
Jacobi-Angelesco multiple orthogonal polynomials on an r-star

Marjolein Leurs and Walter Van Assche

Department of Mathematics, KU Leuven, Celestijnenlaan 200B box 2400,

BE-3001 Leuven, Belgium.

ARTICLE HISTORY

Compiled April 20, 2018

ABSTRACT

We investigate type I multiple orthogonal polynomials on r intervals which have a
common point at the origin and endpoints at the r roots of unity ωj , j = 0, 1, . . . , r−
1, with ω = exp(2πi/r). We use the weight function |x|β(1−xr)α, with α,β > −1 for
the multiple orthogonality relations. We give explicit formulas for the type I multiple
orthogonal polynomials, the coefficients in the recurrence relation, the differential
equation, and we obtain the asymptotic distribution of the zeros.
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1. Introduction

Various families of multiple orthogonal polynomials have been worked out during the
past few decennia, even though the notion of multiple orthogonality goes back at least
to Hermite in the framework of Hermite-Padé approximation. There are two types
of multiple orthogonal polynomials. Let ~n = (n1, n2, . . . , nr) be a multi-index of size
|~n| = n1 + n2 + · · · + nr and let µ1, . . . , µr be positive measures for which all the
moments exist. Type I multiple orthogonal polynomials for (µ1, . . . , µr) are given by a
vector (A~n,1, . . . , A~n,r) of r polynomials, with deg A~n,j = nj−1, such that the following
orthogonality conditions hold:

r
∑

j=1

∫

xkA~n,j(x) dµj(x) = 0, 0 ≤ k ≤ |~n| − 2,

with normalization

r
∑

j=1

∫

x|~n|−1A~n,j(x) dµj(x) = 1.
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The type II multiple orthogonal polynomial for the multi-index (n1, . . . , nr) is the
monic polynomial P~n of degree |~n| for which the following orthogonality conditions
hold:

∫

xkP~n(x) dµj(x) = 0, 0 ≤ k ≤ nj − 1,

for 1 ≤ j ≤ r. The orthogonality conditions for type I and type II multiple orthogonal
polynomials give a linear system of |~n| equations for the |~n| unknown coefficients of
the polynomials. If the solution exists and if it is unique, then we call the multi-index
~n a normal index, and if all multi-indices are normal, then the measures (µ1, . . . , µr)
are a perfect system. See [2] [8, Ch. 23] [13, Ch. 4.3] for more information on multiple
orthogonal polynomials (polyorthogonal polynomials).

An important perfect system of measures was introduced by Angelesco1 in 1919 [1]
and later independently suggested by Nikishin [12]. An Angelesco system has r mea-
sures µ1, . . . , µr where µj has support in an interval ∆j and the intervals ∆1, . . . , ∆r

are pairwise disjoint. Actually the intervals may be touching. Kalyagin [9] gave an
explicit example of an Angelesco system which is basically a generalization of Jacobi
polynomials. He considered the two intervals [−1, 0] and [0, 1] and investigated the
type II multiple orthogonal polynomials Pn,m satisfying

∫ 0

−1

Pn,m(x)xk(1 − x)α(1 + x)β|x|γ dx = 0, 0 ≤ k ≤ n − 1,

∫ 1

0
Pn,m(x)xk(1 − x)α(1 + x)β|x|γ dx = 0, 0 ≤ k ≤ m − 1,

and investigated the asymptotic behavior of Pn,m and later, with Ronveaux [10], found
a third order differential equation, a four term recurrence relation and the asymptotic
behavior of the ratio of two neighboring polynomials. We call these multiple orthogonal
polynomials Jacobi-Angelesco polynomials. Type I Jacobi-Angelesco polynomials were
only recently investigated for the case α = β = γ = 0 because they turn up in
the analysis of Alpert multiwavelets [7]. In this paper we will extend these type I
Legendre-Angelesco and Jacobi-Angelesco polynomials to r intervals. We take a special
configuration for the r intervals by having one common point 0 and placing them on an
r-star in the complex plane, with endpoints at the r roots of unity ωj, j = 0, 1, . . . , r−1,
with ω = e2πi/r, see Figure 1.

To preserve the symmetry, we take a weight function w(x) = |x|β(1− xr)α and the
measure µj is supported on the interval ∆j = [0, ωj−1], j = 1, . . . , r with this weight
function as its Radon-Nikodym derivative. The orthogonality properties for the type
I multiple orthogonal polynomials are then given by

r
∑

j=1

∫ ωj−1

0
xkA~n,j(x)|x|β(1− xr)α dx = 0, 0 ≤ k ≤ |~n| − 2,

1This is in fact Aurel Angelescu, a Romanian mathematician who wrote a PhD thesis in 1916 under supervision
of Paul Appell at the Sorbonne in Paris.
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Figure 1. r-star for r = 5 with ω = e2πi/5.

and normalization

r
∑

j=1

∫ ωj−1

0
x|~n|−1A~n,j(x)|x|β(1− xr)α dx = 1.

Observe that we are not using complex conjugation, hence the corresponding bilin-
ear form is not an inner product. Nevertheless the type I multiple orthogonal poly-
nomials will exist and they are unique, at least for multi-indices on the diagonal
~n = (n, n, . . . , n) or near the diagonal ~n ± ~ek, where ~ek is the kth unit vector in Zr.
We will investigate these type I multiple orthogonal polynomials in Section 2 where
we give an explicit formula for the polynomials, prove their multiple orthogonality,
give the recurrence coefficients in the nearest neighbor recurrence relations and obtain
a differential equation, which we use to get the asymptotic distribution of the zeros.
We give the results and the proofs for r = 2 in full detail. In Section 3 we consider
the general case r > 1 and again give an explicit expression for the type I multiple
orthogonal polynomials, prove their multiple orthogonality, give the recurrence coeffi-
cients of the nearest neighbor recurrence relation near the diagonal, give a differential
equation of order r + 1, and work out the asymptotic distribution of the zeros. The
results and the proofs are more complicated and technical, and we only outline the
necessary modifications of the proofs for the case r = 2 to general r.

The type II Jacobi-Angelesco polynomials are somewhat easier to analyze, because
for ~n = (n, n, . . . , n) they are given by a Rodrigues type formula

xβ(1 − xr)αP~n(x) = Cn(α, β)
dn

dxn
xβ+n(1− xr)α+n,

where Cn(α, β) is a constant that makes P~n a monic polynomial. These polynomials
will not be considered in the present paper.
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2. Type I Jacobi-Angelesco polynomials for r = 2

Type I Legendre-Angelesco polynomials appeared in [7], where they were used to ex-
pand Alpert multiwavelets. In this case one has r = 2 and the polynomials (An,m, Bn,m)
are such that deg An,m = n − 1, deg Bn,m = m − 1, and the orthogonality conditions
are

∫ 1

−1

(

An,m(x)χ[−1,0](x) + Bn,m(x)χ[0,1](x)
)

xk dx = 0, 0 ≤ k ≤ n + m − 2,

with the normalization given by

∫ 1

−1

(

An,m(x)χ[−1,0](x) + Bn,m(x)χ[0,1](x)
)

xn+m−1 dx = 1.

An explicit expression for these polynomials was given in terms of two families of
polynomials pn and qn given by

pn(x) =

n
∑

k=0

(

n

k

)(

n + k
2

n

)

(−1)n−kxk, (2.1)

and

qn(x) =

n
∑

k=0

(

n

k

)(

n + k−1
2

n

)

(−1)n−kxk. (2.2)

One has (see [7, Prop. 5 in §4.1])

Theorem 2.1. The type I Legendre-Angelesco polynomials for multi-indices on the

diagonal are given by

Bn+1,n+1(x) =
1

2

(3n + 2)!

n!(2n + 1)!
pn(x), An+1,n+1(x) = −Bn+1,n+1(−x),

and for |n − m| = 1 one has

γnBn+1,n(x) =

(

n + n
2

n

)

qn(x)−
(

n + n−1
2

n

)

pn(x),

γnBn,n+1(x) =

(

n + n
2

n

)

qn(x) +

(

n + n−1
2

n

)

pn(x),

and

An+1,n(x) = Bn,n+1(−x), An,n+1(x) = Bn+1,n(−x),

where the normalizing constant is given by γn = 2(n
2 + 1)n(2n)!/(3n + 1)!.
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We will extend this result by taking a more general Jacobi-type weight function and
by using integration on an r-star with r > 2.

2.1. Explicit expression

Let us first consider the case r = 2 and the weight function w(x) = |x|β(1−x2)α. The
type I Jacobi-Angelesco polynomials (An,m, Bn,m) then satisfy

∫ 1

−1

(

An,m(x)χ[−1,0](x)+Bn,m(x)χ[0,1](x)
)

xk|x|β(1−x2)α dx = 0, 0 ≤ k ≤ n+m−2,

with the normalization given by

∫ 1

−1

(

An,m(x)χ[−1,0](x) + Bn,m(x)χ[0,1](x)
)

xn+m−1|x|β(1− x2)α dx = 1.

The polynomials An,m and Bn,m on the diagonal can be expressed in term of the
polynomials

pn(x; α, β) =

n
∑

k=0

(

n

k

)

Γ(n + α + β+k
2 + 1)

Γ(n + α + 1)Γ(β+k
2 + 1)

(−1)n−kxk. (2.3)

Theorem 2.2. The type I Jacobi-Angelesco polynomials on the diagonal are given by

Bn+1,n+1(x) =
1

2

(2α + β + 2n + 2)n+1

n!
pn(x; α, β), An+1,n+1(x) = −Bn+1,n+1(−x).

Proof. If we take An+1,n+1(x) = −Bn+1,n+1(−x), then the integral for the orthogo-
nality conditions is

∫ 1

−1

(

An+1,n+1(x)χ[−1,0](x) + Bn+1,n+1(x)χ[0,1](x)
)

xk|x|β(1− xr)α dx

=
(

1 − (−1)k
)

∫ 1

0
Bn+1,n+1(x)xkxβ(1− x2)α dx.

This is 0 whenever k is an even integer, so we only need to prove

∫ 1

0
pn(x; α, β)x2j+1xβ(1− x2)α dx = 0, 0 ≤ j ≤ n − 1. (2.4)

Take the polynomial (1−x2)`−1 =
∑`

k=1

(`
k

)

(−1)kx2k, then clearly
(

(1−x2)`−1)
)

/x
is an odd polynomial of degree 2` − 1 and thus it is sufficient to prove

∫ 1

0
pn(x; α, β)

(1− x2)` − 1

x
xβ(1− x2)α dx = S` − S0 = 0, 1 ≤ ` ≤ n,
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where

S` =

∫ 1

0
pn(x; α, β)xβ−1(1 − x2)`+α dx.

Using the expression (2.3) we find

S` =

n
∑

k=0

(

n

k

)

Γ(n + α + β+k
2 + 1)

Γ(n + α + 1)Γ(β+k
2 + 1)

(−1)n−k

∫ 1

0
xk+β−1(1− x2)`+α dx

=
Γ(` + α + 1)

Γ(n + α + 1)

n
∑

k=0

(

n

k

)

(−1)n−k

β + k

Γ(n + α + β+k
2 + 1)

Γ(` + α + β+k
2 + 1)

,

where we used the beta integral

∫ 1

0
xk+β−1(1− x2)`+α dx =

1

2
B

(k + β

2
, ` + α + 1

)

=
Γ(k+β

2 )Γ(` + α + 1)

2Γ(k+β
2 + ` + α + 1)

.

From this we see that

S` −S0 =
1

(α + 1)n

n
∑

k=0

(

n

k

)

(−1)n−k
(

`+α+
β + k

2
+1

)

n−`

(α + 1)` −
(

α + β+k
2 + 1

)

`

β + k
,

where we used the Pochhammer symbol

(a)n =
Γ(a + n)

Γ(a)
.

We see that for 1 ≤ ` ≤ n this is of the form

S` − S0 =
1

(α + 1)n

n
∑

k=0

(

n

k

)

(−1)n−kπn−1(k),

where πn−1(k) is a polynomial of degree n − 1 in k. Hence by (2.5) in Lemma 2.3,
which we prove right after this, we see that S` − S0 = 0 for 1 ≤ ` ≤ n, proving the
relations (2.4).

For the normalization we need to show that

2n!

(2n + 2α + β + 2)n+1
= 2

∫ 1

0

pn(x; α, β)x2n+1xβ(1− x2)α dx = 2(−1)n+1(Sn+1 − S0).

Recall that Sn − S0 = 0, so that Sn+1 − S0 = Sn+1 − Sn, and

Sn+1 − Sn = −
n

∑

k=0

(

n

k

)

(−1)n−k 1

2n + 2α + β + k + 2
,

and then the result follows from (2.6) in Lemma 2.3.

In the proof of the previous theorem we used the following result.
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Lemma 2.3. For all integers n ≥ 1 one has

n
∑

k=0

(

n

k

)

(−1)n−kkm = 0, 0 ≤ m ≤ n − 1, (2.5)

and

n
∑

k=0

(

n

k

)

(−1)k 1

t + k
=

n!

(t)n+1
, t ∈ R \ {0,−1,−2, . . . ,−n}. (2.6)

Proof. From Newton’s binomial formula

(x + y)n =

n
∑

k=0

(

n

k

)

xkyn−k,

we find, after differentiating m times with respect to x

n!

(n − m)!
(x + y)n−m =

n
∑

k=m

(

n

k

)

k!

(k − m)!
xk−myn−k.

If we take x = 1 and y = −1, then for 0 ≤ m ≤ n − 1

n
∑

k=m

(

n

k

)

(−1)n−k(k − m + 1)m = 0.

Since (k − m + 1)m is a monic polynomial of degree m in k, this is equivalent with
(2.5).

For the second identity we use the beta integral

∫ 1

0
xt−1(1 − x)n dx = B(t, n + 1) =

n!

(t)n+1
,

and if we expand (1 − x)n then we also find

∫ 1

0
xt−1(1 − x)n dx =

n
∑

k=0

(

n

k

)

(−1)k

∫ 1

0
xk+t−1 dx =

n
∑

k=0

(

n

k

)

(−1)k

t + k
.

Comparison of both integrals gives (2.6).

For the type I Jacobi-Angelesco polynomials above and below the diagonal we need
a second family of polynomials

qn(x; α, β) =

n
∑

k=0

(

n

k

)

Γ(n + α + β+k−1
2 + 1)

Γ(n + α + 1)Γ(β+k−1
2 + 1)

(−1)n−kxk. (2.7)

Observe that qn(x; α, β) = pn(x; α, β − 1). We then have
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Theorem 2.4. The type I Jacobi-Angelesco polynomials near the diagonal are given

by

γn(α, β)Bn+1,n(x) = νn,1(α, β)qn(x; α, β)− νn,2(α, β)pn(x; α, β), (2.8)

γn(α, β)Bn,n+1(x) = νn,1(α, β)qn(x; α, β) + νn,2(α, β)pn(x; α, β), (2.9)

and

An+1,n(x) = Bn,n+1(−x), An,n+1(x) = Bn+1,n(−x), (2.10)

where νn,1(α, β) and νn,2(α, β) are the leading coefficients of pn(x; α, β) and qn(x; α, β)
respectively

νn,1(α, β) =
Γ
(

n + α + β+n
2 + 1

)

Γ(n + α + 1)Γ
(β+n

2 + 1
)
, νn,2(α, β) =

Γ
(

n + α + β+n+1
2

)

Γ(n + α + 1)Γ
(β+n+1

2

)
,

and

γn(α, β) =
2n!νn,1(α, β)

(2n + 2α + β + 1)n+1
.

Proof. The degree of the polynomial Bn+1,n is n − 1 since the leading coefficients of
pn and qn are cancelled by subtracting the polynomials, but the degree of Bn,n+1 is n
since we add the polynomials now. So it remains to prove the orthogonality. By (2.10)
we see that

∫ 0

−1
xkAn+1,n(x)|x|β(1− x2)α dx +

∫ 1

0
xkBn+1,n(x)xβ(1− x2)α dx

= (−1)k

∫ 1

0

xkBn,n+1(x)xβ(1− x2)α dx +

∫ 1

0

xkBn+1,n(x)xβ(1− x2)α dx.

By using (2.8)–(2.9) this is equal to

(

1 + (−1)k
) νn,1

γn

∫ 1

0
xkqn(x; α, β)xβ(1− x2)α dx

−
(

1 − (−1)k
) νn,2

γn

∫ 1

0
xkpn(x; α, β)xβ(1− x2)α dx.

When k = 2j + 1 is odd (0 ≤ j ≤ n − 1) this is

−2
νn,2

γn

∫ 1

0
x2j+1pn(x; α, β)xβ(1 − x2)α dx,

which vanishes because of (2.4). When k = 2j is even (0 ≤ j ≤ n − 1) the integral
reduces to

2
νn,1

γn

∫ 1

0

x2jqn(x; α, β)xβ(1− x2)α dx,

8



and this vanishes because qn(x; α, β) = pn(x; α, β− 1) and again by (2.4). This proves
the orthogonality. For the normalization we need

1 =

∫ 0

−1
x2nAn+1,n(x)|x|β(1 − x2)α dx +

∫ 1

0
x2nBn+1,n(x)xβ(1 − x2)α dx

= 2
νn,1

γn

∫ 1

0

x2nqn(x; α, β)xβ(1− x2)α dx.

The latter integral is

∫ 1

0

x2nqn(x; α, β)xβ(1 − x2)α dx =

∫ 1

0

x2n+1pn(x; α, β − 1)xβ−1(1 − x2)α dx

=
n!

(2n + 2α + β + 1)n+1
,

which gives the normalizing constant γn(α, β).

2.2. Recurrence relation

Multiple orthogonal polynomials satisfy a system of linear recurrence relations con-
necting the nearest neighbors [15]. For the type II multiple orthogonal polynomials
they are

xPn,m(x) = Pn+1,m(x) + cn,mPn,m(x) + an,mPn−1,m(x) + bn,mPn,m−1(x),

xPn,m(x) = Pn,m+1(x) + dn,mPn,m(x) + an,mPn−1,m(x) + bn,mPn,m−1(x).

The recurrence relations are very similar for the type I multiple orthogonal polynomi-
als:

xQn,m(x) = Qn−1,m(x) + cn−1,mQn,m(x) + an,mQn+1,m(x) + bn,mQn,m+1(x),

xQn,m(x) = Qn,m−1(x) + dn,m−1Qn,m(x) + an,mQn+1,m(x) + bn,mQn,m+1(x).

The same recurrence relation holds with Qn,m replaced by An,m or Bn,m. The coeffi-
cients an,m, bn,m can be computed as

an,m =
κn,m

κn+1,m
, bn,m =

λn,m

λn,m+1
,

where κn,m and λn,m are the leading coefficients of An,m and Bn,m respectively. This
can easily be seen by checking the leading coefficients in the recurrence relation. If we
write

An,m(x) = κn,mxn−1 + δn,mxn−2 + · · · , Bn,m(x) = λn,mxm−1 + εn,mxm−2 + · · · ,

then one also has

cn−1,m =
δn,m

κn,m
− δn+1,m

κn+1,m
− λn,m

λn,m+1

κn,m+1

κn,m
,
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dn,m−1 =
εn,m

λn,m
− εn,m+1

λn,m+1
− λn+1,m

λn,m

κn,m

κn+1,m
.

For the Jacobi-Angelesco polynomials near the diagonal we then have

Proposition 2.5. The recurrence coefficients for the Jacobi-Angelesco polynomials

on the diagonal are

an,n =
n(n + α)(2n + 2α + β)

(3n + 2α + β + 1)(3n + 2α + β)(3n + 2α + β − 1)
, bn,n = an,n,

and

cn−1,n =
(2n + 2α + β − 1)Γ(n + α + n+β

2 − 1)Γ(n+β+1
2 )

(3n + 2α + β − 1)Γ(n + α + n+β−1
2 )Γ(n+β

2 )
, dn,n−1 = −cn−1,n.

Proof. The two leading coefficients can easily be obtained from Theorem 2.2 and
Theorem 2.4 and give

λn+1,n+1 =
1

2

(2n + 2α + β + 2)n+1

n!
νn,1(α, β), κn+1,n+1 = (−1)n+1λn+1,n+1,

and

λn,n+1 =
νn,2(α, β)(2n + 2α + β + 1)n+1

n!
, κn+1,n = (−1)nλn,n+1.

From this the coefficients an,n and bn,n follow easily using the formulas above. For
cn−1,n and dn,n−1 one also needs the last but one leading coefficient and the calculus
is a bit longer.

2.3. Differential equation

Theorem 2.6. For α, β > −1 the polynomial pn(x; α, β) given in (2.3) satisfies the

third order differential equation

x(1− x2)y′′′ +
(

β + 2 − (2α + β + 6)x2
)

y′′ + (n − 1)(3n + 4α + 2β + 6)xy′

= n(n − 1)(2n + 2α + β + 2)y. (2.11)

Proof. From (2.3) it is easy to see that

p′n(x; α, β) = npn−1(x; α + 1, β + 1), (2.12)

and then of course also

p′′n(x; α, β) = n(n − 1)pn−2(α + 2, β + 2). (2.13)

Hence differentiation lowers the degree n but increases the parameters α and β. On
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the other hand, one has for α, β > 1

(

xβ(1 − x2)αpn(x; α, β)
)′

= xβ−1(1 − x2)α−1
(

(2n + 2α + β)pn+2(x; α − 2, β − 2)

− (3n + 4α + 2β)xpn+1(x; α− 1, β − 1)
)

. (2.14)

Indeed, if we work out the left hand side, then

(

xβ(1− x2)αpn(x; α, β)
)′

= xβ−1(1 − x2)α−1πn+2(x),

where πn+2 is a polynomial of degree n + 2 given by

πn+2(x) =
(

β(1− x2)− 2αx2
)

pn(x; α, β) + x(1 − x2)p′n(x; α, β). (2.15)

One can check, by comparing coefficients and using (2.3), that

πn+2(x) = (2n+2α+β)pn+2(x; α−2, β−2)−(3n+4α+2β)xpn+1(x; α−1, β−1), (2.16)

but alternatively one can also observe that for α, β > 0

∫ 1

0
xβ−2(1− x2)α−1πn+2(x)x2k+1 dx =

∫ 1

0

(

xβ(1− x2)αpn(x; α, β)
)′

x2k dx

= −2k

∫ 1

0
xβ(1 − x2)αpn(x; α, β)x2k−1 dx

= 0, 0 ≤ k ≤ n,

where we used integration by parts and the orthogonality to odd powers (2.4). There-
fore πn+2 is a polynomial of degree n+2 which satisfies n+1 orthogonality conditions
for odd powers with the weight xβ−2(1 − x2)α−1 on [0, 1], so it belongs to a linear
space of polynomials of dimension 2 and can be written as a linear combination of
two linearly independent polynomials from that space. For α, β > 1 the polynomials
pn+2(x; α− 2, β− 2) and xpn+1(x; α− 1, β− 1) are two such polynomials and by (2.4)
they are orthogonal to odd powers x2k+1 for 0 ≤ k ≤ n with weight xβ−2(1 − x2)α−1

on [0, 1], hence πn+2(x) = anpn+2(x; α− 2, β− 2) + bnxpn+1(x; α− 1, β− 1). The coef-
ficients an and bn can be found by comparing the leading coefficient and the constant
coefficient.

To find the differential equation we multiply (2.13) by xβ+2(1 − x2)α+2 and differ-
entiate to find

xβ+1(1 − x2)α+1
[

(β + 2)(1− x2)− 2x2(α + 2)
]

p′′n(x; α, β)

+ xβ+2(1 − x2)α+2p′′′n (x; α, β)

= n(n − 1)xβ+1(1− x2)α+1
(

(2n + 2α + β + 2)pn(x; α, β)

− (3n + 4α + 2β + 6)xpn−1(x, α + 1, β + 1)
)

,

where we used the property (2.14) for the right hand side. Remove the common factor
xβ+1(1− x2)α+1 and use (2.12), then the differential equation (2.11) follows.
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2.4. Asymptotic zero behavior

Theorem 2.7. The asymptotic zero distribution of the polynomials pn(x; α, β) given

in (2.3) is independent of α and β and is given by a measure on [0, 1] with density

u2(x) =

√
3

2π

(1 +
√

1− x2)1/3 + (1−
√

1− x2)1/3

x1/3
√

1 − x2
, 0 < x < 1. (2.17)

Proof. Let x1,n, x2,n, . . . , xn,n be the zeros of pn(x; α, β). Since this is an Angelesco
system, it is known that these zeros (which are the zeros of Bn+1,n+1) are simple and
on the interval (0, 1) (see, e.g, [13, Prop. 3.4 in Ch. 4.3]). The normalized zero counting
measure is

µn =
1

n

n
∑

j=1

δxj,n
,

and its Stieltjes transform is

Sn(z) =

∫ 1

0

dµn(x)

z − x
=

1

n

p′n(z; α, β)

pn(z; α, β)
.

The sequence (µn)n is a sequence of probability measures on the compact interval [0, 1],
and hence by Helley’s selection principle [3, §25], it contains a subsequence (µnk

)k that
converges weakly to a probability measure µ on [0, 1], i.e.,

lim
k→∞

∫ 1

0
f(x) dµnk

(x) = lim
k→∞

1

nk

nk
∑

j=1

f(xj,nk
) =

∫ 1

0
f(x) dµ(x),

for every continuous function f on [0, 1]. The weak limit µ can depend on the subse-
quence, but we will show it is independent of the choice of converging subsequence.
Observe that p′n(z) = npn(z)Sn(z) so that

p′′n(z) = np′n(z)Sn(z) + npn(z)S ′
n(z) = n2pn(z)

(

S2
n(z) +

1

n
S ′

n(z)

)

,

and

p′′′n (z) = n3pn(z)

(

S3
n(z) +

3

n
Sn(z)S ′

n(z) +
1

n2
S ′′

n(z)

)

.

Insert this in the differential equation (2.11) then

z(1−z2)n3pn(z)

(

S3
n +

3

n
SnS ′

n +
1

n2
S ′′

n

)

+[β+2−(2α+β+6)z2]n2pn(z)

(

S2
n +

1

n
S ′

n

)

+ (n − 1)(3n + 4α + 2β + 6)znpn(z)Sn − n(n − 1)(2n + 2α + β + 2)pn(z) = 0.
(2.18)

The weak convergence of the sequence (µnk
)k to µ implies that Snk

converges uniformly
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on compact subsets of C \ [0, 1] to the Stieltjes transform S of µ,

S(z) =

∫ 1

0

dµ(x)

z − x
.

But then also S ′
nk

and S ′′
nk

converge uniformly on compact subsets of C \ [0, 1] to S ′

and S ′′, respectively. Then taking the limit for n = nk → ∞ in (2.18), after dividing
by n3pn(z), gives the algebraic equation

z(1− z2)S3(z) + 3zS(z)− 2 = 0.

Observe that this equation does not contain α and β anymore. This algebraic equa-
tion has three solutions, and we need the solution that gives a Stieltjes transform, in
particular we need the solution which is analytic on C \ [0, 1] and limz→∞ zS(z) = 1.
Solving the cubic equation gives the following three solutions

S1(z) =
z4 − z2 +

(

(−1 + (1− z2)−1/2)(z2 − 1)z2
)2/3

(z3 − z2)
(

(−1 + (1− z2)−1/2)(z2 − 1)z2
)1/3

,

S2(z) = −(1 − i
√

3)
(

(−1 + (1− z2)−1/2)(z2 − 1)2z2
)2/3

+ (1 + i
√

3)z2(z2 − 1)

(2z3 − 2z)
(

(−1 + (1 − z2)−1/2)(z2 − 1)2z2
)1/3

,

S3(z) = −(1 + i
√

3)
(

(−1 + (1− z2)−1/2)(z2 − 1)2z2
)2/3

+ (1− i
√

3)z2(z2 − 1)

(2z3 − 2z)
(

(−1 + (1 − z2)−1/2)(z2 − 1)2z2
)1/3

.

One can check that

lim
z→∞

zS1(z) = −2, lim
z→∞

zS2(z) = lim
z→∞

zS3(z) = 1,

hence either S2 or S3 is the desired solution. From the Stieltjes-Perron inversion for-
mula (or Sokhotsky-Plemelj formula)

u(x) = −1

π
lim

ε→0+
=S(x + iε), 0 < x < 1,

we find that S2 is the correct solution and it is the Stieltjes transform of the den-
sity (2.17). Hence every convergent subsequence has the same limit, and from the
Grommer-Hamburger theorem [6] it follows that µn converges weakly to the measure
with density u2.

3. Type I Jacobi-Angelesco polynomials for general r

We now consider the type I Jacobi-Angelesco polynomials on the r-star for general
r ≥ 1. The results and the proofs are similar to the case r = 2 but they are more
complicated and technical. This is why we decided to explain the case r = 2 in detail
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and only give the results and the modifications in the proof for the general case in this
section. The type I Jacobi-Angelesco polynomials for the multi-index (n1, n2, . . . , nr)
on the r-star (see Figure 1 for r = 5) and parameters α, β > −1 are given by the

vector of polynomials (A
(α,β)
~n,1 , . . . , A

(α,β)
~n,r ) which is uniquely defined by

(1) degree conditions: the degree of A
(α,β)
~n,j is nj − 1,

(2) orthogonality conditions

r
∑

j=1

∫ ωj−1

0
xkA

(α,β)
~n,j (x)|x|β(1− xr)α dx = 0, 0 ≤ k ≤ |~n| − 2, (3.1)

(3) normalization condition:

r
∑

j=1

∫ ωj−1

0
x|~n|−1A

(α,β)
~n,j (x)|x|β(1 − xr)α dx = 1. (3.2)

We have used the weight |x|β(1− xr)α on the r-star so that we can use the rotational
symmetry and ω = e2πi/r is the primitive rth root of unity.

3.1. Explicit expression

The polynomials A
(α,β)
~n,j on the diagonal can be expressed in terms of the polynomials

pn(x; α, β) =
n

∑

k=0

(

n

k

)

Γ(n + α + β+k
r + 1)

Γ(n + α + 1)Γ(β+k
r + 1)

(−1)n−kxk. (3.3)

Observe that for r = 2 this coincides with (2.3).

Theorem 3.1. The type I Jacobi-Angelesco polynomials on the diagonal ~n = (n + 1,
n + 1, . . . , n + 1) are given by

A
(α,β)
~n,j (x) = λ

(α,β)
n+1,rpn(ω−j+1x; α, β),

with normalizing constant

λ
(α,β)
n+1,r =

1

r

(rn + rα + β + r)n+1

n!
.

Proof. The degree conditions are clearly satisfied. The orthogonality conditions (3.1)
become

λ
(α,β)
n+1,r

r
∑

j=1

(ωj−1)k+1

∫ 1

0

xkpn(x; α, β)xβ(1 − xr)α dx = 0,
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for 0 ≤ k ≤ rn + r − 2. Since ω is the primitive rth root of unity, we have

r
∑

j=1

(ωj−1)k+1 =

{

0, if k + 1 6≡ 0 mod r,

r, if k + 1 ≡ 0 mod r,

so we only need to prove

∫ 1

0

xrj−1pn(x; α, β)xβ(1 − xr)α dx = 0, 1 ≤ j ≤ n. (3.4)

We will consider the polynomials
(

(1 − xr)` − 1
)

/x of order r` − 1 and show that
S` − S0 = 0 for 1 ≤ ` ≤ n, where

S` =

∫ 1

0
pn(x; α, β)xβ−1(1− xr)α+` dx,

as we did in the proof of Theorem 2.2. It turns out that for 1 ≤ ` ≤ n

S` − S0 =
1

rΓ(n + α + 1)

n
∑

k=0

(

n

k

)

πn−1,`

(

β + k

r

)

,

where πn−1,` is a polynomial of degree n − 1, and this vanishes because of (2.5) in
Lemma 2.3. For the normalization we need to prove

Sn+1 − S0 = Sn+1 − Sn = (−1)n+1 n!

(rn + rα + β + r)n+1
, (3.5)

and this follows from (2.6) in Lemma 2.3.

Next, we will show that the type I Jacobi-Angelesco polynomials above the diagonal
can be written as a linear combination of r polynomials pn(x; α, β − j) with 0 ≤ j ≤
r − 1.

Theorem 3.2. Let ~n = (n, n, . . . , n) and ~ek be the unit vector in N
r with 1 on the kth

position. The type I Jacobi-Angelesco polynomials A
(α,β)
~n+~ek ,j are given by

A
(α,β)
~n+~ek ,j(x) = Aj−k mod r(ω

−j+1x)ω−k+1, (3.6)

where the polynomials A`, 0 ≤ ` ≤ r − 1 are given by

τ (α,β)
n,r A`(x) =

r−1
∑

j=0

ω`j

ν
(α,β−j)
n

pn(x; α, β − j), (3.7)

with normalizing constant

τ (α,β)
n,r =

rn!Γ(n + α + 1)Γ(β+n+1
r )Γ(rn + rα + β + 1)

Γ(n + α + β+n+1
r )Γ(rn + n + rα + β + 2)

, (3.8)
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and ν
(α,β)
n is the leading coefficient of pn(x; α, β)

ν(α,β)
n =

Γ(n + α + β+n
r + 1)

Γ(n + α + 1)Γ(β+n
r + 1)

. (3.9)

Proof. We will first determine the degree of the polynomials A`. For ` = 0 we see

that deg A0 = deg pn(x; α, β − j) = n, which implies that deg A
(α,β)
~n+~ej ,j = n for all

j = 1, 2, . . . , r. For ` = 1, 2, . . . , r − 1 the coefficient of xn on the right hand side of
(3.7) is given by

r−1
∑

j=0

ω`j =
1− ωr`

1 − ω`
= 0.

Therefore for all k 6= j we have deg A
(α,β)
~n+~ek ,j < n and one can check that it is in fact

n − 1. For the orthogonality and the normalization we need the following integral to
vanish for all ` = 0, 1, 2, . . . , rn − 1 and to be equal to one for ` = rn:

r
∑

j=1

∫ ωj−1

0
x`A

(α,β)
~n+~ek ,j(x)|x|β(1 − xr)α dx,

and this expression is equal to

ω−k+1

τ
(α,β)
n,r

r−1
∑

m=0

ωm(−k+1)

ν
(α,β−m)
n

r
∑

j=1

(ω`+m+1)j−1

∫ 1

0
pn(x; α, β − m)x`+β(1− xr)α dx.

The second sum in this expression is

r
∑

j=1

(ω`+m+1)j−1 =

{

r, if ` + m + 1 ≡ 0 mod r,

0, if ` + m + 1 6≡ 0 mod r.

Therefore we need to show that

∫ 1

0
pn(x; α, β − m)xrj−m−1+β(1− xr)α dx = 0, 1 ≤ j ≤ n,

and the latter follows from (3.4). For the normalization we need to show that

1 =

r
∑

j=1

∫ ωj−1

0

xrnA
(α,β)
~n+~ek ,j(x)|x|β(1 − xr)α dx

= r
ωr(k−1)

τ
(α,β)
n,r ν

(α,β−r+1)
n

∫ 1

0
pn(x; α, β − r + 1)xrn+β(1− xr)α dx,

and this follows from the explicit expressions (3.8) and (3.9) for τ
(α,β)
n,r and ν

(α,β)
n and

the expression (3.5) for the integral.
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We also give an explicit expression for the type I Jacobi-Angelesco polynomials

below the diagonal, i.e., for A
(α,β)
~n−~ek ,j, where ~n = (n, n, . . . , n).

Theorem 3.3. For every r > 1, α, β > −1 and ~n = (n, n, . . . , n) with n > 0 we have

γ(α,β)
n,r A

(α,β)
~n−~ek ,j(x) = ωj−1ν

(α,β)
n−1 pn−1(ω

−j+1x; α, β − 1)

− ωk−1ν
(α,β−1)
n−1 pn−1(ω

−j+1x; α, β), (3.10)

where the normalizing constant γ
(α,β)
n,r is given by

γ(α,β)
n,r =

r(n − 1)!Γ(n + α + n+β−1
r )

Γ(n + α)Γ(n+β−1
r + 1)(rn + rα + β − 1)n

. (3.11)

Proof. Observe that for j 6= k the degree of A
(α,β)
~n−~ek ,j is n − 1 but that for j = k the

leading term xn−1 vanishes and the degree is n−2. For the orthogonality relations we
need to verify that the following integral vanishes for 0 ≤ ` ≤ rn − 3:

r
∑

j=1

∫ ωj−1

0
x`A

(α,β)
~n−~ek ,j(x)|x|β(1 − xr)α dx,

and this expression is equal to

1

γ
(α,β)
n,r

∫ 1

0
x`+β(1 − xr)α

(

ν
(α,β)
n−1

r
∑

j=1

(ωj−1)`+2pn−1(x; α, β − 1)

− ωk−1ν
(α,β−1)
n−1

r
∑

j=1

(ωj−1)`+1pn−1(x; α, β)
)

dx.

The two sums involving the roots of unity ω are

r
∑

j=1

(ω`+2)j−1 =

{

r, if ` + 2 ≡ 0 mod r,

0, if ` + 2 6≡ 0 mod r,

and

r
∑

j=1

(ω`+1)j−1 =

{

r, if ` + 1 ≡ 0 mod r,

0, if ` + 1 6≡ 0 mod r,

so the integral vanishes whenever ` + 2 6≡ 0 mod r and ` + 1 6≡ 0 mod r. In case
` = rj − 2 for 1 ≤ j ≤ n − 1 we need to verify

∫ 1

0
xrj−2+β(1 − xr)αpn−1(x; α, β − 1) dx = 0,
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and this holds because of (3.4). In case ` = rj − 1 for 1 ≤ j ≤ n − 1 we need

∫ 1

0
xrj−1+β(1− xr)αpn−1(x; α, β) dx = 0,

which again follows from (3.4). For the normalization we need to show that

1 =

r
∑

j=1

∫ ωj−1

0
xrn−2A

(α,β)
~n−~ek ,j(x)|x|β(1− xr)α dx

=
r

γ
(α,β)
n,r

ν
(α,β)
n−1

∫ 1

0
xrn+β−2(1 − xr)αpn−1(x; α, β − 1) dx,

and this follows by using the normalization given in Theorem 3.1.

3.2. Recurrence relation

For general r the nearest neighbor recurrence relations for the type I multiple orthog-
onal polynomials are

xQ~n(x) = Q~n−~ek
(x) + b~n−~ek ,kQ~n(x) +

r
∑

`=1

a~n,`Q~n+~e`
(x),

for 1 ≤ k ≤ r, where Q~n(x) =
∑r

j=1 A~n,j(x)χ[0,ωj−1](x). This relation can also be
stated in terms of the individual polynomials on each part of the r-star and one has
for every j = 1, 2, . . . , r

xA~n,j(x) = A~n−~ek ,j(x) + b~n−~ek ,kA~n,j(x) +

r
∑

`=1

a~n,`A~n+~e` ,j(x),

for 1 ≤ k ≤ r. For the type II multiple orthogonal polynomials the recurrence relations
are

xP~n(x) = P~n+~ek
(x) + b~n,kP~n(x) +

r
∑

`=1

a~n,`P~n−~e`
(x),

for 1 ≤ k ≤ r. An explicit expression for the recurrence coefficients for the Jacobi-
Angelesco polynomials near the diagonal is given by

Proposition 3.4. Let ~n = (n, n, . . . , n) be a diagonal multi-index for r ≥ 1. Then

a~n,k = a(α,β)
n,r ω2(k−1), 1 ≤ k ≤ r,

where

a(α,β)
n,r =

n(n + α)(rn + rα + β)

r(rn + n + rα + β)(rn + n + rα + β + 1)

Γ(β+n+1
r )Γ(n + α + β+n−1

r )

Γ(β+n−1
r + 1)Γ(n + α + β+n+1

r )
.
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Furthermore for r > 1

b~n−~ek ,k = b(α,β)
n,r ωk−1, 1 ≤ k ≤ r,

where

b(α,β)
n,r =

(n + α + β−1
r )Γ(n + α + n+β−2

r )Γ(n+β−1
r + 1)

(n + α + n+β−1
r )Γ(n + α + n+β−1

r )Γ(n+β−2
r + 1)

.

Proof. If we write

A~n,k(x) = κ~n,kx
n−1 + δ~n,kx

n−2 + · · · ,

then

a~n,k =
κ~n,k

κ~n+~ek ,k
,

and this ratio can be evaluated by using Theorem 3.1 which gives

κ~n,k =
1

r

(rn + rα + β)n

(n − 1)!

Γ(n + α + β+n−1
r )

Γ(n + α)Γ(β+n−1
r + 1)

ω(−k+1)(n−1),

and Theorem 3.2 which gives

κ~n+~ek ,k =
(rn + rα + β + 1)n+1

n!

Γ(n + α + β+n+1
r )

Γ(n + α + 1)Γ(β+n+1
r )

ω(−k+1)(n+1).

The coefficients b~n−~ek ,k can be computed in a similar way, but the computations are
a bit longer and only the case r > 1 is covered. For r = 1 the computations are
slightly different but in that case the result is known because this corresponds to
Jacobi polynomials on [0, 1]. The expression for b~n−~ek ,k is

b~n−~ek ,k =
δ~n,k

κ~n,k
− δ~n+~ek ,k

κ~n+~ek ,k
−

r
∑

`=1, 6̀=k

κ~n,`

κ~n,k

κ~n+~e`,k

κ~n+~e` ,`
.

From Theorem 3.1 one finds

δ~n,k = −(rn + rα + β)nΓ(n + α + n+β−2
r )

r(n − 2)!Γ(n + α)Γ(n+β−2
r + 1)

ω(−k+1)(n−2), n ≥ 2,

and from Theorem 3.2

δ~n+~ek ,k = −nω(−k+1)n

τ
(α,β)
n,r

r−1
∑

j=0

Γ(n+β−j
r + 1)Γ(n + α + n+β−1−j

r + 1)

Γ(n+β−1−j
r + 1)Γ(n + α + n+β−j

r + 1)
,
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and for ` 6= k

κ~n+~e`,k = −nω−`+1−(k−1)(n−1)

τ
(α,β)
n,r

r−1
∑

j=0

ω(k−`)j Γ(n+β−j
r + 1)Γ(n + α + n+β−1−j

r + 1)

Γ(n+β−1−j
r + 1)Γ(n + α + n+β−j

r + 1)
.

Combining all these results gives the desired expression for b~n−~ek ,k.

Observe that one can easily find the asymptotic behavior of these recurrence coef-
ficients as n → ∞ by using [14, 5.11.12]

Γ(n + a)

Γ(n + b)
∼ na−b, n → ∞,

which gives

lim
n→∞

a(α,β)
n,r =

r

(r + 1)2+2/r
, lim

n→∞
b(α,β)
n,r =

r

(r + 1)1+1/r
.

The limit for b
(α,β)
n,r is valid for r > 1.

3.3. Differential equation

In this section we will give a linear differential equation of order r+1 for the polynomial
pn(x; α, β) given in (3.3). The differential equation is a combination of lowering and
raising operators for these polynomials, i.e., differential operators that lower or raise
the degree of the polynomial and raise/lower the parameters α and β.

Lemma 3.5. For the polynomial pn(x; α, β) given in (3.3) one has for α, β > −1 the

lowering property

p′n(x; α, β) = npn−1(x; α + 1, β + 1), (3.12)

and for α, β > r − 1 the raising property

(

xβ(1−xr)αpn(x; α, β)
)′

= xβ−1(1−xr)α−1
r

∑

k=1

a
(α,β)
k,n xr−kpn+k(x; α−k, β−k), (3.13)

where

a
(α,β)
k,n = (−1)k

[(

r

k

)

(rα + β) +

(

r + 1

k + 1

)

kn

]

.

Proof. The lowering property (3.12) can easily be proved by differentiating the ex-
pression (3.3). To prove (3.13) we first observe that

[

xβ(1 − xr)αpn(x; α, β)
]′

= xβ−1(1− xr)α−1πn+r(x), (3.14)

where πn+r is a polynomial of degree n + r given by

πn+r(x) =
(

β(1 − xr) − αrxr
)

pn(x; α, β) + x(1 − xr)p′n(x; α, β). (3.15)

20



Integrating by parts shows that for α, β > 0

∫ 1

0
xβ−r(1− xr)α−1πn+r(x)xr(j+1)−1 dx =

∫ 1

0

[

xβ(1 − xr)αpn(x; α, β)
]′
xrj dx

= −rj

∫ 1

0
xβ(1 − xr)αpn(x; α, β)xrj−1 dx,

and by (3.4) this is zero for 1 ≤ j ≤ n but also for j = 0. So πn+r is a polynomial
of degree n + r which is orthogonal to all xr`−1 for 1 ≤ ` ≤ n + 1 with weight
xβ−r(1 − xr)α−1 on the interval [0, 1]. These are n + 1 orthogonality conditions. For
α, β > r − 1 the r polynomials xr−kpn+k(x; α − k, β − k), 1 ≤ k ≤ r, have the
same orthogonality conditions, they are all of degree n + r and they are linearly
independent, hence they span the linear space of polynomials of degree n + r with the
n + 1 orthogonality conditions. Therefore

πn+r(x) =
r

∑

k=1

a
(α,β)
k,n xr−kpn+k(x; α− k, β − k), (3.16)

for some a
(α,β)
k,n , k = 1, 2, . . . , r. To find these coefficients, one compares the coefficients

of xr−k in the latter expansion and (3.15).

With these operators one can find the differential equation.

Theorem 3.6. For any n ∈ N, r ≥ 1 and α, β > −1 the polynomial y = pn(x; α, β)
satisfies the differential equation

x(1− xr)y(r+1) + (r + β)y(r) +

r
∑

k=0

c
(α,β)
k,n xky(k) = 0, (3.17)

where the coefficients c
(α,β)
k,n for 0 ≤ k ≤ r are given by

c
(α,β)
k,n = (−1)r+k+1(n − r + 1)r−k

[(

r

k

)

(rα + β) +

(

r + 1

k

)

(rn + r − kn)

]

. (3.18)

Proof. From the lowering operation (3.12) one has

p(r)
n (x; α, β) =

n!

(n − r)!
pn−r(x; α + r, β + r).

Multiplying both sides by xβ+r(1 − xr)α+r and differentiating gives

xβ+r(1− xr)α+rp(r+1)
n (x; α, β)

+ xβ+r−1(1 − xr)α+r−1
[

β + r)(1− xr) − r(α + r)xr
]

p(r)
n (x; α, β)

=
n!

(n − r)!
xβ+r−1(1 − xr)α+r−1

r
∑

k=1

a
(α+r,β+r)
k,n−r xr−kpn−r+k(x; α + r − k, β + r − k),
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where we used the raising operation (3.13) for the right hand side. Using the lowering
operation (3.12) one has

pn−r+k(x; α + r − k; β + r − k) =
(n − r + k)!

n!
p(r−k)

n (x; α, β),

hence we have

x(1− xr)p(r+1)
n (x; α, β) + [(β + r)(1− xr) − r(α + r)xr]p(r)

n (x; α, β)

−
r

∑

k=1

a
(α+r,β+r)
k,n−r

(n − r + k)!

(n − r)!
xr−kp(r−k)

n (x; α, β) = 0,

or

x(1− xr)p(r+1)
n (x; α, β) + (β + r)p(r)

n (x; α, β) +
r

∑

k=0

c
(α,β)
k,n xkp(k)

n (x; α, β) = 0,

where

c
(α,β)
k,n = −a

(α+r,β+r)
r−k,n−r

(n − k)!

(n− r)!
,

which gives (3.17) with (3.18).

3.4. Asymptotic zero behavior

We now investigate the asymptotic distribution of the zeros of the type I Jacobi-

Angelesco polynomials A
(α,β)
~n,j , 1 ≤ j ≤ r, for the multi-index ~n = (n, n, . . . , n) and

n → ∞. From Theorem 3.1 it is clear that the zeros of A
(α,β)
~n,j are copies of the zeros of

pn(x; α, β) (which are on [0, 1], see Lemma 3.7), but rotated to the interval [0, ωj−1].
Hence we only need to investigate the asymptotic distribution of the zeros of pn(x; α, β)
given in (3.3). First we prove that the zeros of pn(x; α, β) are all on (0, 1) whenever
α, β > −1. For this we modify the standard proof of the location of zeros of orthogonal
polynomials (see, e.g., [8, Thm. 2.2.5]).

Lemma 3.7. Let α, β > −1, then all the zeros of pn(x; α, β) given in (3.3) are simple

and lie in the open interval (0, 1).

Proof. Suppose x1, . . . , xm are the zeros of odd multiplicity of pn(x; α, β) that lie
in (0, 1) and that m < n. Then consider the polynomial qm(x) = (xr − xr

1)(x
r −

xr
2) · · · (xr − xr

m). This is a polynomial of degree rm with m real zeros on (0, 1) at
the points x1, . . . , xm and no other sign changes on (0, 1). Hence pn(x; α, β)qm(x) has
constant sign on (0, 1) so that

∫ 1

0

pn(x; α, β)qm(x)xβ+r−1(1− xr)α dx 6= 0.

But qm(x)xr−1 contains only powers xrj−1 with 1 ≤ j ≤ m + 1 ≤ n, hence by (3.4)
this integral is zero. This contradiction implies that m ≥ n and since pn(x; α, β) can
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have at most n zeros on (0, 1), we see that m = n.

Denote the zeros of pn(x; α, β) by 0 < x1,n < x2,n < · · · < xn,n < 1. As before we
will use the normalized zero counting measure

µn =
1

n

n
∑

j=1

δxj,n
.

Then (µn)n is a sequence of probability measures on [0, 1], and by Helley’s selection
principle it will contain a subsequence (µnk

)k that converges weakly to a probability
measure µ on [0, 1]. If this limit is independent of the subsequence, then we call it
the asymptotic zero distribution of the zeros of pn(x; α, β). We will investigate this by
means of the Stieltjes transform

Sn(z) =

∫ 1

0

dµn(x)

z − x
=

1

n

p′n(z; α, β)

pn(z; α, β)
, S(z) =

∫ 1

0

dµ(x)

z − x
, z ∈ C \ [0, 1],

and use the Grommer-Hamburger theorem which says that µn converges weakly to µ if
and only if Sn converges uniformly on compact subsets of C\ [0, 1] to S and zS(z) → 1
as z → ∞ (see, e.g., [6]).

First we show that the weak limit of (µnk
)k has a Stieltjes transform S which satisfies

an algebraic equation of order r + 1.

Proposition 3.8. Suppose µnk
converges weakly to µ, then the Stieltjes transform S

of µ satisfies

z(1− zr)Sr+1 +

r−1
∑

`=0

(−1)r+`+1

(

r + 1

`

)

(r − `)z`S` = 0. (3.19)

Proof. We first show that one can express the derivatives p
(j)
n of pn(z; α, β) in terms

of Sn and its derivatives:

p(j)
n (z; α, β) = njpn(z; α, β)

[

Sj
n(z) +

1

n
Gn,j(Sn, S ′

n, . . . , S(j−1)
n )

]

, j ≥ 0, (3.20)

where Gn,j is a polynomial in j variables with coefficients of order O(1) in n. This
polynomial is given recursively by

Gn,j(x1, . . . , xj) = x1Gn,j−1(x1, x2, . . . , xj−1) + (j − 1)xj−2
1 x2

+
1

n

j−1
∑

k=1

∂

∂xk
Gn,j−1(x1, . . . , xj−1)xk+1,

with Gn,0 = 0. This can be proved by induction on j. It is obvious for j = 0 and for
j = 1 it follows from Gn,1(x) = 0 and

Sn(z) =
1

n

p′n(z; α, β)

pn(z; α, β)
.
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Suppose now it holds for j, then for j + 1 we have

p(j+1)
n (z; α, β) =

(

p(j)
n (z; α, β)

)′
= njp′n(z; α, β)

[

Sj
n(z) +

1

n
Gn,j(Sn, S ′

n, . . . , S(j−1)
n )

]

+ njpn(z; α, β)
[

jS ′
nSj−1

n +
1

n

d

dz
Gn,j(Sn, S ′

n, . . . , S(j−1)
n )

]

.

Here we can use p′n(z; α, β) = npn(z; α, β)Sn(z) and the chain rule

d

dz
Gn,j(Sn, S ′

n, . . . , S(j−1)
n ) =

j
∑

k=1

S(k)
n

∂

∂xk
Gn,j(Sn, S ′

n, . . . , S(j−1)
n ),

which after collecting terms gives the desired formula (3.20) for j + 1.
Now insert the expressions (3.20) into the differential equation (3.17) to find

0 = z(1− zr)nr+1pn(z)
[

Sr+1
n +

1

n
Gn,r+1(Sn, . . . , S(r)

n )
]

+ (r + β)nrpn(z)
[

Sr
n +

1

n
Gn,r(Sn, . . . , S(r−1)

n )
]

+

r
∑

`=0

c`(n)z`n`pn(z)
[

S`
n +

1

n
Gn,`(Sn, . . . , S(`−1)

n )
]

.

Divide by nr+1pn(z) and let n = nk → ∞. From the convergence of Snk
to S uniformly

on compact subsets of C \ [0, 1], it also follows that all the derivatives S
(j)
nk

converge to
S(j) uniformly on compact subsets of C \ [0, 1]. Furthermore, from (3.18)

lim
n→∞

c`(n)

nr−`+1
= (−1)r+`+1

(

r + 1

`

)

(r − `),

so that in the limit we find the equation (3.19). Now observe that the equation does
not depend on the subsequence (nk)k anymore, so that every convergent subsequence
has a limit S satisfying equation (3.19).

By using the binomial theorem, one can find

r+1
∑

`=0

(−1)r+`+1

(

r + 1

`

)

(r − `)z`S` = −(zS + r)(zS − 1)r,

so that the algebraic equation (3.19) simplifies to

zSr+1 − (zS + r)(zS − 1)r = 0. (3.21)

This equation has r + 1 solutions but we are interested in the solution which is a
Stieltjes transform of a probability measure on [0, 1]. By using the Stieltjes-Perron
inversion formula one can then find the asymptotic zero distribution measure µ.

Theorem 3.9. The asymptotic zero distribution of the polynomial pn(x; α, β) as n →
∞ is given by a measure which is absolutely continuous on [0, 1] with a density ur
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given by ur(x) = rxr−1wr(x
r), where wr is given by

wr(x̂) =
r + 1

π

1

|x̂′(θ)| =
r + 1

πx̂

sin θ sin rθ sin(r + 1)θ

|(r + 1) sin rθ − reiθ sin(r + 1)θ|2 ,

where we used the change of variables

x̂ = xr =
1

cr

(

sin(r + 1)θ
)r+1

sin θ(sin rθ)r
, 0 < θ <

π

r + 1
, (3.22)

and cr = (r + 1)r+1/rr.

Proof. The proof is along the same lines as in [11] where the asymptotic zero dis-
tribution was obtained for Jacobi-Piñeiro polynomials. The algebraic equation (3.21)
can be transformed by taking

W =
zS

zS − 1
, zS =

W

W − 1
,

which gives

W r+1 − (r + 1)zrW + rzr = 0. (3.23)

We look for a solution W of the form ρeiθ, where θ is real and ρ > 0. Take z = x ∈ [0, 1]
and insert W = ρeiθ into (3.23) to find

ρr+1ei(r+1)θ − (r + 1)xrρeiθ + rxr = 0.

Hence the real and imaginary parts satisfy

ρr+1 cos(r + 1)θ − (r + 1)xrρ cos θ + rxr = 0, (3.24)

ρr+1 sin(r + 1)θ − (r + 1)xrρ sinθ = 0. (3.25)

From (3.25) we find

x̂ := xr =
ρr sin(r + 1)θ

(r + 1) sinθ
,

and using this in (3.24), we find

ρ(x̂) =
r

r + 1

sin(r + 1)θ

sin rθ
.

Combining both gives (3.22). Note that when θ ∈ (0, π/(r + 1)) one has ρ > 0. So for
x̂ ∈ [0, 1] the equation (3.23) has a solution of the form ρeiθ. Observe that also ρe−iθ

is a solution and in fact

W+(x̂) = lim
ε→0+

W (x̂ + iε) = ρ(x̂)eiθ, W−(x̂) = lim
ε→0+

W (x̂ − iε) = ρ(x̂)e−iθ,
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are the boundary values of the function W which is analytic on C \ [0, 1]. From the
Stieltjes-Perron inversion formula (or the Sokhotsky-Plemelj formula) we can compute
the density ur as

ur(x) =
1

2πi

(

S−(x) − S+(x)
)

=
ρ

πx

sin θ

|ρeiθ − 1|2 .

Writing everything in terms of x̂ gives the required result.

Figure 2. The density ur of the asymptotic zero distribution on [0,1] for r = 1 (solid), r = 2 (dash), r = 3

(dash-dot), r = 4 (long dash) and r = 5 (dots).

We have plotted the densities ur on [0, 1] for r = 1, 2, 3, 4, 5 in Figure 2. The case
r = 1 corresponds to the density

u1(x) =
1

π

1
√

x(1 − x)
, 0 < x < 1,

which is the well known arcsine distribution which is symmetric around x = 1/2. For
r > 1 the symmetry is gone. The case r = 2 corresponds to the density given in (2.17).
When x tends to the endpoints one has the behavior

ur(x) ∼ x− 1

r+1 , x → 0,

ur(x) ∼ (1− xr)−
1

2 , x → 1,

so that for fixed r the density ur has a singulartity of order 1
r+1 at the endpoint 0 and

26



a singularity of order 1
2 at the endpoint 1. So for r > 1 the zeros are more dense near

the endpoint 1 than near the point 0. This is typical for an Angelesco systems where
the zeros on all the other intervals [0, ωj−1], j = 2, . . . , r push the zeros on [0, 1] to the
right.

The asymptotic behavior of the zeros is similar to the asymptotic behavior of the
zeros of Jacobi-Pinẽiro polynomials, which was studied by Neuschel and Van Assche
[11] and differs only by the change of variables cry = xr.
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