,N − i) for i > 2.

Example 1. By exhaustive search, for integer N with 4 ≤ N ≤ 18, all binary sequences with

period N and nonlinear N −2, up to equivalence, and the number N of such sequences are given

in Table 2. It demonstrates the theoretical results in Theorems 1 and 2.

To illustrate our recursive construction, we give the example for the case N = 14. By

Theorem 2, for c = 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, taking α = 0 and β = 1, or α = 1 and β = 0,

we obtain the binary sequences with period 14 and nonlinear complexity 12. These sequences

are exhibited in Table 1. It is readily seen that the sequences corresponding the integer c are

shift equivalent to those corresponding 14− c. Moreover, by Theorem 3, the total number of the

binary sequences with period 14 and nonlinear complexity 12 is ϕ(14) + 2ϕ(7) − 2 = 16, which

is in accordance with the numerical result for N = 14 in Table 1.

Table 1: Binary sequences with period 14 and nonlinear complexity 12

c α = 0, β = 1 α = 1, β = 0

1 (0)1211 (1)1200

2 (01)600 (10)611

3 (001)400 (110)411

4
(1110)311 (0001)300

(1011)310 (0100)301

5 (00110)20011 (11001)21100

6
((1)50)211 ((0)51)200

(101011)210 (010100)201

c α = 0, β = 1 α = 1, β = 0

13 (0)1211 (1)1200

12 (01)600 (10)611

11 (001)400 (110)411

10
(1110)311 (0001)300

(1011)310 (0100)301

9 (00110)20011 (11001)21100

8
((1)50)211 ((0)51)200

(101011)210 (010100)201

We will present some experimental results on the linear and k-error linear complexity of

near maximum nonlinear complexity sequences. From the definition of the nonlinear complexity

of a sequence sN , we know that the linear complexity, denoted by LC(sN ), is no less than its

nonlinear complexity C(sN ). Therefore, all near maximum nonlinear complexity sequences have

maximum or near maximum high linear complexity.

The k-error linear complexity of a periodic sequence sN , denoted by LCk(sN ), is defined as

the smallest linear complexity that can be obtained by changing k or fewer bits of the sequence

per period. A cryptographically strong sequence should have not only a large linear complexity,

but also a large k-error linear complexity. This can insure that altering a few terms should not

cause a significant decrease of the linear complexity. Given an integer N with 4 < N ≤ 64,
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Table 2: Binary near maximum nonlinear complexity sequences of period 4 ≤ N ≤ 18

N Sequences N
4 0011 1

5 00011, 00111 2

6 000011, 000101, 010111, 001111 4

7 0000011, 0010011, 0011011, 0011111 4

8 00000011, 00001001, 00010101, 01010111, 01101111, 00111111 6

9 000000011, 000110011, 001100111, 001111111 4

10
0000000011, 0000010001, 0001000101, 0001010101, 0010010011

10
0011011011, 0101010111, 0101110111, 0111011111, 0011111111

11
00000000011, 00001001001, 00001100011, 00100110011

8
00110011011, 00111001111, 01101101111, 00111111111

12
000000000011, 000000100001, 000101010101

6
010101010111, 011110111111, 001111111111

13
0000000000011, 0000100001001, 0000011000011, 0010010010011, 0001100110011

10
0011001100111, 0011011011011, 0011110011111, 0110111101111, 0011111111111

14

00000000000011, 00000001000001, 00000100010001, 00001001001001

16
00010001000101, 00010100010101, 00010101010101, 00011000110011

00110011100111, 01010101010111, 01010111010111, 01011101110111

01101101101111, 01110111011111, 01111101111111, 00111111111111

15
000000000000011, 000000110000011, 001001100110011

6
001100110011011, 001111100111111, 001111111111111

16

0000000000000011, 0000000010000001, 0000010000010001, 0001000101000101

14
0000110001100011, 0010010010010011, 0001010101010101, 0101010101010111

0011011011011011, 0011100111001111, 0101110101110111, 0111011111011111

0111111011111111, 0011111111111111

17

00000000000000011, 00000001100000011, 00000010000100001, 00001001001001001

14
00001100001100011, 00100100110010011, 00011001100110011, 00110011001100111

00110110011011011, 00111001111001111, 01101101101101111, 00111111001111111

01111011110111111, 00111111111111111

18

000000000000000011, 000000000100000001, 000001000100010001, 000010000100001001

16
000100010001000101, 000101010001010101, 000101010101010101, 001001100100110011

001100110110011011, 010101010101010111, 010101011101010111, 010111011101110111

011011110111101111, 011101110111011111, 011111110111111111, 001111111111111111

we calculate the k-error linear complexity of all binary near maximum nonlinear complexity

sequences sN for small k, 1 ≤ k ≤ 3. The numerical results show some regularity.

(i) For odd period N , LC1(s
N ) > bN2 c always holds, LC2(s

N ) > bN2 c holds except for two
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sequences sN = (0)N−211 and sN = (1)N−200. Specially, if N is odd prime, then LC1(s
N ) =

N − 1.

(ii) For even period N > 14, LC1(s
N ) > bN2 c holds except for two sequences sN = (01)

N−2
2 00

and sN = (10)
N−2

2 11. Moveover, LC2(s
N ) > bN2 c holds for at least N − 10 sequences, where N

denotes the number of all binary near maximum nonlinear complexity sequences with period N .

We also make some comparisons between near maximum nonlinear complexity sequences

and maximum nonlinear complexity sequences. Let N be the period. Some experimental results

for N with 4 < N ≤ 64 are summarized in the following.

• All near maximum nonlinear complexity sequences of period N have two possible linear

complexities. i.e., N − 1 and N − 2 while all maximum nonlinear complexity sequences

have linear complexity N − 1.

• Let N be odd. Then each near maximum nonlinear complexity sequence shares the same

k-error linear complexity profile with some maximum nonlinear complexity sequence of

the same period.

• Let N be even. For any maximum nonlinear complexity sequence sN , we have LC1(s
N ) <

LC(sN ). However, For some near maximum nonlinear complexity sequences we have

LCi(s
N ) = LC(sN ) for all i ≤ 3.

To sum up, near maximum nonlinear complexity sequences have almost the same linear

complexities with maximum nonlinear complexity sequences. In some cases, they have more

stable k-error linear complexity profile.

5 Conclusion

In this paper, we proceed with the theoretical investigation of periodic sequences with near

maximum nonlinear complexity. Our main contribution is the establishment of an efficient

recursive method for creating all binary near maximum nonlinear complexity sequences. The

main results can be easily generalized to the nonbinary case. For future work, it is interesting

to investigate sequences with high nonlinear complexity and other randomness properties.
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Appendix A

Proof of Lemma 3. We only give a proof for (i). The result in (ii) can be proved similarly, so

we skip it here. Since uq − vn = 1 implies uq ≡ 1 (modn), we have

H2(n, q) = {(q − 2 + tq) mod n | t = 0, 1, · · · , u− 1}

= {(q − 2 + (t− u)q) mod n | t = u, u+ 1, · · · , 2u− 1}

= {(q − 3 + tq) mod n | t = u, u+ 1, · · · , 2u− 1},

and

H1(n, q) = {(q − 1 + tq) mod n | t = 0, 1, · · · , n− 2u− 1}

= {(q − 1 + (t− 2u)q) mod n | t = 2u, 2u+ 1, · · · , n− 1}

= {(q − 3 + tq) mod n | t = 2u, 2u+ 1, · · · , n− 1}.

Then it follows from the condition gcd(n, q) = 1 that Hi(n, q) ∩ Hj(n, q) = ∅ for i, j = 1, 2, 3

and i 6= j, and

3⋃
i=1

Hi(n, q) = {(q − 3 + tq) modn | t = 0, 1, · · · , n− 1} = Zn.

Moreover, again by uq ≡ 1 (modn) we obtain n − 1 ≡ uq − 2 ≡ q − 2 + (u − 1)q (modn),

n−2 ≡ uq−3 ≡ q−3+(u−1)q (modn) and n−3 ≡ nq−2uq−1 ≡ q−1+(n−2u−1)q (modn),

and so we have n− 1 ∈ H2(n, q), n− 2 ∈ H3(n, q) and n− 3 ∈ H1(n, q). �

Proof of Lemma 4. Since u ∈ Zn
2

satisfies u · q2 ≡ 1 (mod n
2 ), it follows that uq ≡ 2 (modn).

Then we have

D1(n, q) = {(q − 1 + tq) modn | t = 0, 1, · · · , n
2
− u− 1}

= {(q − 1 + (t− u)q) modn | t = u, u+ 1, · · · , n
2
− 1}

= {(q − 3 + tq) modn | t = u, u+ 1, · · · , n
2
− 1}.

Then it follows from the condition gcd (n2 ,
q
2) = 1 that D1(n, q) ∩D3(n, q) = ∅ and

D1(n, q) ∪D3(n, q) = {(q − 3 + tq) modn | t = 0, 1, · · · , n
2
− 1}

= {(2 · (q − 4

2
+ t · q

2
) mod

n

2
) + 1 | t = 0, 1, · · · , n

2
− 1}

= {1, 3, 5, · · · , n− 1}.
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In addition,

D2(n, q) = {(q − 2 + tq) modn | t = 0, 1, · · · , n
2
− 1}

= {2 · (q
2
− 1 + t · q

2
) mod

n

2
| t = 0, 1, · · · , n

2
− 1}

= {0, 2, 4, · · · , n− 2}.

It is easily seen that Di(n, q)∩Dj(n, q) = ∅ for i, j ∈ {1, 2, 3} and i 6= j, and
3⋃

i=1
Di(n, q) = Zn.

Furthermore, since uq ≡ 2 (modn) we obtain n − 1 ≡ −3 + uq ≡ q − 3 + (u − 1)q (modn),

n−2 ≡ q
2 ·n−2 ≡ q−2+(n2 −1)q (modn) and n−3 ≡ q

2 ·n−uq−1 ≡ q−1+(n2 −u−1)q (modn),

and so we have n− 1 ∈ D3(n, q), n− 2 ∈ D2(n, q) and n− 3 ∈ D1(n, q). �

Proof of Lemma 5. (i) Substituting N = mp + r in ap − bN = 1 yields ap − b(mp + r) = 1,

and so (p − b)r − (r − a + bm)p = 1. Since 0 < a < N
2 , it follows that 0 < bN = ap − 1 < Np

2 ,

and thus 0 < b < p
2 . In addition, 0 < pr

2 < (p− b)r − 1 < pr, and so 0 < r − a+ bm < r. That

is to say, u = p− b > p
2 and v = r − a+ bm.

By the definition of the set H1(N, p), any element x ∈ H1(N, p) can be expressed uniquely as

x = p− 1 + txp− jxN , where 0 ≤ tx ≤ N − 2a− 1 and 0 ≤ jx = b txp+p−1
N c ≤ bp−1+(N−2a−1)p

N c =

b (p−2b)N−3N c ≤ p− 2b− 1. As tx runs through all nonnegtive integers ≤ N − 2a− 1, then jx runs

through all nonnegtive integers ≤ p− 2b− 1. Furthermore,

x = p− 1 + txp− jx(mp+ r)

≡ (−1− jxr) (mod p)

≡ (r − 1− 2(p− b)r + (p− 2b− 1− jx)r) (mod p)

≡ (r − 3 + (p− 2b− 1− jx)r) (mod p).

This implies,

H1(N, p) mod p ⊆ I3(p, r) (10)

due to 0 ≤ p − 2b − 1 − jx ≤ p − 2b − 1. We next prove that |H1(N, p) mod p| = |I3(p, r)|.
For any two elements x, y ∈ H1(N, p) with the expressions as x = p − 1 + txp − jxN and

y = p − 1 + typ − jyN , where 0 ≤ tx, ty ≤ N − 2a − 1 and 0 ≤ jx, jy ≤ p − 2b − 1, one has

x− y = (tx − ty)p− (jx − jy)N ≡ (jy − jx)r (mod p), which implies x ≡ y (mod p) if and only if

jy = jx. Therefore

|H1(N, p) mod p| = |{jx | x ∈ H1(N, p)}| = p− 2b = |I3(p, r)|.

Together with (10) we get the desired result. The statements H2(N, p) mod p = I1(p, r) and

H3(N, p) mod p = I2(p, r) can be proved in a similar way. Hence we skip the proof here.
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(ii) The assertion in (ii) can be proved by the same approach used in the proof of (i). So we

omit the proof here as well.

Proof of Lemma 6. Since e· p2−f ·
N
2 = 1 and N = mp+r, it follows that e· p2−f ·

mp+r
2 = 1, and

so (p2−f) r2−(fm−e+ r
2) · p2 = 1. It is easily verify that p

2−f ∈ Z p
2

and fm−e+ r
2 ∈ Z r

2
, so that

u = p
2 − f and v = fm− e+ r

2 , and hence D1(p, r) = {(r − 1 + tr) mod p | t = 0, 1, · · · , f − 1},
D2(p, r) = {(r − 2 + tr) mod p | t = 0, 1, · · · , p2 − 1}, D3(p, r) = {(r − 3 + tr) mod p | t =

0, 1, · · · , p2 − f − 1}. Since any integer x ∈ D2(N, p) can be expressed as x = p− 2 + txp− jxN ,

where 0 ≤ tx ≤ N
2 − 1 and 0 ≤ jx = b txp+p−2

N c ≤ p
2 − 1. we obtain

x = p− 2 + txp− jx(mp+ r)

≡ (−2− jxr) (mod p)

≡ (−2− pr

2
+ r − r +

pr

2
− jxr) (mod p)

≡ (r − 2 + (
p

2
− 1− jx)r) (mod p).

This implies D2(N, p)mod p ⊆ D2(p, r) because of 0 ≤ p
2 − 1− jx ≤ p

2 − 1. By using arguments

analogous to those in the proof of Lemma 5 (i), one may show that |D2(N, p) mod p| = |D2(p, r)|.
Therefore, D2(N, p) mod p = D2(p, r). Similarly, the statements D1(N, p) mod p = D3(p, r) and

D3(N, p) mod p = D1(p, r) can be proved.

Proof of Lemma 7. Since sN is a binary sequence with period N > 4 and nonlinear complexity

N − 2, we may assume without loss of generality that there exists an positive integer c < N
2

such that

sN−40 = sN+c−4
c , sN−3 6= sN+c−3 and sN−1 6= sN+c−1.

We suppose that there exists another pair of (N − 3)-tuples in sN that are identical, say,

sd+N−4
d = sd+e+N−4

d+e with 0 ≤ d < d+ e ≤ N − 1 and (d, e) 6= (0, c).

If d = 0, then we have e 6= c and sN−40 = sN+c−4
c = sN+e−4

e . Since sN is a binary sequence,

there must be two among the above three (N − 3)-tuples with the same successor. Thus there

exist two identical (N − 2)-tuples in sN , which means C(sN ) > N − 2, a contradiction. Now we

suppose d 6= 0 and divide the proof into three cases according to the size of e.

Case 1: e = 1. It follows from sd+N−4
d = sd+e+N−4

d+e that sd = sd+1 = · · · = sd+N−3. By

using the same argument as in the proof of Lemma 2, we get sd+N−3 6= sd+N−2 and sd+N−1 6=
sd+N+1 = sd+1. Since sN is binary, we have sd = sd+1 = · · · = sd+N−3 6= sd+N−2 = sd+N−1.

If d = 1, it follows from s0 = sc that c = N − 1, and hence s1 = sN = s0, a contradiction. If

d = 2, it follows from s0 = sc that c = 1, and hence s1 = s2, again a contradiction. If d ≥ 3,

then s0 = s1 = · · · = sd−3 6= sd−2 = sd−1 6= sd = sd+1 = · · · = sN−1. When c = 1, since
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0 ≤ d − 3 < N − 4, it follows that sd−3 = sd−2, an obvious contradiction. When c > 1, since

0 < d − 2 ≤ N − 4, it follows that sd−2 = sd+c−2, and hence d + c − 2 = d − 1 or N + d − 1,

which is impossible.

Case 2: e = 2. For odd N , we have

sd = sd+2 = · · · = sd+N−3, sd+1 = sd+3 = · · · = sd+N−2.

This implies that sN is shift equivalent to ((αβ)
N−1

2 α) or ((αβ)
N−1

2 β) where α, β ∈ F2 and

α 6= β. It follows that C(sN ) > N − 2, a contradiction.

For even N , we have

sd = sd+2 = · · · = sd+N−2, sd+1 = sd+3 = · · · = sd+N−3.

It follows that sd+N−3 6= sd+N−2, since otherwise sN is shift equivalent to ((α)N−1β), which is

impossible. Further, we have

sd+N−2 = sd+N−1.

Otherwise, sd+N−1 = sd+N−3 since sN is binary. This implies that sN is shift equivalent to

((αβ)
N
2 ), which is of period 2, a contradiction.

Since 0 ≤ d−1 ≤ N −4, it follows from sN−40 = sN+c−4
c that sd+N−1 = sd−1 = sd+c−1. Then

we get c is odd due to that d ≤ d+ c− 1 < d+N − 1. On the other hand, we get from s0 = sc

that c is even except for the only case that d is even and c = d− 1. Consider s2 and sc+2. We

have s2 = sd since d is even and sc+2 = sd+1 due to c = d− 1. This yields that s2 6= sc+2 since

sd 6= sd+1. Note that N is even hence N ≥ 6. Then s2 = sc+2 due to sN−40 = sN+c−4
c . Thus, we

arrive at a contradiction.

Case 3: e ≥ 3. Then we have d+ e ≤ N − 1 < N + d+ e− 4, and since sN+d−4
d = sN+d+e−4

d+e ,

we get

sN−1 = sN−e−1.

We also have 0 ≤ N − e− 1 ≤ N − 4 in this case, and from sN−40 = sN+c−4
c we get then

sN−e−1 = sN+c−e−1.

When e+ d− c ≥ 3, we have d < N + c− e− 1 ≤ N + d− 4. It follows from sN+d−4
d = sN+d+e−4

d+e

that

sN+c−e−1 = sN+c−1.

When e+ d− c < 0, we have d ≤ c− e− 1 < N + d− 4. Then with sN+d−4
d = sN+d+e−4

d+e and the

periodicity of the sequence we get

sN+c−e−1 = sc−e−1 = sc−1 = sN+c−1.
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Altogether, we have sN−1 = sN+c−1 whenever e + d − c ≥ 3 or e + d − c < 0, which is a

contradiction. When e + d − c = 0, we obtain sN−40 = sN+c−4
c = sN+d−4

d , which will lead to a

contradiction by the same argument as in the case d = 0.

In the remaining case we have e+d−c = 1 or 2. Since e ≥ 3 and c < N
2 , we have e+d ≤ N−3

except for two cases where N = 7, c = 3 and N = 6, c = 2. It is easily checked that there is

only a pair of identical (N − 3)-tuples in s7(3) and s6(2), so that we can assume e+ d ≤ N − 3.

Then we get from sN+d−4
d = sN+d+e−4

d+e that

sN−3 = sN−e−3.

Moreover, we have 0 ≤ N − e− 3 < N − 4 and d ≤ N + c− e− 3 ≤ d+N − 4, it follows from

sN−40 = sN+c−4
c and sN+d−4

d = sN+d+e−4
d+e that

sN−e−3 = sN+c−e−3 and sN+c−e−3 = sN+c−3.

Therefore, we obtain sN−3 = sN+c−3, a contradiction. �
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