
The nurse rerostering problem: strategies for reconstructing
disrupted schedules

Toni I. Wickerta,b,∗, Pieter Smeta, Greet Vanden Berghea

aKU Leuven, Department of Computer Science, CODeS & imec, Gebroeders De Smetstraat 1, 9000 Gent,
Belgium

bInstitute of Informatics, Federal University of Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre,
Brazil

Abstract

The nurse rostering problem is a well-known optimization problem within the field of

operational research which seeks to assign nurses to shifts during a scheduling horizon

subject to a set of hard and soft constraints. The nurse rerostering problem, meanwhile,

occurs when one or more nurses already scheduled to work cannot be present due to

unforeseen events such as, for example, illness. Such absences may render an existing

solution infeasible and thus a fast method is required to recreate the roster. The present

research explores several novel strategies for rerostering based on relaxations of dif-

ferent problem parameters, including soft constraints and the rescheduling horizon. A

general integer programming formulation is developed considering multi-skilled nurses

and various constraints commonly found in real-world problems. Secondly, the nurse

rerostering problem is explored by rescheduling both the entire scheduling horizon and

only a limited part. Additionally, the impact of considering both the soft constraints

from the original nurse rostering problem and a relaxation of them is evaluated when

solving the nurse rerostering problem. Finally, a variable neighborhood descent heuris-

tic is developed to address the problem without the use of a solver. A computational

study on instances adapted from the Second International Nurse Rostering Competi-

tion and on real-world instances from a Lisbon hospital demonstrates that the proposed

∗toniismael.wickert@kuleuven.be
Email addresses: toniismael.wickert@kuleuven.be (Toni I. Wickert),

pieter.smet@cs.kuleuven.be (Pieter Smet), greet.vandenberghe@cs.kuleuven.be (Greet
Vanden Berghe)

Preprint submitted to Computers & Operations Research October 24, 2018

strategies solve realistic large-scale rerostering problems to (near-)optimality in limited

computation time.

Keywords: Nurse Rerostering Problem, Nurse Rostering Problem, Integer

Programming, Variable Neighborhood Descent

1. Introduction

Work absences occur due to a variety of reasons. According to Forbes (2013), com-

mon causes of employee absenteeism include heavy workloads, childcare obligations,

disengagement with the coworkers or company, illness, medical appointments, injuries

caused by accidents, interviews for other jobs, bullying or harassment by coworkers5

or bosses, among others. Depending on the working area, unscheduled absence rates

typically range from 5% to 10%. Emergency services and healthcare in hospitals have

the highest absenteeism rates (10.7%) when compared against other sectors such as,

for example, utilities (8.7%), transportation (8.5%), customer services (7.7%) or man-

ufacturing (6.4%) (Aguirre & Kerin, 2014). Forbes (2013) estimates the annual cost of10

lost productivity in the United States to be $3.6 billion for nurses and $0.25 billion for

physicians.

Effectively managing disruptions caused by high absenteeism rates is thus clearly

of vital importance but at the same time presents a difficult task to manual planners.

An automated method based on computational techniques is essential in supporting the15

decision maker whenever a quick solution for handling disruptions is required. The

Nurse Rerostering Problem (NRRP), as defined by Moz & Pato (2003), occurs when

one or more nurses cannot work in the shifts they were previously assigned. If no pool

of reserve nurses exists to replace those absent, the current roster must be rebuilt using

a rerostering method.20

This work revisits the NRRP by exploring several strategies based on relaxations

of specific problem parameters which may be applied when addressing the disruptions.

First, a general integer programming formulation is developed which includes both the

constraints from the Nurse Rostering Problem (NRP) and the additional NRRP restric-

tions. Second, two types of relaxation strategies are proposed and evaluated. The first25

2

strategy determines which part of the scheduling horizon to consider when rerostering:

either the complete period or only a restricted part. The second strategy concerns which

constraints are included when solving the NRRP. An approach which relaxes some of

the NRP constraints and only includes the NRRP constraints is evaluated. Finally, a

Variable Neighborhood Descent (VND) heuristic is developed to address the problem30

without the use of a Mixed Integer Programming (MIP) solver. The primary objective

of the VND heuristic is to provide hospitals with a solver free from third-party depen-

dencies and which can be implemented without any additional cost. Computational

experiments are conducted on adapted instances from the Second International Nurse

Rostering Competition (INRC-II) and real-world instances from a Lisbon hospital.35

The present paper addresses four primary research questions, namely:

• Is it necessary to include all original hard and soft constraints from the NRP

when attempting to generate good quality solutions for the NRRP?

• What is the difference, in terms of computation time and solution quality, be-

tween solving the full NRRP model and a surrogate model which only considers40

disruption minimization objectives?

• What is the impact of the considered scheduling horizon when rerostering? Should

only those days where nurses are absent be considered? The complete schedul-

ing horizon? From the first absent day until the last absent day? Should this

restricted period be extended with some days before and after?45

• Is it possible to generate competitive results using a simple heuristic, compared

against an integer programming formulation using a state of the art commercial

solver?

The remainder of the paper is organized as follows. Section 2 reviews the relevant

literature related to NRP and NRRP. Section 3 specifies the NRRP and discusses how it50

differs from the NRP. Section 4 presents the general integer programming formulation,

including the NRRP and NRP constraints. Following this, Section 5 details the Vari-

able Neighborhood Descent (VND) algorithm. Section 6 describes the computational

3

experiments, while Section 7 concludes the paper and indicates directions for future

research.55

2. Literature review

Due to its practical relevance, the nurse rostering problem has been the subject of

many research papers throughout recent decades (Van den Bergh et al., 2013). Inter-

ested readers are referred to Ernst et al. (2004) for a general overview of staff schedul-

ing, while Burke et al. (2004) provide a survey focused on nurse rostering problems.60

Several solving methods have been proposed throughout the academic literature for

addressing the NRP. These include integer programming (Mischek & Musliu, 2017),

decomposition combined with integer programming (Valouxis et al., 2012; Legrain

et al., 2017) column generation combined with variable neighborhood search (Gomes

et al., 2017), branch and price and variable depth search (Burke & Curtois, 2014), and65

adaptive variable neighborhood search (Tassopoulos et al., 2015). Despite the NRRP

representing a common problem in hospitals, Clark et al. (2015) identified only eight

relevant papers in the academic literature. The solution approaches proposed in these

studies are typically based on heuristic search and integer programming.

Moz & Pato (2003) were the first authors to formally define the NRRP. In addition70

to a multi-commodity network flow formulation, they also introduced an aggregated

integer programming model which decreased the model size enabling the problem to

be solved faster (Moz & Pato, 2004). To evaluate their formulations, 16 real instances

from a Lisbon hospital were utilized. Using CPLEX, 15 out of these 16 instances were

solved to optimality within a time limit of two hours. More recently, Moz & Pato75

(2007) developed a Genetic Algorithm (GA) and performed tests on the same set of

real-world instances. The GA outperformed the constructive heuristic of Moz & Pato

(2003) in terms of solution quality within an acceptable time limit.

Maenhout & Vanhoucke (2011) investigated whether it is necessary to re-optimize

the complete scheduling horizon or if restricting rerostering possibilities represents a80

feasible strategy. The best results were obtained when only a very limited fraction of

the roster, typically between 10% and 30%, was re-optimized. In a follow-up study,

4

Maenhout & Vanhoucke (2013) further explored which parts of a disrupted roster to

re-optimize when rerostering. An empirical study confirmed previous results insofar

as they determined that it is unnecessary to consider the complete scheduling horizon85

to obtain good solutions. Instead, only a period before and after the disruptions should

be considered, including the period of disruptions themselves. The total number of

absent nurses had little impact on the length of the rerostering period that should be

considered. However, the more clustered the disruptions, the more important the days

before and after the disruptions become. Regarding which resources to consider when90

rerostering, they concluded that it is unnecessary to consider all nurses but instead only

those whose roster is disrupted along with an additional subset of nurses, specially

selected for any particular reason or just random. The fewer absent nurses, the smaller

this additional number of required nurses.

Bäumelt et al. (2016) developed two parallel algorithms executed on a Graphics95

Processing Unit (GPU) to solve the NRRP, using the instances of Moz & Pato (2007).

Two models of parallelization were compared: a homogeneous model in which the

entire algorithm runs on a GPU, and a heterogeneous model where the algorithm is

partially solved on a CPU and partially on a GPU. The homogeneous model resulted

in solutions being generated between 12.6 and 17.7 times faster for instances with100

19 and 32 nurses, respectively. By contrast, the heterogeneous model provided average

speedups of 2.3 and 2.4 for the same datasets. The results demonstrated that the parallel

algorithm achieves the same quality of results in significantly shorter computation time

compared against the sequential algorithm.

Table 1 details the scope of this work compared to the existing literature. The105

second column classifies each variant of the NRRP according to the α|β |γ notation

proposed by De Causmaecker & Vanden Berghe (2011). In general, the problem con-

sidered in the present paper strongly generalizes previously-published models by in-

cluding more constraints from practice. Moreover, in contrast to the existing literature,

the proposed model considers multi-skilled nurses. The third, fourth and fifth columns110

compare which rerostering strategies have been applied with respect to existing reros-

tering models. The comparison shows that most previous studies have not considered

any specific strategy when rerostering. Only Maenhout & Vanhoucke (2011, 2013)

5

have investigated different relaxations of the available nurses and the scheduling hori-

zon, the latter of which is also explored in the present paper. Finally, the last two115

columns detail which techniques have been employed to solve the NRRP. This com-

parison reveals that in the last decade the focus has shifted towards heuristic methods.

Table 1: Existing approaches to the NRRP.

Strategies Solving technique

Problem Constraint Scheduling horizon Staffing Exact Heuristic

Reference classification relaxation relaxation size method approach

This paper ASN/VN/PLR X X X X

Moz & Pato (2003) AS/RN/PR X X

Moz & Pato (2004) AS/RN/PR X

Moz & Pato (2007) AS/RN/PR* X

Pato & Moz (2008) AS/RN/PRM* X

Maenhout & Vanhoucke (2011) ASB/RN/PLRM* X X X

Maenhout & Vanhoucke (2013) ASB/V3/PLR* X X X

Bäumelt et al. (2016) AS/RN/PR* X

(*) Papers without a mathematical model, but, the problems considered in their studies are classified as described.

3. The nurse rerostering problem

The NRP assigns nurses to shifts during a scheduling horizon. These assignments

are subject to a set of hard and soft constraints. Hard constraints must be respected,120

while violations of the soft constraints are penalized in the objective function. Table 2

shows an example of a feasible NRP solution with five nurses and a scheduling horizon

of seven days. The shifts are Early (E), Late (L) and Night (N), while dashes indicate

a day off. At least one nurse is required to work during each shift on each day.

Table 2: Example of a roster with seven days and five nurses.

Nurse Mon Tue Wed Thu Fri Sat Sun

N1 N – E E E – –

N2 L L – – L L L

N3 N N N N – – –

N4 – – – – N N N

N5 E E L L – E E

6

Table 3: Roster with two absent nurses in gray.

Nurse M T W T F S S

N1 N – E E E – –

N2 L L – – L L L

N3 N �N N N – – –

N4 – – – – �N N N

N5 E E L L – E E

Table 4: New solution after rerostering.

Nurse M T W T F S S

N1 N – E E E – –

N2 L L – – L L L

N3 N �N N N N – –

N4 – N – – �N N N

N5 E E L L – E E

The NRRP occurs when a nurse who is scheduled to work, cannot be present due to125

unforeseen events. This disruption may make the solution infeasible, thereby requiring

another nurse to be reallocated to cover the absence. However, this new solution must

still comply with labor rules and institutional constraints as per the original rostering

problem. Moreover, it should be as similar as possible to the original roster given that

volatile and unpredictable schedule changes can wreak havoc with workers’ child-care130

arrangements, school classes and other personal responsibilities (Williams et al., 2017).

Table 3 shows a disruption in which two absent nurses are highlighted in gray.

Considering the minimum of one nurse per day/shift, these two absences render the

solution infeasible, as now nobody is working the Night shifts on Tuesday and Friday.

Table 4 presents one possible new solution after rerostering, wherein Nurse 4, who135

before had a free day on Tuesday, is now working a Night shift. Nurse 3, who had a

free day on Friday, is now also working the Night shift.

In this trivial example, the solution’s feasibility may be restored by simply swap-

ping two nurses. This operation has minimal impact on the existing solutions and

maintains the same number of working shifts as in the original roster. Generally, how-140

ever, the situation is more complex as various time-related constraints impose addi-

tional restrictions on the solution, such as, for example, minimum/maximum number

of consecutive days worked or minimum rest time between two consecutive working

days. In addition to minimizing the number of changes, these constraints must also be

respected. Moreover, if they are modeled as soft constraints, their violations should be145

minimized.

7

4. General integer programming formulation for the NRRP

This section presents a general integer programming formulation for the NRRP.

Moz & Pato (2003, 2004) were, so far, the only authors to address the nurse rerostering

problem using integer programming. Moz & Pato (2003) formulated the problem as an150

integer multi-commodity flow problem with side constraints in a multi-level acyclical

network. This formulation was further improved in Moz & Pato (2004) by including

node aggregation in the network. In contrast to these flow models, the formulation

proposed in the present paper is based on an assignment problem, thereby enabling

more general problem characteristics to be included such as multi-skilled nurses and155

various hard and soft constraints typically found in hospitals (Ceschia et al., 2014). Ap-

pendix A details the full integer programming formulation containing all original NRP

constraints. In what follows, the presentation of the integer programming formulation

is restricted to constraints and objectives relevant to the rerostering problem. Table 5

presents the problem’s parameters in addition to the main and auxiliary decision vari-160

ables employed in the NRRP formulation.

Min ∑
n∈N

∑
d∈D

v13
ndω

13+ ∑
n∈N

∑
i∈{14,15}

v̂i
nω

i +A.1 (1)

Subject to

ĉnd +∑
s∈S

∑
k∈K

xndsk ≤ 1 ∀n ∈ N,d ∈ D (2)

∑
k∈K

(cndsk + xndsk)≤ 2y′nds ∀n ∈ N \ N̂,d ∈ D,s ∈ S (3)

∑
k∈K

(cndsk + xndsk)+ y′′nds ≥ 2y′nds ∀n ∈ N \ N̂,d ∈ D,s ∈ S (4)

∑
s∈S

y′′nds−2v13
nd ≤ 0 ∀n ∈ N \ N̂,d ∈ D (5)

∑
d∈D

∑
s∈S

∑
k∈K

xndsk + v̂14
n ≥ δn ∀n ∈ N (6)

∑
d∈D

∑
s∈S

∑
k∈K

xndsk− v̂15
n ≤ δn ∀n ∈ N (7)

Objective function (1) minimizes a weighted sum of different terms related to the

NRRP and NRP. The first term penalizes changes made in the rerostering solution with

8

Table 5: Sets and variables employed in the formulation.
Symbol Definition

Parameters

n ∈ N index of the nurse, where N is the set of nurses;

N̂ ⊆ N set of absent nurses;

d ∈ D index of the day, where D is the set of days;

s ∈ S s index of the shift, where S is the set of shifts

k ∈ K k index of the skill, where K is the set of skills

ω i weight for violating the lower and/or upper limits of soft constraint i.

δn original number of assignments associated with nurse n;

cndsk ∈ {0,1} value which is 1 if nurse n is allocated to shift s and day d with skill k in the original roster, 0

otherwise;

ĉnd ∈ {0,1} parameter modeling the disruptions which is 1 if nurse n is absent on day d, 0 otherwise;

Decision Variables

xndsk ∈ {0,1} 1 if nurse n is allocated to shift s and day d with skill k, 0 otherwise;

Auxiliary Variables

y′nds ∈ {0,1} 1 if nurse n works in the original schedule or in the new roster on day d and shift s, 0 otherwise;

y′′nds ∈ {0,1} auxiliary variable to calculate the number of changes compared to the original roster;

v13
nd ∈ N0 auxiliary variable to calculate the violations of the number of changes compared to the original roster;

v̂14
n ∈ N0 auxiliary variable to calculate the violations of the number of working days less than the original

roster;

v̂15
n ∈ N0 auxiliary variable to calculate the violations of the number of working days more than the original

roster

respect to the original roster. The second term minimizes the difference in number of

working days in the roster before and after rerostering. The last part of the objective165

function consists of the soft constraint violations of the NRP as defined in Equation

(A.1) (Appendix A). Constraints (2) ensure that an absent nurse is not scheduled to

work. Constraints (3), (4) and (5) determine the number of changes in the new roster

compared to the original roster. Constraints (6) and (7) calculate the change in number

of working days.170

An example of how Constraints (3), (4) and (5) count the number of changes for

a single nurse is provided in Tables 6 and 7. The formulation penalizes whenever a

working day is changed to a day off (or vice versa) and whenever a shift which was

assigned is modified. Changes regarding assigned skills are not penalized, as these

cases are not considered to have a significant impact on the nurses. The example in175

9

Table 6 considers three days and three shifts: Early (E), Late (L) and Night (N). The

first row of integer values represents the current solution. In this case, the nurse works a

Late shift on the first day, the second day is free, and a Night shift on the third day. The

second row represents the solution after rerostering. The nurse now works a Night shift

on the first day, an Early shift on the second day and another Night shift on the third180

day. The third row is the sum of the current solution and the newly rerostered solution.

Finally, the fourth row shows the values variables y′nds assume. In this example there

are two changes, one is a shift change from Late to Night on the first day, and the

second change concerns the second day where the nurse previously had a day off, but

for which she is now scheduled to work an Early shift. There are no changes on the185

third day as the nurse continues working on the already-scheduled Night shift. Table 7

presents the penalization results stored in variable v13
nd (last column of the right table).

On the first and second day, the variable assumes a value of 1, meaning that there is one

change (one violation), and on the third day the variable assumes a value of 0, denoting

zero violations.190

Table 6: Example of a reroster solution with two changes.

Day 1 Day 2 Day 3

E L N E L N E L N Description

0 1 0 0 0 0 0 0 1 ∑k∈K cndsk (current solution)

0 0 1 1 0 0 0 0 1 ∑k∈K xndsk (newly rerostered solution)

0 1 1 1 0 0 0 0 2 ∑k∈K(cndsk + xndsk)

0 1 1 1 0 0 0 0 1 ∑k∈K(cndsk + xndsk)≤ 2y′nds (y′nds values)

5. Variable neighborhood descent

This section presents a Variable Neighborhood Descent (VND) heuristic specif-

ically designed to address the NRRP based on the general concepts first introduced

by Mladenović & Hansen (1997). Legrain et al. (2014) developed simple procedures

based on local search for the NRP. Their solving method addresses the lack of choice195

10

Table 7: Example of how Constraints (4) and (5) are evaluated.

∑k∈K(cndsk + xndsk)+ y′′nds ≥ 2y′nds

D
ay

1
E 0 + 0 + y′′nds ≥ 0 y′′nds = 0

L 1 + 0 + y′′nds ≥ 2 y′′nds = 1

N 0 + 1 + y′′nds ≥ 2 y′′nds = 1

D
ay

2

E 0 + 1 + y′′nds ≥ 2 y′′nds = 1

L 0 + 0 + y′′nds ≥ 0 y′′nds = 0

N 0 + 0 + y′′nds ≥ 0 y′′nds = 0

D
ay

3

E 0 + 0 + y′′nds ≥ 0 y′′nds = 0

L 0 + 0 + y′′nds ≥ 0 y′′nds = 0

N 1 + 1 + y′′nds ≥ 2 y′′nds = 0

∑s∈S y′′nds−2v13
nd ≤ 0

2 - 2v13
nd ≤ 0 v13

nd = 1

1 - 2v13
nd ≤ 0 v13

nd = 1

0 - 2v13
nd ≤ 0 v13

nd = 0

aside from either a manual solution method or a high-cost commercial package. The

present research addresses this same dilemma by introducing a VND heuristic for the

NRRP. The VND heuristic is selected primarily due to its simplicity, its ability to inte-

grate several neighborhood structures, and the successful application of this algorithm

and its variants for the NRP (Burke et al., 2008; Zheng et al., 2017; Gomes et al., 2017).200

The proposed method seeks to generate results quickly and without the dependency of

expensive third-party software packages when funding is limited.

5.1. Main method - VND

Algorithm 1 outlines the main method which takes as input parameters the current

solution, the maximum number of top-level loop iterations and the number of iterations205

after which an intensification/diversification procedure is called. Section 6.1.4 provides

additional details regarding the algorithm’s parameters. Function OFV(cs) returns the

objective function value (OFV) of the solution cs. Note that it is only when the ob-

jective value is calculated for the first time that all nurses, days, shifts and skills are

considered. When neighboring solutions are evaluated, a relative recalculation of the210

objective value is employed in order to speed up computation time.

In each iteration of the top-level loop (lines 5-17), a sequence of procedures which

explore different neighborhoods is executed until either no improvement is found or a

feasible solution is reached. All neighborhoods, except for changeShift, assignMiss-

ingShiftDeleteNext, intensDiverLS , consider only the days on which absences occur.215

11

However, it is not always possible to remedy infeasibilities by exploring only these

restricted neighborhoods. For this reason, changeShift, assignMissingShiftDeleteNext

and intensDiverLS are also included in the VND heuristic as they explore a larger pro-

portion of the search space, thereby increasing the likelihood that infeasibilities will be

solved should the deterministic neighborhoods fail in doing so, albeit at the expense220

of longer computational runtimes. The algorithm terminates by returning the best so-

lution found. Input parameters are passed to each subroutine, however, in the main

pseudo-code they are omitted for presentation reasons.

Algorithm 1: Variable Neighborhood Descent (VND).
Input : cs current solution, maxTrials maximum number of iterations, maxTrialsIntDiv number of

iterations after which the intensification/diversification procedure is called

Output : solution

1 cs← assignMissingShift;

2 cs← changeAssignMissingShift;

3 bestOFV← ∞;

4 iterations← 0;

5 while bestOFV > OFV(cs) or (hasHardViolation(cs) and iterations < maxTrials) do

6 bestOFV← OFV(cs) ; // returns the OFV from the current solution cs

7 cs← assignDeleteShift;

8 cs← changeShift;

9 cs← swapShift;

10 cs← assignMissingShift;

11 cs← changeAssignMissingShift;

12 cs← assignMissingShiftDeleteNext;

13 if hasHardViolation(cs) and iterations > maxTrialsIntDiv then

14 cs← intensDiverLS;

15 end

16 iterations← iterations + 1;

17 end

18 return cs ; // returns the best solution found

5.2. Assign and delete shift neighborhood

Algorithm 2 moves an assigned shift from one nurse to another. Lines 4-18 iterate225

over each day with insufficient coverage. Line 7 iterates over each working nurse w

and each idle nurse f on day d. Line 8 generates a neighboring solution in which the

shift and skill assignments of nurse w are reassigned to nurse f . If the neighboring

12

solution does not violate any hard constraints and is the best neighbor found (line 9),

the variables are updated (lines 10-11). The neighborhood’s size is O(|Dv||Wd ||Fd |).230

The procedure terminates by returning the best solution found.

Algorithm 2: Assign and delete shift.
Input : Dv set of days with insufficient coverage, Wd set nurses working on day d, Fd set of idle nurses on

day d, cs current solution

Output : Solution

1 improved← true;

2 while improved do

3 improved← false;

4 foreach d ∈ Dv do

5 bestNeighbor← null;

6 bestNeighborOFV← OFV(cs);

7 foreach w ∈Wd , f ∈ Fd do

8 cs′ ← assignDelete(cs, d, w, f) ; // returns null if infeasible

9 if cs′ 6= null and OFV(cs′) < bestNeighborOFV then

10 bestNeighbor← cs′;

11 bestNeighborOFV← OFV(cs′);

12 end

13 end

14 if bestNeighbor 6= null then // if an improved neighbor is found

15 cs← bestNeighbor;

16 improved← true;

17 end

18 end

19 end

20 return cs;

5.3. Change shift neighborhood

Algorithm 3 changes nurses’ assignments on consecutive days. The method as-

signShift (line 8) generates a neighboring solution in which shift s is assigned to nurse

n on day d+d′. If there is a feasible solution and the objective value of the neighboring235

solution is lower than that of the current solution, the variables are updated accordingly

(lines 9-12). If shift s is a working shift (line 14), the nurses’ skills are iterated over

(loop 15-22). Method assignSkill (line 16) changes the assigned skill of nurse n on

day d + d′ in shift s to k. If there is a feasible solution and the new objective value

is lower than the current objective value (line 17), the current solution and variables240

13

are updated (lines 18-20). The neighborhood’s size is O(|D||S||w||Kn|). The goal of

the variable d′ is to change the assignments in a sequence of days, thereby aiming

to reduce the number of violations of constraints concerning the minimum/maximum

number of consecutive working days and similar constraints. Preliminary experiments

demonstrate that the most suitable value of the parameter w is four. The procedure245

terminates by returning the best solution found.

Algorithm 3: Change shift.
Input : D set of all days, N set of nurses, S set of shifts, S′ set of working shifts,

Kn set of skills of nurse n, cs current solution, w maximum consecutive days window size

Output : Solution

1 improvedLS← true;

2 while improvedLS do

3 improvedLS← false;

4 foreach d ∈ D,n ∈ N,s ∈ S,d′← 1 to w do

5 improved← false;

6 csBackup← cs;

7 if ((d +d′) < |D|) then

8 cs′ ← assignShift(cs, n, (d +d′), s) ; // returns null if infeasible

9 if cs′ 6= null and OFV(cs′) < OFV(cs) then

10 improved← true;

11 improvedLS← true;

12 end

13 cs← cs′;

14 if s ∈ S′ then

15 foreach k ∈ Kn do

16 cs′ ← assignSkill(cs, n, (d +d′), s, k);

17 if cs′ 6= null and OFV(cs′) < OFV(cs) then

18 cs← cs′;

19 improved← true;

20 improvedLS← true;

21 end

22 end

23 end

24 end

25 if not improved then

26 cs← csBackup;

27 end

28 end

29 end

30 return cs;

14

5.4. Swap shift neighborhood

Algorithm 4 swaps the shift and skill assignments of two nurses. The loops (lines

7-8) iterate over each pair of nurses n1 and n2. Line 9 generates a neighboring so-

lution by swapping nurse n1’s shift and skill with nurse n2’s, and vice versa. If the250

new solution does not violate any hard constraints and is the best neighbor found (line

10), the variables are updated accordingly (lines 11-12). The neighborhood’s size is

O(|Dv||N|2). The procedure terminates by returning the best solution found.

Algorithm 4: Swap shift.
Input : Dv set of days with insufficient coverage, N set of nurses, cs current solution

Output : Solution

1 improved← true;

2 while improved do

3 improved← false;

4 foreach d ∈ Dv do

5 bestNeighbor← null;

6 bestNeighborOFV← OFV(cs);

7 foreach n1← 1 to |N|-1 do

8 foreach n2← n1+1 to |N| do

9 cs′ ← swapAssignments(cs, d, n1, n2) ; // returns null if infeasible

10 if cs′ 6= null and OFV(cs′) < bestNeighborOFV then

11 bestNeighbor← cs′;

12 bestNeighborOFV← OFV(cs′);

13 end

14 end

15 end

16 if bestNeighbor 6= null then

17 cs← bestNeighbor;

18 improved← true;

19 end

20 end

21 end

22 return cs;

5.5. Assign missing shift neighborhood

Algorithm 5 assigns the shifts and skills associated with absences which have oc-255

curred to idle nurses in a greedy manner such that the largest decrease in objective value

is obtained. Line 4 iterates over the days and shifts for which the number of nurses is

15

below the minimum. For each idle nurse n (lines 7-13), a neighboring solution is gen-

erated by assigning the missing shift s and skill k on day d (line 8). If the neighboring

solution does not violate any hard constraint and is the best neighbor found (line 9), the260

variables are updated (lines 10-11). The neighborhood’s size is O(|Dv||Sd ||Kd ||Fd |).

The procedure terminates by returning the best solution found.

Algorithm 5: Assign missing shift.
Input : Dv set of days with insufficient coverage ordered by most violated days,

Sd set of shifts with insufficient coverage on day d, Kd set of skills with insufficient coverage on

day d, Fd set of idle nurses on day d, cs current solution

Output : Solution

1 improved← true;

2 while improved do

3 improved← false;

4 foreach d ∈ Dv,s ∈ Sd ,k ∈ Kd do

5 bestNeighbor← null;

6 bestNeighborOFV← OFV(cs);

7 foreach n ∈ Fd do

8 cs′ ← assignShiftSkill(cs, n, d, s, k) ; // returns null if infeasible

9 if cs′ 6= null and OFV(cs′) < bestNeighborOFV then

10 bestNeighbor← cs′;

11 bestNeighborOFV← OFV(cs′);

12 end

13 end

14 if bestNeighbor 6= null then // if an improved neighbor is found

15 cs← bestNeighbor;

16 improved← true;

17 end

18 end

19 end

20 return cs;

5.6. Change and assign missing shift neighborhood

Algorithm 6 first moves a working shift to an idle nurse and then assigns the miss-

ing shift and skill. Line 4 iterates over the days where the number of nurses is below the265

minimum. For each working nurse w and each idle nurse f (lines 7-18), the currently

assigned shift and skill are saved (lines 8-9) and the missing shift and skill are assigned

to nurse w (line 10). If the resulting solution does not violate any hard constraints,

16

the algorithm assigns an idle nurse f the shift and skill previously assigned to nurse

w (line 12). If the resulting solution does not violate any hard constraints and is the270

best neighbor found (line 14), the variables are updated (lines 15-16). The neighbor-

hood’s size is O(|Dv||Sd ||Kd ||Wd ||Fd |). The procedure terminates by returning the best

solution found.

Algorithm 6: Change and assign missing shift.
Input : Dv set of days with insufficient coverage ordered by most violated days,

Sd set of shifts with insufficient coverage on day d, Kd set of skills with insufficient coverage on

day d, Fd set of idle nurses on day d, Wd set of working nurses on day d, cs current solution

Output : Solution

1 improved← true;

2 while improved do

3 improved← false;

4 foreach d ∈ Dv,s ∈ Sd ,k ∈ Kd do

5 bestNeighbor← null;

6 bestNeighborOFV← OFV(cs);

7 foreach w ∈Wd , f ∈ Fd do

8 backupShift← getShift(cs, w, d) ; // backup current shift

9 backupSkill← getSkill(cs, w, d, s) ; // backup current skill

10 cs′ ← assignShiftSkill(cs, w, d, s, k) ; // returns null if infeasible

11 if cs′ 6= null then

12 cs′′ ← assignShiftSkill(cs′, f, d, backupShift, backupSkill);

13 end

14 if cs′′ 6= null and OFV(cs′′) < bestNeighborOFV then

15 bestNeighbor← cs′′;

16 bestNeighborOFV← OFV(cs′′);

17 end

18 end

19 if bestNeighbor 6= null then // if an improved neighbor is found

20 cs← bestNeighbor;

21 improved← true;

22 end

23 end

24 end

25 return cs;

5.7. Assign missing shift and delete next shift neighborhood

Algorithm 7 attempts to fix disruptions by inserting shifts on the days with an in-275

sufficient number of nurses. However, when inserting shifts results in an infeasible

17

solution, the assignment on the following day is deleted. The function U (LB, . . . ,UB)

returns a value between LB and UB sampled from a uniform distribution. Line 1 iterates

over the days with insufficient coverage. Lines 2 and 3 randomly select an idle nurse

on day d and assign the missing shift and skill. If the resulting solution cs′ is infeasible280

and d is not the last day of the scheduling horizon (line 4), the algorithm removes the

assignment on the next day. If the resulting solution is feasible, it replaces the cur-

rent solution (lines 7-9). The neighborhood’s size is O(|Dv||Sd ||Kd |). The procedure

terminates by returning the best solution found.

Algorithm 7: Assign missing shift delete next.
Input : Dv set of days with insufficient coverage ordered by most violated days,

Da set of all days, Sd set of shifts with insufficient coverage on day d, Kd set of skills with

insufficient coverage on day d, Fd set of idle nurses on day d

Output : Solution

1 foreach d ∈ Dv,s ∈ Sd ,k ∈ Kd do

2 n← U (1, . . . , |Fd |) ; // returns a random nurse not working on day d

3 cs′ ← assignShiftSkill(cs, n, d, s, k) ; // returns null if infeasible

4 if cs′ is null and d+1 ≤ |Da| then

5 cs′ ← assignDayOff(cs′, n, (d+1));

6 end

7 if cs′ 6= null then // if an improved neighbor is found

8 cs← cs′;

9 end

10 end

11 return cs;

5.8. Intensification and diversification neighborhood285

Algorithm 8 details an intensification and diversification procedure for the NRRP.

The objective here is to explore larger neighborhoods, thereby increasing the proba-

bility of finding a feasible solution when the other neighborhoods fail. Preliminary

experiments on a subset of the instances revealed that the most suitable values for

the input parameters maxNoImprov, maxChanges, maxNoImprovDiv, maxChangesDiv290

are 100, 3, 50 and 2, respectively. The algorithm is terminated after the maximum

number of iterations without improvement is reached or if a feasible solution is found

(line 3). The loop spanning lines 6-22 determines how many neighbors are generated

18

in each iteration of the procedure’s intensification phase. In this case, this value equals

the number of nurses |N|. If the number of iterations without improvement is greater295

than a specific threshold, the diversification phase begins (line 30). In this phase, for

each day, two random modifications are generated in the current solution (lines 32-

38). After this diversification procedure, the local search operators assignMissingShift,

changeAssignMissingShift, assignDeleteShift, changeShift, swapShift are called to fur-

ther improve the solution (lines 39-40). The procedure terminates by returning the best300

solution found.

6. Computational results

This section analyzes a series of computational experiments to investigate whether

the proposed IP formulation can be solved using a MIP solver for both small and large

instances with multi-skilled nurses. The impact of relaxing soft constraints with respect305

to the original NRP in terms of solution quality and computational time is analyzed.

Moreover, whether the degradation of solution quality is significant when rerostering a

limited scheduling horizon and whether or not the proposed VND heuristic can gener-

ate competitive results compared to a MIP solver is also investigated.

6.1. Data sets and experimental setup310

This section presents two sets of instances employed for the experiments. They

cover both academic and realistic scenarios. This paper contributes a rerostering ver-

sion of the INRC-II instances. The Lisbon instances were, until this work, the only

public set of instances available in the literature related to the NRRP. They were devel-

oped by Moz & Pato (2007) and based on real data provided by a Lisbon hospital. The315

INRC-II instances incorporate a large number of soft constraints related to the NRP

and are therefore less restrictive in terms of hard constraints compared to the Lisbon

instances.

6.1.1. INRC-II instances

Table 8 describes the constraints in the INRC-II instances for which there are two320

main sets. The first concerns those related to the NRP that have less weight in the ob-

19

Algorithm 8: Intensification and diversification procedure.
Input : Dv set of days with absent nurses, N set of nurses, S set of shifts, bestSolution current solution,

maxNoImprov maximum number of iterations without improvement, maxChanges maximum

number of changes, maxNoImprovDiv maximum number of iterations to start the diversification

phase, maxChangesDiv maximum number of changes in the diversification phase

Output : Solution

1 countNoImprov← 0;

2 cs← bestSolution;

3 while countNoImprov < maxNoImprov and hasHardViolation(cs) do
4 bestNeighbor← ∞;

5 cs′′ ← null;

6 for x← 1 to |N| do
7 randNumChange← U (1, . . . ,maxChanges) ; // returns a random number of changes

8 for z← 1 to randNumChanges do
9 randNurse← U (1, . . . , |N|) ; // returns a random nurse

10 randDay← U (1, . . . , |D|) ; // returns a random day

11 randShift← U (1, . . . , |S|) ; // returns a random shift

12 cs′ ← assignShift(cs, randNurse, randDay, randShift) ; // returns null if infeasible

13 if cs′ 6= null and isNotTabu(randNurse, randDay, randShift) then
14 addTabu(randNurse, randDay, randShift) ; // add nurse,day,shift to tabu list

15 if OFV(cs′) < bestNeighbor then
16 bestNeighbor← OFV(cs′);

17 cs′′ ← cs′;

18 break;

19 end

20 end

21 end

22 end
23 if cs′′ 6= null and OFV(cs′′) < OFV(cs) then
24 countNoImprov← 0;

25 cs← cs′′;

26 bestSolution← cs;

27 end
28 else
29 countNoImprov← countNoImprov + 1;

30 if countNoImprov > maxNoImprovDiv then
31 cs← bestSolution;

32 foreach d ∈ D do
33 foreach y← 1 to maxChangesDiv do
34 randNurse← U (1, . . . , |N|) ; // returns a random nurse

35 randShift← U (1, . . . , |S|) ; // returns a random day

36 cs← assignShift(cs, randNurse, d, randShift)

37 end

38 end
39 cs← assignMissingShift(cs); cs← changeAssignMissingShift(cs);

40 cs← assignDeleteShift(cs); cs← changeShift(cs); cs← swapShift(cs);

41 end

42 end

43 end
44 return bestSolution;

20

jective function when rerostering and, consequently, less importance associated with

avoiding their violations. The second set of constraints concerns the specific objec-

tives related to the NRRP. The number of changes, which is considered the most im-

portant objective to minimize by the objective function is assigned a weight of 100.325

Meanwhile, the change in number of assigned shifts is regarded as less important and

receives a weight of 50. An in-depth discussion of each constraint is provided by

Ceschia et al. (2014).

Table 8: Hard and soft constraints in the INRC-II instances.

Index Constraint description Weight Eq.

Nurse Rostering Constraints

- A nurse can be assigned to at most one shift per day HC A.2

- Minimum number of nurses per day/shift/skill HC A.3

- A shift type succession must belong to a valid succession (for example, a Night

shift cannot be followed by an Early shift)

HC A.4

- A shift requiring nurses with a given skill must necessarily be fulfilled by a nurse

having that skill

HC A.5

1 Preferred coverage 30 A.7

2 Minimum consecutive assignments (working days) 30 A.8, A.9

3 Maximum consecutive assignments (working days) 30 A.15

4 Minimum number of consecutive days off 30 A.11, A.12

5 Maximum number of consecutive days off 30 A.13

6 Minimum consecutive assignments to the same shift 15 A.14, A.15

7 Maximum consecutive assignments to the same shift 15 A.16

8 Individual nurse’s undesired working day/shift 10 A.17

9 Complete weekend 30 A.18, A.19

10 Minimum number of assignments over the scheduling period 20 A.20

11 Maximum number of assignments over the scheduling period 20 A.21

12 Total working weekends 30 A.18, A.22

Nurse Rerostering Constraints

- Absent nurses cannot be assigned to any shift HC 2

13 Each change in the new roster is penalized 100 3, 4, 5

14, 15 The original number of assigned shifts should be maintained 50 6, 7

Ingels & Maenhout (2015) simulate employee availability using a Bernoulli dis-

tribution. They performed simulations for short-term sick leave with a probability of330

2.44% based on a study conducted by SD Worx (2013) in Belgium . Moreover, they

21

reported that simulations using an absenteeism probability of 5% and 10% resulted in

similar results, regarding sick leave probabilities.

In this study, absences were randomly generated based on statistics observed by

Aguirre & Kerin (2014) in the U.S. They report absenteeism rates ranging from 5% to335

10% among all employees, meaning that at any given time 5% to 10% of the workforce

is missing from work. While this rate varies by sector, the emergency services and

healthcare, both known for their stressful working conditions, high rates of overtime,

and are therefore unsurprisingly associated with the highest rates of absenteeism.

The first group of NRRP instances is named Single-day Nurse Absence, where340

absences are generated for randomly selected nurses and days based on an absenteeism

rate of 5%. The instances have 35, 70 or 110 nurses and a scheduling horizon of either

four or eight weeks.

The second group of instances is named Consecutive-days Nurse Absence and rep-

resents situations which simulate nurse illness. In these instances, a randomly selected345

nurse is absent for a sequence of days beginning from a first random day i until a later

random day j which are chosen based on a uniform distribution. Instances with 35,

70 or 110 nurses and scheduling horizons of four or eight weeks have 5% of their

associated nurses absent for a random number of consecutive days.

6.1.2. Lisbon instances350

The Lisbon instances differ from the INRC-II in terms of constraints, shifts and

nurses’ skills. Rather than four shifts as per the INRC-II instances, the Lisbon instances

have three shifts, namely: Early (08:00-16:00), Late (16:00-24:00) and Night (00:00-

08:00). The nurses are single-skilled, while in the INRC-II instances they are multi-

skilled. All constraints are hard and the objective simply concerns minimizing the355

number of changes compared to the original roster. The general model proposed in

Section 4 and Appendix A details this subset of constraints. Table 9 presents the set of

constraints and the related equations.

Inconsistencies regarding these Lisbon instances required adaptations as the current

roster, provided by the hospital’s head nurse, violated several hard constraints. The360

following changes were made to render the instances feasible:

22

Table 9: Hard and soft constraints considered for the Lisbon instances.

Index Constraint Description Weight Eq.

Nurse Rostering Constraints

- A nurse can be assigned to at most one shift per day HC A.2

- Minimum number of nurses per day/shift/skill HC A.3

- A shift type succession must belong to a valid succession HC A.4

- Every seven days sequence, nurses must have 1 day off when the contract is 42 hours

per week, and 2 days off when the contract is 35 hours per week

HC A.6

Nurse Rerostering Constraints

- Absent nurses cannot be assigned any shift HC 2

13 Each change in the new roster is penalized 1 3, 4, 5

• Nurses with 30-hour contracts are now considered as having 35-hour contracts.

In doing so, these nurses must have two days off per working week;

• The current solution for 32 nurses is infeasible due to some violations where

the nurses’ contracts permit them to work a maximum of 5 days every 7 days.365

However, some nurses work 6 days in the provided rosters. In this case, the

nurses’ contracts were adjusted to 42 hours, thereby permitting them to work 6

days every 7 days;

• The pattern file, provided in PDF format, was ignored during the conversion

process since the patterns were not always respected in the roster provided by370

the hospital’s head nurse.

6.1.3. Computational environment

All models and algorithms were implemented in Java and compiled with OpenJDK

1.8. The experiments were conducted on an AMD FX(tm)-8150 eight-Core Processor

with 32GB of RAM memory running Linux Ubuntu 16.04.3 64-bit. The commercial375

MIP solver employed was CPLEX version 12.7.1. with default parameters and config-

ured to use eight threads. For the experiments with an open-source solver, Coin-OR

CBC 2.9.9 was employed with eight threads. Relative gaps in solution quality were cal-

culated as gap = 100× UB−OPT
OPT , where UB (upper bound) corresponds to the objective

23

function value of the VND heuristic, and OPT corresponds to the optimum solution380

value obtained by CPLEX. For each experiment, the VND heuristic was executed ten

times with different seed values for the random number generator.

6.1.4. VND neighborhoods and parameters tunning

The primary objective of the experiments in this section is to analyze to which de-

gree that each VND neighborhood impacts upon the heuristic’s performance. Table385

10 compares the results obtained by the MIP solver and different configurations of the

VND heuristic. The complete scheduling horizon and all NRP and NRRP constraints

were considered for these experiments. The following five VND heuristic configura-

tions were investigated:

• VND 1: employs only the assignMissingShift neighborhood;390

• VND 2: employs the assignMissingShift and assignDeleteShift neighborhoods;

• VND 3: employs the assignMissingShift, assignDeleteShift and changeShift neigh-

borhoods;

• VND 4: employs all neighborhoods, except intensDiverLS;

• VND: employs all neighborhoods.395

The second through fourth columns in Table 10 provide the objective values ob-

tained by the MIP solver, the respective time to the optimum solution, and the time

to prove optimality. The fifth through fourteenth columns show, for each configura-

tion of the VND heuristic, the gap to the optimum objective value and the required

computation time.400

The average relative optimality gaps for VND1, VND2, VND3, VND4 and VND are

1.10%, 1.07%, 0.62%, 0.61% and 0.61%, respectively. Comparing computation times,

the MIP solver requires, on average, significantly more time than the VND heuristic to

reach optimality. The VND heuristic generated near-optimum solutions within only a

few seconds. It is worth noting that due to the numerous dynamic situations which may405

occur in the real world, fast management decisions and therefore short computational

times are critical to ensure the best decision is made as quickly as possible.

24

Table 10: VND neighborhoods evaluation - Complete scheduling horizon, NRP and NRRP constraints
Single-day absences

MIP solver VND 1 VND 2 VND 3 VND 4 VND

Opt Opt Prove

Instance Id OFV Time(s) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)

n035w4 3206.0 3.7 5.7 0.8 0.7 0.8 0.9 0.7 1.0 0.6 1.0 0.6 1.0

n035w8 6490.5 8.5 14.0 1.1 0.9 1.1 1.3 1.0 1.8 1.0 1.8 1.0 1.8

n070w4 5850.0 5.8 16.6 0.7 1.0 0.7 1.4 0.0 2.4 0.0 2.8 0.0 2.8

n070w8 12379.0 51.5 186.3 1.5 1.2 1.4 2.2 0.4 4.4 0.4 6.6 0.4 6.6

n110w4 7495.0 12.1 42.1 0.9 1.1 0.8 2.1 0.7 3.0 0.7 3.9 0.7 3.9

n110w8 14366.0 78.7 237.5 1.5 1.5 1.5 2.9 1.0 5.8 1.0 10.2 1.0 10.2

average 1.10 1.07 0.62 0.61 0.61

Consecutive-days absences

MIP solver VND 1 VND 2 VND 3 VND 4 VND

Opt Opt Prove

Instance Id OFV Time(s) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)

n035w4 3167.0 5.3 9.6 2.4 0.8 1.7 1.0 1.4 1.1 1.3 1.2 1.3 1.2

n035w8 6383.5 7.5 28.6 2.7 0.9 2.2 1.3 2.1 1.8 1.9 1.9 1.9 1.9

n070w4 5564.5 13.8 41.9 0.8 1.0 0.7 1.5 0.4 2.4 0.3 2.5 0.3 2.5

n070w8 11595.0 109.2 208.0 1.3 1.2 1.3 2.0 1.0 4.3 0.9 6.2 0.9 6.2

n110w4 7039.0 28.3 84.5 1.2 1.2 1.2 2.1 0.5 4.1 0.5 5.0 0.5 5.0

n110w8 13670.5 229.6 598.9 2.5 1.6 2.5 2.9 1.8 6.7 1.9 9.7 1.9 9.7

average 1.82 1.60 1.20 1.11 1.11

The second part of Table 10 reports the results for the instances with consecutive-

days absences. The average relative optimality gaps are 1.82%, 1.60%, 1.20%, 1.11%

and 1.11%, respectively for the five VND heuristic variants. Again, the computation410

times were much lower compared to those required by the MIP solver for reaching its

near-optimum solutions. For example, on the largest instances, the MIP solver spent

229.6 seconds to reach the optimum value, while the VND heuristic required only 9.7

seconds to reach a solution within 1.11% of the optimum solution. Experiments with

different versions of the VND heuristic demonstrate that all the implemented compo-415

nents are important in contributing to obtaining near-optimum solutions or to solve

infeasibilities. Moreover, when all neighborhoods are used, the algorithm generated

the best results. In all remaining experiments, the VND heuristic is the one employed

with all neighborhoods.

The VND heuristic has two main parameters. The first parameter determines af-420

ter how many iterations the intensification and diversification procedure is called and

was set to 30 in order to limit the algorithm’s runtime while still providing sufficient

possibilities to solve infeasibilities in the Lisbon instances. For the INRC-II instances,

25

the intensification and diversification procedure was not required to solve infeasibil-

ities. However, for the Lisbon instances this neighborhood was essential and solved425

infeasibilities in 10 out of 64 instances. The second main parameter is the maximum

number of top-level loop iterations which was set to 100 to avoid infinite loops in the

algorithm whenever an instance did not have a feasible solution. Table B.21 details the

number of top-level loop iterations for different instances and strategies. Considering

the complete scheduling horizon and all constraints, the average number of trials was430

less than two for the INRC-II instances, 12.9 for the Lisbon instances with 19 nurses

and 4.8 for the Lisbon instances with 32 nurses.

Figure 1 presents the evolution of the objective function value throughout the VND

heuristic’s execution on an INRC-II instance with 110 nurses and a scheduling horizon

of eight weeks. The algorithm begins with an initial objective value of 161755 and435

after 4.98 seconds ends with an objective function value of 12425. After some ini-

tial small improvements, the algorithm quickly finds several significant improvements.

The algorithm then ends like it began: with a series of minimal improvements. This

experiment demonstrates how the algorithm fulfills its two primary objectives: to find

high-quality solutions within short computational runtimes.440

6.2. Computational results for the INRC-II instances

This section presents the experiments employing the INRC-II instances. All tables

present average results for each group of instances. The first column details the Instance

Id, where n035, n070, n110 represent the number of nurses and where w4 and w8

correspond to the number of weeks. Each group contains 10 instances for a total of 60.445

The column std. dev. provides the standard deviation on the average value which is

reported in the previous column. Detailed computational results are publicly available

online1.

1http://www.inf.ufrgs.br/~tiwickert/download/2017/reroster

26

http://www.inf.ufrgs.br/~tiwickert/download/2017/reroster

16
17

55

16
17

25

16
17

10

16
16

55

15
16

90

14
17

30

13
17

95

12
19

10

11
20

50

10
21

65

92
16

0

82
24

0

72
35

0

62
35

0

52
42

0

42
42

0

32
42

0

22
42

0

12
53

5

12
52

5

12
51

0

12
50

5

12
50

0

12
48

0

12
47

0

12
45

0

12
42

5

0

50000

100000

150000

0.
00

0.
06

0.
08

0.
09

0.
11

0.
12

0.
14

0.
14

0.
15

0.
15

0.
16

0.
17

0.
19

0.
20

0.
22

0.
23

0.
24

0.
25

0.
25

0.
95

2.
74

3.
99

3.
99

4.
48

4.
49

4.
85

4.
98

Time(s)

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Figure 1: OFV evaluation throughout VND execution.

6.2.1. Complete scheduling horizon, complete set of NRP and NRRP constraints

In these experiments, the complete scheduling horizon and all the NRP and NRRP450

constraints are considered when rerostering. Table 11 presents the average results for

both single-day absences and the consecutive-days absences instances. The first block

(second and third columns) provides data concerning the initial infeasible solution, the

second provides the NRP objective value, while the third provides the NRP+NRRP

objective value. Note that to estimate the initial objective value, each unit below the455

minimum coverage violation was penalized with a weight of 10000.

The second block (fourth to ninth columns) shows the results obtained by the MIP

solver. The fourth and fifth columns detail the NRP and the NRP+NRRP objective

values, respectively. The sixth and eighth columns provide the time to reach the op-

timum solution and the time to prove it, while the seventh and ninth columns provide460

the respective standard deviations. The last block (tenth to twelfth columns) details the

results regarding the VND heuristic. The tenth column provides the relative gap to the

optimum value, while the eleventh and twelfth columns provide the time in seconds to

27

reach the value and its respective standard deviation.

Table 11: Complete scheduling horizon NRP+NRRP constraints.
Single-day absences

Initial infeasible solution MIP VND

NRP NRP+NRRP NRP NRP+NRRP Opt Std. Opt Prove Std. Std.

Instance Id OFV OFV OFV OFV Time(s) Dev. Time(s) Dev. Gap(%) Time(s) Dev.

n035w4 2370.0 39770.0 2546.0 3206.0 3.7 1.1 5.7 1.1 0.6 1.0 0.2

n035w8 4912.5 84712.5 5165.5 6490.5 8.5 5.5 14.0 4.5 1.0 1.8 0.5

n070w4 4704.5 42504.5 4665.0 5850.0 5.8 3.7 16.6 7.5 0.0 2.8 0.6

n070w8 10308.0 72908.0 9834.0 12379.0 51.5 37.7 186.3 104.2 0.4 6.6 1.1

n110w4 6183.5 34383.5 6065.0 7495.0 12.1 7.2 42.1 42.9 0.7 3.9 1.0

n110w8 11467.5 113867.5 11211.0 14366.0 78.7 42.8 237.5 130.9 0.9 10.2 1.9

average 0.6

Consecutive-days absences

Initial infeasible solution MIP VND

NRP NRP+NRRP NRP NRP+NRRP Opt Std. Opt Prove Std. Std.

Instance Id OFV OFV OFV OFV Time(s) Dev. Time(s) Dev. Gap(%) Time(s) Dev.

n035w4 2175.5 43745.5 2292.0 3167.0 5.3 2.0 9.6 8.0 1.4 1.2 0.3

n035w8 4075.0 117090.0 4548.5 6383.5 7.5 7.8 28.6 48.3 1.9 1.9 0.5

n070w4 4042.5 50032.5 4029.5 5564.5 13.8 23.0 41.9 34.4 0.4 2.5 0.6

n070w8 8856.0 85831.0 8880.0 11595.0 109.2 81.0 208.0 86.1 0.9 6.3 0.9

n110w4 5397.5 52967.5 5059.0 7039.0 28.3 24.1 84.5 57.3 0.5 4.9 0.6

n110w8 9927.0 175977.0 9740.5 13670.5 229.6 267.5 598.9 495.7 1.8 9.7 2.0

average 1.1

An interesting finding concerns instance n035w4_2_9-9-2-1 that has one violation465

of nurses below the minimum coverage. This infeasibility was solved without any

changes concerning working days, days off or shift changes. This was only possible

since the number of scheduled nurses is higher than the required minimum and the

nurses are multi-skilled. The formulation is designed in such a way that the solver

was capable of finding a solution by only changing skills of nurses who were already470

assigned to shifts. Other noteworthy observations concern instances n070w4_0_3-6-

5-1 and n110w4_2_5-1-3-0, which were feasible even with the randomly generated

disruptions. This occurs because the absent nurses were generated on days where the

number of nurses exceeded the minimum coverage, referred to as the preferred number

of nurses. The solving times for instances with single-day absences were considerably475

quicker than for instances with consecutive-days absences, with the time required to

reach the optimum solution for instances n110w8 being 78.7 for single-day absences

compared to 229.6 seconds for when consecutive-day absences were generated. Using

the VND heuristic, the time required to reach relative gaps of 0.6% and 1.1% were

28

considerably shorter compared to the MIP solver, as can be observed in the eleventh480

column. Despite the MIP solver generating optimum results in tractable time limits, the

VND heuristic still provides a good alternative whenever a MIP solver is not affordable

or if an urgent change regarding the current roster must be performed online.

These results demonstrate that robust rosters can be created by scheduling more

nurses than required, provided that these nurses are multi-skilled. Moreover, common485

disruptions occurring in real-world scenarios, such as employee absenteeism on a se-

quence of days, are more difficult to solve than single-day disruptions.

6.2.2. Complete scheduling horizon and ignoring the NRP’s soft constraints

These experiments consider the complete scheduling horizon, NRRP hard/soft con-

straints, and NRP hard constraints. In contrast to Section 6.2.1, these experiments ig-490

nore the NRP’s soft constraints when rerostering. The first block of Table 12 presents

the Instance Id, while the second block provides the results obtained considering all

NRP and NRRP constraints. The last block presents the results ignoring the NRP’s

soft constraints.

Table 12’s eighth column shows how on average, the NRRP objective value was495

lower (highlighted in bold) when the NRP soft constraints were dropped. This oc-

curred for 51 of the 60 instances with single-day absences and in 54 instances with

consecutive-days absences. The primary advantage associated with ignoring the NRP

soft constraints is the required computation time. Considering the single-day absence

instances, Table 12 details the average computational time required to reach the opti-500

mum value when considering all constraints for the larger instances (n110w8), which

was 78.8 seconds, while without the NRP soft constraints the average computation

time decreases significantly to just 6.3 seconds. A similar observation occurs for the

consecutive-days absences instances where the average times were 229.6 and 7.5 sec-

onds with and without the NRP soft constraints for the n110w8 instances, respectively.505

Table 13 presents the same experiment employing the VND heuristic. The results

detail a decrease regarding NRRP constraint violations (eighth column) when the NRP

constraints are ignored compared to when all constraints are considered (third column).

Moreover, when the results of the VND heuristic’s relaxed constraints are compared

29

against the MIP results, a smaller increase of the NRRP+NRP objective value (ninth510

column) is observed when compared against the ninth column of Table 12. These

results are due to the VND heuristic being unable to reach optimum results in all the

instances when the NRP constraints are ignored, benefiting in these cases, the NRP

constraints.

It may, therefore, be concluded that the original NRP soft constraints (presented515

in Table 8) are important to consider for generating good quality solutions. However,

in some situations it may be useful to ignore them, such as when, for example, an

urgent surgery is scheduled and there are also nurse shortages. The surgery should

be prioritized over nurse preferences or consecutive working and resting day restric-

tions/entitlements.520

Table 12: MIP - Complete scheduling horizon, NRP soft constraints relaxation.
Single-day absences

All constraints NRP constraints relaxation

NRP NRRP NRP+NRRP Opt Opt Prove NRP NRRP NRP+NRRP Opt Std. Opt Prove Std.

Instance Id OFV OFV OFV Time(s) Time(s) OFV OFV OFV Time(s) Dev. Time(s) Dev.

n035w4 2546.0 660.0 3206.0 3.7 5.7 4332.0 620.0 4952.0 0.8 0.2 0.9 0.2

n035w8 5165.5 1325.0 6490.5 8.5 14.0 7583.5 1165.0 8748.5 2.7 0.7 3.7 2.3

n070w4 4665.0 1185.0 5850.0 5.8 16.6 8766.0 970.0 9736.0 1.7 1.0 2.0 0.9

n070w8 9829.0 2550.0 12379.0 51.5 186.3 16902.0 1865.0 18767.0 5.4 1.8 6.5 2.3

n110w4 6065.0 1430.0 7495.0 12.1 42.1 9643.0 1240.0 10883.0 1.5 0.8 2.7 2.6

n110w8 11211.0 3155.0 14366.0 78.7 237.5 16538.5 2665.0 19203.5 6.3 6.2 39.6 23.2

Consecutive-days absences

All constraints NRP constraints relaxation

NRP NRRP NRP+NRRP Opt Opt Prove NRP NRRP NRP+NRRP Opt Std. Opt Prove Std.

Instance Id OFV OFV OFV Time(s) Time(s) OFV OFV OFV Time(s) Dev. Time(s) Dev.

n035w4 2292.0 875.0 3167.0 5.3 9.6 4077.0 795.0 4872.0 0.8 0.2 0.8 0.2

n035w8 4553.5 1830.0 6383.5 7.5 28.6 7122.0 1720.0 8842.0 2.5 0.3 2.6 0.4

n070w4 4039.5 1525.0 5564.5 13.8 41.9 7926.5 1340.0 9266.5 2.0 0.8 2.2 0.8

n070w8 8880.0 2715.0 11595.0 109.2 208.0 14879.5 2425.0 17304.5 5.0 2.0 6.3 2.1

n110w4 5059.0 1980.0 7039.0 28.3 84.5 8848.5 1690.0 10538.5 2.4 1.7 2.8 1.7

n110w8 9735.5 3935.0 13670.5 229.6 598.9 15089.5 3470.0 18559.5 7.5 4.5 16.4 14.0

6.2.3. Scheduling horizon relaxation

These experiments evaluate the impact of rerostering when considering different

scheduling horizons. The complete scheduling horizon, the most straightforward ap-

proach, is analyzed in addition to restricted horizons which only reroster those days

where nurses are absent, from the first absent day until the last absent day, or from the525

30

Table 13: VND - Complete scheduling horizon, NRP soft constraints relaxation.
Single-day absences

All constraints NRP constraints relaxation

NRP NRRP NRP+NRRP Std. NRP NRRP NRP+NRRP Std.

Instance Id OFV OFV OFV Time(s) Dev. OFV OFV OFV Time(s) Dev.

n035w4 2565.0 660.0 3225.0 1.0 0.2 2633.0 625.0 3258.0 0.6 0.0

n035w8 5208.0 1350.0 6558.0 1.8 0.5 5683.0 1185.0 6868.0 0.9 0.2

n070w4 4670.5 1180.0 5850.5 2.8 0.6 5099.5 970.0 6069.5 1.3 0.1

n070w8 9962.5 2467.9 12430.4 6.6 1.1 10983.0 1875.0 12858.0 1.9 0.1

n110w4 6124.0 1420.0 7544.0 3.9 1.0 6369.0 1265.0 7634.0 1.8 0.1

n110w8 11303.0 3194.7 14497.7 10.2 1.9 12172.0 2725.0 14897.0 2.7 0.2

Consecutive-days absences

All constraints NRP constraints relaxation

NRP NRRP NRP+NRRP Std. NRP NRRP NRP+NRRP Std.

Instance Id OFV OFV OFV Time(s) Dev. OFV OFV OFV Time(s) Dev.

n035w4 2330.5 880.0 3210.5 1.2 0.3 2492.0 805.0 3297.0 0.6 0.0

n035w8 4624.6 1878.1 6502.7 1.9 0.5 5048.0 1800.0 6848.0 0.9 0.2

n070w4 4130.6 1454.9 5585.5 2.5 0.6 4402.0 1340.0 5742.0 1.3 0.1

n070w8 9009.3 2688.8 11698.1 6.3 0.9 9488.0 2465.0 11953.0 2.0 0.1

n110w4 5103.1 1969.9 7073.0 4.9 0.6 5559.0 1695.0 7254.0 1.9 0.2

n110w8 9912.8 4002.9 13915.7 9.7 2.0 10939.5 3565.0 14504.5 2.7 0.2

first absent day until the end of the scheduling horizon. All NRP and NRRP constraints

were considered throughout these experiments.

Tables 14 and 15’s fifth columns document the results when only rerostering on ab-

sent days employing the MIP solver and the VND heuristic, respectively. Whereas this

restricted rerostering considers a problem which is more constrained, the computational530

results indicate only a slight deterioration concerning solution quality compared against

the complete scheduling horizon. Values in bold indicate improvements obtained by

restricting the rerostering horizon. This rerostering strategy, therefore, provides a good

alternative when obtaining a solution is urgent and must be acquired within a very short

period of time.535

Tables 14 and 15 also present the results when the scheduling horizon is limited

from the first absence to the last absence (third block), and until the end of the schedul-

ing horizon (fourth block). The results are very similar to when the complete schedul-

ing horizon is considered. The gaps reported in Table 15 demonstrate consistent per-

formance of the VND heuristic under different strategies regarding scheduling horizon540

relaxations. For the consecutive-day absences the relative gaps are 1.1%, 1.0%, 1.7%

and 1.1% for the complete scheduling horizon, only absent days, first absence to last

31

absence, and first absence to the end of the scheduling horizon, respectively.

It can therefore be concluded that the VND heuristic generates near-optimum re-

sults (with gaps less than 2%), providing a good alternative to the MIP solver. When545

the new schedule has already been communicated to all employees and the new month

has not yet begun, then rerostering the complete scheduling horizon provides the best

alternative. Nevertheless, it is worthwhile to consider other strategies which restrict

the scheduling horizon, given that the NRRP depends on when an employee commu-

nicates their absence. For example, if the new month has already begun and some550

employees communicate unavailabilities, the revised roster should not reconsider as-

signments from the past and consequently the beginning of the new scheduling horizon

should instead be the first absent day.

Table 14: MIP - Comparison of scheduling horizons.
Single-day absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Opt Opt Prove Opt Opt Prove Opt Opt Prove Opt Opt Prove

Instance Id OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s)

n035w4 3206.0 3.7 5.7 3217.0 0.5 0.6 3206.0 2.3 3.7 3206.0 3.0 4.7

n035w8 6490.5 8.5 14.0 6504.0 1.1 1.1 6490.5 6.7 10.9 6490.5 7.3 15.4

n070w4 5850.0 5.8 16.6 5867.0 2.4 2.5 5857.0 7.4 10.2 5852.5 5.6 16.3

n070w8 12379.0 51.5 186.3 12452.0 5.0 6.8 12382.5 41.0 160.6 12379.0 36.9 148.5

n110w4 7495.0 12.1 42.1 7501.5 3.9 5.3 7496.5 6.2 20.2 7495.0 9.0 25.1

n110w8 14366.0 78.7 237.5 14433.5 5.7 10.5 14375.0 67.0 199.3 14366.0 61.8 164.3

Consecutive-days absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Opt Opt Prove Opt Opt Prove Opt Opt Prove Opt Opt Prove

Instance Id OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s)

n035w4 3167.0 5.3 9.6 3177.5 1.1 1.2 3167.0 4.4 5.5 3167.0 4.1 5.4

n035w8 6383.5 7.5 28.6 6392.0 2.2 2.6 6383.5 7.1 29.8 6383.5 6.9 40.9

n070w4 5564.5 13.8 41.9 5581.0 3.8 7.8 5564.5 7.0 27.1 5564.5 7.4 31.0

n070w8 11595.0 109.2 208.0 11623.5 6.0 11.5 11595.0 85.3 180.0 11595.0 73.3 190.3

n110w4 7039.0 28.3 84.5 7055.5 7.1 21.8 7039.0 27.7 65.9 7039.0 29.7 60.8

n110w8 13670.5 229.6 598.9 13692.5 54.0 84.4 13674.0 188.5 597.2 13674.0 178.9 466.9

6.3. Computational results for the Lisbon instances

Since there are no soft constraints in the Lisbon instances, only those strategies555

concerning the scheduling horizon are analyzed for this dataset. Tables 16 and 17

present the results for the Lisbon instances using the MIP solver and VND heuristic,

respectively. In both tables, rerostering the complete scheduling horizon and only a

32

Table 15: VND - Comparison of scheduling horizons.
Single-day absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Instance Id OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s)

n035w4 3225.0 0.6 1.0 3233.5 0.5 0.4 3332.9 3.8 1.0 3225.0 0.6 0.9

n035w8 6558.0 1.0 1.8 6570.0 1.0 0.6 6614.0 1.9 1.7 6558.0 1.0 1.7

n070w4 5850.5 0.0 2.8 5867.5 0.0 1.5 5893.1 0.6 2.3 5853.0 0.0 2.6

n070w8 12430.4 0.4 6.6 12494.9 0.3 3.5 12456.4 0.6 6.0 12430.4 0.4 6.3

n110w4 7544.0 0.6 3.9 7550.5 0.6 2.7 7565.0 0.9 3.2 7544.0 0.6 3.6

n110w8 14497.7 0.9 10.2 14566.0 0.9 6.2 14554.2 1.2 9.1 14497.7 0.9 9.8

0.6 0.6 1.5 0.6

Consecutive-days absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Instance Id OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s)

n035w4 3210.5 1.4 1.2 3219.0 1.3 0.6 3223.5 1.8 1.0 3210.5 1.4 1.1

n035w8 6502.7 1.8 1.9 6506.4 1.8 0.9 6560.6 2.7 2.0 6502.7 1.8 1.7

n070w4 5585.5 0.4 2.5 5596.4 0.3 1.7 5610.4 0.8 2.2 5585.5 0.4 2.3

n070w8 11698.1 0.9 6.2 11716.6 0.8 3.5 11711.8 1.0 5.7 11698.1 0.9 5.9

n110w4 7073.0 0.5 5.0 7083.5 0.4 3.9 7171.6 1.8 4.7 7073.0 0.5 4.6

n110w8 13915.7 1.8 9.7 13931.2 1.7 7.6 13965.3 2.1 9.0 13919.2 1.8 9.3

1.1 1.0 1.7 1.1

limited part is evaluated. In Table 16 the columns labeled OFV report the optimum ob-

jective values obtained by the MIP solver for each scheduling horizon, while columns560

opt time(s) and opt prove time(s) are the times (in seconds) to reach the optimum value

and to prove optimality, respectively. In Table 17 the gap is relative to the optimum

value obtained by the MIP solver for each scheduling horizon.

Table 16 details the results when employing the MIP solver. All instances were

quickly solved to optimality. In the worst case, the MIP solver proved the optimum565

solution within 2.4 seconds. Both rerostering the complete scheduling horizon and

rerostering from first absence until the end of the scheduling horizon generated the

best results, while rerostering only the absent days resulted in infeasibility for 8 of

the 68 instances. Finally, rerostering from the first absence until the last absent day

resulted in 7 instances being infeasible. Note that instance II7_19 is infeasible for all570

the scheduling horizons.

Table 17 details the results obtained by the VND heuristic. The best results for

the instances with 19 nurses were obtained by restricting the scheduling horizon to

only the absent days while the worst solutions were obtained when considering the full

scheduling horizon. This indicates that the algorithm’s overall performance improves575

33

when restricting the available possibilities for rerostering. Increasing the allowed com-

putation time of the VND heuristic to ten minutes did not considerably improve the

average relative gaps. For instances with 32 nurses, the chosen strategy does not af-

fect the average gaps significantly. Compared to the MIP solver, solutions within 1%

of the optimum solutions are obtained in comparable computation time. Independent580

of which strategy was applied, the VND heuristic performed significantly better when

more nurses are available for rerostering as this allowed for more possibilities to repair

the infeasibilities.

6.4. Limits of the solution approaches

The previous results demonstrated that CPLEX was able to find optimum solutions585

for all feasible instances while requiring very little computation time. This section

further challenges the proposed integer programming model by investigating the per-

formance of an alternative MIP solver and analyzing the performance of the solution

approaches on large-scale problem instances.

Table 18 compares the performance of CPLEX against that of Coin-OR CBC, one590

of the leading open-source MIP solver projects (Lougee-Heimer, 2003). The third and

seventh columns provide the number of feasible solutions found for each group of ten

INRC-II instances. The fourth and fifth columns detail the time required by CPLEX to

reach the reported objective value and the time required to prove optimality, while the

eighth and tenth columns show these times for Coin-OR CBC. The reported standard595

deviations are always relative to the times in the preceding column. A dash (-) indicates

that no feasible solution was found within the imposed time limit of one hour.

In general, the computation times of Coin-OR CBC were much longer than those

of CPLEX. Consequently, Coin-OR CBC could prove optimality only for the smallest

instances with 35 nurses and a scheduling horizon of four weeks and was unable to find600

feasible solutions for the larger instances containing 70 and 110 nurses and a schedul-

ing horizon of eight weeks. However, on instances for which feasible solutions were

obtained, Coin-OR CBC performed only slightly worse than CPLEX, indicating that

the open-source solver is a suitable alternative when the number of nurses is limited

and when short computation times are not crucial.605

34

Table 16: MIP - Experiments employing the Lisbon instances
Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Opt Opt Prove Opt Opt Prove Opt Opt Prove Opt Opt Prove
Instance Id OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s) OFV Time(s) Time(s)
I1_19 3 0.3 0.3 3 0.0 0.1 3 0.0 0.1 3 0.0 0.1
I2_19 2 0.2 0.3 2 0.0 0.1 2 0.1 0.1 2 0.0 0.1
I3_19 9 0.5 0.8 9 0.1 0.1 9 0.1 0.1 9 0.1 0.1
I4_19 2 0.2 0.3 2 0.0 0.1 2 0.0 0.1 2 0.1 0.2
I5_19 15 0.3 0.6 17 0.1 0.1 17 0.2 0.2 17 0.1 0.1
I6_19 8 0.3 0.5 8 0.2 0.2 8 0.2 0.2 8 0.2 0.2
I7_19 19 0.3 0.7 20 0.3 0.4 20 0.3 0.3 20 0.3 0.3
I8_19 2 0.2 0.2 2 0.0 0.0 2 0.0 0.0 2 0.1 0.2
II1_19 1 0.2 0.2 1 0.0 0.0 1 0.0 0.0 1 0.1 0.1
II2_19 0 0.0 0.1 0 0.0 0.0 0 0.0 0.0 0 0.0 0.1
II3_19 5 0.2 0.3 5 0.1 0.1 5 0.0 0.2 5 0.1 0.2
II4_19 10 0.3 0.7 ∞ 0.1 0.2 12 0.1 0.3 12 0.1 0.3
II5_19 6 0.2 0.4 6 0.1 0.1 6 0.1 0.1 6 0.1 0.2
II6_19 16 0.3 0.5 16 0.1 0.3 16 0.1 0.3 16 0.1 0.3
II7_19 ∞ - - ∞ - - ∞ - - ∞ - -
II8_19 3 0.2 0.3 6 0.1 0.2 6 0.1 0.2 5 0.1 0.3
III1_19 7 0.3 0.3 7 0.0 0.1 7 0.0 0.1 7 0.2 0.2
III2_19 9 0.3 0.6 ∞ 0.0 0.1 ∞ 0.0 0.1 12 0.5 0.5
III3_19 10 0.2 0.5 ∞ 0.0 0.1 ∞ 0.0 0.1 13 0.5 0.5
III4_19 7 0.2 0.4 7 0.1 0.2 7 0.1 0.2 7 0.2 0.3
III5_19 27 1.1 1.1 27 0.6 0.6 27 0.5 0.5 27 0.7 0.8
III6_19 26 0.8 0.8 28 0.3 0.5 26 0.6 0.6 26 0.6 0.6
III7_19 18 0.7 0.9 23 0.3 0.4 19 0.3 0.8 19 0.3 0.7
III8_19 10 0.3 0.7 10 0.1 0.3 10 0.1 0.3 10 0.2 0.3
IV1_19 8 0.2 0.7 ∞ 0.0 0.1 ∞ 0.0 0.1 9 0.3 0.4
IV2_19 11 0.3 0.8 ∞ 0.0 0.1 ∞ 0.0 0.2 12 0.4 0.4
IV3_19 10 0.2 0.6 ∞ 0.0 0.1 ∞ 0.0 0.1 10 0.3 0.3
IV4_19 26 0.3 0.5 ∞ 0.1 0.1 ∞ 0.1 0.2 26 0.2 0.5
IV5_19 17 0.3 0.9 19 0.2 0.6 19 0.7 1.0 17 0.3 0.6
IV6_19 21 0.9 1.1 25 0.1 0.3 23 0.3 0.4 23 0.6 0.6
IV7_19 9 0.3 0.6 9 0.1 0.2 9 0.3 0.6 9 0.3 0.6
IV8_19 9 0.2 0.5 9 0.1 0.3 9 0.2 0.4 9 0.2 0.5
I1_32 3 0.3 0.5 3 0.1 0.3 3 0.1 0.4 3 0.1 0.3
I2_32 3 0.3 0.4 3 0.1 0.2 3 0.1 0.2 3 0.1 0.1
I3_32 6 0.3 0.5 6 0.1 0.4 6 0.1 0.4 6 0.1 0.4
I4_32 1 0.3 0.3 1 0.1 0.1 1 0.1 0.1 1 0.1 0.1
I5_32 8 0.4 0.9 8 0.1 0.3 8 0.1 0.3 8 0.1 0.3
I6_32 12 0.3 0.5 12 0.1 0.2 12 0.1 0.2 12 0.1 0.2
I7_32 7 0.3 0.6 7 0.1 0.2 7 0.1 0.2 7 0.1 0.1
I8_32 8 0.3 0.6 8 0.1 0.2 8 0.1 0.1 8 0.1 0.2
II1_32 1 0.3 0.4 1 0.1 0.1 1 0.1 0.1 1 0.1 0.1
II2_32 1 0.3 0.3 1 0.1 0.1 1 0.1 0.1 1 0.1 0.1
II3_32 3 0.4 0.4 3 0.1 0.2 3 0.1 0.2 3 0.1 0.2
II4_32 7 0.4 0.7 7 0.1 0.3 7 0.1 0.4 7 0.2 0.6
II5_32 16 0.3 0.6 16 0.2 0.4 16 0.2 0.3 16 0.2 0.3
II6_32 20 0.3 0.7 20 0.1 0.4 20 0.1 0.4 20 0.1 0.4
II7_32 6 0.3 0.5 6 0.1 0.2 6 0.2 0.2 6 0.2 0.2
II8_32 5 0.3 0.5 5 0.1 0.2 5 0.2 0.3 5 0.2 0.3
III1_32 7 0.4 0.6 7 0.1 0.2 7 0.1 0.2 7 0.2 0.4
III2_32 5 0.3 0.4 5 0.1 0.1 5 0.1 0.1 5 0.2 0.3
III3_32 7 0.4 0.5 7 0.1 0.2 7 0.1 0.2 7 0.2 0.4
III4_32 6 0.3 0.5 6 0.1 0.2 6 0.1 0.2 6 0.3 0.4
III5_32 19 0.4 1.2 19 0.2 0.6 19 0.3 0.8 19 0.3 0.8
III6_32 36 0.4 1.4 36 0.3 1.2 36 0.3 1.3 36 0.3 1.5
III7_32 22 0.4 1.0 22 0.3 1.2 22 0.4 1.1 22 0.3 1.1
III8_32 25 0.4 1.0 25 0.3 1.0 25 0.3 1.1 25 0.3 1.1
IV1_32 4 0.3 0.6 4 0.1 0.2 4 0.1 0.3 4 0.3 0.4
IV2_32 5 0.3 0.6 5 0.1 0.3 5 0.1 0.2 5 0.3 0.5
IV3_32 4 0.3 0.5 4 0.1 0.1 4 0.1 0.2 4 0.3 0.5
IV4_32 12 0.3 0.5 12 0.1 0.2 12 0.1 0.2 12 0.3 0.5
IV5_32 11 0.4 0.9 11 0.2 1.1 11 0.2 1.0 11 0.3 0.9
IV6_32 1 0.3 0.3 1 0.1 0.1 1 0.1 0.1 1 0.3 0.3
IV7_32 10 0.4 1.1 10 0.2 0.8 10 0.2 0.7 10 0.3 0.9
IV8_32 22 0.4 1.8 22 0.4 1.3 22 0.3 1.3 22 0.3 1.4
V1_32 7 0.3 0.5 7 0.3 0.5 7 0.4 0.5 7 0.3 0.5
V2_32 19 0.4 1.7 19 0.4 1.8 19 0.4 1.7 19 0.4 1.7
V3_32 19 0.3 1.0 19 0.3 1.0 19 0.4 1.1 19 0.3 0.9
V4_32 87 1.4 2.4 87 1.4 2.4 87 1.4 2.4 87 1.4 2.4

35

Table 17: VND - Experiments employing the Lisbon instances
Complete scheduling Only absent days First absence to last absence First absence to end scheduling

Instance Id OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s) OFV Gap(%) Time(s)
I1_19 3.0 0.0 0.2 3.0 0.0 0.1 3.0 0.0 0.1 3.0 0.0 0.1
I2_19 2.0 0.0 0.2 2.0 0.0 0.1 2.0 0.0 0.1 2.0 0.0 0.1
I3_19 9.8 8.9 0.5 9.6 6.7 0.1 9.6 6.7 0.2 9.6 6.7 0.2
I4_19 2.0 0.0 0.2 2.0 0.0 0.1 2.0 0.0 0.0 2.0 0.0 0.2
I5_19 19.5 30.0 0.5 19.5 14.7 0.2 19.0 11.8 0.2 19.5 14.7 0.2
I6_19 9.5 18.8 0.6 9.5 18.8 0.2 9.5 18.8 0.3 9.5 18.8 0.1
I7_19 27.9 46.8 10.9 27.0 35.0 10.5 27.0 35.0 2.1 27.0 35.0 0.1
I8_19 2.0 0.0 0.2 2.0 0.0 0.1 2.0 0.0 0.1 2.0 0.0 0.1
II1_19 1.0 0.0 0.2 1.0 0.0 0.1 1.0 0.0 0.0 1.0 0.0 0.2
II2_19 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2
II3_19 6.5 30.0 0.5 5.5 10.0 0.9 ∞ - - 6.5 30.0 0.2
II4_19 16.5 65.0 0.8 ∞ - - 17.0 41.7 0.6 16.5 37.5 0.3
II5_19 12.0 100.0 0.8 9.0 50.0 2.6 11.0 83.3 1.6 12.0 100.0 0.3
II6_19 25.6 60.0 0.9 25.6 60.0 0.4 25.7 60.6 0.6 25.6 60.0 0.2
II7_19 ∞ - - ∞ - - ∞ - - ∞ - -
II8_19 7.1 136.7 0.7 7.1 18.3 0.2 ∞ - - 7.1 42.0 0.3
III1_19 7.0 0.0 0.2 7.0 0.0 0.1 ∞ - - 7.0 0.0 0.3
III2_19 12.2 35.6 23.7 ∞ - - ∞ - - 14.0 16.7 0.4
III3_19 14.3 43.0 24.3 ∞ - - ∞ - - 14.8 13.8 0.3
III4_19 9.8 40.0 0.6 9.8 40.0 0.1 7.9 12.9 0.2 9.8 40.0 0.4
III5_19 34.9 29.3 35.3 33.7 24.8 11.2 ∞ - - 33.0 22.2 0.4
III6_19 33.2 27.7 34.5 32.4 15.7 66.2 32.3 24.2 5.7 33.5 28.8 0.3
III7_19 25.0 38.9 1.6 24.7 7.2 329.6 25.7 35.3 1.4 25.2 32.6 10.1
III8_19 15.3 53.0 0.7 12.1 21.0 7.0 13.6 36.0 1.8 15.3 53.0 0.3
IV1_19 11.9 48.8 0.7 ∞ - - ∞ - - 11.9 32.2 0.6
IV2_19 14.7 33.6 0.8 ∞ - - ∞ - - 15.6 30.0 0.4
IV3_19 13.9 39.0 0.8 ∞ - - ∞ - - 14.1 41.0 0.4
IV4_19 39.2 50.8 6.9 ∞ - - ∞ - - 39.2 50.8 0.4
IV5_19 30.6 80.0 0.8 23.8 25.3 9.5 21.8 14.7 4.9 30.6 80.0 0.5
IV6_19 34.9 66.2 8.1 27.9 11.6 75.7 35.6 54.8 2.0 34.9 51.7 0.4
IV7_19 10.2 13.3 0.6 10.2 13.3 0.3 10.2 13.3 0.8 10.2 13.3 0.4
IV8_19 10.2 13.3 0.6 10.2 13.3 0.3 10.0 11.1 0.7 10.2 13.3 0.4
average 35.8 16.1 21.9 27.9
I1_32 3.0 0.0 0.5 3.0 0.0 0.1 3.0 0.0 0.1 3.0 0.0 0.1
I2_32 3.0 0.0 0.5 3.0 0.0 0.1 3.0 0.0 0.1 3.0 0.0 0.1
I3_32 6.0 0.0 0.6 6.0 0.0 0.2 6.0 0.0 0.2 6.0 0.0 0.2
I4_32 1.0 0.0 0.5 1.0 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.2
I5_32 8.0 0.0 0.5 8.0 0.0 0.2 8.0 0.0 0.2 8.0 0.0 0.2
I6_32 12.0 0.0 0.5 12.0 0.0 0.1 12.0 0.0 0.3 12.0 0.0 0.1
I7_32 7.0 0.0 0.5 7.0 0.0 0.1 7.0 0.0 0.2 7.0 0.0 0.1
I8_32 8.0 0.0 0.5 8.0 0.0 0.1 8.0 0.0 0.1 8.0 0.0 0.1
II1_32 1.0 0.0 0.5 1.0 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.2
II2_32 1.0 0.0 0.5 1.0 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.2
II3_32 3.0 0.0 0.5 3.0 0.0 0.1 3.0 0.0 0.1 3.0 0.0 0.2
II4_32 7.0 0.0 0.5 7.0 0.0 0.2 7.0 0.0 0.3 7.0 0.0 0.3
II5_32 16.0 0.0 0.5 16.0 0.0 0.3 16.0 0.0 0.5 16.0 0.0 0.3
II6_32 20.0 0.0 0.5 20.0 0.0 0.2 20.0 0.0 0.3 20.0 0.0 0.2
II7_32 6.0 0.0 0.5 6.0 0.0 0.2 6.0 0.0 0.2 6.0 0.0 0.3
II8_32 5.0 0.0 0.5 5.0 0.0 0.2 5.0 0.0 0.3 5.0 0.0 0.3
III1_32 7.0 0.0 0.5 7.0 0.0 0.1 7.0 0.0 0.2 7.0 0.0 0.4
III2_32 5.0 0.0 0.5 5.0 0.0 0.1 5.0 0.0 557.1 5.0 0.0 0.3
III3_32 7.0 0.0 0.5 7.0 0.0 0.1 7.0 0.0 0.2 7.0 0.0 0.4
III4_32 6.0 0.0 0.5 6.0 0.0 0.1 6.0 0.0 0.2 6.0 0.0 0.4
III5_32 19.0 0.0 0.5 19.0 0.0 0.3 19.0 0.0 0.4 19.0 0.0 0.3
III6_32 36.9 2.5 14.4 37.5 4.2 10.1 36.6 1.7 9.3 37.5 4.2 10.1
III7_32 22.0 0.0 0.5 22.0 0.0 0.4 22.0 0.0 0.3 22.0 0.0 0.3
III8_32 27.0 8.0 0.9 27.0 8.0 0.6 27.0 8.0 0.5 27.0 8.0 0.6
IV1_32 4.0 0.0 0.5 4.0 0.0 0.1 4.0 0.0 0.1 4.0 0.0 0.4
IV2_32 5.0 0.0 0.5 5.0 0.0 0.1 5.0 0.0 0.1 5.0 0.0 0.4
IV3_32 4.0 0.0 0.5 4.0 0.0 0.1 4.0 0.0 0.1 4.0 0.0 0.4
IV4_32 12.0 0.0 0.5 12.0 0.0 0.1 12.0 0.0 0.2 12.0 0.0 0.5
IV5_32 11.0 0.0 0.5 11.0 0.0 0.3 11.0 0.0 0.4 11.0 0.0 0.4
IV6_32 1.0 0.0 0.5 1.0 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.4
IV7_32 10.0 0.0 0.5 10.0 0.0 0.3 10.0 0.0 0.4 10.0 0.0 0.4
IV8_32 22.0 0.0 0.5 22.0 0.0 0.4 22.0 0.0 0.4 22.0 0.0 0.4
V1_32 7.0 0.0 0.4 7.0 0.0 0.4 7.0 0.0 0.4 7.0 0.0 0.4
V2_32 20.0 5.3 12.5 20.0 5.3 12.1 21.0 10.5 11.0 20.0 5.3 11.6
V3_32 19.7 3.7 9.3 19.7 3.7 9.6 19.9 4.7 8.7 19.7 3.7 9.1
V4_32 102.0 17.2 126.3 102.0 17.2 119.7 102.0 17.2 67.4 102.0 17.2 120.5
average 1.0 1.1 1.2 1.1

36

Table 18: Open-source solver - complete scheduling horizon NRP+NRRP constraints.
CPLEX Coin-OR CBC

Opt Opt Prove Std. Opt Prove Std.

Instance Id OFV #Feasible Time(s) Time(s) OFV #Feasible Time(s) Dev. Time(s) Dev.

n035w4 3167.0 10 5.3 9.6 3167.0 10 183.1 113.9 200.5 135.2

n035w8 6383.5 10 7.5 28.6 6420.5 10 1742.6 724.8 - -

n070w4 5564.5 10 13.8 41.9 5565.0 10 1299.4 472.0 - -

n070w8 11595.0 10 109.2 208.0 - 0 - - - -

n110w4 7039.0 10 28.3 84.5 7062.0 10 2406.4 599.1 - -

n110w8 13670.5 10 229.6 598.9 - 0 - - - -

To investigate the performance of the proposed solution approaches on large prob-

lem instances, ten additional larger instances containing 150, 200, 300, 400 and 500

nurses were generated based on the INRC-II constraints and problem characteristics.

Table 19 presents the results using CPLEX and the VND heuristic for these much larger

instances. For each instance, the complete scheduling horizon and all NRP and NRRP610

constraints were considered. Note that Coin-OR CBC is not included in this compar-

ison as Table 18 already demonstrated that instances with 110 nurses are beyond its

capabilities.

The first column in Table 19 describes the instance size ranging from 150 to 500

nurses and scheduling horizon of four and eight weeks. The second and seventh615

columns show the percentage of instances for which a feasible solution was found.

The third and eight columns provide the objective function values, while the fourth

and ninth columns detail the gap relative to the lower bound obtained by CPLEX. The

fifth and tenth columns provide the required computation time in seconds. The sixth

and eleventh columns present the standard deviation relative to the computation time.620

Infeasible solutions were not taken into account for these calculations.

CPLEX manages to consistently find feasible solutions for problems with up to

400 nurses and a scheduling horizon of four weeks. Even for the instances with 400

nurses and scheduling horizon of eight weeks, a feasible solution was found for the

majority of instances (7 out of 10). An interesting observation was that when CPLEX625

can solve the initial infeasibility, it quickly found (near-)optimum solutions in very

limited computation time. For the instances with 500 nurses and scheduling horizon

of eight weeks, CPLEX was unable to find any feasible solutions within the time limit.

37

Table 19: Large instances - complete scheduling horizon NRP+NRRP constraints.
CPLEX VND

Std. Std.

Instance Id Feasible(%) OFV Gap(%) Time(s) Dev. Feasible(%) OFV Gap(%) Time(s) Dev.

n150w4 100 126550.5 0.0 318.1 146.2 100 126889.3 0.3 39.1 10.3

n150w8 100 317429.5 0.0 2317.2 897.5 100 318278.3 0.3 107.7 32.1

n200w4 100 177228.0 0.0 557.9 165.4 100 177844.5 0.4 79.6 22.6

n200w8 100 442882.5 0.6 3421.7 234.3 100 444443.5 1.0 275.8 94.3

n300w4 100 270278.0 0.0 1925.7 991.6 100 270989.6 0.3 176.0 51.9

n300w8 100 689322.0 1.3 3241.5 444.0 100 690517.9 1.5 722.6 237.3

n400w4 100 358380.0 0.0 2233.5 678.7 100 359583.0 0.3 489.3 63.7

n400w8 70 903917.1 1.8 2385.3 1069.8 100 904319.2 1.9 1877.2 253.3

n500w4 100 453763.6 0.1 3394.9 283.3 100 454904.0 0.3 527.4 53.6

n500w8 0 - - 3600.0 - 100 1375360.4 - 3790.7 589.2

By contrast, the VND heuristic generated feasible solutions for all these instances in

considerably shorter running time, with exception of the instances with 500 nurses and630

eighth weeks where the running time was on average 3791 seconds. The solutions

obtained by the VND heuristic were near-optimum with an average gap of only 0.7%,

demonstrating how it provides the best solution approach for large-scale problems with

hundreds of nurses if low computation times are required.

7. Conclusions635

The primary contribution of this work is the evaluation of novel rerostering strate-

gies such as the relaxation of the NRP soft constraints and various rerostering schedul-

ing horizons. Additionally, a general integer programming formulation considering

multi-skilled nurses and a large set of constraints from both the NRP and the NRRP

was introduced. A third contribution is a VND heuristic, which provides an alternative640

to commercial solvers and significantly reduces the required computational time at the

expense of very small reductions in solution quality. Furthermore, a new set of in-

stances derived from those proposed by Moz & Pato (2007) and Ceschia et al. (2014),

which are used throughout the computational experiments, have been made publicly

available online2.645

Besides the NRRP constraints, the computational study has revealed that main-

2http://www.inf.ufrgs.br/~tiwickert/download/2017/reroster

38

http://www.inf.ufrgs.br/~tiwickert/download/2017/reroster

taining the original NRP’s constraints is important for obtaining high-quality NRRP

solutions. However, ignoring the NRP’s soft constraints provides a good alternative

when urgent demands require online changes to the current roster, such as when, for

example, it is necessary to cover a shortage of professionals for a surgery. Rerostering650

the complete scheduling horizon generates the best solutions, but requires longer run-

times. If only the days on which absenteeism occurs are evaluated, less time is required

to reach solutions and this, therefore, represents a good alternative strategy when very

little time is available for rerostering. Only considering the period from the first absent

day until the last absent day or until the end of the scheduling horizon generated simi-655

lar results, but both scheduling horizons are important to consider when an absence is

communicated during the current month.

Results also demonstrated that some solutions remain valid despite nurse absen-

teeism, with this type of roster robustness being a desirable solution property given

how it minimizes the impact when personnel shortages occur. Future research should660

consider the introduction of robustness which facilitates the repair of disruptions in

terms of employee absences and the preparation of rosters which are less susceptible

to disruptions in the first place.

Acknowledgement

The authors would like to thank Margarida Moz, Margarida Vaz Pato and Jan665

Dvořák who kindly have answered our e-mails with questions about the Lisbon in-

stances and their research related to the Nurse Rerostering Problem. Editorial consul-

tation provided by Luke Connolly (KU Leuven).

Appendix A. General integer programming formulation for the nurse rostering

problem670

Table A.20 provides the sets, decision and auxiliary variables employed in the for-

mulation. The objective function minimizes the cost associated with the violation of

the soft constraints.

39

Table A.20: Indices, sets, decision and auxiliary variables employed in

the problem formulation.

Symbol Definition

Input Data

n ∈ N n is the index of the nurse, and N is the set of nurses;

d ∈ D d is the index of the day, and D is the set of days;

s ∈ S s is the index of the shift, and {1,2,3,4} ∈ S is the set of shifts,

where 1 corresponds to Early, 2 to Day, 3 to Late and 4 to Night;

k ∈ K k is the index of the skill, and {1,2,3,4} ∈ K is the set of skills,

where 1 corresponds to HeadNurse, 2 to Nurse, 3 to Caretaker

and 4 to Trainee;

lnk is the skill of the nurse n at position k of a vector with dimen-

sion |K|, where a zero in position k means that nurse n does not

have skill k. Consider the case in which Nurse1 has only two

skills, and the problem’s input has four skills. The vector of

skills for Nurse1 is (1, 2, 0, 0) representing the Nurse1 has the

skills HeadNurse and Nurse, while does not have skills Care-

taker and Trainee. This way, the decision variable can assume 1

on Equation A.5 in the first two cases, because, (1−1)xndsk = 0

implies Nurse1 can assume a day or shift with skill HeadNurse;

(2− 2)xndsk = 0 implies Nurse1 can assume a day or shift with

skill Nurse; (3−0)xndsk = 0 implies Nurse1 cannot assume a day

or shift with skill Caretaker; (4−0)xndsk = 0 implies Nurse1 can-

not assume a day or shift with skill Trainee;

(n,d,s) ∈U vector containing a triple with the undesired working day d, shift

s for nurse n. For example, (1,2,4) ∈U means Nurse1 prefers to

avoid working on day 2, shift 4 (Night shift).

rdsk ∈ N0 number of required nurses on day d, shift s, having skill k;

40

(s1,s2) ∈ Ŝ contains the pairs of invalid shift sequences, for example, (4,1)∈

Ŝ means that a Night shift cannot be followed by an Early shift;

T w set of patterns T w = {T w
t : t ∈ {1,2, . . . , pw}}, where pw is the

minimum number of consecutive working days - 1. T w
t is a bi-

nary vector of dimension t + 2, with one zero in the first po-

sition and one zero in the last position, being t the number of

ones that appear in vector T w
t . For example, considering 4 as

the minimum number of working days, the patterns to search are

T w = {T w
1 = (0,1,0),T w

2 = (0,1,1,0),T w
3 = (0,1,1,1,0)}. If the

first pattern is found in the schedule, it represents three violations,

the second pattern two violations, and the third pattern a single

violation.

T r follows the same idea of T w, and represents a set of patterns T r =

{T r
t : t ∈ {1,2, . . . , pr}}, where pr is the minimum number of

consecutive days off - 1.

T s follows the same idea of T w, and represents a set of patterns T s =

{T s
ts : ts ∈ {1,2, . . . , ps}}, where ps is the minimum number of

consecutive working days - 1 at shift s.

w ∈W w is a Saturday index and W the set of all Saturdays indexes;

Mh ∈ {5,6} set of maximum working days every 7 days. M1 = 5 and M2 = 6

depending of the nurses’ contract;

α1
dsk preferred number of nurses for day d, shift s, skill k;

β i
n limit of soft constraint 2, ...,5 and 10, ...,12 for nurse n,

that is, minimum/maximum consecutive working days, mini-

mum/maximum consecutive days off, minimum/maximum num-

ber of assignments over the scheduling period and total working

weekends;

γ i
s limit of soft constraint 6 and 7 for shift s, that is, mini-

mum/maximum consecutive assignments to the same shift;

41

ω i weight for violating the lower and/or upper limits of soft con-

straint i.

Decision Variables

xndsk ∈ {0,1} 1 if nurse n is allocated on day d, shift s with skill k, 0 otherwise;

ynw ∈ {0,1} 1 if nurse n works at weekend w, 0 otherwise.

Auxiliary Variables

a1
dsk ∈ N0 preferred number of nurses violations for day d, shift s, skill k;

bi
ndt ∈ N0 minimum number of consecutive working days and days off vio-

lations, i ∈ 2,4 for nurse n on day d, pattern t;

ci
nd ∈ N0 maximum number of consecutive working days and days off vi-

olations, i ∈ 3,5 for nurse n on day d;

e6
ndst ∈ N0 minimum number of consecutive assignments to the same shift

violations, for nurse n on day d, shift s, pattern t;

f 7
nds ∈ N0 maximum number of consecutive assignments to the same shift

violations, for nurse n on day d, shift s;

g8
nds ∈ N0 number of nurse’s undesired working day/shift violations, for

nurse n on day d, shift s;

h9
nw ∈ N0 number of complete weekends violations, for nurse n on week-

end w;

ji
n ∈ N0 minimum/maximum number of assignments over the scheduling

period violations, maximum number of worked weekends viola-

tions, i ∈ {10,11,12} for nurse n.

Constant

C constant with value 10.

42

Min
[

∑
d∈D

∑
s∈S

∑
k∈K

a1
dskω

1
]
+

[
∑

n∈N
∑

d∈D
∑
t∈Tt

∑
i∈{2,4}

bi
ndtω

i
]
+

[
∑

n∈N
∑

d∈D
∑

i∈{3,5}
ci

ndω
i
]
+[

∑
n∈N

∑
d∈D

∑
s∈S

∑
t∈Tt

e6
ndstω

6
]
+

[
∑

n∈N
∑

d∈D
∑
s∈S

f 7
ndsω

7
]
+

[
∑

n∈N
∑

d∈D
∑
s∈S

g8
ndsω

8
]
+[

∑
n∈N

∑
w∈W

h9
nwω

9
]
+

[
∑

n∈N
∑

i∈{10,11,12}
ji
nω

i
]

(A.1)

Subject to

∑
s∈S

∑
k∈K

xndsk ≤ 1 ∀n ∈ N,d ∈ D (A.2)

∑
n∈N

xndsk ≥ rdsk ∀d ∈ D,s ∈ S,k ∈ K (A.3)

∑
k∈K

(xnds1k + xn(d+1)s2k)≤ 1 ∀n ∈ N,d ∈ D\{|D|},(s1,s2) ∈ Ŝ (A.4)

(k− lnk)xndsk = 0 ∀n ∈ N,d ∈ D,s ∈ S,k ∈ K (A.5)

6+d

∑
d′=d

∑
s∈S

∑
k∈K

xnd′sk ≤Mh ∀n ∈ N,d ∈ D (A.6)

∑
n∈N

xndsk +a1
dsk ≥ α

1
dsk ∀d ∈ D,s ∈ S,k ∈ K (A.7)

S1ndt +b2
ndt ≥ β

2
n ∀n ∈ N, t ∈ {1,2, . . . pw},d ∈ {1,2, . . . , |D|− (t +2)} (A.8)

S1ndt =
t+d+1

∑
d′=d

∑
s∈S

∑
k∈K

xnd′sk+

∑
d′∈d,t+d+1

∑
s∈S

∑
k∈K

xnd′skC+

t+d

∑
d′=d+1

(1−∑
s∈S

∑
k∈K

xnd′sk)C (A.9)

β 3
n +d

∑
d′=d

∑
s∈S

∑
k∈K

xnd′sk− c3
nd ≤ β

3
n ∀n ∈ N,d ∈ {1, . . . , |D|−β

3
n } (A.10)

S2ndt +b4
ndt ≥ β

4
n ∀n ∈ N, t ∈ {1,2, . . . pr},d ∈ {1,2, . . . , |D|− (t +2)} (A.11)

S2ndt =
t+d+1

∑
d′=d

(1−∑
s∈S

∑
k∈K

xnd′sk)+

∑
d′∈d,t+d+1

(1−∑
s∈S

∑
k∈K

xnd′sk)C+

t+d

∑
d′=d+1

∑
s∈S

∑
k∈K

xnd′skC (A.12)

β 5
n +d

∑
d′=d

(1−∑
s∈S

∑
k∈K

xnd′sk)− c5
nd ≤ β

5
n ∀n ∈ N,d ∈ {1, . . . , |D|−β

5
n } (A.13)

43

S3ndst + e6
ndst ≥ γ

6
s ∀n ∈ N,s ∈ S, ts ∈ {1,2, . . . ps},d ∈ {1,2, . . . , |D|− (ts +2)}

(A.14)

S3ndst =
ts+d+1

∑
d′=d

∑
k∈K

xnd′sk+

∑
d′∈d,ts+d+1

∑
k∈K

xnd′skC+

ts+d

∑
d′=d+1

(1− ∑
k∈K

xnd′sk)C (A.15)

|γ7
s |+d

∑
d′=d

∑
k∈K

xnd′sk− f 7
nds ≤ γ

7
s ∀n ∈ N,s ∈ S,d ∈ {1, . . . , |D|− γ

7
s } (A.16)

g8
nds− ∑

k∈K
xndsk = 0 ∀(n,d,s) ∈U (A.17)

∑
s∈S

∑
k∈K

(xnwsk + xn(w+1)sk)≤ 2ynw ∀n ∈ N,w ∈W (A.18)

∑
s∈S

∑
k∈K

(xnwsk + xn(w+1)sk)+h9
nw ≥ 2ynw ∀n ∈ N,w ∈W (A.19)

∑
d∈D

∑
s∈S

∑
k∈K

xndsk + j10
n ≥ β

10
n ∀n ∈ N (A.20)

∑
d∈D

∑
s∈S

∑
k∈K

xndsk− j11
n ≤ β

11
n ∀n ∈ N (A.21)

∑
w∈W

ynw− j12
n ≤ β

12
n ∀n ∈ N (A.22)

xndsk ∈ {0,1} ∀n ∈ N,d ∈ D,s ∈ S,k ∈ K (A.23)

ynw ∈ {0,1} ∀n ∈ N,w ∈W (A.24)

Constraints (A.2) ensure a single shift per day. Constraints (A.3) ensure the min-

imum number of nurses per days, shift, and skill. Constraints (A.4) ensure that a675

shift succession must be valid. Constraints (A.5) ensure a nurse can only be sched-

uled on a shift if they have the required skill. Constraints (A.6) ensure maximum Mh

worked days, every 7 days. Constraints (A.7) calculate the preferred coverage vio-

lations. Constraints (A.8) and (A.9) calculate the minimum consecutive assignments

(working days) violations. In the equations, S1 is calculated as the (sum of the working680

days) + (two border bits × C) + (complement of middle bits × C). Constraints (A.10)

calculate the maximum number of consecutive assignments (working days) violations.

Constraints (A.11) and (A.12) calculate the minimum number of consecutive days off

violations. S2 is evaluated similarly to Equations (A.8) and (A.9), however, the bits are

inverted and the sum is related to free days instead of working days. Constraints (A.13)685

calculate the maximum number of consecutive days off violations. Constraints (A.14)

44

and (A.15) calculate the minimum number of consecutive assignments to the same shift

violations. S3 is evaluated similarly to Equations (A.8) and (A.9), however, the viola-

tions are stored by nurse/day/shift/pattern. Constraints (A.16) calculate the maximum

of consecutive assignments to the same shift violations. Constraints (A.17) calculate690

the undesired day/shift assignments violations. Constraints (A.18) calculate if nurse

n works on weekend w. Constraints (A.19) calculate the complete weekend violation.

Constraints (A.20) calculate the minimum number of total working days violations

over the whole scheduling period. Constraints (A.21) calculate the maximum number

of total working days violations over the whole scheduling period. Constraints (A.22)695

calculate the total number of working weekends violations. Constraints (A.23) and

(A.24) define the decision variables as binary.

Appendix B. VND iterations

Table B.21: VND - Average number of iterations
VND iterations - single-day absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

n035w4 1.1 1.0 1.1 1.1

n035w8 1.4 1.0 1.4 1.4

n070w4 1.7 1.5 1.7 1.7

n070w8 1.9 1.8 1.9 1.9

n110w4 1.4 1.4 1.4 1.4

n110w8 1.9 1.8 1.9 1.9

VND iterations - consecutive-days absences

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

n035w4 1.4 1.2 1.4 1.4

n035w8 1.5 1.5 1.5 1.5

n070w4 1.5 1.4 1.5 1.5

n070w8 1.9 1.4 1.9 1.9

n110w4 2.0 1.9 2.0 2.0

n110w8 1.8 1.8 1.8 1.8

VND iterations - Lisbon instances

Complete scheduling Only absent days First absence to last absence First absence to end scheduling

19 nurses 12.9 38.1 32.8 15.3

32 nurses 4.8 4.8 4.8 4.8

45

References

Aguirre, A., & Kerin, A. (2014). Shiftwork practices 2005. URL: https:700

//create.piktochart.com/output/2598161-absenteeism [Online; accessed

20-July-2018].

Bäumelt, Z., Dvořák, J., Šůcha, P., & Hanzálek, Z. (2016). A novel approach for

nurse rerostering based on a parallel algorithm. European Journal of Operational

Research, 251, 624 – 639.705

Burke, E. K., & Curtois, T. (2014). New approaches to nurse rostering benchmark

instances. European Journal of Operational Research, 237, 71 – 81. doi:10.1016/

j.ejor.2014.01.039.

Burke, E. K., Curtois, T., Post, G., Qu, R., & Veltman, B. (2008). A hybrid heuristic or-

dering and variable neighbourhood search for the nurse rostering problem. European710

Journal of Operational Research, 188, 330 – 341.

Burke, E. K., De Causmaecker, P., Vanden Berghe, G., & Van Landeghem, H. (2004).

The state of the art of nurse rostering. Journal of scheduling, 7, 441–499.

Ceschia, S., Dang, N. T. T., De Causmaecker, P., Haspeslagh, S., & Schaerf, A. (2014).

Second international nurse rostering competition. URL: http://mobiz.vives.be/715

inrc2/wp-content/uploads/2014/10/INRC2.pdf [Online; accessed 19-July-

2018].

Clark, A., Moule, P., Topping, A., & Serpell, M. (2015). Rescheduling nursing shifts:

scoping the challenge and examining the potential of mathematical model based

tools. Journal of Nursing Management, 23, 411–420. doi:10.1111/jonm.12158.720

De Causmaecker, P., & Vanden Berghe, G. (2011). A categorisation of nurse rostering

problems. Journal of Scheduling, 14, 3–16.

Ernst, A., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and

rostering: A review of applications, methods and models. European Journal of

Operational Research, 153, 3–27.725

46

https://create.piktochart.com/output/2598161-absenteeism
https://create.piktochart.com/output/2598161-absenteeism
https://create.piktochart.com/output/2598161-absenteeism
http://dx.doi.org/10.1016/j.ejor.2014.01.039
http://dx.doi.org/10.1016/j.ejor.2014.01.039
http://dx.doi.org/10.1016/j.ejor.2014.01.039
http://mobiz.vives.be/inrc2/wp-content/uploads/2014/10/INRC2.pdf
http://mobiz.vives.be/inrc2/wp-content/uploads/2014/10/INRC2.pdf
http://mobiz.vives.be/inrc2/wp-content/uploads/2014/10/INRC2.pdf
http://dx.doi.org/10.1111/jonm.12158

Forbes (2013). The causes and costs of absenteeism in the workplace. URL:

https://www.forbes.com/sites/investopedia/2013/07/10/the-causes-

and-costs-of-absenteeism-in-the-workplace [Online; accessed 16-July-

2018].

Gomes, R. A., Toffolo, T. A., & Santos, H. G. (2017). Variable neighborhood search730

accelerated column generation for the nurse rostering problem. Electronic Notes in

Discrete Mathematics, 58, 31 – 38. doi:10.1016/j.endm.2017.03.005. 4th Interna-

tional Conference on Variable Neighborhood Search.

Ingels, J., & Maenhout, B. (2015). The impact of reserve duties on the robustness

of a personnel shift roster: An empirical investigation. Computers & Operations735

Research, 61, 153 – 169. doi:10.1016/j.cor.2015.03.010.

Legrain, A., Bouarab, H., & Lahrichi, N. (2014). The nurse scheduling problem in

real-life. Journal of Medical Systems, 39, 160. doi:10.1007/s10916-014-0160-8.

Legrain, A., Omer, J., & Rosat, S. (2017). A rotation-based branch-and-price approach

for the nurse scheduling problem. URL: https://hal.archives-ouvertes.fr/740

hal-01545421 [Online; accessed 19-July-2018].

Lougee-Heimer, R. (2003). The common optimization interface for operations re-

search: Promoting open-source software in the operations research community. IBM

Journal of Research and Development, 47, 57–66.

Maenhout, B., & Vanhoucke, M. (2011). An evolutionary approach for the nurse reros-745

tering problem. Computers & Operations Research, 38, 1400 – 1411.

Maenhout, B., & Vanhoucke, M. (2013). Reconstructing nurse schedules: Computa-

tional insights in the problem size parameters. Omega, 41, 903 – 918.

Mischek, F., & Musliu, N. (2017). Integer programming model extensions for a multi-

stage nurse rostering problem. Annals of Operations Research, . doi:10.1007/750

s10479-017-2623-z.

47

https://www.forbes.com/sites/investopedia/2013/07/10/the-causes-and-costs-of-absenteeism-in-the-workplace
https://www.forbes.com/sites/investopedia/2013/07/10/the-causes-and-costs-of-absenteeism-in-the-workplace
https://www.forbes.com/sites/investopedia/2013/07/10/the-causes-and-costs-of-absenteeism-in-the-workplace
http://dx.doi.org/10.1016/j.endm.2017.03.005
http://dx.doi.org/10.1016/j.cor.2015.03.010
http://dx.doi.org/10.1007/s10916-014-0160-8
https://hal.archives-ouvertes.fr/hal-01545421
https://hal.archives-ouvertes.fr/hal-01545421
https://hal.archives-ouvertes.fr/hal-01545421
http://dx.doi.org/10.1007/s10479-017-2623-z
http://dx.doi.org/10.1007/s10479-017-2623-z
http://dx.doi.org/10.1007/s10479-017-2623-z

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers &

Operations Research, 24, 1097 – 1100. doi:10.1016/S0305-0548(97)00031-2.

Moz, M., & Pato, M. V. (2003). An integer multicommodity flow model applied to the

rerostering of nurse schedules. Annals of Operations Research, 119, 285–301.755

Moz, M., & Pato, M. V. (2004). Solving the problem of rerostering nurse schedules

with hard constraints: New multicommodity flow models. Annals of Operations

Research, 128, 179–197.

Moz, M., & Pato, M. V. (2007). A genetic algorithm approach to a nurse rerostering

problem. Computers & Operations Research, 34, 667 – 691. Logistics of Health760

Care ManagementPart Special Issue: Logistics of Health Care Management.

Pato, M. V., & Moz, M. (2008). Solving a bi-objective nurse rerostering problem by

using a utopic pareto genetic heuristic. Journal of Heuristics, 14, 359–374.

SD Worx (2013). 2012: A record year for absenteeism. URL: https:

//www.sdworx.be/nl-be/sd-worx-r-d/publicaties/persberichten/765

2013-03-27-recordjaar-ziekteverzuim [Online; accessed 11-July-2018].

Tassopoulos, I. X., Solos, I. P., & Beligiannis, G. N. (2015). A two-phase adaptive

variable neighborhood search approach for nurse rostering. Computers & Operations

Research, 60, 150 – 169. doi:10.1016/j.cor.2015.02.009.

Valouxis, C., Gogos, C., Goulas, G., Alefragis, P., & Housos, E. (2012). A systematic770

two phase approach for the nurse rostering problem. European Journal of Opera-

tional Research, 219, 425 – 433. doi:10.1016/j.ejor.2011.12.042.

Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., & De Boeck, L.

(2013). Personnel scheduling: A literature review. European Journal of Operational

Research, 226, 367 – 385.775

Williams, J. C., Lambert, S., & Kesavan, S. (2017). How the gap used an

app to give workers more control over their schedules. URL: https:

48

http://dx.doi.org/10.1016/S0305-0548(97)00031-2
https://www.sdworx.be/nl-be/sd-worx-r-d/publicaties/persberichten/2013-03-27-recordjaar-ziekteverzuim
https://www.sdworx.be/nl-be/sd-worx-r-d/publicaties/persberichten/2013-03-27-recordjaar-ziekteverzuim
https://www.sdworx.be/nl-be/sd-worx-r-d/publicaties/persberichten/2013-03-27-recordjaar-ziekteverzuim
https://www.sdworx.be/nl-be/sd-worx-r-d/publicaties/persberichten/2013-03-27-recordjaar-ziekteverzuim
https://www.sdworx.be/nl-be/sd-worx-r-d/publicaties/persberichten/2013-03-27-recordjaar-ziekteverzuim
http://dx.doi.org/10.1016/j.cor.2015.02.009
http://dx.doi.org/10.1016/j.ejor.2011.12.042
https://hbr.org/2017/12/how-the-gap-used-an-app-to-give-workers-more-control-over-their-schedules
https://hbr.org/2017/12/how-the-gap-used-an-app-to-give-workers-more-control-over-their-schedules
https://hbr.org/2017/12/how-the-gap-used-an-app-to-give-workers-more-control-over-their-schedules

//hbr.org/2017/12/how-the-gap-used-an-app-to-give-workers-

more-control-over-their-schedules [Online; accessed 20-July-2018].

Zheng, Z., Liu, X., & Gong, X. (2017). A simple randomized variable neighbourhood780

search for nurse rostering. Computers & Industrial Engineering, 110, 165 – 174.

49

https://hbr.org/2017/12/how-the-gap-used-an-app-to-give-workers-more-control-over-their-schedules
https://hbr.org/2017/12/how-the-gap-used-an-app-to-give-workers-more-control-over-their-schedules
https://hbr.org/2017/12/how-the-gap-used-an-app-to-give-workers-more-control-over-their-schedules
https://hbr.org/2017/12/how-the-gap-used-an-app-to-give-workers-more-control-over-their-schedules

	Introduction
	Literature review
	The nurse rerostering problem
	General integer programming formulation for the NRRP
	Variable neighborhood descent
	Main method - VND
	Assign and delete shift neighborhood
	Change shift neighborhood
	Swap shift neighborhood
	Assign missing shift neighborhood
	Change and assign missing shift neighborhood
	Assign missing shift and delete next shift neighborhood
	Intensification and diversification neighborhood

	Computational results
	Data sets and experimental setup
	INRC-II instances
	Lisbon instances
	Computational environment
	VND neighborhoods and parameters tunning

	Computational results for the INRC-II instances
	Complete scheduling horizon, complete set of NRP and NRRP constraints
	Complete scheduling horizon and ignoring the NRP's soft constraints
	Scheduling horizon relaxation

	Computational results for the Lisbon instances
	Limits of the solution approaches

	Conclusions
	General integer programming formulation for the nurse rostering problem
	VND iterations

